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Abstract— This paper addresses the problem of resilient

state estimation and attack reconstruction for bounded-

error nonlinear discrete-time systems with nonlinear obser-

vations/constraints, where both sensors and actuators can be

compromised by false data injection attack signals/unknown

inputs. By leveraging mixed-monotone decomposition of non-

linear functions, as well as affine parallel outer-approximation

of the observation functions, along with introducing auxiliary

states to cancel out the effect of the attacks/unknown inputs,

our proposed observer recursively computes interval estimates

that by construction, contain the true states and unknown

inputs of the system. Moreover, we provide several semi-definite

programs to synthesize observer gains to ensure input-to-state

stability of the proposed observer and optimality of the design

in the sense of minimum H1 gain.

I. INTRODUCTION

State estimation and unknown input reconstruction are
indispensable in various engineering applications such as air-
craft tracking, fault detection, attack detection and mitigation
in cyber-physical systems (CPS) and urban transportation
[1]–[3]. Particularly, set-membership approaches have been
proposed for bounded-error systems to provide hard accuracy
bounds, which is especially useful for obtaining robustness
guarantees for safety-critical systems. Moreover, since at-
tackers may be strategic in adversarial settings, the ability to
simultaneously estimate states and inputs without imposing
any assumptions on the unknown inputs/attack signals is
desirable and often crucial.

Literature review. Numerous studies in the literature have
investigated secure estimation, i.e., how to accurately esti-
mate the states of a system when it is under attack or subject
to adversarial signals. For instance, secure state estimation
and control problem was addressed in the presence of false
data injection attacks on both the actuators and sensors in
[4], in which a �2 detector was proposed to detect malicious
attacks. The research in [5] proposed a sliding-mode ob-
server to simultaneously estimate system states and attacks,
while the work in [6] provided a projected sliding-mode
observer-based estimation approach to reconstruct system
states. Further, the work in [7] reconstructed attack signals
from the equivalent output injection signal using a sliding-
mode observer, while in [8], an attack was considered as
an auxiliary state and estimated by employing a robust

M. Khajenejad is with the University of California, San Diego, CA,
USA. Z. Jin is with Arizona State University, Tempe, AZ, USA. T.N.
Dinh is with Conservatoire National des Arts et Métiers (CNAM),
CEDRIC-Laetitia, Paris, France. S.Z. Yong is with Northeastern University,
Boston, MA, USA. (e-mail: mkhajenejad@ucsd.edu, zjin43@asu.edu, ngoc-
thach.dinh@lecnam.net, s.yong@northeastern.edu).

This work is partially supported by NSF grant CNS-2313814.

switching Luenberger observer assuming sparsity. However,
all the aforementioned works considered stochastic/Gaussian
noise and hence do not apply to the bounded-error setting
we consider in this paper, where noise/disturbance signals
are assumed to be distribution-free and bounded.

A related body of literature that could be applied to
resilient state estimation in the bounded-error setting is that
of unknown input interval observers. Particularly, the works
in [9]–[11] considered the problem of designing unknown
input interval observers for continuous-time linear parameter
varying (LPV), uncertain linear time-invariant (LTI) and
discrete-time switched linear systems, respectively, where
the authors in [9] formulated the necessary Metzler property
as part of a semi-definite program. A similar problem was
considered for nonlinear continuous-time systems with linear
observations in [12]. However, these approaches are not
suitable for general discrete-time nonlinear systems and the
unknown input signal does not affect the output/measurement
equation (needed for representing false data injection attacks
on the sensors) in either of the works in [9]–[12].

On the other hand, while our previous works [13], [14]
do consider the design of state and unknown input interval
observers for nonlinear discrete-time systems with nonlinear
observations, no stabilizing gains were synthesized in [13],
[14]. We aim to address this shortcoming in this paper.

Contributions. By leveraging a combination of mixed-
monotone decomposition of nonlinear functions [15], [16]
and parallel affine outer-approximation of observation func-
tions [17], we synthesize a resilient interval observer, i.e.,
a discrete-time dynamical system that by construction, si-

multaneously returns interval-valued estimates of states and
unknown inputs (representing false data injection signals on
both the actuators and sensors) for a broad range of nonlinear
discrete-time systems with nonlinear observations. Our pro-
posed design is a significant improvement to our previous
input and state interval observer designs [13], [14], in which
no stabilizing gains were considered and so the stability
of the previous observer designs only hinged upon some
dynamical systems properties. Moreover, in contrast to many
unknown input (interval) observer designs in the literature,
our design considers arbitrary unknown input signals with
no assumptions of a priori known intervals, being stochastic
with zero mean (as is often assumed for noise) or bounded.
Further, we provide sufficient conditions for the input-to-
state-stability of the proposed observer, which at the same
time ensures the optimality of the design in the sense of
minimum H1 gain by solving semi-definite programs.
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II. PRELIMINARIES

Notation. _ denotes the logical disjunction (the OR truth-
functional operator). Rn

