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Abstract— This paper addresses the problem of resilient
state estimation and attack reconstruction for bounded-
error nonlinear discrete-time systems with nonlinear obser-
vations/constraints, where both sensors and actuators can be
compromised by false data injection attack signals/unknown
inputs. By leveraging mixed-monotone decomposition of non-
linear functions, as well as affine parallel outer-approximation
of the observation functions, along with introducing auxiliary
states to cancel out the effect of the attacks/unknown inputs,
our proposed observer recursively computes interval estimates
that by construction, contain the true states and unknown
inputs of the system. Moreover, we provide several semi-definite
programs to synthesize observer gains to ensure input-to-state
stability of the proposed observer and optimality of the design
in the sense of minimum 7., gain.

I. INTRODUCTION

State estimation and unknown input reconstruction are
indispensable in various engineering applications such as air-
craft tracking, fault detection, attack detection and mitigation
in cyber-physical systems (CPS) and urban transportation
[1]-[3]. Particularly, set-membership approaches have been
proposed for bounded-error systems to provide hard accuracy
bounds, which is especially useful for obtaining robustness
guarantees for safety-critical systems. Moreover, since at-
tackers may be strategic in adversarial settings, the ability to
simultaneously estimate states and inputs without imposing
any assumptions on the unknown inputs/attack signals is
desirable and often crucial.

Literature review. Numerous studies in the literature have
investigated secure estimation, i.e., how to accurately esti-
mate the states of a system when it is under attack or subject
to adversarial signals. For instance, secure state estimation
and control problem was addressed in the presence of false
data injection attacks on both the actuators and sensors in
[4], in which a x? detector was proposed to detect malicious
attacks. The research in [5] proposed a sliding-mode ob-
server to simultaneously estimate system states and attacks,
while the work in [6] provided a projected sliding-mode
observer-based estimation approach to reconstruct system
states. Further, the work in [7] reconstructed attack signals
from the equivalent output injection signal using a sliding-
mode observer, while in [8], an attack was considered as
an auxiliary state and estimated by employing a robust
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switching Luenberger observer assuming sparsity. However,
all the aforementioned works considered stochastic/Gaussian
noise and hence do not apply to the bounded-error setting
we consider in this paper, where noise/disturbance signals
are assumed to be distribution-free and bounded.

A related body of literature that could be applied to
resilient state estimation in the bounded-error setting is that
of unknown input interval observers. Particularly, the works
in [9]-[11] considered the problem of designing unknown
input interval observers for continuous-time linear parameter
varying (LPV), uncertain linear time-invariant (LTI) and
discrete-time switched linear systems, respectively, where
the authors in [9] formulated the necessary Metzler property
as part of a semi-definite program. A similar problem was
considered for nonlinear continuous-time systems with linear
observations in [12]. However, these approaches are not
suitable for general discrete-time nonlinear systems and the
unknown input signal does not affect the output/measurement
equation (needed for representing false data injection attacks
on the sensors) in either of the works in [9]-[12].

On the other hand, while our previous works [13], [14]
do consider the design of state and unknown input interval
observers for nonlinear discrete-time systems with nonlinear
observations, no stabilizing gains were synthesized in [13],
[14]. We aim to address this shortcoming in this paper.

Contributions. By leveraging a combination of mixed-
monotone decomposition of nonlinear functions [15], [16]
and parallel affine outer-approximation of observation func-
tions [17], we synthesize a resilient interval observer, i.e.,
a discrete-time dynamical system that by construction, si-
multaneously returns interval-valued estimates of states and
unknown inputs (representing false data injection signals on
both the actuators and sensors) for a broad range of nonlinear
discrete-time systems with nonlinear observations. Our pro-
posed design is a significant improvement to our previous
input and state interval observer designs [13], [14], in which
no stabilizing gains were considered and so the stability
of the previous observer designs only hinged upon some
dynamical systems properties. Moreover, in contrast to many
unknown input (interval) observer designs in the literature,
our design considers arbitrary unknown input signals with
no assumptions of a priori known intervals, being stochastic
with zero mean (as is often assumed for noise) or bounded.
Further, we provide sufficient conditions for the input-to-
state-stability of the proposed observer, which at the same
time ensures the optimality of the design in the sense of
minimum H., gain by solving semi-definite programs.
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II. PRELIMINARIES

