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Erasures, or errors with known locations, are a more favorable type of error for quantum error-correcting
codes than Pauli errors. Converting physical noise into erasures can significantly improve the performance
of quantum error correction. Here, we apply the idea of performing erasure conversion by encoding qubits
into metastable atomic states, proposed by Wu, Kolkowitz, Puri, and Thompson [Nat. Comm. 13, 4657
(2022)], to trapped ions. We suggest an erasure-conversion scheme for metastable trapped-ion qubits and
develop a detailed model of various types of errors. We then compare the logical performance of ground
and metastable qubits on the surface code under various physical constraints and conclude that metastable
qubits may outperform ground qubits when the achievable laser power is higher for metastable qubits.
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I. INTRODUCTION

The implementation of quantum error correction (QEC)
is a necessary path toward a scalable and fault-tolerant
quantum computer, as quantum states are often inherently
fragile and physical operations on quantum states have
limited fidelities. QEC protects quantum information from
errors by encoding a logical qubit into entangled states of
multiple physical qubits [1].

There have been exciting efforts on manipulating and
exploiting the type of physical error such that the perfor-
mance of QEC is improved. One example is the engineer-
ing of qubits and operations that have strong bias between
the X and Z Pauli noise [2–5] and designing QEC codes
that benefit from such bias by achieving higher thresholds
[6–13].

Another example is converting physical noise into era-
sures, i.e., errors with known locations [14–16]. It is clear
that erasures are easier to correct than Pauli errors for

*mingyu.kang@duke.edu
†ken.brown@duke.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

QEC codes, as a code of distance d is guaranteed to cor-
rect at most d − 1 erasures but only �(d − 1)/2� Pauli
errors.

Erasure conversion is performed by cleverly choosing
the physical states encoded as qubits, such that physical
noise causes leakage outside the qubit subspace. Cru-
cially, such leakage should be detectable using additional
physical operations [17–20]. Typically, undetected leakage
errors can have even more detrimental effects on QEC than
Pauli errors, as traditional methods for correcting Pauli
errors do not apply [21] and methods such as leakage-
reducing operations [22–24] and circuits [25–30] require
significant overhead. However, when leakage errors are
detectable, they can be converted to erasures by reset-
ting the leaked qubit to a known state, e.g., the maximally
mixed state, within the qubit subspace. Erasure conversion
is expected to achieve significantly higher QEC thresholds
for hardware platforms such as superconducting qubits
[20] and Rydberg atoms [19].

Trapped ions are leading candidate for a scalable quan-
tum computing platform [31]. In particular, QEC has been
demonstrated in various trapped-ion experiments [32–39],
which include fault-tolerant memory [35,36] and even log-
ical two-qubit gates [37–39] on distance-3 QEC codes.
Here, we address the question of whether the idea of
erasure conversion can be applied to trapped-ion sys-
tems.
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In fact, the erasure-conversion method in Ref. [19],
designed for Rydberg atoms, can be directly applied to
trapped ions. In Ref. [19], a qubit is encoded in the
metastable level, such that the majority (approximately
98%) of the spontaneous decay of the Rydberg states dur-
ing two-qubit gates does not return to the qubit subspace.
Additional operations can detect such decay, thereby
revealing the locations of errors. For trapped ions, the
spontaneous decay of the excited states during laser-based
gate operations is also the fundamental source of errors,
which we aim to convert to erasures in this paper. Note
that an earlier work [40] has proposed a method of detect-
ing a different type of error for trapped ions using qubits in
the metastable level.

While the most popular choice of a trapped-ion qubit
is the ground qubit encoded in the S1/2 manifold, the
metastable qubit encoded in the D5/2 or Fo

7/2 manifold is
also a promising candidate [41]. Recently, high-fidelity
coherent conversion between ground and metastable qubits
has been experimentally demonstrated using Yb+ ions
[42]. Also, it has been proposed that when ground and
metastable qubits are used together, intermediate state
measurement and cooling can be performed within the
same ion chain [41]. Therefore, it is a timely task to
add erasure conversion to the list of functionalities of
metastable qubits.

A careful analysis is needed before concluding that
metastable qubits will be more advantageous in QEC
than ground qubits. As discussed below, the erasure con-
version relies on the fact that the excited states are
more strongly coupled to the ground states than the
metastable states. However, this fact may also cause
the Rabi frequency of metastable qubits to be signifi-
cantly lower than that of ground qubits, which leads to
longer gate time required for metastable qubits. Also,
most metastable states decay to the ground manifold
after a finite lifetime, while ground qubits have practi-
cally infinite lifetime. Whether the advantage of having a
higher threshold overcomes these drawbacks needs to be
verified.

This paper is organized as follows. In Sec. II, we intro-
duce the method of laser-based gate operation and erasure
conversion on metastable qubits. In Sec. III, we show the
model of various types of errors for ground and metastable
qubits and discuss the criteria of comparison. In Sec. IV,
we briefly introduce the surface code and the simulation
method. In Sec. V, we present the results of compar-
ing the QEC performance between ground and metastable
qubits. Specifically, we conclude that metastable qubits
may outperform ground qubits when metastable qubits
allow higher laser power than ground qubits, which is
reasonable considering the material loss due to lasers. In
Sec. VI, we compare the erasure-conversion scheme on
trapped ions and Rydberg atoms, as well as discuss future
directions. We conclude with a summary in Sec. VII.

II. ERASURE-CONVERSION SCHEME

In this paper, we denote the hyperfine quantum state as
|L, J ; F , M 〉, where L, J , F , and M are the quantum num-
bers in the standard notation. Also, we denote a set of all
states with the same L and J as a manifold.

We define the ground qubit as hyperfine clock qubit
encoded in the S1/2 manifold as |0〉g := |0, 1/2; I − 1/2, 0〉
and |1〉g := |0, 1/2; I + 1/2, 0〉, where I is the nuclear spin
[43]. Similarly, we define the metastable qubit as hyper-
fine clock qubit encoded in the D5/2 manifold as |0〉m :=
|2, 5/2; F0, 0〉 and |1〉m := |2, 5/2; F0 + 1, 0〉, which is
suggested for Ba+, Ca+, and Sr+ ions [41]. Here, F0 can be
chosen as any integer that satisfies |J − I | ≤ F0 < J + I .
Both qubits are insensitive to magnetic field up to first
order as M = 0.

Unlike ground qubits, metastable qubits are susceptible
to idling error due to their finite lifetime. As a D5/2 state
spontaneously decays to the S1/2 manifold, such an error
is a leakage outside the qubit subspace. The probability
that idling error occurs during time duration t after state
initialization is given by

p (idle)(t) = 1 − e−t/τm , (1)

where τm is the lifetime of the metastable state. Typically,
τm is in the order of a few to tens of seconds for D5/2 states
[41].

Laser-based gate operations on ground (metastable)
qubits are performed using the two-photon Raman tran-
sition, where the laser frequencies are detuned from the
S1/2 (D5/2) → P3/2 transition, as described in Fig. 1. Here,
we define the detuning �g (�m) as the laser frequency
minus the frequency difference between the S1/2 (D5/2) and
P3/2 manifolds. Apart from the “technical” sources of gate
error due to noise in the experimental system, a fundamen-
tal source of gate error is the spontaneous scattering of the
atomic state from the short-lived P states. During ground-
qubit gates, both the P1/2 and the P3/2 states contribute to
the two-photon transition as well as gate error, while for
metastable-qubit gates, only the P3/2 states contribute, as
transition between the D5/2 and P1/2 states is forbidden.

When an ion that is initially in the P3/2 state decays,
the state falls to one of the S1/2, D3/2, and D5/2 manifolds
with probability r1, r2, and r3, respectively (r1 + r2 + r3 =
1), where these probabilities are known as the resonant
branching fractions. Typically, r1 is several times larger
than r2 and r3.

For ground (metastable) qubits, if the atomic state
decays to either qubit level of the S1/2 (D5/2) manifold, the
resulting gate error can be described as a Pauli error. On
the other hand, if the atomic state decays to the D3/2 man-
ifold, or the D5/2 (S1/2) manifold, or the hyperfine states
of the S1/2 (D5/2) manifold other than the qubit states, the
resulting gate error is a leakage.
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(b)(a)

FIG. 1. (a) The laser-based gate operation (blue) on the S1/2 ground qubit. (b) The laser-based gate operation (blue) and leakage
detection (red) on the D5/2 metastable qubit. The orange curvy arrows show the paths of spontaneous decay. The gate operation
on the ground (metastable) qubit uses two Raman beams detuned from the S1/2 (D5/2) → P3/2 transition by −�g (−�m). When a
P3/2 state decays, the state decays to one of the S1/2, D3/2, and D5/2 manifolds with probability r1, r2, and r3, respectively. For the
metastable qubit, leakage detection detects the decay to the S1/2 and D3/2 manifolds using lasers that are resonant to the S1/2 → P1/2
and D3/2 → P1/2 transitions, which cause photons to scatter from the P1/2 state and get collected.

We now describe how the majority of the leakage can
be detected when metastable qubits are used, similarly to
the scheme proposed in Ref. [19]. Specifically, whenever
the atomic state has decayed to either the S1/2 or the D3/2
manifold, the state can be detected using lasers that induce
fluorescence on cycling transitions resonant to S1/2 → P1/2
and to D3/2 → P1/2, as described in Fig. 1(b). Unlike a
typical qubit-state detection scheme, where the |1〉 state
is selectively optically cycled between |1〉 and appropriate
sublevels in the P1/2 manifold, this leakage detection can
be performed using broadband lasers (such as in hyperfine-
repumped laser cooling) such that all hyperfine levels in
the S1/2 and D3/2 manifolds are cycled to P1/2.

