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ABSTRACT This article addresses the problem of data-driven model discrimination for unknown switched
systems with unknown linear temporal logic (LTL) specifications, representing tasks, that govern their
mode sequences, where only sampled data of the unknown dynamics and tasks are available. To tackle
this problem, we propose data-driven methods to over-approximate the unknown dynamics and to infer
the unknown specifications such that both set-membership models of the unknown dynamics and LTL
formulas are guaranteed to include the ground truth model and specification/task. Moreover, we present
an optimization-based algorithm for analyzing the distinguishability of a set of learned/inferred model-task
pairs as well as a model discrimination algorithm for ruling out model-task pairs from this set that are
inconsistent with new observations at run time. Further, we present an approach for reducing the size of
inferred specifications to increase the computational efficiency of the model discrimination algorithms.

INDEX TERMS Fault detection and isolation, formal verification/synthesis, learning for control, model
validation, nonlinear systems identification.

I. INTRODUCTION
In cyber-physical systems (CPS) and multi-agent systems
(MAS), various sensors, actuators, and subsystems/agents are
interconnected, where each component in CPS or each agent
in MAS may perform a distinct task while satisfying a distinct
dynamical model. Distinguishing the components or agents
and the tasks from each other becomes crucial for various
purposes. For instance, to detect faults and minimize the risk
of serious damages or failures in CPS, it is necessary to
identify which component has abnormal functionality, while
in MAS, it is desirable to detect the tasks/intents of other
dynamic agents. For the purpose of distinguishing amongst
different model behaviors, we can leverage the differences that
are the result of different system dynamics or specifications,
where the system dynamics governs the evolution of system
states based on physical laws and the specification governs

the temporal evolution of their system modes corresponding
to desired tasks or rules. The task specifications are often ex-
pressed using temporal logic formulas, such as linear temporal
logic (LTL) formulas, which is a highly expressive language
capable of providing formal yet easily understandable descrip-
tions of system behaviors [1], [2]. Temporal logic formulas
are widely used across many fields, including control syn-
thesis and complex robotic applications, anomaly detection in
underlying systems, and specification, recognition, and inter-
pretation in dynamic environments [3], [4], [5], [6], [7], [8],
[9], [10], [11].

Thus, discriminating among different models can be ex-
pedited by considering both the specifications and sys-
tem dynamics in contrast to only utilizing the speci-
fications or system dynamics alone. However, the ex-
act specifications and system dynamics are usually not
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available, which makes this problem more challenging and
interesting.

Related Work: Model discrimination is the task of dis-
tinguishing between models based on a finite sequence of
measured input-output data [12], [13], [14]. This problem can
be approached by using a modeling invalidation framework,
which seeks to determine whether the observed input-output
data is consistent with any member of the set of valid mod-
els [15]. The problem of model invalidation has been studied
for different types of systems, including linear parameter
varying systems [16], [17], nonlinear systems [18], uncer-
tain systems [19], switched auto-regressive models [20], and
switched affine systems [13], [21], [22]. Additionally, to ex-
amine the detectability of the models, T -distinguishability
(or T -detectability) is introduced in [13], [22] to find up-
per bounds on the required time horizon T to distinguish
one model from the other, if such a T exists. The notion
of T -distinguishability is closely related to the concept of
state/mode distinguishability of switched linear systems [23],
[24], finite-state systems [25] and switched nonlinear sys-
tems [26]. Recently, model discrimination and fault detection
using temporal logics specifications have also gained atten-
tion. Jiang et al. [27] conducted failure diagnosis by specify-
ing the fault as an LTL formula; and Yang et al. [28] combined
switched affine systems and LTL formulas to constrain the
switching modes so that the detectability horizon T can be
reduced. Niu et al. [29] further extended the work in [28] to
nonlinear switched systems, and they defined the specifica-
tions in the form of metric/signal temporal logic formulas.
However, these approaches all rely on precise mathematical
models of both the system dynamics and the temporal logic
specifications.

When the system dynamics are unknown or only par-
tially known, various learning approaches, e.g., Gaussian
process regression, clustering-based methods and neural
networks [30] have been developed. Further, to prevent
the true model from being wrongly discriminated, set-
membership learning approaches have also been proposed to
over-approximate the unknown system dynamics from ob-
served/sampled input-output data by finding a set of known
systems that is guaranteed to contain the true model and retain
most properties of interest with the unknown system dynam-
ics [31], [32]. Within this context, the work in [33] proposes
a recursive algorithm to compute upper and lower bound-
ing functions for univariate Lipschitz continuous unknown
dynamics while the study in [34], [35] considered the exten-
sion to multivariate functions. This technique was extended
to unknown differentiable functions with bounded Jacobians
in [36] and to Hölder continuous unknown dynamics in [37],
while in [38], the authors further considered componentwise
Hölder continuous functions where the contribution of each
input to each output of the function is independently counted.

On the other hand, when the exact temporal logic formulas
for the task specifications are unknown, the formulas can be
inferred from traces of underlying systems and utilized for dif-
ferent purposes [6], [39], [40], [41], [42], [43], [44], [45], [46],

[47], [48], [49], [50], [51], [52], [53]. For example, LTL task
specifications were inferred/learned from demonstrations of a
task using Bayesian inference approach to address the prob-
lem of acceptability of task execution, as presented in [54].
Moreover, in [55], both formal grammar and temporal logic
have been used for mining the structure and the parameters of
a signal temporal logic specification from a set of unlabeled
trajectories while in [56], [57], [58], formal grammar and
temporal logic have been used for automated recognition of
complex human activities and the task of run time verification.
Nonetheless, the works mentioned above do not consider the
learning and inference of the unknown system dynamics and
task specifications simultaneously, which we find to be syner-
gistic for the purpose of model discrimination.

Contributions: In this article, we aim to solve the prob-
lem of data-driven model discrimination among a set of
unknown models with unknown switched system dynam-
ics and unknown linear temporal logic (LTL) specifications
that govern their mode sequences (representing tasks), where
we only have access to data of the unknown dynamics and
specifications. To address this challenge, we propose a data-
driven set-membership method such that the learned dynamics
model over-approximates the unknown dynamics and the
ground truth LTL specification/task is included in the set of
inferred specifications. Furthermore, we analyze the distin-
guishibility of the learned data-driven model-task pairs by
introducing an optimization-based algorithm that can find
an upper bound on the required time horizon T to guaran-
tee the discrimination/separation of the model-task pairs, as
well as propose a model discrimination algorithm that can
rule out learned model-task pairs that are inconsistent with
new data/observations at run time. Moreover, we propose
a complexity reduction framework for reducing the size of
the inferred LTL formula by leveraging prior information,
when available, that can increase the computation efficiency
in model discrimination algorithms. Finally, we demonstrate
the effectiveness of our proposed methods via illustrative ex-
amples of intent estimation for vehicles and single link robot
arms. Our results indicate that the synergistic learning of both
LTL specifications and system dynamics can significantly ac-
celerate data-driven model discrimination.

II. PRELIMINARIES
In this section, we introduce the mathematical concepts and
notations used throughout this article.

A. NOTATIONS
‖v‖p for p = {1,∞} denotes the p-norm of a vector v ∈ Rn

and ei is the unit basis vector with its i-th element being 1.
The set of integers from a through b is denoted by Zb

a, N !
{1, 2, . . .} and |S| is the cardinality of the finite set S.

B. LINEAR TEMPORAL LOGIC (LTL)
First, we introduce an atomic proposition as a statement on a
system variables denoted by π . This statement is either True
or False. Let " be a finite set of atomic propositions. The
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FIGURE 1. Syntax DAG and identifier of syntax DAG of the formula
(π1 U π2) ∧ G(π1 ∨ π2).

syntax of LTL formulas over " is defined as follows.

φ := $ | π | ¬φ | φ1 ∧ φ2 | X φ | φ1 U φ2, (1)

where π ∈ ", ¬ and ∧ are Boolean connectives, U is the
temporal operator “until”, and X is the temporal operator
“next”. We add syntactic sugar and define temporal operators
G (“always”) and F (“finally”). In addition, we derive Boolean
connectives ∨ (“disjunction”) and → (“implication”) from the
introduced Boolean connectives. We denote the set containing
all the temporal operators and all the Boolean connectives
by O.