Notation. V denotes the logical disjunction (the OR truth-
functional operator). R™,R"*? D,,,N,N,,,R>o and Ry
denote the n-dimensional Euclidean space and the sets of
n by p matrices, n by n diagonal matrices, natural numbers
(including 0), natural numbers from 1 to n, non-negative
and positive real numbers, respectively, while M,, denotes
the set of all n by n Metzler matrices, i.e., square matrices
whose off-diagonal elements are non-negative. Euclidean
norm of a vector x € R™ is denoted by ||z||s= vz T x. For
M € R™*P, M;; denotes M’s entry in the ¢’th row and the
§’th column, M® £ max(M,0,,,), M® = M® — M and
|M| & M® + M®, where 0,, ,, is the zero matrix in R™*?,
while sgn(M) € R™*P is the element-wise sign of M with
sgn(M;;) = 1 if M;; > 0 and sgn(M;;) = —1, otherwise.
M = 0and M < 0 (or M > 0 and M =< 0) denote that M is
positive and negative (semi-)definite, respectively. Further, a
function f : S CR™ — R, where 0 € .S, is positive definite
if f(z) > 0 for all x € S\{0}, and f(0) = 0. Finally,
an interval Z £ [z,Z] C R™ is the set of all real vectors
z € R™= that satisfies z < z < Z (component-wise), where
[Z = zlloo £ max;e(i,... n.} |2 is the interval width of Z.

Next, we review some related results and definitions.

Proposition 1 (Jacobian Sign-Stable Decomposition [15,
Proposition 2]). If a mapping f : Z C R™* — RP has Ja-
cobian matrices satisfying J7 (x) € [lf,jf], Vz € Z, where
lf,jf € RP*"= gre known matrices, then the mapping f
can be decomposed into an additive remainder-form:

Vze Z, f(z) = Hz + p(z), (D
where the matrix H € RP*"= satisfies
. —f
V(i j) €Ny x Ny Hyy = J), VH;=Ti,, (2
and 1(-) and Hz are nonlinear and linear Jacobian sign-
stable (JSS) mappings, respectively, i.e., the signs of each

element of their Jacobian matrices do not change within their
domains (J};(-) >0 or JI(-) <0, v(2) € {u(z), Hz}).

Definition 1 (Mixed-Monotonicity and Decomposition Func-
tions). [18, Definition 1], [19, Definition 4] Consider the
discrete-time dynamical system xi11 = g(xg), with initial
state x9 € Xy = [z, To]C R™. Furthermore, g : X C
R™ — R"™ is the vector field, and X is the entire state space.
A function gq : X X X — R" is a discrete-time mixed-
monotone decomposition mapping for the vector field g if it
satisfies the following conditions: i) gq(x,x) = g(x), ii) gq
is monotone increasing in its first argument, i.e., T > x =
ga(&,2") > ga(x,2’), and iii) gq is monotone decreasing in
its second argument, i.e., & > x = gq(2’,2) < ga(2’, 2).

Proposition 2 (Tight and Tractable Decomposition Functions
for JSS Mappings). [15, Proposition 4 & Lemma 3] Suppose
w:Z CR™ — RP is a JSS mapping on its domain. Then,
for each p;, i € N, its tight decomposition function is:
Hai(z1,22) = pi(D'z1 + (I,, — D*)22), 3)
for any ordered zi,zo € Z, with a binary diagonal matrix

D' that is determined by the vertex of the interval [z, zs)
that minimizes the function p; (if z1 < 2z3) or the vertex of

the interval [z, 21| that maximizes p; (if zo < z1), i.e.,
D' = diag(max(sgn(J" ), 01..)).

Moreover; if the JSS mapping | is a remainder term of a
JSS decomposition of a function f as discussed in Propo-
sition 1, then for any interval domain z < z < Z, with
2,2,Z2€ Zand e 27 — 2, the following inequality holds:
SHE ua(z,2) — pa(z,2) < Fue, with Fj, & 2max(Jy —
H,0p,,.)—J;+H and H € RP*"= given in Proposition I.

Consequently, by applying Proposition 2 to the Jacobian
sign-stable decomposition obtained using Proposition 1, a
tight and tractable decomposition function can be obtained
(cf. details in [15]). Furthermore, in the case that the mapping
is not JSS, a tractable algorithm has been introduced in [20,
Algorithm 1] to compute tight remainder-form decomposi-
tion functions for a very broad class of nonlinear functions.

Definition 2 (Embedding System). [16, Definition 6] For
a discrete-time dynamical system xpy1 = g(xp) defined
over mapping g : X C R" — R”™ with a corresponding
decomposition function g4(-), its embedding system is a 2n-

. . P .. —_ T
dimensional system with initial condition [T, z(| defined

as [z, EJH]T = (9, (@, Tk) Ga @r, z4)]

Note that according to [20, Proposition 3], the embedding
system in Definition 2 with decomposition function g4 cor-
responding to the dynamics x1 = g(zx) has a state framer
property, i.e., its solution is guaranteed to frame the unknown
state trajectory xy, i.e., £, < x < Ty for all k € N.