In the rare event of detecting leakage, the qubit is reset
to either |0〉m or |1〉m, with probability 1/2 each. This effec-
tively replaces the leaked state to the maximally mixed
state I/2 in the qubit subspace, which completes convert-
ing leakage to erasure. Resetting the metastable qubit can
be performed by the standard ground-qubit state prepara-
tion followed by coherent electric quadrupole transition.
This has recently been experimentally demonstrated with
high fidelity in less than 1 µs using Yb+ ions [42].

Note that as transition between the P1/2 and D5/2 states is
forbidden, the photons fluoresced from the P1/2 manifold
during leakage detection and ground-qubit state prepara-
tion are not resonant to any transition with the metastable-
qubit states involved. This allows the erasure conversion
to be performed on an ion without destroying the qubit
states of the nearby ions with high probability. For ground
qubits, an analogous erasure-conversion scheme of detect-
ing leakage to the D3/2 and D5/2 manifolds will destroy the
ground-qubit states of the nearby ions, as both the P1/2 and
the P3/2 states decay to S1/2 states with high probability.

In the scheme described above, leakage to D5/2 states
other than the qubit states remains undetected. Such leak-
age can be handled by selectively pumping the D5/2

hyperfine states except for |0〉m and |1〉m to the S1/2 man-
ifold through P3/2. With high probability, the atomic state
eventually decays to either the S1/2 or the D3/2 manifold,
which then can be detected as described above. How-
ever, this requires the laser polarization to be aligned with
high precision such that the qubit states are not acciden-
tally pumped [28]. Therefore, we defer a careful analysis
on whether such process is feasible and classify leak-
age to other D5/2 states as undetected leakage when the
erasure-conversion scheme is used.

III. TWO-QUBIT-GATE ERRORMODEL

In this section, we describe the error model that we
use for comparing the logical performance of ground and
metastable qubits. The source of gate errors that we con-
sider here is the spontaneous decay of excited states, which
can cause various types of errors. When excited states
decay back to one of the qubit states, either a bit flip or
a phase flip occurs. When excited states decay to any other
state, a leakage error occurs. Finally, for metastable qubits,
when the state after decay is outside the D5/2 manifold,
such leakage can be converted to an erasure.

Figure 2 shows the various types of error rates of the
Ba+ and Ca+ qubits as the lasers detuning from the P3/2
manifold is varied. Here, subscripts g and m denote the
ground and metastable qubit, respectively, and p (xy)

q , p (z)
q ,

p (l)
q , p (e)

q , and pq (q = g, m) denote the rate of bit flip, phase
flip, leakage, erasure, and total error, respectively, for each
qubit on which a two-qubit gate is applied. Up to Sec. III C,
we provide qualitative explanations on how these error
rates are calculated from atomic physics, following the dis-
cussion in Refs. [44,45]. The quantitative derivations are
deferred to Appendix B.

In our model, the only controllable parameter that
determines the error rates is the laser detuning from the
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(a)

(b)

FIG. 2. The various types of error rates of the (a) Ba+ and
(b) Ca+ qubits as the detuning �q (q = g, m) from the P3/2
manifold is varied. ωF is the frequency difference between the
P1/2 and P3/2 manifolds. For the metastable Ba+ (Ca+) qubit,
I = 1/2 (7/2) and F0 = 2 (5), as shown in Table II. For ground
(metastable) qubits, p (l)

g (p (e)
m ) most significantly contributes to

pg (pm). For Ca+, the pm and p (e)
m curves are barely distinguish-

able. Note also that metastable qubits require larger detuning than
ground qubits in order to have the same total error rate.

transition to excited states. In reality, the laser power is also
important, as the gate time is determined by both the detun-
ing and the laser power. In Sec. III D, we provide methods
of comparing ground and metastable qubits with a fixed
gate time, such that the errors due to technical noise are
upper bounded to the same amount.

A. Definitions

In order to compare the gate error rates between ground
and metastable qubits, we need to define several quantities.
First, we define the maximal one-photon Rabi frequency of
the transition between a state in the manifold of the qubit
states, denoted with subscript q ∈ {g = S1/2, m = D5/2},
and an excited P state (L = 1), as

gq := Eq

2�
μq, (2)

where

μq := √
kq

∣∣∣〈L = 1||T(1)(	d)||Lq〉
∣∣∣ . (3)

Here, Eq is the electric field amplitude of the laser used
for the qubit in manifold q, μq is the largest dipole-matrix
element of transition between a state in manifold q and a
P state, and T(1)(	d) is the dipole tensor operator of rank 1.
Also, kq is a coefficient that relates gq to the orbital dipole
transition-matrix element, which is calculated in Appendix
A using the Wigner-3j and -6j coefficients.

Next, in order to obtain the scattering rates that lead to
various types of errors, we first define the decay rate of the
manifold of the excited states, denoted with subscript e ∈
{P1/2, P3/2}, to the final manifold, denoted with subscript
f ∈ {S1/2, D3/2, D5/2}, as

γe,f := ω3
e,f

3πc3�ε0

∑

Ff ,Mf

∣∣∣〈Le, Je; Fe, Me|	d|Lf , Jf ; Ff , Mf 〉
∣∣∣
2

= αe,f ω3
e,f

3πc3�ε0

∣∣∣〈L = 1||T(1)(	d)||Lf 〉
∣∣∣
2

, (4)

where ωe,f is the frequency difference between the man-
ifolds of the excited and final states. Also, αe,f is a
coefficient that relates γe,f to the orbital dipole transition-
matrix element, which is calculated in Appendix A using
the Wigner-3j and -6j coefficients. Note that γe,f does not
depend on Fe and Me as the frequency differences between
hyperfine states of the same manifold are ignored.

The laser-based gate operations use two-photon Raman
beams of frequency ωL that are detuned from the transition
between manifolds e and q by −�e,q. In such a case, the
decay rate is given by [44]

γ ′
e,f := γe,f

(
ωe,f − �e,q

ωe,f

)3

= γe,f

(
ωL − ωf ,q

ωe,f

)3

, (5)

where ωf ,q is the energy of manifold f minus the energy
of manifold q. Note that the numerator of the cubed factor
does not depend on the choice of the manifold e of the
excited states.

While manifold e can be either P1/2 or P3/2, Eqs. (4) and
(5) remove the dependence of γ ′

e,f /αe,f on e. This allows
us to calculate the rates of scattering from the states of both
P1/2 and P3/2 manifolds only using γ ′

f /αf , where we define

αf := αP3/2,f , γ ′
f := γ ′

P3/2,f . (6)

Specifically, combining Eq. (5) and the branching fractions
of P3/2 states, γ ′

f is given by

γ ′
f =

⎧
⎪⎨

⎪⎩

(1 − �q/ωP3/2,S1/2)
3 × r1γ , f = S1/2,

(1 − �q/ωP3/2,D3/2)
3 × r2γ , f = D3/2,

(1 − �q/ωP3/2,D5/2)
3 × r3γ , f = D5/2,

(7)

where γ is the total decay rate of a P3/2 state and �q is
the detuning defined as the laser frequency minus the fre-
quency difference between manifold q and the P3/2 mani-
fold. For the detunings considered in this paper, �q/ωP3/2,f
is at most approximately 0.1, so riγ (i = 1, 2, 3) is a
reasonably close upper bound for the corresponding γ ′

f .
Table I shows the values of kq (αf ) for the manifolds

of various qubit (final) state and their derivations can be
found in Appendix A.
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TABLE I. The values of the coefficient kq (αf ), for the mani-
folds of various qubit (final) states.

q = S1/2 q = D5/2 f = S1/2 f = D3/2 f = D5/2

kq 1/3 1/5 αf 1/3 1/30 3/10

B. How errors arise from spontaneous scattering

Spontaneous scattering of the short-lived P1/2 and P3/2
states is the fundamental source of errors for laser-based
gates. The type of error (phase flip, bit flip, leakage, or
erasure) depends on to which atomic state the short-lived
states decay.

Rayleigh and Raman scattering are the two types of
spontaneous scattering. Rayleigh scattering is the elastic
case, where the scattered photons and the atom do not
exchange energy or angular momentum. Raman scatter-
ing is the inelastic case, where the photons and the atom
exchange energy, thus changing the internal state of the
atom. For Rayleigh scattering, the error occurs to the qubit
only when the scattering rates differ between the two qubit
states, which we call effective Rayleigh scattering. This
results in the dephasing of the qubit, or phase-flip (Ẑ) error.
For Raman scattering, either bit-flip (X̂ or Ŷ) or leakage
error occurs. Finally, for metastable qubits, if the atomic
state after Raman scattering is in either the S1/2 or the D3/2
manifold, the leakage can be detected and converted to
erasure, as described in Sec. II.

We note in passing that for ground qubits, physically
converting leakage to Pauli errors may be considered.
Specifically, leakage of ground qubits to the D3/2 and
D5/2 manifolds can be pumped back to the S1/2 manifold,
and leaked states in the S1/2 manifold can be selectively
pumped to the qubit states. While the former process is
straightforward, the latter process suffers when the laser
polarization is imperfect and unwanted (qubit) states are
pumped [28]. Therefore, we assume for simplicity that for
ground qubits, all leakage during gates remains as leakage.

The scattering rates during the two-photon Raman tran-
sition can be calculated using the Kramers-Heisenberg
formula, as outlined in Ref. [45]. In this section, we only
introduce the scaling behavior and we defer the quantita-
tive equations to Appendix B. The contribution of each
excited state |J 〉 in manifold e to the rate of scattering from
qubit state |i〉 in manifold q to final state |j 〉 in manifold f
is given by

	i,j ,J = Ci,j ,J
kqγ

′
f

αf

(
gq

�e,q

)2

, (8)

where Ci,j ,J is a proportionality constant that depends on
the hyperfine structure of the atom and the polarization of
the laser beams. By summing up over all excited and final
states appropriately, the scattering rate that leads to each
type of gate error can be calculated.