Let σ be an ω-word over " whose t-th element is denoted
by σt . We define the Boolean semantics of LTL formulas over
such sequences as follows.

(σσσ , t ) |= π iff σt = π ,

(σσσ , t ) |= ¬φ iff (σσσ , t ) (|= φ,

(σσσ , t ) |= φ1 ∧ φ2 iff (σσσ , t ) |= φ1 and (σσσ , t ) |= φ2,

(σσσ , t ) |= X φ iff (σσσ , t + 1) |= φ,

(σσσ , t ) |= φ1 U φ2 iff ∃t ′ ≥ t : (σσσ , t ′) |= φ2

and ∀t ′′ ∈ [t, t ′) : (σσσ , t ′′) |= φ1. (2)

Syntax DAG: Any LTL formula can be represented as a syn-
tax directed acyclic graph, i.e., syntax DAG. In a syntax DAG,
the nodes are labeled with atomic propositions or temporal op-
erators or Boolean connective that form an LTL formula [59].
For instance, Fig. 1(a) shows the unique syntax DAG of the
formula (π1 Uπ2) ∧ G(π1 ∨ π2), in which the subformula π2
is shared. Fig. 1(b) shows the arrangement of the identifiers of
each node in the syntax DAG. We denote the set of Boolean
connectives and the temporal operators by C. Size of an LTL
formula: If we represent an LTL formula by a syntax DAG,
then each node corresponds to a subformula; thus, the size of
an LTL formula is the number of the DAG nodes. We denote
the size of an LTL formula φ by |φ| [60].

C. FORMAL GRAMMAR
String: If we denote an alphabet by &, then a string over this
alphabet is a finite sequence of symbols of &.

Kleene Closure: Kleene closure, denoted by ∗, is a unary
operation on sets of symbols. If we apply the Kleene operation
on the alphabet & (a finite set of symbols), &∗ is the set of all
strings over & including the empty string ε.

Formal Grammar: A formal grammar is a set of produc-
tions (rules) that describe how to generate a string from the
alphabet of a language. From a mathematical point of view,
grammar is a quadruple 〈&, N, T, RU〉. In this quadruple,& is
a finite non-empty set called terminal alphabet. The elements
of this set are called terminals and are the symbols appearing
in the output strings of a grammar. They are called termi-
nals due to the fact that there is no rule in the grammar RU
that changes them. N is a finite nonempty set that is disjoint
from &. The elements of this set are called non-terminals.
Non-terminals can be replaced by terminals. T ∈ N is a distin-
guished non-terminal which is called the “start” symbol. RU
is a finite set of productions (rules) in the following form: λ ⇒
µ, where λ ∈ (& ∪ N)∗N(& ∪ N)∗, referred to as “head”, is a
string of terminals and non-terminals, and contains at least one
non-terminal symbol; µ ∈ (& ∪ N)∗, referred to as “body”,
is a string of terminals and non-terminals. The symbol ⇒
is commonly used in representing a production in formal
grammar.

Context-Free Grammar (CFG): Context-free grammar
(CFG) is a type of formal grammar in which the head consists
of a single non-terminal symbol (λ ∈ N ). CFGs are called
context-free because any of the productions in RU can be
applied to any of the non-terminals in N regardless of whether
the non-terminals are surrounded by other symbols or not. It
is common to represent the productions that are applied to a
same head in the same line [61], [62], [63]. The symbol ⇒
used in defining rules in formal grammar is different from the
Boolean connective → (“implies”) in LTL. The symbol ⇒
is used for defining a production between the head and the
body for generating a string. In addition, the symbol | is com-
monly used for separating the “bodies” (µ) following a same
“head” (λ).

Example 1: We define & = {A, a, B, b, c,C} and N =
{λ1, λ2}. We also have the following productions

λ1 ⇒| µ1 | µ2,

λ2 ⇒| µ3 | µ4, (3)

where µ1 := λ2aλ2, µ2 := λ2Bλ2, µ3 := CcA, and µ4 :=
aBb. Using the productions in (3), we can generate the follow-
ing strings: CcAaCcA, aBbaaBb, aBbaCcA, aBbBaBb, etc.
Note that in a CFG, we can also consider a single line of pro-
duction or a subgroup of the productions to generate strings.
For example, using the second line in (3), we generate Cca,
aBb.

D. FORMULATION OF INTEGER ENCODING OF LTL
FORMULAS
Next, we present the integer encoding of LTL formulas
in [64], which will be used when solving the model discrimi-
nation problem in the Section VI.

The time evaluation of a given formula φ is given by Pφ !
P0
φP1

φ . . . PT
φ . For brevity, we will now only present constraints

for the satisfaction of each operator of the LTL semantics, i.e.,
(σ, t ) |= φ for the following operators, where π , π ′ and πi are
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atomic propositions, and Pt
φ is the truth value of formula φ at

time t , as defined in [64].
Negation: The formula φ = ¬π can be modeled as:

Pt
φ =

(
1 − Pt

π

)
. (4)

Disjunction: The formula φ =
∨k

i=1 πi can be modeled as:

Pt
φ ≤ "k

i=1Pt
πi

; Pt
φ ≥ Pt

πi
, i ∈ Zk

1. (5)

Conjunction: The formula φ =
∧k

i=1 πi can be modeled as:

Pt
φ ≥ "k

i=1Pt
πi

− (k − 1); Pt
φ ≤ Pt

πi
, i ∈ Zk

1. (6)

Next: The formula φ = X p can be modeled as:

Pt
φ = Pt+1

π . (7)

Until: The formula φ = π ′ Uπ can be modeled as:

αt j ≥ P j
π +"

j−1
τ=t Pτπ ′ − ( j − t + 1), j ∈ ZT

t+1;

αt j ≤ P j
π , αt j ≤ Pτπ ′ , j ∈ ZT

t+1, τ ∈ Z j
t ;

Pt
φ ≤ "T

j=tαt j; Pt
φ ≥ αt j, j ∈ ZT

t . (8)

Eventually: The formula φ = Fπ can be modeled as:

Pt
φ ≤ "T

τ=t P
τ
π ; Pt

φ ≥ Pτπ , τ ∈ ZT
t . (9)

Always: The formula φ = Gπ can be modeled as:

Pt
φ ≥ "T

τ=t P
τ
π − (T − t ); Pt

φ ≤ Pτπ , τ ∈ ZT
t . (10)

III. PROBLEM FORMULATION
A. MODELING FRAMEWORK
In this article, we consider two types of atomic propositions.
One type of propositions represents modes of the system
dynamics and the other type represents constraint modes in-
dicating if certain state constraints are active or inactive; thus,
we consider " = "m ×"s as a finite set of atomic proposi-
tions with "m being the set of switched system modes and
"s being the set of state-dependent constraint modes. Specif-
ically, we consider the Np different unknown model-task pair
({Gl}Np

l=1,φ
l ), given by:

xt+1 =






f l
σm,1 (xt , ut ) + wt , if σm

t = e1,
...

f l
σm,|"m | (xt , ut ) + wt , if σm

t = e|"m|,

(11a)

xc
t, j = gl

σ s, j (zt, j ), if σ s, j
t = 1, ∀ j ∈ Z|"s|

1 , (11b)

yt = xt + vt , (11c)

(σ, t ) |= φl , (11d)

where xt ∈ X ⊆ Rnx is the state vector at time t ∈ N, ut ∈
U ⊆ Rnu is the control input vector, yt ∈ Y ⊆ Rny is the ob-
served output vector, wt ∈ W ⊆ Rnw is the process noise
and vt ∈ V ⊆ Rnv is the measurement noise, where we as-
sume that the sets X, U, W, Y, and V are known (bounded)

polytopes. ei is the unit basis vector, σt !
[
σm $

t σ s $
t

]$
∈

{0, 1}|"m|+|"s| and f l
σm,i : X × U → Rn are functions describ-

ing the unknown state dynamics for each mode represented
by atomic proposition σm

t = ei, while gl
σ s, j : X c

j → Z j are
functions describing the unknown state-dependent modes
for state (equality) constraints corresponding to each atomic
proposition σ

s, j
t = 1. For each j, xc

t, j and zt, j are disjoint
subsets/partitions of xt (such that we do not have implicit
equations in (11)) and correspondingly, their domains X c

j and
Z j are also disjoint. For simplicity, we assume that the vector
partition of xt is given; however, if unknown, all combinations
of xc and z can be considered and any combination that lacks
correlation (e.g., using statistical tests) can be disregarded.
The trace σ satisfies an LTL formula φl whose specification
is unknown.