Next, we will briefly restate our previous result in [17],
tailoring it specifically for intervals to help with computing
affine bounding functions for our functions.

Proposition 3. [17, Affine Outer-Approximation] Consider
the function g(.) : B C R™ — R™, where B is an interval
with T, x, Vs being its maximal, minimal and set of vertices,
respectively. Suppose Ap, Ag,€n,ep,05 is a solution of the
following linear program (LP):

min 6 4

0,A,Aee
st Azs+e+o < g(w,) <Az, +e—o,
(A—A)xs+€—e—20 <01, Vo, € Vg,

where 1,, € R™ is a vector of ones and o can be computed
via [17, Proposition 1] for different function classes. Then,
Agr +eg < g(x) < Apz +eg,Va € B.

Corollary 1. By taking the average of upper and lower affine
abstractions and adding/subtracting half of the maximum
distance, it is straightforward to “parallelize” the above
upper and lower abstractions as Agx + ¢ < g(z) <
Agx + € or equivalently g(z) = Agx + €, € [, ¢,
where A, & (1/2)(A+ A), ¢ £ (1/2)(e + e — 01,,) and
€= (1/2)(e+e+01,,). We call A, and € the parallel affine
outer-approximation slope and outer-approximation error of
Sfunction g on B, respectively.
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III. PROBLEM FORMULATION

System Assumptions. Consider the nonlinear discrete-time
system with unknown inputs and bounded noise
Tht1 = f(l‘k) + Wuwy, + Gdy, )
Y = h(zk) + Vo, + Hdy,
where at time k € N, 2z, € X C R?, d;, € R? and y;, € R
are the state vector, unknown input vector, and measurement
vector, respectively. The process and measurement noise
signals wy € R™ and vy, € R! are assumed to be bounded,
ie, wy €W 2 [w, W}, vp €V £ [v,7] with known lower
and upper bounds, w, w and v, v, respectively. We also
assume that lower and upper bounds for the initial state,
z, and Ty, are available, i.e., 5 < 29 < Zp. The functions
f:R* - R", h:R" — R and matrices W, V, G and H
are known and of appropriate dimensions, where G and H
encode the locations at which the unknown input (or attack)
signal can affect the system dynamics and measurements.
Note that no assumption is made on H to be either the zero
matrix (no direct feedthrough), or to have full column rank
when there is direct feedthrough (in contrast to [13]).
Unknown Input (or Attack) Signal Assumptions. The un-
known inputs dj (representing false data injection attack
signals) are not constrained to follow any model nor to
be a signal of any type (random or strategic), hence no
prior ‘useful” knowledge of the dynamics of dj, is available
(independent of {d;} Vk # ¢, {we} and {ve} V¢). We also
do not assume that d;. is bounded or has known bounds and
thus, dj, is suitable for representing adversarial attack signals.
Next, we briefly introduce a similar system transformation
as in [3], which will be used later in our observer structure.
System Transformation. Let py = tk(H). Similar to
[3], by applying singular Tvalue decomposition, we have
H = [U U] [6 8? gﬂ with By € RP*PH, By €
Rpx(p—pu) = g RPHXPH (3 diagonal matrix of full rank; so
we can define S £ =271, U; € R™*P#H and U, € RW*(U—pr),
Then, since D £ [Ey E,] is unitary:

di = Erdy i + Baday, dix = By di, dag = By di. (6)
Finally, by defining T} = U;", Ty £ U, , the output equation
can be decoupled, by which system (5) can be rewritten as:

Tyl = f(ack) + Wwy, + Gldl,k + G2d2,kv
216 = hi(zk) + Vivg + Edy i, @)
zok = ha(zg) + Vaug,

where h;(xy) = Tih(xy), Vi € {1,2} and K; £ T;K;,VK €
{V,G},Vi € {1,2}.

Moreover, we assume the following, which is satisfied for
a broad range of nonlinear functions [21]:

Assumption 1. Functions f, h have bounded Jacobians over
the state space X with known/computable Jacobian bounds.

Assumption 2. The JSS decomposition of ha(xy) via Propo-
sition 1 given by ho(xy) = Coxy +1pa(xk) is such that 1y is
JSS and further, CoGa has full column rank®. Consequently,
there exists My = (CoG2)t such that MyCoGo = 1.

“In the special case that G = 0, we would require G2 to be empty (and

this does happen when H has full rank), in which case C'2G2 being full
rank is satisfied by assumption.