,Rn⇥p
,Dn,N,Nn,R�0 and R>0

denote the n-dimensional Euclidean space and the sets of
n by p matrices, n by n diagonal matrices, natural numbers
(including 0), natural numbers from 1 to n, non-negative
and positive real numbers, respectively, while Mn denotes
the set of all n by n Metzler matrices, i.e., square matrices
whose off-diagonal elements are non-negative. Euclidean
norm of a vector x 2 Rn is denoted by kxk2,

p

x>x. For
M 2 Rn⇥p, Mij denotes M ’s entry in the i’th row and the
j’th column, M� , max(M,0n,p), M = M

�
� M and

|M | , M
� +M

 , where 0n,p is the zero matrix in Rn⇥p,
while sgn(M) 2 Rn⇥p is the element-wise sign of M with
sgn(Mij) = 1 if Mij � 0 and sgn(Mij) = �1, otherwise.
M � 0 and M � 0 (or M ⌫ 0 and M � 0) denote that M is
positive and negative (semi-)definite, respectively. Further, a
function f : S ✓ Rn

! R, where 0 2 S, is positive definite
if f(x) > 0 for all x 2 S \{0}, and f(0) = 0. Finally,
an interval I , [z, z] ⇢ Rn is the set of all real vectors
z 2 Rnz that satisfies z  z  z (component-wise), where
kz � zk1 , maxi2{1,··· ,nz}

|zi| is the interval width of I.
Next, we review some related results and definitions.

Proposition 1 (Jacobian Sign-Stable Decomposition [15,
Proposition 2]). If a mapping f : Z ⇢ Rnz ! Rp

has Ja-

cobian matrices satisfying J
f (x) 2 [Jf

, J
f

], 8z 2 Z , where

J
f
, J

f

2 Rp⇥nz are known matrices, then the mapping f

can be decomposed into an additive remainder-form:

8z 2 Z, f(z) = Hz + µ(z), (1)
where the matrix H 2 Rp⇥nz satisfies

8(i, j) 2 Np ⇥ Nnz
, Hij = J

f

ij
_Hij = J

f

i,j
, (2)

and µ(·) and Hz are nonlinear and linear Jacobian sign-

stable (JSS) mappings, respectively, i.e., the signs of each

element of their Jacobian matrices do not change within their

domains (J
⌫

ij
(·) � 0 or J

⌫

ij
(·)  0, ⌫(z) 2 {µ(z), Hz}).

Definition 1 (Mixed-Monotonicity and Decomposition Func-
tions). [18, Definition 1], [19, Definition 4] Consider the

discrete-time dynamical system xk+1 = g(xk), with initial

state x0 2 X0 , [x0, x0]⇢ Rn
. Furthermore, g : X ⇢

Rn
! Rn

is the vector field, and X is the entire state space.

A function gd : X ⇥ X ! Rn
is a discrete-time mixed-

monotone decomposition mapping for the vector field g if it

satisfies the following conditions: i) gd(x, x) = g(x), ii) gd

is monotone increasing in its first argument, i.e., x̂ � x )

gd(x̂, x0) � gd(x, x0), and iii) gd is monotone decreasing in

its second argument, i.e., x̂ � x ) gd(x0, x̂)  gd(x0, x).

Proposition 2 (Tight and Tractable Decomposition Functions
for JSS Mappings). [15, Proposition 4 & Lemma 3] Suppose

µ : Z ⇢ Rnz ! Rp
is a JSS mapping on its domain. Then,

for each µi, i 2 Np, its tight decomposition function is:

µd,i(z1, z2) = µi(D
i
z1 + (In �D

i)z2), (3)
for any ordered z1, z2 2 Z , with a binary diagonal matrix

D
i

that is determined by the vertex of the interval [z1, z2]
that minimizes the function µi (if z1 < z2) or the vertex of

the interval [z2, z1] that maximizes µi (if z2  z1), i.e.,

D
i = diag(max(sgn(J

µ

i
),01,nz

)).

Moreover, if the JSS mapping µ is a remainder term of a

JSS decomposition of a function f as discussed in Propo-

sition 1, then for any interval domain z  z  z, with

z, z, z 2 Z and " , z � z, the following inequality holds:

�
µ

d
, µd(z, z)� µd(z, z)  Fµ", with Fµ , 2max(Jf �

H,0p,nz
)�J

f
+H and H 2 Rp⇥nz given in Proposition 1.

Consequently, by applying Proposition 2 to the Jacobian
sign-stable decomposition obtained using Proposition 1, a
tight and tractable decomposition function can be obtained
(cf. details in [15]). Furthermore, in the case that the mapping
is not JSS, a tractable algorithm has been introduced in [20,
Algorithm 1] to compute tight remainder-form decomposi-

tion functions for a very broad class of nonlinear functions.

Definition 2 (Embedding System). [16, Definition 6] For

a discrete-time dynamical system xk+1 = g(xk) defined

over mapping g : X ⇢ Rn
! Rn

with a corresponding

decomposition function gd(·), its embedding system is a 2n-

dimensional system with initial condition
⇥
x
>

0 x
>

0

⇤>
defined

as
⇥
x
>

k+1 x
>

k+1

⇤>
=

⇥
g
>

d
(x

k
, xk) g

>

d
(xk, xk

)
⇤>

.

Note that according to [20, Proposition 3], the embedding
system in Definition 2 with decomposition function gd cor-
responding to the dynamics xk+1 = g(xk) has a state framer

property, i.e., its solution is guaranteed to frame the unknown
state trajectory xk, i.e., x

k
 xk  xk for all k 2 N.