Moreover, we assume that the state dimension and number
of modes are known and the switching of the modes occur
(synchronously) at the discrete-time step of our observations,
while the unknown functions are Lipschitz continuous.

Assumption 1: Each unknown function f (·) (or g(·)), is
Lp-Lipschitz continuous, i.e., there exists a positive finite-
valued Lp > 0, called the Lipschitz constant, such that for all
x1, x2 in the domain of f , | f (x2) − f (x1)| ≤ L f

p‖x2 − x1‖p for
p ∈ {1,∞} and similarly, for all z1,i, z2,i in the domain of g,
|g(z2,i ) − g(z1,i )| ≤ L f

p‖z2,i − z1,i‖p for p ∈ {1,∞}.
In addition, we assume that we only have access to the data

Dl of (finite-length) input-mode-output trajectories for both
positive and negative cases, where positive cases are collected
when the system demonstrates the desired behavior satisfying
the LTL formula, while negative cases are collected when the
system demonstrates undesired behavior violating the LTL
formula. Given a specific trajectory {ut , σt , yt }t0+T −1

t=t0 in this

dataset, {σt }t0+T −1
t=t0 will be extracted as the traces data set

Dl
LT L while {yt , ut , σt , yt+1} from t = t0 to t0 + T − 2 will be

added to the input-output trajectories data set Dl
σ according

to σt . Consequently, the initial data set Dl can be partitioned
into a traces data set Dl

LT L (consisting of positive and negative
traces) and a input-output trajectories data set Dl

σ for each
σ ∈ ".

Further, in Section V-B, we also consider the special case
when prior information about φ is available to make the model
discrimination more computationally efficient.

B. PROBLEM STATEMENT
To formulate the problems of interest, we adopt the following
definitions.

Definition 1: We define a length-T trajectory as ηT =
{ut , σt , yt }t0+T −1

t=t0 , where ut ∈ U is the control input and U ⊆
Rm, σt ∈ " is the mode at time t from the mode set ", yt is
the system output, and T is a finite time horizon.

Definition 2: We define the length-T behavior of a model
Gl at time t0 as the set of all length-T trajectories ηT whose
input-output sequences are compatible with Gl , given by

BT
t0

(
Gl
)

:= {{ut , σt , yt }t0+T −1
t=t0 | σt ∈ ",
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FIGURE 2. For two model-task pairs (Gi,φi ) and (G j ,φ j ) where the true
system dynamics model and LTL formula of both pairs are unknown, we
aim to find the H and φI from data so that the original system behavior is
included by inferred system behavior (S ⊆ Ŝ ). Thus, if the bigger magenta
sets for model-task pairs i and j do not intersect, the two unknown
model-task pairs are discriminated.

ut ∈ U, yt ∈ Y, xt ∈ X,

wt ∈ W, vt ∈ V,∀t ∈ Zt0+T −1
t0 s.t. (11a)–(11c) holds}.

(12)

Definition 3: We define the length-T behavior of an LTL
formula φl at time t0 as a set of all length-T trajectories ηT
whose mode sequences satisfy φl , given by

BT
t0

(
φl
)

:=
{
{ut , σt , yt }t0+T −1

t=t0 | {σt }t0+T −1
t=t0 ∈ V T

t0

(
φl
)

,

ut ∈ U, yt ∈ Y,∀t ∈ Zt0+T −1
t0

}
. (13)

Note in Definition 2, the mode sequences are not con-
strained by any specifications/LTL formulas. Further, the
length-T behaviors of the to-be-learned set-membership
model Hl and the to-be-inferred specification φl

I can be simi-
larly defined.

Having defined the above, we can now state our first prob-
lem of learning the unknown switched system dynamics Gl

and inferring the unknown LTL specification φl from data
with some specific inclusion properties:

Problem 1 (Model Inference/Learning): Given (prior) data
sets Dl

LT L and Dl
σ for each σ ∈ " that are generated by the un-

known model-task (i.e., dynamics-specification) pair (Gl ,φl )
for all l ∈ ZNp

1 , learn an over-approximation model Hl of
the original model Gl , s.t., BT

t0 (Gl ) ⊆ BT
t0 (Hl ) for all t0 and

T , and infer the inferred specification φl
I such that φl →φl

I
(equivalently, BT

t0 (φl ) ⊆ BT
t0 (φl

I ) for all t0 and T ).
Given the design that Hl is an over-approximation of Gl

and φl
I is implied by φl as well as the definitions of system

behaviors, we show that the intersection of the bigger circles
(cf. Fig. 2) represent all possible learned models and inferred
LTL specifications that are consistent with the data (including
generalization errors) in following proposition:

Proposition 1: For the set S l = BT
t0 (φl ) ∩ BT

t0 (Gl ) and
the set Ŝ l = BT

t0 (φl
I ) ∩ BT

t0 (Hl ) containing the length-T se-
quences generated by the true model-task pair (Gl ,φl )
and learned/inferred model-task pair (Hl ,φl

I ), respectively,

if BT
t0 (Gl ) ⊆ BT

t0 (Hl ) and φl →φl
I (i.e., BT

t0 (φl ) ⊆ BT
t0 (φl

I ) ),

then we have S l ⊆ Ŝ l
.

Proof: We assume that η ∈ S l = BT
t0 (φl ) ∩ BT

t0 (Gl ) is an
arbitrary length-T sequence generated by true model-task
pair (Gl ,φl ): 1) for any η ∈ S l , we have (η, t0) |= φl ; thus,
if φl →φl

I , then we conclude that for any η ∈ S l we have
(η, t0) |= φl

I (i.e., for any η ∈ S l , we have η ∈ BT
t0 (φl

I ) );
2) we know that η ∈ BT

t0 (Gl ) and BT
t0 (Gl ) ⊆ BT

t0 (Hl ); there-
fore, for any η ∈ S l , we have η ∈ BT

t0 (Hl ). By considering
1) and 2), we conclude that S ⊆ Ŝ, where Ŝ l = BT

t0 (φl
I ) ∩

BT
t0 (Hl ). "
Then, if the bigger magenta sets for model-task pairs i and

j do not intersect (cf. Fig. 2), i.e., Ŝi ∩Ŝi = ∅, it is straight-
forward to conclude that the behaviors of original model-task
pair (green sets) are also disjoint:

Proposition 2: For the true model-task pairs (Gi,φi )
and (G j,φ j ), and the learned/inferred model-task pairs
(Hi,φi

I ) and (H j,φ
j
I ), we have Ŝi ∩Ŝ j = ∅→S i ∩ S j = ∅,

where Ŝi = BT
t0 (φi

I ) ∩ BT
t0 (Hi ), Ŝ j = BT

t0 (φ j
I ) ∩ BT

t0 (H j ), S i =
BT

t0 (φi ) ∩ BT
t0 (Gi ), and S j = BT

t0 (φ j ) ∩ BT
t0 (G j ).

Equipped by Propositions 1 and 2, we now state the follow-
ing data-driven model discrimination problems to determine
how long it takes for the model-task pairs in a model-task
pair set to be distinguished from each other by way of the
distinction of their learned/inferred model-task pairs:

Problem 2: (Distinguishability for a set of true model-
task pairs). Given a set of learned/inferred model-task
pairs {(Hl ,φl

I )Np
l=1} and a finite time horizon T , determine

whether the set of learned/inferred model-task pairs is T-
distinguishable, i.e., whether ∃t0 such that

⋂Np
l=1(BT

t0 (Hl ) ∩
BT

t0 (φl
I )) = ∅.

Problem 3: (Model-task pair discrimination) Given a
(newly observed) length-T input-mode-output sequence
{ut , σt , yt }tc

t=tc−T +1 at the current time tc and a set of

learned/inferred model-task pairs {(Hl ,φl
I )}Np

l=1, determine
which learned/inferred model-task pair it is based on the given
sequence. That is to find an i ∈ ZNp

1 = {1, 2, . . ., Np} that
satisfies (BT

t0 (Hi ) ∩ BT
t0 (φi

I ) (= ∅) ∧ (BT
t0 (H j ) ∩ BT

t0 (φ j
I ) = ∅),

∀ j ∈ ZNp
1 and i (= j with t0 = tc − T + 1.