For ground qubits, both the P1/2 and P3/2 states con-
tribute to the scattering rates. Thus, the rates consist of
terms that are proportional to both (ωF − �g)

−2 and �−2
g ,

where ωF is the frequency difference between the P1/2 and
P3/2 manifolds. Meanwhile, for metastable qubits, only the
P3/2 states contribute, as the D5/2 states do not transition
to P1/2 states. Thus, the scattering rates are directly pro-
portional to �−2

m . This explains why, in Fig. 2, as �q/ωF
approaches 1, the error rates of ground qubits increase but
those of metastable qubits continue to decrease.

C. Two-qubit-gate error rates and erasure-conversion
rate

The error rates are obtained by the scattering rate times
the gate time, which is determined by the Rabi fre-
quency of the qubit-state transition. For ground qubits,
both S1/2 → P1/2 and S1/2 → P3/2 transitions, detuned by
ωF − �g and −�g , respectively, contribute to the two-
photon Raman transition and similarly to the scattering
rate. When the two Raman beams are both linearly polar-
ized and mutually perpendicular, the Rabi frequency of the
ground qubit is given by [43,50]


g = g2
g

3

∣∣∣∣
ωF

(ωF − �g)�g

∣∣∣∣ , (9)

where gg is the maximal one-photon Rabi frequency of a
S1/2 state.

For metastable qubits, only the D5/2 → P3/2 transition,
detuned by −�m, contributes to the Raman transition. The
Rabi frequency of the metastable qubit is given by


m = c0g2
m

|�m| , (10)

where gm is the maximal one-photon Rabi frequency of a
D5/2 state and c0 is a geometric coefficient determined by
I and F0.

The gate time for a two-qubit gate following the
Mølmer-Sørensen (MS) scheme [51] is typically given by

tgate = π
√

K
2η


, (11)

where 
 is the qubit-state Rabi frequency, η is the Lamb-
Dicke parameter, and K is the number of revolutions of the
trajectory of the ions in phase space [43].

The error rates of each qubit on which a two-qubit gate is
applied can be obtained by multiplying the corresponding
sums of scattering rates in Eq. (8) and the gate time in Eq.
(11). Importantly, the g2

q factors are canceled out, which
removes the dependence of the error rates on the electric
field amplitude. Thus, the error rates can be expressed as
functions of only the detuning �q, as shown in Fig. 2.
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TABLE II. The values of the nuclear spin I , the hyperfine total angular-momentum number F0 of |0〉m, the lifetime τm of the
metastable state [46,47], the lifetime γ −1 of the P3/2 state [46,48], the geometric coefficient c0 for the qubit-state Rabi frequency,
the branching fractions r1, r2, and r3 of the P3/2 state [46,49], and the zero-detuning erasure-conversion rate R(0)

e (in bold type) of two
metastable qubits chosen as examples.

Isotope I F0 τm (s) γ −1 (ns) c0 r1 r2 r3 R(0)
e

133Ba+ 1/2 2 30.14 6.2615 1/10 0.7417 0.0280 0.2303 0.7941
43Ca+ 7/2 5 1.16 6.924

√
7/220 0.9347 0.0066 0.0587 0.9509

Here, η = 0.05 and K = 1 are fixed to their typical val-
ues [52]. The quantitative equations for the error rates of
various types can be found in Appendix B.

We note that single-qubit-gate error rates can also be
similarly obtained by inserting π/2
 into the gate time.
We do not consider single-qubit-gate errors in this paper, as
two-qubit-gate errors are more than an order of magnitude
larger, due to the additional factor

√
K/η.

An important metric for metastable qubits is the ratio of
the erasure rate to the total error rate

Re := p (e)
m /pm, (12)

which we denote as the erasure-conversion rate, follow-
ing the terminology of Ref. [19]. An intuitive guess of Re
from Fig. 1 would be r1 + r2, the branching fraction to the
S1/2 and D3/2 manifolds; however, Re is slightly larger than
r1 + r2 for two reasons.

First, while γ ′
f = riγ for the corresponding i when

�m = 0, as �m increases, γ ′
D5/2

decreases faster than γ ′
S1/2

and γ ′
D3/2

[see Eq. (7)], which leads to larger Re. To set a
constant lower bound on Re, we define the zero-detuning
erasure-conversion rate,

R(0)
e := lim

�m/ωF→0
Re. (13)

For the detunings considered in this paper, Re is larger than
R(0)

e by at most approximately 0.01 for the Ba+ qubit and
0.001 for the Ca+ qubit.

Second, scattering to the qubit subspace of the D5/2
manifold does not always cause an error. When the scat-
tering is elastic, the phase-flip rate is not proportional to
the Rayleigh-scattering rate but to the difference between
the Rayleigh-scattering rate of the two qubit states, as
explained in Sec. III B. Therefore, we expect R(0)

e to
be slightly larger than r1 + r2 as well. The quantitative
equation for R(0)

e can be found in Appendix B.
Table II shows the values of various parameters rele-

vant to the Rabi frequency and the scattering rates for
two metastable qubits chosen as examples. In this paper,
for each of the two species Ba+ and Ca+, we choose
the isotope and F0, the hyperfine total angular-momentum
number of |0〉m, such that the qubit-splitting frequency is
the largest among the candidates shown in Ref. [41]. The

chosen isotopes and F0 values are 133Ba+, F0 = 2 and
43Ca+, F0 = 5.

The zero-detuning erasure-conversion rate is 0.7941
(0.9509) for the Ba+ (Ca+) metastable qubit, which is
slightly larger than r1 + r2. For both species, a large por-
tion of the errors can be converted to erasures, which
significantly improves the logical performance, as shown
in Sec. V.

D. Comparison of ground and metastable qubits

To compare the logical performance of ground and
metastable qubits, we consider the following three cases:

(a) Case I: pg = pm
(b) Case II: 
g = 
m and Eg = Em
(c) Case III: 
g = 
m and �g = �m

where Eg (Em) is the electric field amplitude of the laser
used for ground (metastable) qubits.

In case I, the total error rate is fixed between ground
and metastable qubits, as in Ref. [19]. Here, we expect
metastable qubits to outperform ground qubits, as a signifi-
cant portion (Re) of the gate errors of the metastable qubits
are erasures, which is more favorable than Pauli errors for
QEC.

However, such a comparison does not reflect an impor-
tant disadvantage of metastable qubits. Namely, the transi-
tion between metastable and excited states is significantly
weaker than that between ground and excited states, i.e.,
μm � μg . Therefore, given the same laser power, gates
on metastable qubits require either smaller detuning [see
Eq. (10)] or a longer gate time [see Eq. (11)]. Note that
Re being close to one, which is an advantage of metastable
qubits, also comes from the fact that μm � μg , as we see
in detail below.

If we completely ignore noise in the experimental sys-
tem, we can simply use a sufficiently longer gate time
for metastable qubits than for ground qubits, such that the
total error rates due to spontaneous scattering match. How-
ever, this is unrealistic, especially given that the dominant
sources of two-qubit-gate errors in the current state-of-the-
art trapped-ion systems are motional heating and motional
dephasing [53–55], the effects of which build up with gate
time.
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Therefore, we also compare ground and metastable
qubits with fixed Rabi frequency, i.e., 
g = 
m. This
requires lower detuning for metastable qubits, which leads
to larger gate error due to spontaneous scattering for
metastable qubits. However, the gate time is fixed, so the
gate error due to technical noise is upper bounded to the
same amount.

We note that with metastable qubits and the erasure-
conversion scheme, decreasing the detuning �m is in some
sense converting Pauli errors to erasures (and small amount
of undetected leakage), as the gate time decreases at the
cost of a larger spontaneous-scattering rate. Given the
magnitude of technical noise, an optimal amount of detun-
ing should exist, where the optimum is determined by the
logical error rate (for a similar approach, see Ref. [56]). On
the other hand, for ground qubits, �g needs to be set such
that the Raman beams are far detuned from both P1/2 and
P3/2 manifolds, as the detrimental leakage errors cannot be
converted to erasures.

To fix the Rabi frequencies, we first express the ratio
μm/μg using variables with experimentally known values.
From Eqs. (3) and (4), we have

(
μm

μg

)2

= kmαgγe,m

kgαmγe,g

(
ωe,g

ωe,m

)3

= 2r3

3r1

(
ωe,g

ωe,m

)3

, (14)

where ωe,g (ωe,m) is the frequency difference between the
P3/2 and S1/2 (D5/2) manifolds. Note that r3/r1 is propor-
tional to (μm/μg)

2, which shows that large Re stems from
μm � μg .

Then, the Rabi-frequency ratio 
m/
g is obtained by
Eqs. (2), (9), and (10) as


m


g
= 3c0

∣∣∣∣
(ωF − �g)�g

ωF�m

∣∣∣∣

(
μmEm

μgEg

)2

,

= 2c0
r3

r1

∣∣∣∣
(ωF − �g)�g

ωF�m

∣∣∣∣

(
ωe,g

ωe,m

)3(Em

Eg

)2

. (15)

The condition 
m/
g = 1 is used for comparing ground
and metastable qubits with a fixed gate time. There are two
additional choices of fixing variables: Eg = Em (case II)
and �g = �m (case III). In case II, the ratio of detunings
is given by

case II:
�m

�g
= 2c0

r3

r1

∣∣∣∣1 − �g

ωF

∣∣∣∣

(
ωe,g

ωe,m

)3

, (16)

which is typically in the order of 10−1 unless �g is close
to ωF . In case III, the ratio of electric field amplitudes is
given by

case III:
Em

Eg
=

√
r1

2c0r3

∣∣∣∣1 − �g

ωF

∣∣∣∣

−1/2 (
ωe,m

ωe,g

)3/2

, (17)

which is typically several times larger than one unless
�g = �m is close to ωF .

We note that case III, where Em is larger than Eg , is
experimentally motivated, as the limitation on laser power
is often imposed by material loss in optical devices such as
mirrors and waveguides [57]. Such loss is less severe with
a longer laser wavelength. As the D5/2 → P3/2 transition
has a longer wavelength than the S1/2 → P3/2 transition,
we expect that using metastable qubits allows significantly
higher laser power for gate operations than using ground
qubits. The laser power required to achieve a typical Rabi
frequency is estimated for both ground and metastable
qubits in Appendix C.