Next, we will briefly restate our previous result in [17],
tailoring it specifically for intervals to help with computing
affine bounding functions for our functions.

Proposition 3. [17, Affine Outer-Approximation] Consider

the function g(.) : B ⇢ Rn
! Rm

, where B is an interval

with x, x,VB being its maximal, minimal and set of vertices,

respectively. Suppose AB, AB
, eB, eB, ✓B is a solution of the

following linear program (LP):

min
✓,A,A,e,e

✓ (4)

s.t Axs + e+ �  g(xs)  Axs + e� �,

(A�A)xs + e� e� 2�  ✓1m, 8xs 2 VB,

where 1m 2 Rm
is a vector of ones and � can be computed

via [17, Proposition 1] for different function classes. Then,

A
B
x+ e

B
 g(x)  ABx+ eB, 8x 2 B.

Corollary 1. By taking the average of upper and lower affine

abstractions and adding/subtracting half of the maximum

distance, it is straightforward to “parallelize” the above

upper and lower abstractions as Agx + ✏  g(x) 

Agx + ✏, or equivalently g(x) = Agx + ✏, ✏ 2 [✏, ✏],
where Ag , (1/2)(A + A), ✏ , (1/2)(e + e � ✓1m) and

✏ , (1/2)(e+e+✓1m). We call Ag and ✏ the parallel affine

outer-approximation slope and outer-approximation error of

function g on B, respectively.
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III. PROBLEM FORMULATION

System Assumptions. Consider the nonlinear discrete-time
system with unknown inputs and bounded noise

xk+1 = f(xk) +Wwk +Gdk,

yk = h(xk) + V vk +Hdk,
(5)

where at time k 2 N, xk 2 X ⇢ Rn, dk 2 Rp and yk 2 Rl

are the state vector, unknown input vector, and measurement
vector, respectively. The process and measurement noise
signals wk 2 Rn and vk 2 Rl are assumed to be bounded,
i.e., wk 2 W , [w,w}, vk 2 V , [v, v] with known lower
and upper bounds, w, w and v, v, respectively. We also
assume that lower and upper bounds for the initial state,
x0 and x0, are available, i.e., x0  x0  x0. The functions
f : Rn

! Rn, h : Rn
! Rl and matrices W , V , G and H

are known and of appropriate dimensions, where G and H

encode the locations at which the unknown input (or attack)
signal can affect the system dynamics and measurements.
Note that no assumption is made on H to be either the zero
matrix (no direct feedthrough), or to have full column rank
when there is direct feedthrough (in contrast to [13]).
Unknown Input (or Attack) Signal Assumptions. The un-
known inputs dk (representing false data injection attack
signals) are not constrained to follow any model nor to
be a signal of any type (random or strategic), hence no
prior ‘useful’ knowledge of the dynamics of dk is available
(independent of {d`} 8k 6= `, {w`} and {v`} 8`). We also
do not assume that dk is bounded or has known bounds and
thus, dk is suitable for representing adversarial attack signals.

Next, we briefly introduce a similar system transformation
as in [3], which will be used later in our observer structure.
System Transformation. Let pH , rk(H). Similar to
[3], by applying singular value decomposition, we have

H =
⇥
U1 U2

⇤ ⌅ 0
0 0

� 
E
>

1

E
>

2

�
with E1 2 Rp⇥pH , E2 2

Rp⇥(p�pH), ⌅ 2 RpH⇥pH (a diagonal matrix of full rank; so
we can define S , ⌅�1), U1 2 Rl⇥pH and U2 2 Rl⇥(l�pH).
Then, since D ,

⇥
E1 E2

⇤
is unitary:

dk = E1d1,k + E2d2,k, d1,k = E
>

1 dk, d2,k = E
>

2 dk. (6)
Finally, by defining T1 , U

>

1 , T2 , U
>

2 , the output equation
can be decoupled, by which system (5) can be rewritten as:

xk+1 = f(xk) +Wwk +G1d1,k +G2d2,k,

z1,k = h1(xk) + V1vk + ⌅d1,k,
z2,k = h2(xk) + V2vk,

(7)

where hi(xk) = Tih(xk), 8i 2 {1, 2} and Ki , TiKi, 8K 2

{V,G}, 8i 2 {1, 2}.
Moreover, we assume the following, which is satisfied for

a broad range of nonlinear functions [21]:
Assumption 1. Functions f, h have bounded Jacobians over

the state space X with known/computable Jacobian bounds.

Assumption 2. The JSS decomposition of h2(xk) via Propo-

sition 1 given by h2(xk) = C2xk+ 2(xk) is such that  2 is

JSS and further, C2G2 has full column rank
a
. Consequently,

there exists M2 , (C2G2)† such that M2C2G2 = I .

aIn the special case that G = 0, we would require G2 to be empty (and
this does happen when H has full rank), in which case C2G2 being full
rank is satisfied by assumption.

Assumption 3. (Only needed when the observations are

nonlinear, i.e., if  2(xk) 6= 0) The entire state space X ⇢ Rn

is bounded. Moreover, Ag is invertible, where Ag 2 Rn⇥n
is

the parallel affine outer-approximation slope (cf. Proposition

3 and Corollary 1) of the function g(x) , x+G2M2 2(x)
over the entire state space.