Our approach to solve Problem 1 consists of a few steps. We
first divide the data into trajectory and trace data, and then, we
infer the system dynamics and LTL specifications separately
in Sections IV and V, respectively. In addition, when prior
information about the family of possible LTL specifications
is known or given, we also consider formula reduction tech-
niques in Sections V-B. Finally, using the learned system
dynamics and inferred LTL formulas (from Problem 1), we
address Problems 2 and 3 in Section VI.

IV. SYSTEM DYNAMICS LEARNING
In this section, we learn over-approximations of the unknown
true system dynamics from the trajectory data Dl

π for all
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π ∈ " using set-membership methods in [35], [65], [66]. To
illustrate the proposed over-approximation method, we con-
sider a generic original unknown function ro = fa(r) : R ⊂
Rnr → R representing f l

σm,i or gl
σ s, j . The goal of an over-

approximation procedure is to find a pair of functions f
a

and

f a (i.e., to find an over-approximation model H ! { f a, f
a
})

such that the function fa(·) is bounded by the pair of functions,
i.e., f

a
and f a satisfy the following:

f
a
(r) ≤ fa(r) ≤ f a(r), ∀r ∈ R. (14)

If only a noisy sampled input-output data set Dr =
{(r̃ j, r̃o, j )| j = 1, . . . , ND} is available and function fa(·) is
assumed to be Lipschitz continuous, a data abstraction can be
found by following proposition according to [35].

Proposition 3: Consider a unknown Lipschitz function
fa(·) and its corresponding noisy data set Dr = {(r̃ j, r̃o, j )| j =
1, . . . , ND}. For all r ∈ R, f

a,D(·) and f a,D(·) are lower and
upper abstraction functions for unknown function fa(·), i.e.,
∀r ∈ R, f

a,D(r) ≤ fa(r) ≤ f a,D(r),

f a,D(r) = min
j∈{1,...,ND}

(
r̃o, j + Lp‖r − r̃ j‖p

)
+ εt , (15a)

f
a,D(r) = max

j∈{1,...,ND}

(
r̃o, j − Lp‖r − r̃ j‖p

)
− εt , (15b)

with a selected norm p ∈ {0, 1,∞} and εt ! εro + (Lp +
1)εr , where εr ! max(r̃ − r) and εro ! max(r̃o − ro) are
bounds on the measurement noise/errors for r and ro, respec-
tively.

When the Lipschitz constant is unknown, the Lipschitz
constant can also be estimated from the dataset Dr =
{(r̃ j, r̃o, j )| j = 1, . . . , ND} as follows, according to [35]:

L̂ fa
p = max

j (=i

|r̃o, j − r̃oi| − 2εro

||r̃ j − r̃i||p + 2εr
. (16)

Remark 1: A classical result on probably approximately
correct (PAC) [67] learning can be leveraged to relate con-
fidence levels for Lipschitz constant estimation with dataset
size [35]; thus, we can estimate the Lipschitz constants with
high probability/confidence given sufficient data.

The method can be applied to find an inclusion model that
over-approximates the unknown system dynamics and we can
achieve more precise estimation of the Lipschitz constants
and a more accurate inclusion model with an increase of
the dataset size. However, this data-driven approach belongs
to the class of non-parametric learning methods in the ma-
chine learning literature that are known to not scale well with
the size of the datasets. Thus, to further simplify the data-
driven model in Hl , i.e., the functions f l

σm and gl
σ s, j for each

σm ∈ {e1, . . . , e|"m|} and each σ s ∈ {0, 1}|"s|, we propose to
leverage a result in [66], [68] to over-approximate the nonlin-
earities with piecewise affine inclusions. First, we introduce
the definition of the partitions.

Definition 4 (Partition): For each function f l
σm or gl

σ s, j , a

partition I f ,l
σ of the closed bounded region X × U ⊆ Rnx+nu

is a collection of q f ,l
σm subregions I f ,l

σm = {I f ,l
σm,- | - ∈ Zq f ,l

σm
1 }

such that X × U ⊆
⋃q f ,l

σm
-=1 I f ,l

σm,- and I f ,l
σm,- ∩ I f ,l

σm,-′ = ∂I f ,l
σm,- ∩

∂I f ,l
σm,-′ , ∀- (= -′ ∈ Zq

1, where ∂I f ,l
σm,- is the boundary of set

I f ,l
σm,-. Similarly, a partition Ig,l

σ s, j = {Ig,l
σ s, j ,†

| † ∈ Z
qg,l
σ s, j

1 } with

qg,l
σ s, j subregions of the closed bounded region Z j for vector

fields gl
σ s, j can be defined.

We assume that the partitions are polytopic. Then, for each
polytopic subregion I f ,l

σm,- ∈ I f ,l
σm (or Ig,l

σ s, j ,†
∈ Ig,l

σ s, j ) that par-

titions the domain of interest, the unknown function f l
σm (or

gl
σ s, j ) can be over-approximated/abstracted by a pair of affine

functions f l
σm,-

, f
l
σm,- (or gl

σ s, j ,†
, gl
σ s, j ,† ) by solving a linear

programming (LP) problem similar to [66], [68] that mini-
mizes the maximum distance between the upper and lower
affine functions/hyperplanes for each partition. As a result, for
all (x, u) ∈ I f ,l

σm,- (or z j ∈ Ig,l
σ s, j ,†

), the function f l
σm (x, u) (or

gl
σ s, j (z j )) is sandwiched/framed by a pair of affine functions,

i.e., f l
σm (x, u) ≤ f l

D,σm (x, u) ≤ f
l
D,σm (x, u) ≤ f

l
σm (x, u) (or

gl
σ s, j (z j ) ≤ gl

D,σ s, j (z j ) ≤ gl
D,σ s, j (z j ) ≤ gl

σ s, j (z j )) with

f l
σm,-

(x, u) = Al
σm,-x + Bl

σm,- + h f ,l
σm,-,

f
l
σm,-(x, u) = A

l
σm,-x + B

l
σm,-u + h

f ,l
σm,-,

gl
σ s, j ,†

(z j ) = Hl
σ s, j ,†z j + hg,l

σ s, j ,†
,

gl
σ s, j ,†(z j ) = H

l
σ s, j ,†z j + h

g,l
σ s, j ,†, (17)

where Al
σm,-, A

l
σm,-, Bl

σm,-, B
l
σm,-, Hl

σ s, j ,†, H
l
σ s, j ,†, h f ,l

σm,-,

h
f ,l
σm,-, hg,l

σ s, j ,†
and h

g,l
σ s, j ,† are of appropriate dimensions and are

constants that are determined by the piecewise affine abstrac-
tion algorithm in [66], [68].

Since the original functions f (·) and g(·) are bounded
by data-driven over-approximation f D(·) and f

D
(·), the

following piecewise affine interval models Hl is an over-
approximation for the original dynamics model Gl satisfying
BT

t0 (Gl ) ⊆ BT
t0 (Hl ) for all t0 and T :

(
Al
σm

t ,-xt + Bl
σm

t ,-ut

+h f ,l
σm

t ,-

)

≤ xt+1 ≤



A
l
σm

t ,-xt + B
l
σm

t ,-ut

+h
f ,l
σm

t,i,-



 ,

yt = Cxt + vt ,

Hl
σ

s, j
t ,†

zt, j + hg,l

σ
s, j
t ,†

≤ xc
t, j ≤ H

l
σ

s, j
t ,†zt, j + h

g,l

σ
s, j
t ,†

, (18)

where their corresponding polytopic subregions I f ,l
σm

t,i,-
and

Ig,l
σm

t, j ,†
can be represented by the following linear constraints:

Sx,l
σm

t ,-
xt + Su,l

σm
t ,-

ut ≤ β l
σm

t ,-,
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Algorithm 1: Inference of LTL Formulas.

Sz,l
σ

s, j
t ,†

zt ≤ β l
σ

s, j
t ,†

, (19)

respectively, with Sx,l
σm

t ,-
, Su,l

σm
t ,-

, Sz,l
σ

s, j
t ,†

, β l
σm

t ,- and β l
σ

s, j
t ,†

of

appropriate dimensions.
Note that the precision of the inferred/learned model can be

improved with more and better chosen partitions, but may re-
sult in longer computation times since more integer variables
will be introduced in our solutions in Section VI.