IV. SURFACE-CODE SIMULATION

It is well established that erasures, or errors with known
locations, are more favorable than other types of errors
for quantum [14–16] and classical codes, as the decoder
can use the information of the erasure locations. Thus,
we expect the advantage of the erasure conversion of
metastable qubits to be valid for all QEC codes; however,
it is certainly valuable to estimate how much the QEC per-
formance, such as the circuit-level threshold, of a particular
code is improved by erasure conversion.

In this paper, we choose to simulate the surface code
[58–60] (for a detailed review, see Ref. [60]). In partic-
ular, we consider the rotated surface code [61], which
uses slightly fewer qubits than the standard surface code.
Figure 3(a) shows the rotated surface code of distance
d = 3 consisting of 2d2 − 1 = 17 qubits. The logical qubit
is encoded in d2 data qubits (black circles) and the Z and
X stabilizers (the red and blue plaquettes, respectively) are
measured using d2 − 1 syndrome qubits (white circles).
The logical operator ẐL (X̂L) is the product of the Ẑ (X̂ )
operators of d data qubits across a horizontal (vertical) line.
The measured stabilizers are used by a decoder in inferring
the locations and types (X̂ , Ŷ, or Ẑ) of errors.

The surface code is a viable candidate for QEC in an
experimental system, as it has a high (approximately 1%)
circuit-level threshold and it can be implemented using
only nearest-neighbor interactions on a two-dimensional
layout. Recently, there has been wide experimental success
in demonstrating fault-tolerant memory of a single logical
qubit encoded in the surface code using superconducting
qubits [62–64].

We note that for trapped-ion systems, the use of nearest-
neighbor interactions is not required. Thus, recent QEC
experiments in trapped-ion systems have used the Bacon-
Shor code [35], the five-qubit code [37], and the color
code [36–38]. For distance d = 3, these codes allow fewer
physical qubits and gate operations [65]. However, simu-
lating the error-correction threshold using these codes can
be complicated, as the family of each code of various dis-
tances is defined using code concatenation (for an example
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FIG. 3. (a) The layout of the rotated surface code of dis-
tance d = 3. The black (white) circles represent data (syndrome)
qubits. The red (blue) plaquettes represent Z (X ) stabilizers. The
red horizontal (blue vertical) line represents the logical ẐL (X̂L)
operator. The controlled-NOT (CNOT) gates between a data qubit
and corresponding syndrome qubits are applied in the numbered
order. (b) The quantum circuit for a single round of error cor-
rection. Here, we show an example where a leakage is detected
during the third CNOT gate. In such a case, both the data qubit and
the third syndrome qubit are converted to the maximally mixed
state by erasure conversion. R denotes resetting the qubit to |0〉.
I/X denotes that either the Î or the X̂ gate is applied with proba-
bility 1/2 each. MZ (MX ) denotes qubit-state measurement in the
Z (X ) basis.

of the color code, see Ref. [66] ). Meanwhile, the fam-
ily of rotated surface codes is straightforwardly defined
on square lattices of various sizes, which leads to feasible
threshold simulations.

Figure 3(b) shows the circuit for a single round of
error correction for surface codes. First, the syndrome
qubits for measuring the Z (X ) stabilizers are initialized
to state |0〉 (|+〉). Then, four controlled-NOT (CNOT) gates
are performed between the data qubit and the syndrome
qubits, in the correct order. Finally, the syndrome qubits
are measured in the respective basis to provide the error
syndromes. This circuit is performed on all data qubits in
parallel. As the measurements can be erroneous as well,
typically d rounds of error correction are consecutively
performed for a distance-d code.

The most probable set of errors that could have caused
the observed syndromes is inferred by a decoder run by
a classical computer. Among the various efficient decoders
for surface codes [67–69], we choose the minimum-weight
perfect-matching (MWPM) decoder, which finds the error
chain of minimum weight using Edmonds’ algorithm [67].
The errors are corrected by simply keeping track of the
Pauli frame, thus not requiring any physical gate opera-
tions [60].

Erasure conversion on metastable qubits is performed
by replacing both qubits with the maximally mixed state
whenever leakage is detected during a two-qubit gate. In
the actual implementation, this can be done by resetting
both qubits to |0〉m and then performing a X̂ gate with prob-
ability 1/2, as shown for the case of the leakage of the third
syndrome qubit in Fig. 3(b). The data qubit is also erased
as a leakage error may propagate to the other qubit during a

two-qubit gate (for details, see Appendix D). The decoder
uses the information on the erasure locations by setting the
weight of erased data qubits to zero, which decreases the
weights of error chains consisting of the erased data qubits.

We note that resetting to |0〉m instead of the maximally
mixed state may be sufficient for erasure conversion. In
this paper, we choose to reset to the maximally mixed
state, as this can be described by a (maximally depolar-
izing) Pauli channel that is easy to simulate at the circuit
level.

To evaluate the QEC performance, we simulate the
logical memory of rotated surface codes in the Z basis.
Specifically, we initialize the data qubits to |0〉, perform d
rounds of error correction for the distance-d code, and then
measure the data qubits in the Z basis. Whether a logical
error has occurred is determined by comparing the mea-
surement of the ẐL operator [see Fig. 3(a)] and the expected
value of ẐL after decoding. This is repeated many times to
determine the logical error rate.

The circuit-level simulations in this paper are performed
using STIM [70], a software package for fast simulations of
quantum stabilizer circuits. The error syndromes generated
by the circuit simulations are decoded using PyMatch-
ing [71], a software package that executes the MWPM
decoder. In particular, STIM allows the simulation of era-
sures and feeding of the location information into the
decoder [72].

V. RESULTS

In this section, we compare the logical performance of
ground and metastable qubits on the surface code, under
the three cases in Sec. III D. For each two-qubit-gate error
p (2q)

q := 2pq − p2
q (q = g, m), the composition of various

types of errors is given by Fig. 2. For ground (metastable)
qubits, the undetected-leakage (erasure) rate takes up the
largest portion of the total error rate.

First, we use the error model where the spontaneous
scattering during the two-qubit gate is the only source of
error. Both the undetected leakage and the erasure of rate
p are simulated as depolarizing error, i.e., Pauli error ran-
domly chosen from {Î , X̂ , Ŷ, Ẑ} with probability p/4 each.
In the simulations, the only difference between undetected
leakage and erasure is that the decoder knows and uses
the locations of erasures but not the locations of unde-
tected leakage. The errors during single-qubit gates, state
preparation, idling, and measurement are not considered.

During a two-qubit gate, an error on one of the two
qubits may propagate to the other qubit. For the circuit-
level simulations, we use a detailed error model that
includes the propagation of Pauli [73] and leakage errors
(for details, see Appendix D).

Figure 4(a) shows the logical error rates of ground
(dashed) and metastable (solid) qubits for various code
distances and two-qubit-gate error rates. Here, pg = pm
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(a) (b)

FIG. 4. (a) The logical error rates of ground (dashed) and metastable (solid) qubits for various code distances d and two-qubit-
gate error rates p (2q)

q = 2pq − p2
q (q = g, m), where pg = pm as in case I. The error rates marked as points in Fig. 2 are used in the

simulations. The thresholds, determined by intersections of the curves for d = 5, · · · , 11, are 1.36%, 2.97%, 1.22%, and 3.42% for
ground Ba+, metastable Ba+, ground Ca+, and metastable Ca+ qubits, respectively. The error bars represent the 95% confidence
interval. (b) The effective error distances of metastable qubits [19], measured from the slope of points below the threshold in (a). The
effective error distance is (d + 1)/2 for pure Pauli errors (Re = 0) and ξ = d for pure erasures (Re = 1), which are shown as dashed
lines.

as in case I. As expected from Ref. [19], using erasure
conversion on metastable qubits significantly improves the
threshold, which leads to a dramatic reduction in the log-
ical error rates, compared to using ground qubits. The
thresholds for our error model and the MWPM decoder are
determined by intersections of the curves for d = 5, 7, 9,
and 11. For the Ba+ ion, which has R(0)

e = 0.7941, the
threshold improves from 1.36% to 2.97% when metastable
qubits are used. For the Ca+ ion, which has R(0)

e = 0.9509,
the threshold improves from 1.22% to 3.42%.

In additional to a higher threshold, erasure conversion
also results in a steeper decrease of the logical error rate
as the physical error rate decreases. Below the threshold,
the logical error rate is proportional to [p (2q)

q ]ξ , where ξ

is the effective error distance or the slope of the logi-
cal error-rate curve. For odd d, ξ = (d + 1)/2 for pure
Pauli errors (Re = 0) and ξ = d for pure erasures (Re = 1).
Therefore, ξ is expected to increase from (d + 1)/2 to d as
Re increases from 0 to 1 [19]. Indeed, Fig. 4(b) shows that
the effective error distance of metastable qubits is larger
than (d + 1)/2, where that of Ca+ is larger than that of
Ba+. Meanwhile, the effective error distance of ground
qubits is always (d + 1)/2, as erasure conversion is not
feasible. Thus, the advantage of metastable qubits over
ground qubits grows even larger as the physical error rate
decreases further from the threshold.

While these results are promising, the disadvantages of
metastable qubits are not yet reflected. The shorter life-
times of metastable qubits are not considered. Also, Fig. 2
shows that in order to achieve a fixed error rate (case
I), metastable qubits require larger detuning than ground
qubits, which leads to a lower Rabi frequency and a longer
gate time.