Assumption 3. (Only needed when the observations are
nonlinear, i.e., if o(xy) # 0) The entire state space X C R"
is bounded. Moreover, A, is invertible, where Ay € R™*" is
the parallel affine outer-approximation slope (cf. Proposition
3 and Corollary 1) of the function g(z) = x + GoMatps ()
over the entire state space.

Further, we formally define the notions of framers, cor-
rectness and stability that are used throughout the paper.

Definition 3 (Interval Framers). Given the nonlinear plant
(5) (equivalently (7)), the sequences {Ty,z;}5>, C R™ and
{dy,d;.}32 C RP are called upper and lower framers for
the states and inputs of the system in (5), respectively, if
Vk € N,Vwy, € WV, € V, vy, <y <7, Vv € {x,d}.

In other words, starting from the initial interval xy < xg <
To, the true state of the system in (5), xi, and the unknown
input dj, are guaranteed to evolve within the interval flow-
pipe [z;,,%1] and bounded within the interval [dy,dy), for
all (k,wg,vp) € NxW xV, respectively. Finally, any
dynamical system (i.e., tractable algorithm) that returns
upper and lower framers for the states and unknown inputs
of system 5 is called a resilient interval framer for (5).

Definition 4 (Framer Error). Given state and input framers
{zp, < TR}, and {d), < d}32,, the sequences {e¥ =
T — 25,152, and {ed £ dj, — d,.}32, are called the state
and input framer errors, respectively. It easily follows from
Definition 3 that e}, > 0,Vk € N,Yv € {x, d}.

Definition 5 (Input-to-State Stability and Interval Observer).
An interval framer is input-to-state stable (ISS), if the framer
state error (cf. Definition 4) is bounded as follows:

VEeN, |leglls < B(llegllz, k) + allldlle.), )
where § = [(6*)" (8*)T]T 2 [(@ —w)" (@-2v)7]", B
and o are functions of classes” KL and Koo, respectively,
and ||8||e. = supgey |0k ll2 = ||6]|2 is the € signal norm.
An ISS resilient interval framer is called a resilient interval
observer.

Definition 6 (#.,-Optimal Resilient Interval Observer). A
resilient interval framer design is Hoo-optimal if the Ho
gain of the framer error system G, i.e., ||G||%.. is minimized,

where ||Gll3.. 2= sup{“f&““f,é # 0}, and |s|le, =

Voo lIskll3 is the £y signal norm for s € {e*,6}.

Using the above, we aim to address the following problem.

Problem 1. Given the nonlinear system in (5), as well
as Assumptions 1-3, synthesize an ISS and H..-optimal
resilient interval observer (cf. Definitions 3—0).

IV. RESILIENT INTERVAL OBSERVER DESIGN

In this section, we describe the proposed resilient interval
observer as well as analyze its correctness and ISS properties.

bA function o : R>o — Rsq is of class K if it is continuous, positive
definite, and strictly iﬁcreasingiand is of class Ko if it is also unbounded.
Moreover, A : R>o — R is of class KL if for each fixed ¢ > 0, A(-, t)
is of class /C and for each fixed s > 0, \(s,t) decreases to zero as t — oo.
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A. Interval Framer Design

Our strategy for designing resilient interval observers in
the presence of unknown inputs has three steps. First, we
obtain an equivalent representation of the system in (5)
by introducing some auxiliary state variables, such that
the equivalent system is not affected by the attack signal.
Then, inspired by our previous work on synthesizing interval
observers for nonlinear systems [15], [16] we will design
embedding systems (cf. Definition 2) for the equivalent
system representation, which returns state framers. Finally,
we obtain input framers (with a one-step delay since ds j
does not appear in the measurements z1  and 2z j in (7)) as
functions of the computed state framers.

First, note that from (7) and with S £ =1, dy, can be
computed as a function of the state at current time as follows:

dig = S(z16 — hi(xr) — Vivg). )

Next, we introduce an auxiliary state variable as:
& 2 —N (208 — Vavg — ¥a(2r)) = (I— NCo)zg, (10)
where the equality follows from (7) and Assumption 2.
Moreover, N € R"*(=P) is a to-be-designed gain to cancel

out the effect of the unknown input in the state equation.
This is done through the following lemma.