V. LTL SPECIFICATION INFERENCE
We first propose an algorithm for learning the inferred specifi-
cation φI (without any prior information). Then, we propose a
framework for reducing the size of the inferred formula, when
prior information is available, for further improving the com-
putational efficiency of the model discrimination algorithms
in Section VI.

A. LEARNING THE UNKNOWN LTL SPECIFICATION
In this subsection, we present an algorithm for learning φI
from a given dataset of finite traces DLT L . DLT L consists of
two subsets of traces: 1) the subset of positive traces denoted
by Dpos

LT L (satisfying the true LTL formula φ) and 2) the subset
of negative traces denoted by Dneg

LT L (violating the true LTL
formula φ), where Dpos

LT L ∩ Dneg
LT L = ∅. For an arbitrary LTL

formula φ′, we write that DLT L is consistent with φ′ if the
traces in Dpos

LT L satisfy φ′ and the traces in Dneg
LT L violate φ′.

Algorithm 1 illustrates the framework that we use to learn φI
where the upper bound on the size of the true LTL formula,
denoted by Itr, is given.

In Algorithm 1, we convert the problem of inferring LTL
formulas from DLT L to a satisfiability problem in the propo-
sitional logic. The satisfiabilty problem is about assessing
whether a logical formula is satisfiable or not. For the satis-
fiabilty problem in the Boolean domain, we can use Boolean

satisfiability (SAT) solvers. One of the common SAT solvers
is the Z3 theorem prover [69].

We use propositional formulas in the satisfiability problem
to infer LTL formulas. If P is a set of propositional vari-
ables in the Boolean domain, then a propositional variable
ρ ∈ P is a propositional formula. In addition, if 1 and 2 are
propositional formulas, then ¬1 and1 ∨2 are propositional
formulas as well. Then, we define a model1 of a proposi-
tional formula as a mapping γ : P→B. The semantics of
this propositional valuation is given by a satisfaction relation
that is defined as follows. γ |= ρ if and only if γ (ρ) = 1,
γ |= ¬1 if and only if γ (|= 1, γ |= 1 ∨2 if and only if
γ |= 1 or γ |= 2, and finally, if γ |= 1, then we introduce
γ as a model of 1. In the case that such a model γ exists, the
propositional formula 1 is satisfiable. Such a model provides
us with sufficient information to construct an LTL formula
from that model. To infer LTL formulas using propositional
formulas, we use the framework proposed in [59] to construct
a propositional formula of a given size that is consistent with
the dataset of traces DLT L . By exploiting the fact that for a
propositional formula, multiple distinguished models can be
found, we can construct a distinct LTL formula from each
model. Hence, the key idea in Algorithm 1 is to infer all
possible LTL formulas with the maximum size of Itr from
DLT L using propositional formulas.

In Algorithm 1, P contains three types of propositional
variables: 1) p j,δ where j ∈ {1, . . ., k} and δ ∈ " ∪ C; 2) 5 j, j′

where j ∈ {1, . . ., k} and j′ ∈ {1, . . ., j − 1}; and r j, j′ where
j ∈ {1, . . ., k} and j′ ∈ {1, . . ., j − 1}. Here, k denotes the
size of the propositional formula 1DLT L,γ

k . The variables p j,δ
encode a labeling of a syntax DAG from which we construct
an LTL formula in the sense that if a variable p j,δ is set to
true, then node j is labeled with δ. The variables 5 j, j′ and r j, j′

encode the structure of the syntax DAG (i.e., the left and/or
right child of inner nodes) (cf. [59] for details).

Algorithm 1 starts from k = 1 and constructs a proposi-
tional formula 1DLT L,γ

k consistent with DLT L where k is the
size of the propositional formula (Line 5 in Algorithm 1).
Then Algorithm 1 computes a model γ of1DLT L,γ

k , if1DLT L,γ
k

is satisfiable (Line 7 in Algorithm 1). γ maps a subset of
proportional variables in P to True denoted by Var1

γ and maps
the rest of propositional variables to False denoted by Var0

γ .
In this way, γ can be used to construct an LTL formula by
constructing a DAG corresponding to that LTL formula. In
order to compute all the possible models of 1DLT L,γ

k , we add
the constraint in Line 9 to ensure that an already computed
γ is not computed again. In Line 9,

∧
k′=1,...,|Eγ |

∨
ρ∈Var1

γk′
means that, in the model γ that is going to be computed in the
next iteration i + 1, at least one of the propositional variables
that is going to be set to True must be different from the ones
that were set to true in the previously computed models. In
Algorithm 1, ELT L is the set containing all the inferred LTL
formulas with the maximum size of Itr where we construct φI

1The term “model” in Section V refers to a model of a proportional formula
and is different from the system model used in the rest of the article.
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by forming a disjunction among the formulas in ELT L. Eγ is an
auxiliary set containing all the models of 1DLT L,γ

k to track the
models that are already computed and to block/prevent them
from being computed again.

If 1DLT L,γ
k of size k is not satisfiable, then k increases

by 1 to infer LTL formulas using the propositional formula
1

DLT L,γ
k+1 of size k + 1 (Lines 17 to 20 in Algorithm 1). The

outer while loop in Algorithm 1 terminates once No possible
LTL formulas with the maximum size of Itr are inferred
from the given dataset of traces DLT L. Finally, we construct
φI :=

∨
i=1,...,|ELT L |φ

i.
Theorem 1: Given a traces dataset DLT L , if ELT L (= ∅, then

φ→φI holds for φI :=
∨

i=1,...,|ELT L |φ
i, where the size of

each φi ∈ ELT L is at most Itr and φ is the true LTL formula.
Proof: Algorithm 1 terminates when all the possible LTL

formulas with the maximum size of Itr are inferred including
the true LTL formula φ, all consistent with the given dataset
DLT L. Hence, we conclude that if ELT L (= ∅, then φ→φI
holds for φI :=

∨
i=1,...,|ELT L |φ

i where the size of each φi ∈
ELT L is at most Itr. "

B. REDUCING THE SIZE OF THE INFERRED LTL FORMULA
In this subsection, we present a novel framework and its
associated algorithm for reducing the size of inferred LTL
formula φI such that φ→φI still holds. The reason is that
reducing the size of inferred LTL formula while satisfying
φ→φI drastically decreases the computational cost in model
discrimination. In what follows, we first introduce prior infor-
mation to constrain the size of inferred LTL formula such that
φ→φI . Then, we propose an algorithm to further reduce the
size of the inferred formula while satisfying φ→φI .

1) PRIOR INFORMATION
Here, we introduce prior information that we use for reducing
the size of inferred LTL formula φI , when it is available.
Before introducing prior information, we need to explain how
we use CFG to generate strings of LTL formulas according to
a given syntax DAG.

As mentioned earlier, an LTL formula can be represented
as a syntax DAG. This DAG can be encoded as a CFG. In
defining the productions in CFG corresponding to a DAG, the
head of the first production corresponds to the root node and
the head of the last production corresponds to the outermost
child node in a DAG.

Example 2: The DAG corresponding to the LTL formula
(Gπ1) ∧ π2 is shown in Fig. 3(a) with the corresponding
CFG defined in (20), where λ1 corresponds to the root node
∧ and λ3 corresponds to the outermost child node π1. Fur-
ther, each layer in the DAG corresponds to a non-terminal
λi ∈ N = {λ1, λ2, λ3} and & = {G,π1,π2}:

λ1 ⇒ λ2 ∧ λ2, λ2 ⇒ G λ3 | π2, λ3 ⇒ π1. (20)

Now, we define prior information in the following.
Definition 5: The prior information PI represents a DAG

structure with the following properties.

FIGURE 3. (a) The DAG corresponding to the LTL formula (G π1) ∧ π2 in
Example 2. Each layer in the DAG corresponds to a non-terminal
λi ∈ N = {λ1,λ2, λ3}. (b) The DAG structure representing a given PI. CF GPI
corresponding to the given PI is defined in (21) with π ! {π1, π2}.

1) The labels of some of the nodes are known and are fixed,
and the labels of the rest of the nodes are to be inferred
which are referred to as unfixed nodes.

2) The label of each unfixed node belongs to a predeter-
mined set of Boolean connectives, temporal operators,
and atomic propositions.