In the following simulations, we add idling errors of
metastable qubits into the error model. Specifically, for a
surface-code cycle time T, we assume that all metastable
qubits have an additional probability of erasure p (idle)(T)/4
[see Eq. (1)] before each layer of CNOT gates, where the
factor of 1/4 comes from the fact that each error-correction
round consists of four layers of CNOT gates. Here, we
assume T = 3 ms, considering the time required for the
state-of-the-art sideband cooling [74]. For the Ba+ (Ca+)
ion, the idling error rate is fixed at p (idle)(T)/4 = 2.49 ×
10−5 (6.46 × 10−4). The QEC performance of metastable
qubits for various values of the idling-error rates is dis-
cussed in Appendix E. We also add measurement errors
of fixed rate 10−4, which is roughly the state-of-the-art
for trapped ions [75,76], for both ground and metastable
qubits. The addition of idling and measurement errors of
fixed rates reduces the thresholds only slightly, as the two-
qubit-gate error dominates for the range of p (2q)

q simulated
here.

Figure 5(a) shows the comparison result for case II.
The top and bottom horizontal axes represent the two-
qubit-gate error rates of the ground and metastable qubits,
respectively. For each p (2q)

g , the vertically aligned p (2q)
m is

determined by the ratio of detunings �m/�g that satisfies
the conditions 
g = 
m and Eg = Em [see Eq. (16)]. As a
result, from the lowest to highest simulated p (2q)

m , �m/�g
is varied from 0.0681 to 0.152 for the Ba+ ion and from
0.111 to 0.229 for the Ca+ ion. Thus, each p (2q)

m is com-
pared with a p (2q)

g that is an order of magnitude lower. In
this case, for both Ba+ and Ca+ ions, ground qubits outper-
form metastable qubits, despite having lower thresholds.
The effects of idling and measurement errors are negligible
in the range of two-qubit-gate errors simulated here.
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(a) (b)

FIG. 5. The logical error rates of ground (dashed) and metastable (solid) qubits for various code distances d and two-qubit-gate
error rates. Idling (measurement) errors of fixed rate are added for metastable (both) qubits. The thresholds with respect to p (2q)

q ,
determined by intersections of the curves for d = 5, · · · , 11, are 1.36%, 2.84%, 1.21%, and 3.15% for ground Ba+, metastable Ba+,
ground Ca+, and metastable Ca+ qubits, respectively. The error bars represent the 95% confidence interval. (a) The two-qubit-gate
error rates p (2q)

g and p (2q)
m of ground and metastable qubits, respectively, are aligned with respect to case II: 
g = 
m and Eg = Em.

From the left to the right of the region where the logical error rates of both the ground and metastable qubits are plotted, the ratio of
detunings �m/�g given by Eq. (16) is varied from 0.0681 to 0.152 for Ba+ and from 0.111 to 0.229 for Ca+. For case II, ground qubits
outperform metastable qubits. (b) The two-qubit-gate error rates p (2q)

g and p (2q)
m of the ground and metastable qubits are aligned with

respect to case III: �g = �m. To match the Rabi frequencies (
g = 
m), from left to right of the plotted region, the ratio of electric
field amplitudes Em/Eg given by Eq. (17) is varied from 3.83 to 2.56 for Ba+ and from 3.00 to 2.09 for Ca+. For case III, metastable
qubits outperform ground qubits. For both (a) and (b), the top horizontal axes are not exactly at log scale.

Figure 5(b) shows the comparison result for case III.
Here, p (2q)

g and p (2q)
m that are vertically aligned correspond

to the same detuning (�g = �m). Thus, each p (2q)
m is com-

pared with a p (2q)
g that is at most two times lower, which

can be overcome by the improvement in the threshold
due to erasure conversion. For both Ba+ and Ca+ ions,
metastable qubits outperform ground qubits. The advan-
tage of having a larger effective error distance shows up
especially for smaller gate-error rates and larger code dis-
tances. The advantage of metastable qubits is greater for
Ca+, due to the larger erasure-conversion rate. Again, the
effects of idling and measurement errors are negligible.

For case III, to achieve both 
g = 
m and �g = �m,
from the lowest to the highest simulated error rates, Em/Eg
is varied from 3.83 to 2.56 for the Ba+ ion and from 3.00
to 2.09 for the Ca+ ion [see Eq. (17)]. Therefore, in order
to achieve the advantage shown in Fig. 5(b), metastable
qubits require higher laser power than ground qubits (for
typical values of the laser power, see Appendix C). We
emphasize that it is reasonable to assume that metastable
qubits allow higher laser power for gate operations, as
material loss due to lasers is less severe for a longer laser
wavelength. In reality, the advantage of metastable qubits
may depend on the achievable laser powers.

VI. DISCUSSION AND OUTLOOK

A. Comparison with the Rydberg-atom platform

As our erasure-conversion scheme on metastable
trapped-ion qubits is motivated by that on metastable

Rydberg-atom qubits [19], in this section we provide
a discussion on comparing the two platforms, as well
as suggesting the uniqueness of erasure conversion on
trapped-ion qubits.

The two-qubit gates on Rydberg-atom qubits are per-
formed by coupling the qubit state |1〉 to the Rydberg
state |r〉 with Rabi frequency 
. The van der Waals inter-
action between the two atoms prevents them from being
simultaneously excited to |r〉, a phenomenon known as the
Rydberg blockade. This acquires a phase on the two-qubit
state |11〉 that is different from the phase of |01〉 and |10〉,
which, if carefully controlled, leads to a fully entangling
two-qubit gate [77,78].

The fundamental sources of two-qubit-gate errors are
the spontaneous decay of the Rydberg states and the finite
Rydberg-blockade strength [79,80]. It has been argued that
the effects of the finite Rydberg-blockade strength can be
compensated by tuning the laser parameters [81]. Thus,
we focus only on the spontaneous decay of the Rydberg
states. This is similar to the fact that the spontaneous
decay of the excited P states is the fundamental source
of errors for laser-based gates on trapped ions. For both
platforms, the state-of-the-art gates are dominated by other
technical sources of errors in the experimental system
[53–55,80,81].

The crucial difference between the two platforms is that
for trapped ions, the P states are only virtually occupied as
the lasers are far detuned from the transition to the P states,
while for Rydberg atoms, the Rydberg states need to be
occupied for a sufficiently long time in order to acquire the
entangling phases. Thus, for Rydberg atoms, the gate-error
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rate due to the spontaneous decay is reduced by minimiz-
ing the time that the atoms spend in the Rydberg states,
denoted as tR.

The state-of-the-art method directly minimizes the error
rate by finding the tR-optimal pulse of length tgate > tR
using quantum optimal control techniques [82]. The mini-
mal two-qubit-gate error rate is given by

p (2q) = γRtR = 2.947 × γR


max
, (18)

where γR is the lifetime of the Rydberg states and 
max
is the maximal Rabi frequency of the time-optimal pulse
[82]. Using 1/γR = 540 µs and 
max = 10 MHz as sug-
gested by Ref. [82], the error rate is 8.7 × 10−5, which
is on par with the minimum two-qubit-gate error rate of
ground Ba+ ion qubits (1.5 × 10−4) over �g ∈ [0, ωF ].

We note that with limited laser power, the lower bound
of the two-qubit-gate error rate of the Rydberg atoms is
determined by the maximum achievable 
max. For trapped
ions, the error rate of ground (metastable) qubits can
in principle be reduced to an arbitrarily small value by
increasing the detuning from the P1/2 (P3/2) manifold [44],
at the cost of a lower Rabi frequency.

In Eq. (18), the gate-error rate decreases as the Rabi
frequency increases. Meanwhile, for trapped ions, the
gate-error rate due to the spontaneous scattering does not
explicitly depend on the Rabi frequency (see Appendix B).
Instead, as the detuning �q decreases, both the Rabi fre-
quency and the gate-error rate increase. This trade-off is
central to cases II and III of our comparison between
ground and metastable trapped-ion qubits.

Also, as noted in Sec. III D, in the presence of tech-
nical errors that increase with the gate time, decreasing
the detuning �m of metastable qubits converts the techni-
cal errors into erasures (and a small amount of undetected
leakage). This is a method of erasure conversion that is
unique to the trapped-ion platform. Exploiting this trade-
off for minimizing the logical error rate is an opportunity
for metastable trapped-ion qubits.

For both platforms, it is desirable to increase the Rabi
frequency by using higher laser power. This reduces the
technical errors for trapped ions and both the technical
and the fundamental errors for Rydberg atoms. For trapped
ions, the erasure conversion of metastable qubits is per-
formed at the cost of a higher laser-power requirement for
achieving a fixed Rabi frequency, as the inherent matrix
element of the transition from the metastable states to the
P states is weaker than from the ground states. For Rydberg
alkaline-earth-like atoms, the trade-off is more compli-
cated, as the Rydberg excitation from the ground qubit
requires two-photon transitions via 3P1 [83] but only a sin-
gle photon from the metastable 3P0 qubit state [19]. The
complication is that if we include the time of state prepara-
tion and then Rydberg excitation, the metastable qubit will

require more laser power to create the Rydberg excitation
in the same amount of time, but in the active processing of
quantum information the state-preparation stage is rare, so
the metastable qubit will use 1S → 3P laser less often and
therefore less laser power overall. A more careful com-
parison of the laser-power requirements between ground
and metastable Rydberg-atom qubits is beyond the scope
of this paper.

B. Outlook

While the simulation results in this work may serve as a
proof of principle, they have several limitations that lead to
future directions. First, undetected-leakage errors are sim-
ulated as depolarizing errors. In reality, the fault-tolerant
handling of leakage errors requires significant overhead,
such as leakage-reducing operations [22–24] and circuits
[25–30]. In particular, the trade offs of using leakage-
reducing circuits on ground trapped-ion qubits have been
discussed in Refs. [28,29]. After implementing such over-
head, the effects of undetected leakage errors are equiv-
alent to those of depolarizing errors of a larger rate, in
terms of the threshold and error distances [28,29]; thus,
the effects of undetected leakage in our simulations may
be considered as a lower bound of the actual effects. When
the cost of handling leakage is considered, we expect the
advantage of using metastable qubits to be significantly
greater, as undetected leakage is the dominant type of error
for ground qubits but not for metastable qubits equipped
with erasure conversion.