Lemma 1. Suppose Assumption 2 holds and let N =
GaoMy = Go(CyGo)T and S = Z71. Then, the value of
the auxiliary state &, at time step k+ 1 can be computed as:

Err1=(I—NCo)(f(xx)H+G1S (21 x—h1 (zr)-Vivi)+Wwy). (11)

Proof. By plugging d; j; from (9) into (7), we obtain
Tet1=f (k) +G1S(z1,k—h1(xr) = Vivg) AW wi+Gada k. (12)

This, together with the second equality in (10) and the above
choice of N such that (I-NC5)Gy =0, returns (11). ®

The evolution of the auxiliary state & in (11) is inde-
pendent of the unknown input and hence, we can compute
propagated framers for &, leveraging embedding systems (cf.
Proposition 2). However, we do not have a way of directly
retrieving the propagated framers for the original states, i.e.,
{2, 71} in terms of {{ k,Ek} from the second equality of
(10), since I —NCy = I —G5(CyG3)TCy can be shown to be
not invertible. To overcome this difficulty, given Assumption
3, we introduce a new auxiliary state:

Yk £ T — A(N(sz — va’l)k) - Ek), (13)
with A £ A_!, where Ay and €, € [e, € are parallel affine
outer-approximation slope and approximation error of the
mapping g(z) £ 2 + GoMatbs () on the entire space X (cf.
Proposition 3, Corollary 1 and Assumption 3).

Proposition 4. Given Assumption 3, the two auxiliary states
v, and &, are linearly related as:

Ve = A&

Proof. Computing parallel affine outer-approximation of the

mapping g(xx) = Agi + €, and applying (10), we obtain
g(xr) 2 2+ Nipo(z) = & + N (226 — Vaur)

=Agx, =&k + N(22 — Vaug) — €,

from which and given Assumption 3 (that A, is invertible,

(14)

€k € [57 E]v

with A = A;l), we have
xp = A& + N(2o — Vour) — €), € € [g,¢.  (15)
Plugging x; from (15) into (13) returns the results. [ |

We are now ready to propose an input and state resilient
interval framer, i.e., the following discrete-time dynamical
system (16)—(18), which by construction, outputs/returns
framers for the original states {xj}7°, and the unknown
input signal {dj }?2 ; of system (5). The details of the framer
construction/design will be provided in the proof of Theorem
1. The proposed resilient interval framer is as follows:

1k+1:(A_LCQ)@Zk_(A_LCQ)67k+pd(£k’ Ek)
+D®e—DYe+ LY g(xy,, T )—LP3 q (T, 24,)
+VOy — VET + WOw — WOw + 24, (16)

Vg1 =(A—LC2)%7,—(A—LC2)®y, +pa(Tk, 1)
+De=DPeA-Log a(T, 2y)~LPg (2, Th)
+VOT — VEy + WOW — WOw+2y,

2=, HAN 22, FAC e~ AVEH(ANV2) “v—(ANV2) 95, a7

Tr=7 AN 20 ;- HACEAP (AN V2) OT—(AN V) P,

dyp_ 1= 9%z, — BTy, + ka(zy_y, Th—1)+Az21 51
+APv — ADT + @%w — &%, (18)

dip—1= D¥T), — %z, + Ka(Th—1,2)_1) + Az21 k-1
+A%T — AJv + 05w — d%w,

where S £ =71, N = GoM, and A £ A;l. Furthermore,
L € R™*(=Pr) is an arbitrary matrix (observer gain) which
will be designed later in Theorem 2 to yield stability and
optimality of the proposed framers. Moreover, A € R"*"
and p : X C R" — R” are obtained by applying JSS
decompositions (cf. Proposition 1) on the mapping f(z) =
A(I—NCs)(f(x)—G1Shi(z)), while ¢ 4 and pg are tight
decomposition functions for the JSS mappings p and o,
respectively, computed through Proposition 1. Further,
V2 (A— LC2)ANVa + LVa 4+ A(I — NC2)G15Vi,

D2 B M>Ca, Ay 2 (DG — E1)SVi, A, £ (E1—9G1)S,
D2 (A — LCy)A,W 2 A(I — NC2)W,

22 AT — NC2)G1S21, + (L + (A — LC2)AN) 2.1,
and £ is the decomposition function of the mapping x(z) £
(PG — E1)Shy(z) — ®f(x), computed via [19, Theorem
1]. Finally, A, and €, € [e, €] are computed via Corollary 1.

The following theorem formalizes the state and input

framer/correctness property of the proposed resilient interval
observer (16)—(18) with respect to the original system (5).

19)

Theorem 1. Suppose Assumptions 1-3 hold. Then, the
sequences {x,,, T )2, and {d;,, Ti};>, obtained from the
system (16)—(18), construct framers for the states and un-
known input signal of (5), respectively, ie., v, < v, <
Uk, Vv € {x,d},Vk € N, Vw, € W, Vo, € V.