Further, we formally define the notions of framers, cor-

rectness and stability that are used throughout the paper.

Definition 3 (Interval Framers). Given the nonlinear plant

(5) (equivalently (7)), the sequences {xk, xk
}
1

k=0 ⇢ Rn
and

{dk, dk}
1

k=0 ⇢ Rp
are called upper and lower framers for

the states and inputs of the system in (5), respectively, if

8k 2 N, 8wk 2 W, 8vk 2 V, ⌫
k
 ⌫k  ⌫k, 8⌫ 2 {x, d}.

In other words, starting from the initial interval x0  x0 

x0, the true state of the system in (5), xk, and the unknown

input dk are guaranteed to evolve within the interval flow-

pipe [x
k
, xk] and bounded within the interval [d

k
, dk], for

all (k, wk, vk) 2 N⇥W ⇥ V , respectively. Finally, any

dynamical system (i.e., tractable algorithm) that returns

upper and lower framers for the states and unknown inputs

of system 5 is called a resilient interval framer for (5).

Definition 4 (Framer Error). Given state and input framers

{x
k
 xk}

1

k=0 and {d
k
 dk}

1

k=1, the sequences {e
x

k
,

xk � x
k
}
1

k=0 and {e
d

k
, dk � d

k
}
1

k=1 are called the state

and input framer errors, respectively. It easily follows from

Definition 3 that e
⌫

k
� 0, 8k 2 N, 8⌫ 2 {x, d}.

Definition 5 (Input-to-State Stability and Interval Observer).
An interval framer is input-to-state stable (ISS), if the framer

state error (cf. Definition 4) is bounded as follows:

8k 2 N, ke
x

k
k2  �(kex0k2, k) + ↵(k�k`1), (8)

where � , [(�w)> (�v)>]> , [(w � w)> (v � v)>]>, �

and ↵ are functions of classes
b
KL and K1, respectively,

and k�k`1 , sup
k2N k�kk2 = k�k2 is the `1 signal norm.

An ISS resilient interval framer is called a resilient interval

observer.

Definition 6 (H1-Optimal Resilient Interval Observer). A

resilient interval framer design is H1-optimal if the H1

gain of the framer error system G̃, i.e., kG̃kH1 is minimized,

where kG̃kH1 , sup {
ke

x
k`2

k�k`2
, � 6= 0}, and ksk`2 ,pP

1

0 kskk
2
2 is the `2 signal norm for s 2 {e

x
, �}.

Using the above, we aim to address the following problem.

Problem 1. Given the nonlinear system in (5), as well

as Assumptions 1–3, synthesize an ISS and H1-optimal

resilient interval observer (cf. Definitions 3–6).

IV. RESILIENT INTERVAL OBSERVER DESIGN

In this section, we describe the proposed resilient interval
observer as well as analyze its correctness and ISS properties.

bA function ↵ : R�0 ! R�0 is of class K if it is continuous, positive
definite, and strictly increasing and is of class K1 if it is also unbounded.
Moreover, � : R�0 ! R�0 is of class KL if for each fixed t � 0, �(·, t)
is of class K and for each fixed s � 0, �(s, t) decreases to zero as t ! 1.
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A. Interval Framer Design

Our strategy for designing resilient interval observers in
the presence of unknown inputs has three steps. First, we
obtain an equivalent representation of the system in (5)
by introducing some auxiliary state variables, such that
the equivalent system is not affected by the attack signal.
Then, inspired by our previous work on synthesizing interval
observers for nonlinear systems [15], [16] we will design
embedding systems (cf. Definition 2) for the equivalent
system representation, which returns state framers. Finally,
we obtain input framers (with a one-step delay since d2,k

does not appear in the measurements z1,k and z2,k in (7)) as
functions of the computed state framers.

First, note that from (7) and with S , ⌅�1, d1,k can be
computed as a function of the state at current time as follows:

d1,k = S(z1,k � h1(xk)� V1vk). (9)
Next, we introduce an auxiliary state variable as:
⇠k ,xk�N(z2,k � V2vk �  2(xk)) = (I�NC2)xk, (10)

where the equality follows from (7) and Assumption 2.
Moreover, N 2 Rn⇥(l�p̃) is a to-be-designed gain to cancel
out the effect of the unknown input in the state equation.
This is done through the following lemma.
Lemma 1. Suppose Assumption 2 holds and let N =
G2M2 = G2(C2G2)† and S , ⌅�1

. Then, the value of

the auxiliary state ⇠k at time step k+1 can be computed as:

⇠k+1=(I�NC2)(f(xk)+G1S(z1,k�h1(xk)�V1vk)+Wwk). (11)

Proof. By plugging d1,k from (9) into (7), we obtain
xk+1=f(xk)+G1S(z1,k�h1(xk)�V1vk)+Wwk+G2d2,k. (12)

This, together with the second equality in (10) and the above
choice of N such that (I�NC2)G2 = 0, returns (11). ⌅