3) The size of PI equals Itr which is the given upper bound
on the size of the true LTL formula φ.

4) The DAG corresponding to the true LTL formula φ is
consistent with the DAG structure or a partial DAG
structure of PI. We explain the concept of being consis-
tent with the DAG structure or the partial DAG structure
of PI through Example 3. For simplicity, we write an
LTL formula φ is consistent with PI as an equivalent
form of stating that the DAG corresponding to the LTL
formula φ is consistent with the DAG structure or a
partial DAG structure of PI.

Determining the DAG structure of PI, the fixed nodes, and
the predetermined sets associated with unfixed nodes depends
on the specific scenario at hand. Hence, PI should be deter-
mined according to a certain scenario by a domain expert. For
implementing PI, we use CFG which allows us to encode PI
such that we can also infer LTL formulas that are consistent
with the partial structure of PI. This is specifically beneficial
since we do not know the size of the true LTL formula. We use
CFGPI to denote the CFG corresponding to a given PI. Here,
for the set of non-terminals, we have N = {λ1, λ2, . . . , λNk }.
For the set of terminals, we have & ⊆ " ∪ O.

Example 3: Fig 3(b) illustrates the DAG structure repre-
senting a given PI. We define the CFG corresponding to the
given PI with the productions defined in (21). Here & =
{G, F,∧,π1,π2,π3} and N = {λ1, λ2, λ3}.

λ1 ⇒ λ2 ∧ λ2

λ2 ⇒ G λ3 | F λ3 | π1 | π2 | π3

λ3 ⇒ π1 | π2 | π3. (21)

Possible LTL formulas that can be generated from (21) are
(Fπ1) ∧ π2, (Gπ1) ∧ π2, π1 ∧ π2, Gπ1, Fπ3, etc. Note that
using CFG for implementing PI may result in generating
LTL formulas that are not consistent with the given PI. For
example, the LTL formula π1 ∧ π2 is not consistent with PI,
since the labels of neither of the children node of ∧ belong
to {G, F}. The LTL formula Gπ1 is consistent with partial
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structure of PI. The LTL formula (Fπ1) ∧ π2 is consistent
with the whole DAG structure of PI.

Remark 2: The set of LTL formulas consistent with PI is a
subset of the LTL formulas that can be generated by CFGPI.

2) CONSTRAINING THE INFERENCE OF LTL FORMULAS
USING PRIOR INFORMATION
Here, we explain how we use prior information PI for re-
ducing the size of φI . In the first step, in Algorithm 1, we
add CFGPI as a set of constraints to 1DLT L,γ

k in Line 5 in
Algorithm 1. In this way, if 1DLT L,γ

k is satisfiable in Line 6 in
Algorithm 1, then each computed model γ in Line 7 in Algo-
rithm 1 satisfies CFGPI. Consequently, each constructed LTL
formula φi in Line 9 in Algorithm 1 is consistent with CFGPI.
If any LTL formulas consistent with CFGPI are inferred, then
we store them in the set ECFG. Note that ECFG ⊆ ELT L.

As explained in Remark 2, it is possible that not all the LTL
formulas in ECFG are consistent with PI. Hence, in the second
step, if ECFG (= ∅, then we keep only those formulas that are
consistent with PI and store them in EPI. Finally, we form
φI :=

∨
i=1,...,|EPI|φ

i where φi ∈ EPI.
Proposition 4: Given dataset of traces DLT L and PI, if

ECFG (= ∅, then φ→φI holds for φI :=
∨

i=1,...,|EPI|φ
i where

the size of each φi ∈ EPI is at most Itr and φ is the true LTL
formula.

Proof: 1) We know that Algorithm 1 terminates when all
the possible LTL formulas with the maximum size of Itr
are inferred, all consistent with the given dataset DLT L and
CFGPI. For EPI, we also have EPI ⊆ ECFG which implies that
the size of all the LTL formulas in EPI is at most Itr (See
Remark 2). 2) If ECFG (= ∅, we obtain EPI which contains
all the LTL formulas that satisfy the third property of PI.
Note that it is assumed that the third property mentioned in
Definition 5 is already satisfied in the given PI.

Using 1) and 2), we conclude that if ECFG (= ∅, then
φ→φI holds for φI :=

∨
i=1,...,|EPI|φ

i where the size of each
φi ∈ EPI is at most Itr. "

3) REDUCING THE NUMBER OF THE INFERRED LTL
FORMULAS
For further increasing computational efficiency (e.g., in model
discrimination), we can reduce the size of the inferred formu-
las in both ELT L and EPI using Algorithm 2. In Algorithm 2,
for each two distinct φi and φi′ ∈ EIn f , EIn f ∈ {ELT L, EPI},
we check 1) if φi →φi′ and 2) if φi′ →φi (Lines 5 and 6 in
Algorithm 2). For verifying whether φi →φi′ , we first convert
both formulas to deterministic finite automata (DFA) A and
A′, respectively. Then, we check whether the language of A
is included in the language of A′. We kindly refer the reader
to [40] for a detailed description of how to verify the impli-
cation between two LTL formulas. If 1) holds and 2) does not
hold, we keep φi and add it to E ′

In f . If both 1) and 2) hold and

φi′ is already stored in E ′
In f , we ignore φi′ (Lines 6 to 10 in

Algorithm 2: Size Reduction of the Inferred Formula.

Algorithm 2). Then, we form the set ERed = EIn f /E ′
In f using

which we obtain ψI :=
∨

i=1,...,|ERed |φ
i where φi ∈ ERed .

Proposition 5: In Algorithm 2, if ERed (= ∅, then we obtain
φ→ψI :=

∨
i=1,...,|ERed |φ

i where φi ∈ ERed and φ is the true
LTL formula, and the size of ψI is smaller than or equal to the
size of φI .

Proof: In Algorithm 2, ERed contains all the LTL for-
mulas φi ∈ EIn f , such that φi′ →φi holds for at least one
φi′ ∈ EIn f with i (= i′. This implies that φI →ψI where φI =:∨

i=1,...,|EIn f |φ
i with φi ∈ EIn f and ψI :=

∨
k=1,...,|ERed |φ

k

with φk ∈ ERed . We also can conclude that ERed ⊆ EIn f and
hence |ERed | ≤ |EIn f | from which follows that the size of ψI
is smaller than or equal to the size of φI . Moreover, since
we already know that φ→φI and φI →ψI , we can write
φ→ψI . "

VI. T -DISTINGUISHABILITY AND MODEL INVALIDATION
After obtaining the inferred system models and LTL formu-
las, we then propose a detectability analysis algorithm for
T -distinguishability (i.e., to solve Problem 2), and the (guar-
anteed) detection time T is found by solving the problem
below with increasing T :

Theorem 2 (T -Distinguishability): A pair of learned piece-
wise constrained affine inclusion models Hi and H j , i (= j,
with LTL formulas φi

I and φ j
I is T -distinguishable if the fol-

lowing is infeasible for any t0:

Find x-t , v
-
t , ut , yt , s-t,∗, s̃-t,†, a-t,∗, ã-t,†, cσ

m

t , bσ
m

t

s.t. ∀ - ∈ {i, j}, σm ∈ {e1, . . . , e|"m|}, ∗∈Zq f ,-
σm

1 ,

5 ∈ Z|"s|
1 , σ s,5 ∈ {0, 1}, †∈Z

qg,-
σ s,5

1 , t ∈Zt0+T −1
t0 :
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x-t+1 ≤ A
-
σm,∗x-t +B

-
σm,∗ut +h

f ,-
σm,∗+

(
s-t,∗+cσ

m

t

)
1, (22a)

x-t+1 ≥ A-σm,∗x-t +B-σm,∗ut +h
f ,-
σm,∗−

(
s-t,∗+cσ

m

t

)
1, (22b)

Sx,-
σm,∗x-t +Su,-

σm,∗ut ≤ β-σm,∗+
(

s-t,∗+cσ
m

t

)
1, (22c)

yt = Cx-t + v-t , (22d)

xc,-
t,5 ≤H

-
σ s,5,†z-t,5 + h

g,-
σ s,5,† +

(
s̃-t,† + cσ

s,5

t

)
1, (22e)

xc,-
t,5 ≥H-

σ s,5,†z-t,5 + hg,-
σ s,5,†

−
(

s̃-t,† + cσ
s,5

t

)
1, (22f)