Proof. From (11) and (14), we obtain
V:ZA(I—NCQ)(f(.lil-)—‘y-GlS(ZLk—}h (xk)—Vlvk)+ka).
Adding the zero term L(zg j, — Coxy, — 2 (x) — Vauy) to the
right hand side of the above equation and applying mixed-
monotone decompositions on the mapping f(z) = A(I —
NC3)(f(x) — G1Shi(z)) to decompose it as f(z) = Az +
p(z) (cf. Proposition 1 for more details), yields:

Ve41=(A=LCo)wp+p(x)—Libo (21— Vor+ Wwi+Z2y, (20)
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where V 2 A(I—NC3)G1 SV + LVa, W £ A(I - NCy)W
and Z, & A(I — NC5)G1S21 1 + L22 i Then, by computing
z) in terms of 7, from (13) and plugging it back into the
linear terms in the right-hand side of (20), we obtain
Yet1 = (A= LC2)y + p(xr) — L2 (zk) @1
.  —Vwp +Wuw — Dex + 2,
with V., D, W and Zj given in (19). Next, by applying Propo-
sition 2 and [22, Lemma 1], we construct the embedding
system (16) for (21), which implies Y, Sk < Y Vk € N,
by construction. Further, the results in (17) follow from
applying [22, Lemma 1] on (13) to compute framers of zy
in terms of the framers of .

To obtain input framers, note that multiplying both sides of
(12) by M>C5 together with Assumption 2 yields da ;1 =
MQCQ(xk - f(iﬂk_l) + GlShl(a:k._l) + GlS(Vlvk_l —
21,k—1) — Wwg_1). This, along with (6) and (9), leads to

dik—1 = Pxptr(Tr—1)+Az21 -1+ AV 1—PWwi—1.  (22)
The input framers in (18) are obtained by leveraging [19,
Theorem 1] to compute a decomposition function for the
nonlinear function k, as well as applying [22, Lemma 1] to
bound the linear terms in the right-hand side of (22). |
B. ISS and H.-Optimal Interval Observer Synthesis

Next, we provide sufficient conditions to guarantee the
stability of the proposed framers, i.e., we seek to synthesize
the observer gain L to ensure input-to-state stability (ISS)
of the observer state error, e, £ 7 — z;, in the sense of
Definition 4, while ensuring that the design is optimal in the
sense of minimizing the H., gain (cf. Definition 5).

First, we derive the observer error dynamics as follows.
Lemma 2. Consider the nonlinear system (5) and suppose
all assumptions in Theorem 2 hold. Then, the state framer
error dynamics of the resilient interval observer (16)—(18)
and its nonlinear comparison system are as follows:
ef 1= |A— LColef + 85 + |L|6}* + [W]ov

+(|Va = LVp| — | A — LCo||ANV3| + [ANV3[)6"

+(A] + [Dy — LDy| — |A — L] [A])5¢ .
< (|A—=LCo| + F, + |L|Fy, e, + W™

+(|Va = LVb| = |A — LCo||[ANV,| + [ANV3|)6Y
(Al + |Da — LDy| — [A — LCh|[A])6°,

where 52 £ Ca(Tr, z) — Calzy, Tr), V¢ € {92, p}, 0° £
5 —s,Vs € {w,v,€}, and F¢,Y¢ € {12, p} are computed
through Proposition 2. Moreover,

V, £ AANVy + A(I — NC3)G1 SV,

Vi, £ (CoAN — 1)V, D, £ AN, Dy £ O3A.
Proof. Tt follows from (16) that the dynamics of e 25—
7, is given by enyq = |A—LCale) 46 + |L|6Y> HV 6" +
|W[6™ + |D|é¢. This, combined with e} = e + |A|d€ +
[ANV3|6Y (followed from (17)) results in the equality in (23),
which together with the facts that 52 < Feed V¢ € {p, b2}
(cf. Proposition 2), yields the inequality in (23). [ ]

Further, by leveraging slightly different approaches to
derive an upper linear comparison system for the nonlinear
error comparison system (23), we derive different sets of
sufficient conditions to guarantee the ISS property of the
proposed observer, as well as to ensure the optimality of the
design in the sense of minimum ., gain, as follows.