The evolution of the auxiliary state ⇠k in (11) is inde-
pendent of the unknown input and hence, we can compute
propagated framers for ⇠k leveraging embedding systems (cf.
Proposition 2). However, we do not have a way of directly
retrieving the propagated framers for the original states, i.e.,
{x

k
, xk} in terms of {⇠

k
, ⇠

k
} from the second equality of

(10), since I�NC2 = I�G2(C2G2)†C2 can be shown to be
not invertible. To overcome this difficulty, given Assumption
3, we introduce a new auxiliary state:

�k , xk � ⇤(N(z2,k � V2vk)� ✏k), (13)
with ⇤ , A

�1
g

, where Ag and ✏k 2 [✏, ✏] are parallel affine
outer-approximation slope and approximation error of the
mapping g(x) , x+G2M2 2(x) on the entire space X (cf.
Proposition 3, Corollary 1 and Assumption 3).
Proposition 4. Given Assumption 3, the two auxiliary states

�k and ⇠k are linearly related as:

�k = ⇤⇠k. (14)

Proof. Computing parallel affine outer-approximation of the
mapping g(xk) = Agxk + ✏k and applying (10), we obtain

g(xk) , xk +N 2(x) = ⇠k +N(z2,k � V2vk)

)Agxk = ⇠k +N(z2,k � V2vk)� ✏k, ✏k 2 [✏, ✏],

from which and given Assumption 3 (that Ag is invertible,

with ⇤ = A
�1
g

), we have
xk = ⇤(⇠k +N(z2,k � V2vk)� ✏k), ✏k 2 [✏, ✏]. (15)

Plugging xk from (15) into (13) returns the results. ⌅

We are now ready to propose an input and state resilient
interval framer, i.e., the following discrete-time dynamical
system (16)–(18), which by construction, outputs/returns
framers for the original states {xk}

1

k=0 and the unknown
input signal {dk}1k=1 of system (5). The details of the framer
construction/design will be provided in the proof of Theorem
1. The proposed resilient interval framer is as follows:
�
k+1

=(A�LC2)��
k
�(A�LC2) �k+⇢d(xk

, xk)

+D
 
✏�D

�
✏+L  2,d(xk

, xk)�L� 2,d(xk, xk
)

+V̂
 
v � V̂

�
v + Ŵ

 
w � Ŵ

 
w + ẑk,

�
k+1=(A�LC2)��k�(A�LC2) �

k
+⇢d(xk, xk

)
+D

 
✏�D

�
✏+L  2,d(xk, xk

)�L� 2,d(xk
, xk)

+V̂
 
v � V̂

�
v + Ŵ

�
w � Ŵ

 
w+ẑk,

(16)

xk=�k
+⇤Nz2,k+⇤

 ✏�⇤�✏+(⇤NV2)
 v�(⇤NV2)

�v,
xk=�k+⇤Nz2,k+⇤

 ✏�⇤�✏+(⇤NV2)
 v�(⇤NV2)

�v,
(17)

d
k�1= ��x

k
� � xk + d(xk�1, xk�1)+Azz1,k�1

+A
�

v
v �A

 

v
v + � w � ��w,

dk�1= ��xk � � x
k
+ d(xk�1, xk�1)+Azz1,k�1

+A
�

v
v �A

 

v
v + � w � ��w,

(18)

where S , ⌅�1, N = G2M2 and ⇤ , A
�1
g

. Furthermore,
L 2 Rn⇥(l�pH) is an arbitrary matrix (observer gain) which
will be designed later in Theorem 2 to yield stability and
optimality of the proposed framers. Moreover, A 2 Rn⇥n

and ⇢ : X ⇢ Rn
! Rn are obtained by applying JSS

decompositions (cf. Proposition 1) on the mapping f̃(x) ,
⇤(I�NC2)(f(x)�G1Sh1(x)), while  2,d and ⇢d are tight
decomposition functions for the JSS mappings ⇢ and  2,
respectively, computed through Proposition 1. Further,
V̂, (A� LC2)⇤NV2 + LV2 + ⇤(I �NC2)G1SV1,
�, E2M2C2, Av , (�G1 � E1)SV1, Az , (E1��G1)S,
D, (A� LC2)⇤, Ŵ , ⇤(I �NC2)W,
ẑk, ⇤(I �NC2)G1Sz1,k + (L+ (A� LC2)⇤N)z2,k,

(19)

and d is the decomposition function of the mapping (x) ,
(�G1 � E1)Sh1(x) � �f(x), computed via [19, Theorem
1]. Finally, Ag and ✏k 2 [✏, ✏] are computed via Corollary 1.

The following theorem formalizes the state and input
framer/correctness property of the proposed resilient interval
observer (16)–(18) with respect to the original system (5).

Theorem 1. Suppose Assumptions 1–3 hold. Then, the

sequences {x
k
, xk}

1

k=0 and {d
k
, xk}

1

k=1 obtained from the

system (16)–(18), construct framers for the states and un-

known input signal of (5), respectively, i.e., ⌫
k

 ⌫k 

⌫k, 8⌫ 2 {x, d}, 8k 2 N, 8wk 2 W, 8vk 2 V .

Proof. From (11) and (14), we obtain
�
+
k
=⇤(I�NC2)(f(xx)+G1S(z1,k�h1(xk)�V1vk)+Wwk).