Second, we do not consider errors due to miscalibration
of the physical parameters, which may cause over-rotation
errors. This is important because (i) over-rotation error is
often larger than stochastic error for state-of-the-art two-
qubit gates [54,55] and (ii) calibrating physical parameters
to high precision may require a large number of shots and
a long experiment time [84].

Notably, over-rotation errors can be converted to era-
sures using certified quantum gates on metastable qubits
[40]. In this gate scheme, auxiliary states outside the qubit
subspace are used, such that over-rotation causes residual
occupation of the auxiliary states, which can be detected by
optical pumping. While Ref. [40] considers a heralded gate
of success probability smaller than one, in the perspective
of QEC, this is essentially erasure conversion. More work
needs to be done on generalizing certified quantum gates
to other encodings of qubit states and to more commonly
used two-qubit-gate schemes such as the MS scheme.

Finally, we only consider the examples of D5/2
metastable qubits, which have a limited lifetime (see
Table II). Meanwhile, the metastable qubit of the Yb+ ion
encoded in the Fo

7/2 manifold is even more promising, as
its lifetime ranges from several days to years [41]. Laser-
based gate operations on such a metastable qubit may use
excited states that are more “exotic” than the P states. We
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hope that this work motivates future research on utilizing
these exotic states, as well as measuring their properties,
such as their decay rates and branching fractions.

VII. CONCLUSIONS

In this paper, we show that trapped-ion metastable
qubits equipped with erasure conversion can outperform
ground qubits in fault-tolerant logical memory using sur-
face codes. Even when the Rabi frequency is fixed between
ground and metastable qubits, the logical error rates of the
metastable qubits are lower when reasonably higher laser
power is allowed (such that detuning from the P3/2 mani-
fold is the same). We hope that this paper motivates further
research in using metastable trapped-ion qubits for scal-
able and fault-tolerant quantum computing [41]. Also, the
methodology of using our detailed error model for com-
paring ground and metastable qubits may be applied back
to the Rydberg-atom platform [19].
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APPENDIX A: DERIVATIONS OF kq AND αf

In this appendix, we calculate the coefficients kq and αf ,
introduced in Eqs. (3), (4), and (6), using the Wigner 3j
and 6j symbols. We mainly use two relations. The first is
the relation between the hyperfine transition element and
the fine-structure-level transition element, given by [85]

〈La, Ja; Fa, Ma|T(1)
λ (	d)|LbJb; Fb, Mb〉 = (−1)Fa−Ma+Ja+I+Fb+1

√
(2Fa + 1)(2Fb + 1)

(
Fa 1 Fb

−Ma s Mb

)

×
{

Ja Fa I
Fb Jb 1

}
〈La, Ja||T(1)(	d)||Lb, Jb〉, (A1)

where λ is the photon polarization. The next is the relation between the fine-structure-level transition element and the
orbital transition element, given by [85]

〈La, Ja||T(1)(	d)||Lb, Jb〉 = (−1)(La+ 1
2 +Jb+1)

√
(2Ja + 1)(2Jb + 1)

{
La Ja S
Jb Lb 1

}
〈La||T(1)(	d)||Lb〉, (A2)

where S = 1/2 is the electron spin.
We first calculate kq. The largest dipole-matrix element of transition between a state in manifold q and a P state is
given by

μq :=
〈
1,

3
2

; I + 3
2

, I + 3
2

∣∣∣∣T
(1)
3
2 −Jq

(	d)

∣∣∣∣ Lq, Jq; I + Jq, I + Jq

〉
, (A3)

where I is the nuclear spin, which we assume to be a half integer. Applying Eqs. (A1) and (A2) sequentially, we
obtain

μq = (−1)Jq+2I+ 1
2

√
(2I + 4)(2I + 2Jq + 1)

(
I + 3

2 1 I + Jq

−I − 3
2

3
2 − Jq I + Jq

)

×
{

3
2 I + 3

2 I
I + Jq Jq 1

} 〈
L = 1, J = 3

2
||T(1)(	d)||Lq, Jq

〉

= (−1)2Jq+2I+1
√

(2I + 4)(2I + 2Jq + 1)(4)(2Jq + 1)

×
(

I + 3
2 1 I + Jq

−I − 3
2

3
2 − Jq I + Jq

) {
3
2 I + 3

2 I
I + Jq Jq 1

} {
1 3

2
1
2

Jq Lq 1

}
〈L = 1||T(1)(	d)||Lq〉. (A4)
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For ground qubits (q = g), inserting Lq = 0 and Jq = 1
2 into Eq. (A4) gives

μg = (−1)2I
√

(2I + 4)(2I + 2)(4)(2)

(
I + 3

2 1 I + 1
2

−I − 3
2 1 I + 1

2

) { 3
2 I + 3

2 I
I + 1

2
1
2 1

} {
1 3

2
1
2

1
2 0 1

}
〈L = 1||T(1)(	d)||Lg = 0〉

= (−1)2I
√

(2I + 4)(2I + 2)(4)(2) × 1√
2I + 4

(−1)2I+1

√
(2I + 2)(4)

(−1)√
6

〈L = 1||T(1)(	d)||Lg = 0〉

= 1√
3
〈L = 1||T(1)(	d)||Lg = 0〉. (A5)

Therefore, from Eq. (3), we have kg = 1/3.
Similarly, for metastable qubits (q = m), inserting Lq = 2 and Jq = 5/2 into Eq. (A4) gives

μm = (−1)2I
√

(2I + 4)(2I + 6)(4)(6)

(
I + 3

2 1 I + 5
2

−I − 3
2 −1 I + 5

2

) { 3
2 I + 3

2 I
I + 5

2
5
2 1

}{
1 3

2
1
2

5
2 2 1

}

〈L = 1||T(1)(	d)||Lm = 2〉

= (−1)2I
√

(2I + 4)(2I + 6)(4)(6) × 1√
2I + 6

(−1)2I+1

√
(2I + 4)(6)

(−1)√
20

〈L = 1||T(1)(	d)||Lm = 2〉

= 1√
5
〈L = 1||T(1)(	d)||Lm = 2〉. (A6)

From Eq. (3), we have km = 1/5.
We now calculate αf . Before we start, we introduce two useful identities for Wigner 3j and 6j symbols:

∑

m1,m2

(
j1 j2 j3
m1 m2 m3

) (
j1 j2 j ′

3
m1 m2 m′

3

)
=

δj3,j ′
3
δm3,m′

3

2j3 + 1
, (A7)

∑

j3

(2j3 + 1)

{
j1 j2 j3
m1 m2 m3

} {
j1 j2 j3
m1 m2 m′

3

}
=

δm3,m′
3

2m3 + 1
. (A8)

We start with the left-hand side of the first equation of Eq. (4) and apply the Wigner-Eckart theorem, which leads to

∑

Ff ,Mf

|〈Le, Je; Fe, Me|	d|Lf , Jf ; Ff , Mf 〉|2 =
∑

Ff

∣∣∣〈Le, Je; Fe||T(1)(	d)||Lf , Jf ; Ff 〉
∣∣∣
2 ∑

Mf

∣∣∣∣

(
Ff 1 Fe

−Mf Mf − Me Me

)∣∣∣∣

2

=
∑

Ff

∣∣∣〈Le, Je; Fe||T(1)(	d)||Lf , Jf ; Ff 〉
∣∣∣
2 ∑

Mf ,s

∣∣∣∣

(
Ff 1 Fe

−Mf s Me

)∣∣∣∣

2

= 1
2Fe + 1

∑

Ff

∣∣∣〈Le, Je; Fe||T(1)(	d)||Lf , Jf ; Ff 〉
∣∣∣
2

, (A9)

where the last equality uses Eq. (A7). Applying Eq. (A2) with J → F , L → J , and S → I gives

∑

Ff ,Mf

|〈Le, Je; Fe, Me|	d|Lf , Jf ; Ff , Mf 〉|2 = 1
2Fe + 1

∑

Ff

(2Fe + 1)(2Ff + 1)

∣∣∣∣

{
Je Fe I
Ff Jf 1

}∣∣∣∣

2 ∣∣∣〈Le, Je||T(1)(	d)||Lf , Jf 〉
∣∣∣
2

=
∣∣∣〈Le, Je||T(1)(	d)||Lf , Jf 〉

∣∣∣
2 ∑

Ff

(2Ff + 1)

∣∣∣∣

{
Je Fe I
Ff Jf 1

}∣∣∣∣

2

= 1
2Je + 1

∣∣∣〈Le, Je||T(1)(	d)||Lf , Jf 〉
∣∣∣
2

, (A10)
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where the last equality uses Eq. (A8). Applying Eq. (A2)
gives

∑

Ff ,Mf

|〈Le, Je; Fe, Me|	d|Lf , Jf ; Ff , Mf 〉|2

= (2Jf + 1)

∣∣∣∣

{
Le Je

1
2

Jf Lf 1

}∣∣∣∣

2 ∣∣∣〈Le||T(1)(	d)||Lf 〉
∣∣∣
2

(A11)

Therefore, from Eq. (4), we obtain

αe,f = (2Jf + 1)

∣∣∣∣

{
Le Je

1
2

Jf Lf 1

}∣∣∣∣

2

. (A12)

Finally, inserting Le = 1 and Je = 3/2 gives the values of
αf shown in Table I.

APPENDIX B: DERIVATIONS OF
TWO-QUBIT-GATE ERROR RATES

In this appendix, we derive the various types of two-
qubit-gate error rates in Fig. 2. Specifically, we show how
the proportionality constants Ci,j ,J in Eq. (8) are calculated,
which leads to equations for the error rates and the erasure-
conversion rate.