(24)

Theorem 2 (ISS & Ho-Optimal Resilient Interval Ob-
server Synthesis). Consider system (5) (equivalently the
transformed system (7)) and suppose Assumptions 1-3 hold.
Moreover, suppose there exist matrices R"*™ > P* »
Opn, T € RSP and n* € Rog such that —P* € M,
and the tuple (P*,T*,n*) solves the following problem:

min 7
{n.Pl'} . L .
P PA-TC PB-TD 0 25)
* P 0 1
s.t. . . 0l 0 =0, (P,T) € C,
* * * nl

where the matrices fl, B , C , D, as well as the corresponding
additional set of constraints C can be either of the following:

(i) C={(P,T) | P[A V, D,]-T[Cy V, Dy] >0}, if:
A:A+Fp, é:CQ_F¢27
B = [V, + (I - A)ANV;| W] D, + (I —A)A[],

D= [Vb — C3|ANV,| 0 Dy — Cg|A\] .
(i) C={(P,T) [T [Co Vi Do] >0}, if
A = |A‘ +FP3 é =-Cy 7F¢2a
B = [[Val+(I-|ADANVE| W] (I-|AD|AFD.] .
D = [ColANVA| = Vi 0 Gyl A — Dy].
(iii) C = {(P.T) | PA—~TCj > 0}, if
A=A+F, C=Co—Fy,, D=[-V2 0 0],
B = [|[A(I-NC3)G1SVi[+ANVa| [W| [A]] .
Then, the proposed resilient interval framer (16)—(18) with
the corresponding gain L = (P*)~'T'*, is a resilient ISS
input and state interval observer in the sense of Definition 5
and also is Ho-optimal (cf. Definition 6). Finally, in any of

the above cases, the LMI in (25) is feasible only if the linear
comparison system (A, B,C, D) is detectable.

Proof. We will show that in each of the cases (i)-(iii),
given the corresponding constraint set C, a linear comparison
system for the observer state error dynamics (23) can be
computed in the following form:

ey < (A—LC)ei + (B — LD)w, (26)
with @ 2 L(F“T swT 56T]T, where the detectability of

the pair (A4,C) is a necessary condition for stabilizing the
comparison system. If this can be shown, then using the
results in [23, Section 9.2.3], the solution (P*,I'*) to the
program in (25) returns the optimal observer gain L* =
(P*)~1T* for the linear comparison system (26), and hence,
for the original error dynamics (23) in the minimum H,
gain sense with an H., gain of n* (cf. Definition 6). This
implies that the above linear comparison system (26) satisfies
the following asymptotic gain (AG) property [24]:

lim sup [|ef;|2<a([[6]le.. ), Veg, YO<I<[(6*)" (6°)7 (69,
k—o0

where § is any realization of the augmented noise and outer-
approximation error interval width and « is any class K
function that is lower bounded by ©*9. On the other hand,
by setting 6 = 0, the LMIs in (25) reduce to their noiseless
counterparts in [15, Eq. (19)]. Hence, by [15, Theorem 2],
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the comparison system (26) is O-stable (0-GAS), which in
addition to the AG property above is equivalent to the ISS
property for (26) by [24, Theorem 1-e]. Thus, the designed
observer is also ISS. So, what remains to complete the proof
is to show that the comparison system (26) can indeed be
computed in each of the cases as follows.

Case (i). Consider the nonlinear comparison system in
(23). By satisfying the constraint set C, we enforce —P to
be Metzler, as well as PA—-I'C, PV, —T'V, and PV, — TV}
to be non-negative. Also, I' is non-negative by assumption.
Consequently, since P is positive definite, it becomes a non-
singular M-matrix, i.e., a square matrix whose negation is
Metzler and whose eigenvalues have non-negative real parts,
and hence is inverse-positive [25, Theorem 1], i.e., P l>0.
Therefore, L = P~'T' >0, A— LCy, = P~1{(PA-TC5) >
0,V,— LV, = PY(PV, —TV,) > 0 and D, — LD} =
P~Y(PD, —T'Dy) > 0, because they are matrix products
of non-negative matrices. So, |L| = L,|A — LCy| = A —
LC5, |V, = LV,| =V, = LV, and |D, — LDy| = D, — LDy,
which turns (23) into the form of (26).

Case (ii). By applying the triangle inequality, the compar-
ison system in (23) can get upper bounded again as
€i+1< (|A[+ |LCo| + Fp + |L|Fy, )ej; + [W]5"

+(|Val+H{LVe| — [LOo|[ANVaH(I — |AD[ANV2])6"
+((I = [ADIA] + [Dal + [LDs| — [LC2[|A[)6°.
By a similar argument as in Case (i), enforcing —P to be
Metzler along with the constraints set C results in |LCy| =
LCy,|LVyy| = LV, and |LDy| = LDy, and hence turns (27)
into the form of (26).