Adding the zero term L(z2,k�C2xk� 2(xk)�V2vk) to the
right hand side of the above equation and applying mixed-
monotone decompositions on the mapping f̃(x) , ⇤(I �

NC2)(f(x)�G1Sh1(x)) to decompose it as f̃(x) = Ax+
⇢(x) (cf. Proposition 1 for more details), yields:
�k+1=(A�LC2)xk+⇢(xk)�L 2(xk)�Ṽ vk+W̃wk+z̃k, (20)
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where Ṽ , ⇤(I�NC2)G1SV1+LV2, W̃ , ⇤(I�NC2)W
and z̃k , ⇤(I�NC2)G1Sz1,k+Lz2,k. Then, by computing
xk in terms of �k from (13) and plugging it back into the
linear terms in the right-hand side of (20), we obtain

�k+1 = (A� LC2)�k + ⇢(xk)� L 2(xk)
�V̂ vk + Ŵwt �D✏k + ẑk,

(21)

with V̂ , D, Ŵ and ẑk given in (19). Next, by applying Propo-
sition 2 and [22, Lemma 1], we construct the embedding
system (16) for (21), which implies �

k
 �k  �

k
, 8k 2 N,

by construction. Further, the results in (17) follow from
applying [22, Lemma 1] on (13) to compute framers of xk

in terms of the framers of �k.
To obtain input framers, note that multiplying both sides of

(12) by M2C2 together with Assumption 2 yields d2,k�1 =
M2C2(xk � f(xk�1) + G1Sh1(xk�1) + G1S(V1vk�1 �

z1,k�1)�Wwk�1). This, along with (6) and (9), leads to
dk�1 = �xk+(xk�1)+Azz1,k�1+Avvk�1��Wwk�1. (22)

The input framers in (18) are obtained by leveraging [19,
Theorem 1] to compute a decomposition function for the
nonlinear function , as well as applying [22, Lemma 1] to
bound the linear terms in the right-hand side of (22). ⌅
B. ISS and H1-Optimal Interval Observer Synthesis

Next, we provide sufficient conditions to guarantee the
stability of the proposed framers, i.e., we seek to synthesize
the observer gain L to ensure input-to-state stability (ISS)
of the observer state error, e

x

k
, xk � x

k
in the sense of

Definition 4, while ensuring that the design is optimal in the
sense of minimizing the H1 gain (cf. Definition 5).

First, we derive the observer error dynamics as follows.
Lemma 2. Consider the nonlinear system (5) and suppose

all assumptions in Theorem 2 hold. Then, the state framer

error dynamics of the resilient interval observer (16)–(18)
and its nonlinear comparison system are as follows:

e
x

k+1= |A� LC2|e
x

k
+ �

⇢

k
+ |L|�

 2

k
+ |Ŵ |�

w

+(|Va � LVb|� |A� LC2||⇤NV2|+ |⇤NV2|)�v

+(|⇤|+ |Da � LDb|� |A� LC2||⇤|)�✏

 (|A� LC2|+ F ⇢ + |L|F 2)e
x

k
+ |Ŵ |�

w

+(|Va � LVb|� |A� LC2||⇤NV2|+ |⇤NV2|)�v

+(|⇤|+ |Da � LDb|� |A� LC2||⇤|)�✏,

(23)

where �
⇣

k
, ⇣d(xk, xk

) � ⇣d(xk
, xk), 8⇣ 2 { 2, ⇢}, �

s ,
s � s, 8s 2 {w, v, ✏}, and F ⇣ , 8⇣ 2 { 2, ⇢} are computed

through Proposition 2. Moreover,

Va , A⇤NV2 + ⇤(I �NC2)G1SV1,

Vb , (C2⇤N � I)V2, Da , A⇤, Db , C2⇤.
(24)

Proof. It follows from (16) that the dynamics of e�
k
, �

k
�

�
k

is given by e
�

k+1 = |A�LC2|e
�

k
+ �⇢

k
+ |L|�

 2

k
+|V̂ |�

v +

|Ŵ |�
w + |D|�

✏. This, combined with e
x

k
= e

�

k
+ |⇤|�✏ +

|⇤NV2|�
v (followed from (17)) results in the equality in (23),

which together with the facts that �⇣
k
 F ⇣e

x

k
, 8⇣ 2 {⇢, 2}

(cf. Proposition 2), yields the inequality in (23). ⌅
Further, by leveraging slightly different approaches to

derive an upper linear comparison system for the nonlinear

error comparison system (23), we derive different sets of
sufficient conditions to guarantee the ISS property of the
proposed observer, as well as to ensure the optimality of the
design in the sense of minimum H1 gain, as follows.

Theorem 2 (ISS & H1-Optimal Resilient Interval Ob-
server Synthesis). Consider system (5) (equivalently the

transformed system (7)) and suppose Assumptions 1–3 hold.

Moreover, suppose there exist matrices Rn⇥n
3 P

⇤
�

0n,n,�⇤ 2 Rn⇥(l�pH)
�0 and ⌘

⇤
2 R>0 such that �P

⇤
2 Mn

and the tuple (P ⇤,�⇤, ⌘⇤) solves the following problem:

min
{⌘,P,�}

⌘

s.t.