Generalizing the notation of Ref. [45], we define the
scattering amplitude from |i〉 in manifold q to |j 〉 in
manifold f via excited state |J 〉 in manifold e as [86]

Ai→j
J ,λ = −bλ〈j |	d|J 〉〈J |	d|i〉

�e,qμf μq
, (B1)

where bλ is the normalized amplitude of the polarization
component ε̂λ of the Raman beam (λ = 1, 0, −1). Note that
Ai→j

J ,λ 
= 0 only if the magnetic quantum number of |J 〉 is
equal to that of |i〉 plus λ.

As explained in Sec. III B, phase-flip errors are caused
by the effective Rayleigh scattering and bit-flip and leak-
age errors are caused by Raman scattering. The scatter-
ing rates of various types can be calculated using the
Kramers-Heisenberg formula. First, the effective Rayleigh-
scattering rate during the Raman transition of the qubit is
given by [45]

	(z) = kqg2
q

γ ′
q

αq

∑

λ

(
∑

J

A1→1
J ,λ −

∑

J ′
A0→0

J ′,λ

)2

, (B2)

where 0 and 1 in the superscript denote the qubit states.
Next, the rate of Raman scattering that leads to bit-flip

errors is given by [43,45]

	(xy) = kqg2
q

γ ′
q

αq

∑

λ

⎡

⎣
(

∑

J

A0→1
J ,λ

)2

+
(

∑

J ′
A1→0

J ′,λ

)2
⎤

⎦ ,

(B3)

and the rate of Raman scattering that leads to leakage errors
is given by

	(l) = kqg2
q

∑

j 
=0,1

γ ′
f

αf

∑

λ

⎡

⎣
(
∑

J

A0→j
J ,λ

)2

+
(
∑

J ′
A1→j

J ′,λ

)2
⎤

⎦,

(B4)

where j 
= 0, 1 denotes that |j 〉 is not a qubit state. Finally,
for D5/2 metastable qubits with erasure conversion, the rate
of Raman scattering that leads to erasures is given by

	(e) = kqg2
q

∑

j /∈D5/2

γ ′
f

αf

∑

λ

⎡

⎣
(
∑

J

A0→j
J ,λ

)2

+
(
∑

J ′
A1→j

J ′,λ

)2
⎤

⎦,

(B5)

where j /∈ D5/2 denotes that |j 〉 is not in the D5/2 manifold.
We now perform the sums in Eqs. (B2)–(B5). For

notational convenience, we define the detuning-dependent
branching fractions [44]

r′
1 := (1 − �q/ωP3/2,S1/2)

3 × r1,

r′
2 := (1 − �q/ωP3/2,D3/2)

3 × r2,

r′
3 := (1 − �q/ωP3/2,D5/2)

3 × r3, (B6)

such that γ ′
f = r′

iγ for the corresponding i for each man-
ifold f [see Eq. (7)]. Also, we assume that the Raman
beams are linearly polarized and mutually perpendicular.
Then, for ground qubits, the scattering rates are given by

	(z)
g = 0, (B7)

	(xy)
g = 2

9
r′

1γ g2
g

ω2
F

(ωF − �g)2�2
g

, (B8)

	(l)
g = 2

9
γ

(
gg

�g

)2 [
r′

1
ω2

F

(ωF − �g)2

+ 6r′
2

ω2
F − 2ωF�g + 6�2

g

(ωF − �g)2 + 6r′
3

]
, (B9)

where we replace the subscripts q with g. Note that Eqs.
(B7)–(B9) are valid for any value of I . Similarly, for
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TABLE III. The values of the geometric coefficients used in
Eqs. (B10)–(B13) for two metastable qubits chosen as examples.

Metastable qubit cz cxy c1 c2 cl

133Ba+, F0 = 2 0 1/75 2/5 2/5 1/3
43Ca+, F0 = 5 0.0035 7/165 29/55 29/55 0.3904

metastable qubits,

	(z)
m = czr′

3γ

(
gm

�m

)2

, (B10)

	(xy)
m = cxyr′

3γ

(
gm

�m

)2

, (B11)

	(l)
m = (c1r′

1 + c2r′
2 + clr′

3)γ

(
gm

�m

)2

, (B12)

	(e)
m = (c′

1r1 + c2r′
2)γ

(
gm

�m

)2

, (B13)

where we replace the subscripts q with m. Here, cz, cxy ,
c1, c2, and cl are geometric coefficients determined by I
and F0. Note that cxy (cl) comes from the Raman-scattering
rates to the D5/2 states within (outside) the qubit subspace.
Also, c1 (c2) comes from the Raman-scattering rates to the
S1/2 (D3/2) states. The values of these coefficients for the
metastable Ba+ and Ca+ qubits considered in this paper
can be found in Table III.

We note in passing that the approximations used to
derive Eqs. (B7)–(B13) are valid when |�g| and |�m| are
much larger than the hyperfine-splitting frequencies and
much smaller than the laser frequency. For extremely far-
detuned illumination, other effects, such as coupling to
higher excited states, may need to be taken into account
(for a more thorough treatment, see, e.g., Ref. [44]).

The error rates of each qubit on which the two-qubit gate
is applied follow straightforwardly by multiplying the gate
time tgate in Eq. (11) to the scattering rates. Note that as tgate
is inversely proportional to 
 in Eqs. (9) and (10), the g2

q
factor is canceled out. The error rates of each ground qubit
are given by

p (z)
g = 0, (B14)

p (xy)
g = π

√
K

3η
r′

1γ

∣∣∣∣
ωF

(ωF − �g)�g

∣∣∣∣ , (B15)

p (l)
g = π

√
K

3η

γ

|�g|
(

r′
1

∣∣∣∣
ωF

ωF − �g

∣∣∣∣

+ 6r′
2

∣∣∣∣∣
ω2

F − 2ωF�g + 6�2
g

(ωF − �g)ωF

∣∣∣∣∣
+ 6r′

3

∣∣∣∣
ωF − �g

ωF

∣∣∣∣

)
,

(B16)

pg = p (z)
g + p (xy)

g + p (l)
g . (B17)

Similarly, the error rates of each metastable qubit are given
by

p (z)
m = π

√
K

2η

czr′
3

c0

γ

|�m| , (B18)

p (xy)
m = π

√
K

2η

cxyr′
3

c0

γ

|�m| , (B19)

p (l)
m = π

√
K

2η

c1r′
1 + c2r′

2 + clr′
3

c0

γ

|�m| , (B20)

p (e)
m = π

√
K

2η

c1r′
1 + c2r′

2

c0

γ

|�m| , (B21)

pm = p (z)
m + p (xy)

m + p (l)
m . (B22)

For metastable qubits, We define c3 := cz + cxy + cl.
Then, the erasure-conversion rate defined in Eq. (12) is
given by

Re := p (e)
m

pm
= c1r′

1 + c2r′
2

c1r′
1 + c2r′

2 + c3r′
3

(B23)

and the zero-detuning erasure-conversion rate defined in
Eq. (13) is given by

R(0)
e := lim

�m
ωF

→0
Re = c1r1 + c2r2

c1r1 + c2r2 + c3r3
. (B24)

As explained in Sec. III C, Re is slightly larger than R(0)
e for

nonzero �m, and R(0)
e is slightly larger than r1 + r2. This

completes the derivation of the error rates and the erasure-
conversion rate used in the main text.

APPENDIX C: LASER-POWER ESTIMATION

In this appendix, we provide estimates of the typi-
cal laser power for two-qubit gates on both ground and
metastable qubits. Following Ref. [43], the laser power
required to achieve a given qubit-state Rabi frequency can
be calculated.

Assuming that the laser beams are Gaussian, the electric
field amplitude Eq at the center of the beam is related to the
power Pq of each Raman beam by

E2
q = 4Pq

πcε0w2
0

, (C1)

where c is the speed of light, ε0 is the vacuum permittivity,
and w0 is the beam waist at the position of the ion [43].
Also, from Eqs. (2)–(4), we have the relation

g2
q

γq
= 3kqπε0c3E2

q

4αq�ω3
e,q

= 3kqc2Pq

αq�ω3
e,qw2

0
. (C2)

Then, as the qubit-state Rabi frequency is proportional to
g2

q , the relation between the laser-beam power and the Rabi
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FIG. 6. The laser power of each Raman beam as the detuning
�q (q = g, m) from the P3/2 manifold is varied. The points are
marked at the same detunings as the points in Figs. 2 and 4(a).
For the metastable Ba+ (Ca+) qubit, I = 1/2 (7/2) and F0 = 2
(5), as shown in Table II. Here, we assume 
q = 2π × 0.25 MHz
(tgate = 20 µs) and w0 = 20 µm.

frequency can be found. For ground qubits (q = g), from
Eq. (9) and γg = r1γ ,

Pg = αg�ω3
e,gw2

0

kgc2r1γωF
|�g(ωF − �g)|
g . (C3)

Similarly, for metastable qubits (q = m), from Eq. (10) and
γm = r3γ ,

Pm = αm�ω3
e,mw2

0

3c0kmc2r3γ
|�m|
m. (C4)

Figure 6 shows the laser power of each Raman beam
for various detunings, for a typical Rabi frequency 
q =
2π × 0.25 MHz (which gives tgate = 20 µs for η = 0.05
and K = 1) and beam waist w0 = 20 µm, following Ref.
[43]. Combined with Fig. 2, the laser power is higher at
a detuning that yields a lower gate-error rate. As expected
from case III, for a fixed Rabi frequency and detuning, the
metastable qubit requires a laser power that is an order of
magnitude larger when �q is not too close to ωF .

In practice, the laser power is often limited by material
loss in mirrors and waveguides [57], which is less severe
for metastable qubits than for ground qubits as the laser
wavelength is longer. We expect that our results provide a
guideline to future experiments on whether the achievable
laser power is high enough for metastable qubits to have
advantage over ground qubits by erasure conversion.