Sz,-
σ s,5,†

z-t,5 ≤β-
σ s,5,† +

(
s̃-t,† + cσ

s,5

t

)
1, (22g)

a-t,∗ ∈ {0, 1}, ã-t,† ∈ {0, 1}, bσ
m

t ∈ {0,1}, bσ
s, j

t ∈ {0,1}, (22h)

SOS-1:
(
a-t,∗, s-t,∗

)
, SOS-1:

(
ã-t,†, s̃-t,†

)
,

SOS-1:
(
bσ

m

t , cσ
m

t
)
, SOS-1:

(
bσ

s, j

t , cσ
s, j

t

)
,

(22i)

q f ,-
σm∑

ξ=1

a-t,ξ = 1,

qg,-

σ
s, j
5∑

ξ=1

ã-t,ξ = 1,

e|"m |∑

σm=e1

bσ
m

t =1, (22j)

w-
t ∈ W, v-t ∈ V, ut ∈ U, x-t ∈ X, (22k)

{σm
t , σ

s, j
t }t

t=t ∈VT
(
φ-I
)
, (22l)

where SOS-1 refers to Special Ordered Set of type 1 (i.e., at
most one member of the set can be non-zero [70]), s-t,∗, s̃-t,† are
slack variables and cσ

m
t is vector of slack variables for SOS-1

constraints, cσ
m
t = 1 corresponds to σm

t being true and 0 oth-
erwise, t = t0 − Tm + 1 and t = t0 + T + Tm − 1 determines
the horizon for σm

t , σ s, j
t , where Tm is the maximum length of

sampled traces (data)2, and the set of valid subtraces VT (φ-I )
is constructed recursively using encoding of the LTL formula
φ-I according to Section II (cf. (4)–(10)).

Proof: a-t,∗ = 1 and bσ
m

t = 1 imply that (22a)–(22c) hold,
since the SOS-1 constraints in (22i) ensure that s-t,∗ = 0 and
cσ

m

t = 0 correspondingly. On the contrary, if a-t,∗ = 0 and/or
bσ

m

t = 0, it means that s-t,∗ and/or cσ
m

t, are free and then

(22a)–(22c) hold trivially. Similarly, ã-t,† = 1 and bσ
s, j

t = 1,

or ã-t,† = 0 and/or bσ
s, j

t = 0 imply that (22e)–(22g) hold. In
addition, (22j) ensures that, at each time step t , only one
partition is valid for each of the state and output equations,
and only one switching signal/mode (for σm ∈ "m ) is valid.
Thus, if the above problem is infeasible, it means that there
exists no common behavior that is satisfied by both models,
i.e., Ŝi ∩Ŝ j = ∅; hence, the pair of models is distinguishable
from each other. "

The detection time T0 for all models can then be selected as
the maximum value of T for every pair of the given model.

2Although LTL formulas are usually unbounded, we can use the length of
the data used to infer the LTL formula (in Section V) to determine t and t that
bidirectionally extend the time horizon based on the “LTL bound.”

Next, we introduce a data-driven model invalidation algo-
rithm (cf. Algorithm 3) that allows us to rule out/eliminate all
models that are incompatible with newly observed data, i.e., to
address Problem 3. If not all model pairs are T -distinguishable
(according to Theorem 2), Algorithm 3 will still return a set
of all models that are consistent with the input-mode-output
data up to the current time step tc. Specifically, we will solve
Problem 3 to check if the newly observed data are consistent
with the learned/inferred model-task pairs: In Algorithm 3,
we initially verify in Line 4 if the newly observed mode
sequence/trace satisfies the inferred formula φl

I , and if it does,
we proceed to check the compatibility of the learned models
Hl with newly observed trajectory data using the following
result in Line 9:

Theorem 3: Given a learned constrained piecewise affine
inclusion model Hl and a (newly observed) length-T input-
mode-output sequence {ut , σt , yt }tc

t=tc−T +1 at time tc, the
model is invalidated if the following problem is infeasible for
any tc ∈ Z∞

0 :

Find xt , vt , st,∗, at,∗, st,†, at,†

s.t. ∀t ∈ Ztc+T −1
tc , ∗ ∈ Z

q f ,l
σm

t
1 , k ∈ {5 | σ s,5

t = 1}, † ∈ Z
qg,l

σ
s,k
t

1 :

xt+1 ≤ A
l
σm

t ,∗xt + B
l
σm

t ,∗ut + h
f ,l
σm

t ,∗ + st,∗1, (23a)

xt+1 ≥ Al
σm

t ,∗xt + Bl
σm

t ,∗ut + h f ,l
σm

t ,∗ − st,∗1, (23b)

Sx,l
σm

t ,∗xt + Su,l
σm

t ,∗ut ≤ β l
σm

t ,∗ + st,∗1, (23c)

yt = Cxt + vt , vt ∈ V, xt ∈ X, (23d)

xc
t,k ≤ H

l
σ s,k

t ,†zt,k + h
g,l

σ s,k
t ,†

+ s̃t,†1, (23e)

xc
t,k ≥ Hl

σ s,k
t ,†

zt,k + hg,l

σ s,k
t ,†

− s̃t,†1, (23f)

Sz,l
σ s,k

t ,†
zt,k ≤ β l

σ s,k
t ,†

+ s̃t,†1, (23g)

at,∗ ∈ {0, 1}, SOS-1:(at,∗, st,∗),

q f ,l
σm

t∑

ξ=1

at,ξ = 1, (23h)

ãt,† ∈ {0, 1}, SOS-1:(ãt,†, s̃t,†),

qg,l

σ
s,k
t∑

ξ=1

ãt,ξ = 1. (23i)

Proof: The construction follows similar steps to
Theorem 2, but with only one model and a given/measured
mode sequence. "

If either of the checks is infeasible, then that learned model-
task pair can be ruled out as incompatible.

However, when the size of the inferred formulas is large
(even after applying the reduction approach using Algorithm 2
in Section V-B3), the resulting optimization problems in both
Theorems 2 and 3 may also be large and this results in high
computational cost and large memory requirements. To rem-
edy this, in practice, since the

∨
condition can be considered
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Algorithm 3: Model Discrimination with Length T .

separately, we can instead consider all possible combinations
of the subformulas in parallel and the maximum T among
all these combinations will be considered as the solution to
Problem 2, while for Problem 3, the problem in Theorem 3
is infeasible if the subproblems with all combinations of sub-
formulas are all infeasible. For instance, for a model-task pair
with inferred formulas φi

I =
∨k=|Ei|

k=1 φi
k and φ j

I =
∨k=|E j |

k=1 φ
j
k ,

we can consider all combinations of subformulas of these
pairs of formulas, i.e., the subformula pairs (φi

k,φ
j
k ), ∀k =

Z|Ei|
1 , k′ ∈ Z|E j |

1 .

VII. SIMULATIONS
The simulations in Sections VII-A and VII-B are implemented
in MATLAB 2021a with the Gurobi optimization solver [70]
on a 2.2 GHz machine with 16 GB RAM.

A. SINGLE LINK ROBOT ARM LINK
First, we tested our algorithms using a single link robot arm
example with the following dynamics [71]:

ẍ(t ) = −mkglk

Jk sin(x(t )) − Dk

Jk ẋ(t ) + 1
Jk u(t ), (24)

where x(t ) is the angle of the arm, u(t ) is the control input,
and for each discrete state/mode qk = (mk, lk, Jk, Dk ), mk is
the mass, lk is the length of the arm that can extend and
retract (making the robot arm a switched system), Jk is the
moment of inertia, and Dk is the damping coefficient. These
parameters qk change depending on the angle parameter x(t ).
We discretized the system with sampling time δt = 0.1 s and
select the u(t ) = 0.5cos(t ).

For the first model, the ground truth formula for the
task specification is φ1 = (σm,1 → (¬σm,2 U σm,1)) ∨ σm,3

where σm,k is an atomic proposition for σm
t = ek and

qk can be one of three values: q1 = (1, 1, 2, 2), q2 =
(1, 1.5, 3, 475, 2), or q3 = (1, 2, 8, 2). The second model
is with the ground truth formula φ2 = (G σm,1 ∨ σm,2) ∨
G ¬σm,3 and qk can be one of three values: q1 = (2, 1, 2, 2),
q2 = (2, 1.5, 3, 475, 2), or q3 = (2, 2, 8, 2).