2
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P PÃ� �C̃ P B̃ � �D̃ 0
⇤ P 0 I

⇤ ⇤ ⌘I 0
⇤ ⇤ ⇤ ⌘I

3

775�0, (P,�) 2 C,

(25)

where the matrices Ã, B̃, C̃, D̃, as well as the corresponding

additional set of constraints C can be either of the following:

(i) C={(P,�) | P
⇥
A Va Da

⇤
��

⇥
C2 Vb Db

⇤
� 0}, if:

Ã = A+ F ⇢, C̃ = C2 � F 2 ,

B̃ =
⇥
Va + (I �A)|⇤NV2| |Ŵ | Da + (I �A)|⇤|

⇤
,

D̃ =
⇥
Vb � C2|⇤NV2| 0 Db � C2|⇤|

⇤
.

(ii) C = {(P,�) | �
⇥
C2 Vb Db

⇤
� 0}, if

Ã = |A|+ F ⇢, C̃ = �C2 � F 2 ,

B̃ =
⇥
|Va|+(I�|A|)|⇤NV2| |Ŵ | (I�|A|)|⇤|+|Da|

⇤
,

D̃ =
⇥
C2|⇤NV2|� Vb 0 C2|⇤|�Db

⇤
.

(iii) C = {(P,�) |PA� �C2 � 0}, if:

Ã = A+ F ⇢, C̃ = C2 � F 2 , D̃ =
⇥
�V2 0 0

⇤
,

B̃ =
⇥
|⇤(I�NC2)G1SV1|+|⇤NV2| |Ŵ | |⇤|

⇤
.

Then, the proposed resilient interval framer (16)–(18) with

the corresponding gain L = (P ⇤)�1�⇤, is a resilient ISS

input and state interval observer in the sense of Definition 5

and also is H1-optimal (cf. Definition 6). Finally, in any of

the above cases, the LMI in (25) is feasible only if the linear

comparison system (Ã, B̃, C̃, D̃) is detectable.

Proof. We will show that in each of the cases (i)–(iii),
given the corresponding constraint set C, a linear comparison
system for the observer state error dynamics (23) can be
computed in the following form:

e
x

k+1  (Ã� LC̃)ex
k
+ (B̃ � LD̃)w̃, (26)

with w̃ ,
⇥
�
v>

�
w>

�
✏>

⇤>, where the detectability of
the pair (Ã, C̃) is a necessary condition for stabilizing the
comparison system. If this can be shown, then using the
results in [23, Section 9.2.3], the solution (P ⇤,�⇤) to the
program in (25) returns the optimal observer gain L

⇤ =
(P ⇤)�1�⇤ for the linear comparison system (26), and hence,
for the original error dynamics (23) in the minimum H1

gain sense with an H1 gain of ⌘⇤ (cf. Definition 6). This
implies that the above linear comparison system (26) satisfies
the following asymptotic gain (AG) property [24]:
lim sup
k!1

ke
x

k
k2↵(k�̃k`1), 8ex0 , 80�̃[(�w)> (�v)> (�✏)>]>,

where �̃ is any realization of the augmented noise and outer-
approximation error interval width and ↵ is any class K1

function that is lower bounded by ⌘
⇤
�̃. On the other hand,

by setting � = 0, the LMIs in (25) reduce to their noiseless
counterparts in [15, Eq. (19)]. Hence, by [15, Theorem 2],
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the comparison system (26) is 0-stable (0-GAS), which in
addition to the AG property above is equivalent to the ISS
property for (26) by [24, Theorem 1-e]. Thus, the designed
observer is also ISS. So, what remains to complete the proof
is to show that the comparison system (26) can indeed be
computed in each of the cases as follows.

Case (i). Consider the nonlinear comparison system in
(23). By satisfying the constraint set C, we enforce �P to
be Metzler, as well as PÃ��C̃, PVa��Vb and PVa��Vb

to be non-negative. Also, � is non-negative by assumption.
Consequently, since P is positive definite, it becomes a non-
singular M-matrix, i.e., a square matrix whose negation is
Metzler and whose eigenvalues have non-negative real parts,
and hence is inverse-positive [25, Theorem 1], i.e., P�1

� 0.
Therefore, L = P

�1� � 0, A�LC2 = P
�1(PA��C2) �

0, Va � LVb = P
�1(PVa � �Vb) � 0 and Da � LDb =

P
�1(PDa � �Db) � 0, because they are matrix products

of non-negative matrices. So, |L| = L, |A � LC2| = A �

LC2, |Va�LVb| = Va�LVb and |Da�LDb| = Da�LDb,
which turns (23) into the form of (26).

Case (ii). By applying the triangle inequality, the compar-
ison system in (23) can get upper bounded again as
exk+1 (|A|+ |LC2|+ F ⇢ + |L|F 2)e

x
k + |Ŵ |�w

+(|Va|+|LVb|� |LC2||⇤NV2|+(I � |A|)|⇤NV2|)�
v

+((I � |A|)|⇤|+ |Da|+ |LDb|� |LC2||⇤|)�
✏.

(27)

By a similar argument as in Case (i), enforcing �P to be
Metzler along with the constraints set C results in |LC2| =
LC2, |LVb| = LVb and |LDb| = LDb, and hence turns (27)
into the form of (26).