APPENDIX D: ERROR PROPAGATION DURING
TWO-QUBIT GATES

In order to accurately evaluate the circuit-level perfor-
mance of the surface code, we use a detailed model on
how an error on one qubit due to the spontaneous scattering
propagates to the other qubit during a CNOT gate.

As the MS gate is a widely used native two-qubit gate
for trapped ions, we first decompose the CNOT gate into MS

RY (− π/ 2)
XX ( π

4
)

RX (− π/ 2) RY (π/ 2)

RX (π/ 2)

FIG. 7. The circuit diagram of a CNOT gate (upper line, control;
lower line, target), decomposed into native gates for trapped ions.
Here, RX (θ) = exp(−iθ/2X ) and RY(θ) = exp(−iθ/2Y) are the
single-qubit gates and XX (θ) = exp(−iθX ⊗ X ) is the MS gate,
where X and Y are single-qubit Pauli operations. When the MS
gate is omitted, the circuit becomes RZ(π/2) ⊗ RX (π/2).

and single-qubit gates using the circuit in Fig. 7 [87]. As
single-qubit gates are assumed to be perfect, we analyze
how errors propagate during an MS gate. The errors are
then altered as they go through the following single-qubit
gates by the standard rules.

First, a bit-flip (X ) error due to the spontaneous scatter-
ing during an MS gate does not propagate, regardless of
at which point during the gate time it has occurred. This is
because an X error commutes through XX (θ) for any θ .

Next, for the propagation of a phase-flip (Z) error, we
start with two extreme cases: error completely before and
after an MS gate. A Z ⊗ I phase flip occurring before the
MS gate is equivalent to a (X ⊗ X )(Z ⊗ I) error occurring
after the MS gate [73]. Trivially, a phase flip after the MS
gate does not propagate. Thus, for a general case where a
phase-flip error occurs during an MS gate, we expect that
additional bit-flip error occurs to one of or both of the two
qubits.

To find the average rate of additional bit-flip error, we
use a master-equation simulation following the method in
Ref. [73]. Specifically, we prepare the initial state |00〉, run
a perfect XX (−π/4) gate, run a XX (π/4) gate with a phase
flip injected at time t (0 ≤ t ≤ tgate), and then measure
the population of the |1〉 state of the qubits. The |1〉-state
population indicates the additional bit-flip error rate. The
populations are averaged over many values of t, drawn
from a uniform distribution over the gate duration. Accord-
ing to our simulation results, when a phase flip occurs to
one of the qubits during an MS gate, additional X ⊗ I ,
I ⊗ X , or X ⊗ X error occurs with probability r, r, and
1/2 − r, respectively, where r = 0.1349.

Finally, we consider the propagation of a leakage error.
If a leakage happens at time t < tgate after an MS gate
has started, the two-qubit rotation XX (θ) is not fully per-
formed up to θ = π/4. Thus, the effect of a leakage can be
described by two qubits undergoing a partial XX rotation
followed by the leaked qubit being traced out.

To start, we describe how the partial rotation angle
evolves over time. During an MS gate, a normal mode of
the collective motion of the ion chain is briefly excited
by laser beams near resonant to the sideband transition.
Here, we denote δ as the detuning from the sideband
transition. Then, the action of an MS gate up to time t
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(0 ≤ t ≤ tgate) in the subspace of the two qubits is given
by exp(−iθ(t)X ⊗ X ), where [88]

θ(t) = δt − sin δt
δtgate − sin δtgate

× π

4
(D1)

such that θ(0) = 0 and θ(tgate) = π/4. There is an addi-
tional condition that the motional mode needs to be com-
pletely disentangled from the qubits at the end of the gate,
which is satisfied when δtgate = 2Kπ . We choose K = 1 as
in the main text and obtain

θ(t) = π t
4tgate

− 1
8

sin
(

2π
t

tgate

)
. (D2)

We note that even when one of the qubits is leaked dur-
ing the gate, the δtgate = 2Kπ condition guarantees that the
other qubit is completely disentangled from the motional
mode after the gate.

We now describe the action of tracing out the leaked
qubit after an incomplete XX rotation. Such a channel is
complicated to write in a general form that is valid for all
initial states. However, for the surface code, in the absence
of errors, the syndrome qubit is always in the |0〉 state
right before an MS gate is applied. If the syndrome qubit is
leaked at time t, it can be straightforwardly shown that the
channel on the data qubit is a bit-flip channel with prob-
ability sin2 θ(t), regardless of its initial state. If the data
qubit is leaked at time t, the channel on the syndrome qubit
is also a bit-flip channel with probability sin2 θ(t), where
here we additionally use the fact that in the subspace of the
pair of data and syndrome qubits, the data qubit is in the
maximally mixed state.

Therefore, for both data and syndrome qubits, a leakage
in one of the qubits at time t results in a bit flip with prob-
ability sin2 θ(t) on the other qubit. Assuming again that
the distribution of the probability that a leakage occurs is
uniform over the gate duration, the average probability of
bit-flip propagation is given by

1
tgate

∫ tgate

0
sin2 θ(t)dt = 0.2078. (D3)

Thus, whenever one of the two qubits is leaked (and
becomes a maximally mixed state in our simulations), the
other qubit undergoes a bit flip with probability 0.2078.

This concludes the model for error propagation during
an MS gate. Then, the errors go through the single-qubit
gates following the MS gate in Fig. 7, leading to the error
model for a CNOT gate. Specifically, the rates of the two-
qubit Pauli errors IX , IY,. . . , ZZ for each CNOT gate can be
calculated in terms of p (xy)

q , p (z)
q , p (l)

q , and p (e)
q (q = g, m),

which are fed into the circuit simulated using STIM [70].
A caveat here is that the two-qubit Pauli errors are

always appended after the execution of each CNOT gate.

In reality, for the case of a leakage error, the MS gate
is replaced by an incomplete XX rotation that directly
becomes the propagated error. Thus, the two-qubit Pauli
errors are ideally appended after a RZ(π/2) ⊗ RX (π/2)

gate rather than a CNOT gate (see Fig. 7). However,
switching between CNOT and RZ(π/2) ⊗ RX (π/2) gates
probabilistically is challenging to simulate efficiently.

We justify always appending the two-qubit Pauli errors
after the CNOT gate by the following argument. The CNOT
gate can be expressed as

CNOT = I ⊗ |+〉〈+| + Z ⊗ |−〉〈−|
= |0〉〈0| ⊗ I + |1〉〈1| ⊗ X .

In our simulations, a leaked qubit is in the maximally
mixed state. Thus, when the target qubit is leaked, the
CNOT gate becomes either I or Z on the control qubit
with probability 1/2 each. This can be approximated to
RZ(π/2) on the control qubit on average. Similarly, when
the control qubit is leaked, the CNOT gate becomes either
I or X on the target qubit with probability 1/2 each and
this can be approximated to RX (π/2) on the target qubit
on average.

APPENDIX E: EFFECTS OF IDLING ERRORS OF
METASTABLE QUBITS ON QEC

Here, we simulate how the idling errors of metastable
qubits affect the QEC performance. Due to the finite
lifetime of the D5/2 states, metastable qubits can sponta-
neously decay to the S1/2 manifold during idling. Such
leakage errors can always be converted to erasures, using
the erasure-conversion scheme described in Sec. II. The
idling-error rate is given in Eq. (1), where the upper bound
of time t is determined by the surface-code cycle time T,
which can be considered as the clock time for fault-tolerant
quantum computation.

We consider the example of the metastable Ca+ qubit in
Table II, as its lifetime of 1.16 s is significantly shorter than
the 30.14 s of the metastable Ba+ qubit. In the surface-code
simulations, similarly to Sec. V, we assume that all qubits
can be erased, each with probability p (idle)(T)/4 before
each layer of CNOT gates, where the factor 1/4 is from
the four layers of CNOT gates per cycle. Various values
of surface-code cycle time T ranging from 3 ms to 1.19 s
are considered, such that the idling-error rate p (idle)(T)/4
is varied from 6.46 × 10−4 to 0.161. We also add two-
qubit-gate errors of fixed rate p (2q)

m = 1.14 × 10−3 and
measurement errors of fixed rate 10−4, where the former
is the lowest value considered in Fig. 4(a) for Ca+ qubits.

Figure 8 shows the logical error rates pL for various
code distances d and idling-error rates p (idle)(T)/4. The
threshold idling-error rate is 5.14%, which is higher than
the threshold two-qubit-gate error rate of 3.42%, as idling
errors are completely converted to erasures. A distance-d
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FIG. 8. The logical error rates of metastable Ca+ qubits for
various code distances d and idling-error rates p (idle)(T)/4, where
T is the surface-code cycle time, represented in the top horizon-
tal axis. The factor of 1/4 comes from the four layers of CNOT
gates per cycle. Two-qubit-gate errors and measurement errors
of fixed rate 1.14 × 10−3 and 10−4, respectively, are added. The
error bars represent the 95% confidence interval. The threshold
idling-error rate is 5.14%, which corresponds to T = 0.267 s. We
expect that a significantly shorter cycle time and thus a lower
idling-error rate is achievable.

code is guaranteed to correct d − 1 idling errors per cycle,
as indicated by the slopes of the logical-error curves.

The top horizontal axis represents the surface-code cycle
time T. While Fig. 8 plots the logical error rates for cycle
times as long as approximately 1 s to show the thresh-
old, such a long cycle time is impractical for quantum
computation. For relatively feasible cycle times—say, T <

10 ms—pL quickly decreases below 10−6 for d ≥ 5. For
d = 3, pL converges to a nonzero value as the idling-
error rate decreases, which indicates that the effects of
the two-qubit-gate errors of fixed rate p (2q)

m = 1.14 × 10−3

dominate the effects of the idling errors when T � 3 ms.
Therefore, for reasonably short surface-code cycle times,
we expect that the idling errors of metastable qubits have a
significantly smaller impact on the QEC performance than
the gate errors. For metastable qubits with a longer life-
time, such as Ba+ and Yb+, the idling errors will be even
more negligible.
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