Case (iii). Note that by the triangle inequality, |V, —
LVy| = |(A— LC)ANV,y + LVo + A(I — NC2)G1SV1| <
(A — LCo)|IANVA| + |LI[Va| + |A(I — NCy)G1 Vi, and
|D, — LDy| = |(A— LC2)A| <|(A— LC%)||Al. These two
combined with (23) yield

€kt 1S (|A—LCo|+F p+ L Fy, )ei+H W[+ A6 (28)
+(|L||V2[HAN V2 [+HA(I — NC2)G15VA])d°.

The rest of the proof is to enforce that A — LC5 and L are

non-negative to turn (28) into the form of (26), which is

similar to the the proofs of the previous two cases. [ ]

27

V. ILLUSTRATIVE EXAMPLE

We now illustrate the effectiveness of our proposed re-
silient observer using a three-area power system [2, Figure
1], where each control area consists of a generator and load
buses with transmission lines between areas. The nonlinear
continuous-time model of the buses is slightly modified
based on [26], with the subscript ¢ being the bus number:

f}(t) = — o (8i(t) = (P, (8) + da (1)) + w2 (1),
fi(t) = =5 (0i(t) = Pag, (1) +w2i(t), @ € {2,3},
Gz(t) = fz(t) + wl,i(t), i€ {]., 2, 3},

with ¢;(t) £ Difi(t) + Yyes, Pu(t) + Pr,(t)). where 0;
is the phase angle, f; is the angular frequency, m; = 0.01,
D; = 0.11, Py, (t) is the mechanical power (the control
input), Pr,(t) is a known power demand, S; is the set of
neighboring buses of ¢, and the nonlinear tie line power flow
equation is as follows: P (t) = —F;(t) = tysin(0;(t) —
0,(t)), with t;; = 1. Only the actuator of Control Area 1 is
attacked and the false data injection signal is d; (¢).

On the other hand, the output equation is given as follows:
yi(t) = [el(t) fl(t)]T + Ui(t)7 S {173}7
y2(t) = 102(t) fo()] T + da(t) +v2(t),
where only the sensor y»(t) is injected with a false data
signal da(¢). Thus, the concatenated attack/unknown input
signal is d(t) = [dy(t) d2(t)] T and the G and H matrices in
o) correspondingr to the attack locations are gven by G =

000000 ndH—OOOOOO
010000 ® 1000100
In our simulations, the forward Euler method is used

to discretize the system dynamics with a sampling time
dt = 0.01s and both Py, (t) and Pr,(t) were set to be
identically zero. Moreover, for ¢ = 1,...,3, the process
noise w;(t) and the measurement noise v;(t) were assumed

to be bounded within the bounds |[~50 —50] ", [50 50] ']

and “—0.5 —O.5]T,[O.5 O.S]T , respectively.

For the sake of comparison, we first applied our previous
input and state observer [14] that does not have stabilizing
gains to the above example, which we found to not be able
to yield stable interval estimates (i.e., the framer interval
width diverges). On the other hand, when implementing the
proposed observer in (16)—(18), the optimization problem in
(25) was solved with the additional linear constraints in Case
(iii), and we obtained the following observer gain:

0.70 0 0.27 0 0

0 0 0.38 0 0

I — 0 0.83 73.19 0 0
~ [—0.0022 0.0084 174.55 0.0056 —0.0001
0 0 0.14 0.70  0.005

0.0050 0.0098 0.11  0.01 0.62

As shown in Figures 1 and 2, all the states and attack sig-
nals are bounded by the framers computed by the proposed
observer, demonstrating its correctness and ability to obtain
resilient state estimates and to reconstruct attack signals.
Finally, as shown in Figure 3, the actual state and input
estimation error sequences (i.e., the framer interval widths)
converge to steady-state values, demonstrating the input-to-
state stability of the proposed interval observer.

VI. CONCLUSION

In this paper, the problem of resilient state estimation
and attack reconstruction for nonlinear discrete-time systems
with nonlinear observations/constraints, that are subject to
bounded noise signals, was addressed. In the considered
setting, both sensors and actuators could be affected by at-
tack signals/unknown inputs. By introducing auxiliary states,
as well as taking advantage of mixed-monotone decom-
position of nonlinear functions and affine parallel outer-
approximation of the observation functions, the proposed ob-
server was shown to be correct, i.e., it recursively computes
interval estimates that by construction, contain the true states
and unknown inputs of the system. Further, several semi-
definite programs were provided to synthesize the proposed
observer gains that guarantee input-to-state stability of the
observer and optimality of the proposed interval observer
design. Future work will include alternative designs for
minimizing L, gain, similar to [27], as well as an extension
to continuous-time nonlinear systems and hybrid systems.
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