Case (iii). Note that by the triangle inequality, |Va �

LVb| = |(A� LC2)⇤NV2 + LV2 + ⇤(I �NC2)G1SV1| 

|(A � LC2)||⇤NV2| + |L||V2| + |⇤(I �NC2)G1SV1|, and
|Da �LDb| = |(A�LC2)⇤|  |(A�LC2)||⇤|. These two
combined with (23) yield

exk+1 (|A�LC2|+F ⇢+|L|F 2)e
x
k+|Ŵ |�w+|⇤|�✏

+(|L||V2|+|⇤NV2|+|⇤(I �NC2)G1SV1|)�
v.

(28)

The rest of the proof is to enforce that A� LC2 and L are
non-negative to turn (28) into the form of (26), which is
similar to the the proofs of the previous two cases. ⌅

V. ILLUSTRATIVE EXAMPLE

We now illustrate the effectiveness of our proposed re-
silient observer using a three-area power system [2, Figure
1], where each control area consists of a generator and load
buses with transmission lines between areas. The nonlinear
continuous-time model of the buses is slightly modified
based on [26], with the subscript i being the bus number:

ḟ1(t) = �
1

m1
(�i(t)� (PM1(t) + d1(t))) + w2,1(t),

ḟi(t) = �
1
mi

(�i(t)� PMi
(t)) + w2,i(t), i 2 {2, 3},

✓̇i(t) = fi(t) + w1,i(t), i 2 {1, 2, 3},

with �i(t) , Difi(t) +
P

l2Si
Pil(t) + PLi

(t)), where ✓i

is the phase angle, fi is the angular frequency, mi = 0.01,
Di = 0.11, PMi

(t) is the mechanical power (the control
input), PLi

(t) is a known power demand, Si is the set of
neighboring buses of i, and the nonlinear tie line power flow
equation is as follows: Pil(t) = �Pli(t) = til sin(✓i(t) �
✓l(t)), with til = 1. Only the actuator of Control Area 1 is
attacked and the false data injection signal is d1(t).

On the other hand, the output equation is given as follows:
yi(t) = [✓i(t) fi(t)]

> + vi(t), i 2 {1, 3},

y2(t) = [✓2(t) f2(t)]
> + d2(t) + v2(t),

where only the sensor y2(t) is injected with a false data
signal d2(t). Thus, the concatenated attack/unknown input
signal is d(t) = [d1(t) d2(t)]> and the G and H matrices in
(5) corresponding to the attack locations are given by G =
0 0 0 0 0 0
0 1 0 0 0 0

�>
and H =


0 0 0 0 0 0
0 0 0 1 0 0

�>
.

In our simulations, the forward Euler method is used
to discretize the system dynamics with a sampling time
dt = 0.01s and both PMi

(t) and PLi
(t) were set to be

identically zero. Moreover, for i = 1, . . . , 3, the process
noise wi(t) and the measurement noise vi(t) were assumed
to be bounded within the bounds

h⇥
�50 �50

⇤>
,
⇥
50 50

⇤>i

and
h⇥
�0.5 �0.5

⇤>
,
⇥
0.5 0.5

⇤>i, respectively.
For the sake of comparison, we first applied our previous

input and state observer [14] that does not have stabilizing
gains to the above example, which we found to not be able
to yield stable interval estimates (i.e., the framer interval
width diverges). On the other hand, when implementing the
proposed observer in (16)–(18), the optimization problem in
(25) was solved with the additional linear constraints in Case
(iii), and we obtained the following observer gain:

L =

2

66664

0.70 0 0.27 0 0
0 0 0.38 0 0
0 0.83 73.19 0 0

�0.0022 0.0084 174.55 0.0056 �0.0001
0 0 0.14 0.70 0.005

0.0050 0.0098 0.11 0.01 0.62

3

77775
.

As shown in Figures 1 and 2, all the states and attack sig-
nals are bounded by the framers computed by the proposed
observer, demonstrating its correctness and ability to obtain
resilient state estimates and to reconstruct attack signals.
Finally, as shown in Figure 3, the actual state and input
estimation error sequences (i.e., the framer interval widths)
converge to steady-state values, demonstrating the input-to-
state stability of the proposed interval observer.

VI. CONCLUSION

In this paper, the problem of resilient state estimation
and attack reconstruction for nonlinear discrete-time systems
with nonlinear observations/constraints, that are subject to
bounded noise signals, was addressed. In the considered
setting, both sensors and actuators could be affected by at-
tack signals/unknown inputs. By introducing auxiliary states,
as well as taking advantage of mixed-monotone decom-
position of nonlinear functions and affine parallel outer-
approximation of the observation functions, the proposed ob-
server was shown to be correct, i.e., it recursively computes
interval estimates that by construction, contain the true states
and unknown inputs of the system. Further, several semi-
definite programs were provided to synthesize the proposed
observer gains that guarantee input-to-state stability of the
observer and optimality of the proposed interval observer
design. Future work will include alternative designs for
minimizing L1 gain, similar to [27], as well as an extension
to continuous-time nonlinear systems and hybrid systems.
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Fig. 1: States: ✓i, fi, and their upper and lower framers
✓i, ✓1, f i

, f
i
, returned by the proposed approach.

Fig. 2: Attack signals: d1, d2, and their upper and lower
framers d1, d1, d2, d2, returned by the proposed approach.
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