FIGURE 4. Illustration of the learned over-approximation model with
different number of partitions for the function in (24) with qk = (1, 1, 2, 2)
in example A.

FIGURE 5. The DAG structure representing the given PI for the model-task
pair (G1, φ1) (left) and (G2,φ2) (right) in example A with
σ̃ ! {σm,1, σm,2, σm,3}.

TABLE 1. Comparison of the guaranteed detection times T and CPU times
(s) for model discrimination (cf. Theorem 2) with and without inferred LTL
formulas in example A.

We first generated 200 random data points for each mode[
ẋt+1

xt+1

]
= f l (

[
ẋt

xt

]
, ut ) of both time-discretized models and used

this data to learn the inclusion/over-approximated dynamics
model as shown in Fig. 4, where the true model is in-
cluded/contained within the hyperplanes of learned dynamics
models, as expected, and the more partitions we consider, the
better the model accuracy will be.

For each model, we generated 50 positive traces and 50
negative traces with three modes, all with a maximum length
of 20 time steps. To infer φ1

I , we used the prior information PI
in Fig. 5 (left) and obtained φ1

I = (σm,1) ∨ ((σm,1 U σm,1) ∨
σm,3) ∨ (σm,1 →(σm,1 U σm,1)) ∨ (((¬σm,2 U σm,1) ∧
σm,1) ∨ σm,3) ∨ ((σm,1 →(¬σm,2 U σm,1)) ∨ σm,3). To
infer φ2

I , we used the prior information PI depicted in Fig. 5
(right) and obtained φ2

I = (σm,1 ∨ σm,2) ∨ (((G σm,1) ∨
σm,2) ∨ (G(¬σm,3))) ∨ (((σm,1 ∨ σm,2) ∨ G(¬σm,3)) ∨
(¬σm,3)) ∨ ((σm,1 ∨ σm,2) ∨ G(¬σm,3)). We reduced
the size of the inferred specifications using Algorithm 2,
and obtained ψ1

I = σm,1 →(σm,1 U σm,1) and ψ2
I =

((σm,1 ∨ σm,2) ∨ G(¬σm,3)) ∨ (¬σm,3).
From Table 1, we can see that the guaranteed detection

time are the same for all cases, and ‘with formulas’ case
requires more computational time when compared to the
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TABLE 2. Comparison of model discrimination results (with Algorithm 3)
for 20 sequences with length T = 17 in example A.

‘without formulas’ case due to the extra integer constraints in
the optimization problem when considering the inferred LTL
formulas. However, since finding the detection time T is an
off-line process, the CPU time matters less than the CPU time
for the model discrimination, which is an online process. As
shown in Table 2, the mean CPU time was lower when using
both learned/inferred system dynamics and LTL formulas than
only using the learned dynamics, while using only the inferred
LTL formulas results in only a discrimination rate of 20%.

B. DUBINS CAR
In this example, we consider a lane change scenario with
Dubins Car model [72] as the dynamics model of the vehicle:

px,t+1 = px,t + us cos(θt )δt + wpx,t , (25a)

py,t+1 = py,t + us sin(θi )δt + wpy,t , (25b)

θt+1 = θt + us

L
tan(uφ )δt + wθ ,t , (25c)

where the system states are px and py that represent the (x, y)-
position of the agent and θ as the heading angle of the agent.
L is the length between the front and rear tires and is set to
1.5 m, us is the speed of the agent and is assumed to be 1 m/s,
and sampling time δt is set to 0.1 s. The vehicle utilizes for
feedback control according to the proportional control law:
uφ = Kk (θdesired − θ ).

For the first model, the ground truth formula for the system
is φ1 = (σm,1 U σm,2) ∧ σ s,1 and Kk can take two values:
K1 = 0.5 and K2 = 0.1 for σm,1 and σm,2, respectively, with
θdesired = 60◦, while σm,k is an atomic proposition for σm

t =
ek and σ s,1 is an atomic proposition for the state constraint
py = e(px+6)

1+e(px+6) . For the second model, the ground truth for-
mula for the system is φ2 = (σm,1 U σm,2) ∨ σ s,1 and Kk can
take two values: K1 = −0.5 and K2 = −0.1 for σm,1 and
σm,2, respectively, with θdesired = −60◦, while σm,k is an
atomic proposition for σm

t = ek and σ s,1 is an atomic propo-
sition for the state constraint py = − e(px+6)

1+e(px+6) .
We first generated 200 random data points for each mode

of both models to learn the inclusion model of the system
dynamics (not depicted for brevity). Further, we generated 50
positive traces and 50 negative with three modes, all with a
maximum length of 20 time steps. Using the prior information
PI in Fig. 7 (left), we obtained φ1

I = (σ s,1) ∨ (((G σ s,1) U
(G σ s,1)) ∨ σ s,1) ∨ ((σm,1 U σm,2) ∧ σ s,1) ∨ ((σm,2 U
(G σ s,1)) ∨ σ s,1). For the second model, using the prior

FIGURE 6. Model discrimination results (with Algorithm 3) using two
newly observed sequences to invalidate a non-ground truth/false model in
example B under three different cases, j ∈ {i, ii, iii} where Case i leverages
both the learned/inferred system dynamics and formulas, Case ii only
leverages the learned system dynamics and Case iii only leverages the
inferred formulas. Flag j is 1 when the false model is not (yet) invalidated
and is 0 if invalidated.

FIGURE 7. The DAG structure representing the given PI for the model-task
pair (G1,φ1) (left) and (G2, φ2) (right) in Example B with
σ̃ ! {σm,1, σm,2, σs,1}.

TABLE 3. Comparison of the guaranteed detection times T and CPU times
(s) for model discrimination (cf. Theorem 2) with and without inferred LTL
formulas in example B.

TABLE 4. Comparison of model discrimination results (with Algorithm 3)
for 20 sequences with length T = 15 in example B.

information in Fig. 7 (right), we obtained φ2
I = (σm,1 ∨ (σm,2

U σm,2)) ∨ ((σm,1 U σm,2) ∨ σ s,1) ∨ (((G σ s,1) U σm,2) ∨
σm,1) ∨ (σm,1 U σm,2). We reduced the size of the inferred
formulas using Algorithm 2, and obtained ψ1

I = (σm,2 U
(G σ s,1)) ∨ σ s,1 and ψ2

I = ((σm,1 U σm,2)∨σ s,1)∨(((G σ s,1)
U σm,2) ∨ σm,1).

Similar to the first example, we can see that the guaranteed
detection time are the same for all cases from Table 3, while
in Table 4, the mean CPU time can be observed to be lower
when using both the learned/inferred system dynamics and
LTL formulas than when only using the learned dynamics and
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the discrimination rate is only 50% if only the inferred formu-
las are used. We also depicted model discrimination results
(with Algorithm 3) in Fig. 6, where two sampled sequences
from the ground truth model are used to invalidate learned
model-task pairs from a different non-ground truth model. In
the figure, we can observe that when using both the inferred
system dynamics and LTL formulas (Case i), the non-ground
truth model is always invalidated earlier (Flag is 0) than either
using only the learned dynamics (Case ii) or only the inferred
formulas (Case iii). Moreover, in the left instance, when using
only the inferred formulas, the non-ground truth model was
not able to be invalidated.

VIII. CONCLUSION
To address the challenge of data-driven model discrimination
for unknown switched systems with unknown LTL specifica-
tions, this article first proposed a data-driven set-membership
method that over-approximates the unknown dynamics. Then,
the article introduced a specification inference method that
guarantees that the ground truth LTL is among/included in the
inferred formulas, along with a method for reducing the size
of the inferred formula when prior information is available.
Next, we introduced an optimization-based algorithm to ana-
lyze model detectability from noisy, finite data, and a model
discrimination algorithm that can rule out learned/inferred
model-task pairs that are inconsistent with new observations
at run time. The effectiveness of the proposed methods was
demonstrated through several illustrative examples. The re-
sults indicated that the joint learning/inferring and use of
both system dynamics and temporal logic specifications can
significantly accelerate the data-driven model discrimination
process. Future work will extend the proposed approach to
consider inequality constraints in the system model and miss-
ing/dropped data.
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