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Abstract: This paper proposes a novel set-membership active model discrimination (AMD)
algorithm for actively separating/discriminating among a set of piecewise affine inclusion
systems with bounded noise. Specifically, to overcome the difficulties of dealing the integer
variables in the lower/inner level of the associated bilevel optimization problem that stem
from the mapping of the piecewise inclusions and subregions, we propose an alternative
reformulation that moves the integer variables into the higher/outer level. This reformulation
allows us to leverage Karush-Kuhn-Tucker (KKT) conditions to obtain an equivalent single level
mixed-integer linear programming (MILP) problem. Moreover, in contrast to standard AMD
algorithms that strictly enforces model separation, we propose a slight modification/extension
that separates as many models as possible when a strict separation of all models is not possible.
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1. INTRODUCTION

Safety is or has to be a primary design concern when
integrating dynamical systems in everyday life. However,
most of these systems exhibit nonlinear system dynam-
ics, which often makes it difficult to accurately assess
system performance/safety or determine their operating
modes. Nonetheless, in most cases, the true system dy-
namics can be over-approximated by a piecewise affine
inclusion model. Hence, the ability to detect and/or en-
force separation between the state/output trajectory sets
of different such models would provide an effective tool
for model detection and identification, including for fault
detection/isolation and model validation.

Literature Review. Model discrimination methods can be
categorized into two classes based on the description of
uncertainties—probabilistic methods, e.g., Patton et al.
(2000); Kerestecioglu and Çetin (2004); Blackmore et al.
(2008) and set-based methods, e.g., Nikoukhah and Camp-
bell (2006); Scott et al. (2014). Set-based methods, which
this paper focuses on, can be further categorized into pas-
sive and active methods. Passive methods generally rely
on input and output measurements to falsify or validate
models by identifying differences between the expected
and actual outputs (Venkatasubramanian et al. (2003);
Lou and Si (2009); Harirchi et al. (2016)). However, the
presence of uncertainties and disturbances over extended
time horizons can have detrimental effects on the accuracy
and thus, the reliability of these passive methods.
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By contrast, active methods design an input to assist the
model discrimination, often in the context of isolating and
identifying fault models. Specifically, active model discrim-
ination (AMD) algorithms, e.g., Nikoukhah and Campbell
(2006); Cheong and Manchester (2015); Tabatabaeipour
(2015), seek to obtain the smallest input/excitation that
has a minimal effect on the desired behavior of the system
while strictly enforcing model separation. Further, ap-
proaches with assumption of zonotopic uncertainties was
proposed in Scott et al. (2014); Raimondo et al. (2013).
The authors in Raimondo et al. (2016); Marseglia and
Raimondo (2017) used set-valued observers for achieving
closed-loop AMD, while Niu et al. (2019) introduced a
partition-based AMD approach to enable the use of (side)
information that is revealed at run time.

The extension of the AMD framework to nonlinear sys-
tems is nontrivial. An AMD method for nonlinear models
is proposed in (Singh, Ding, Ozay, and Yong, 2018) by
constructing single region/non-switched affine inclusion
models (i.e., uncertain affine models) to approximate the
nonlinear models, which can often lead to poor model
over-approximations and thus, poor AMD performance.
On the other hand, the authors in Niu et al. (2022) con-
sidered the use of multi-region/switched affine abstraction
models (i.e., piecewise affine inclusion models) to over-
approximate the nonlinear dynamics, as well as considered
metric temporal logic switching specifications. However,
the proposed AMD algorithm in Niu et al. (2022) is
based on (multi-)parametric optimization that can be very
computationally expensive or cumbersome and may only
be applicable to certain (small) problems, even with the
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proaches with assumption of zonotopic uncertainties was
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Raimondo (2017) used set-valued observers for achieving
closed-loop AMD, while Niu et al. (2019) introduced a
partition-based AMD approach to enable the use of (side)
information that is revealed at run time.

The extension of the AMD framework to nonlinear sys-
tems is nontrivial. An AMD method for nonlinear models
is proposed in (Singh, Ding, Ozay, and Yong, 2018) by
constructing single region/non-switched affine inclusion
models (i.e., uncertain affine models) to approximate the
nonlinear models, which can often lead to poor model
over-approximations and thus, poor AMD performance.
On the other hand, the authors in Niu et al. (2022) con-
sidered the use of multi-region/switched affine abstraction
models (i.e., piecewise affine inclusion models) to over-
approximate the nonlinear dynamics, as well as considered
metric temporal logic switching specifications. However,
the proposed AMD algorithm in Niu et al. (2022) is
based on (multi-)parametric optimization that can be very
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over-approximations and thus, poor AMD performance.
On the other hand, the authors in Niu et al. (2022) con-
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approximate the nonlinear dynamics, as well as considered
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the proposed AMD algorithm in Niu et al. (2022) is
based on (multi-)parametric optimization that can be very
computationally expensive or cumbersome and may only
be applicable to certain (small) problems, even with the

proposed complexity reduction strategies of shortening the
time horizon and partitioning the input domain.

Contribution. In this paper, we consider a novel set-
membership framework for active model discrimination
(AMD) to tackle the above-mentioned difficulties for de-
signing a separating input for piecewise affine inclusion
models with bounded uncertainties. In particular, our ap-
proach is optimization-based and relies on an implicit set
representation, where model separation (more specifically,
separation of output sets) is enforced for worst-case real-
izations of set-valued uncertainties. The resulting bilevel
optimization problem is shown to involve integer variables
in the lower/inner level that cannot be solved by most
existing optimization solvers. Thus, we propose a (poten-
tially suboptimal) reformulation that moves the integer
variables from the lower/inner level to the higher/outer
level of the associated bilevel optimization problem. By
doing so, we can leverage Karush-Kuhn-Tucker (KKT)
conditions to recast the problem as an equivalent single-
level mixed-integer linear programming (MILP) problem
that is more tractable and solvable using off-the-shelf
solvers, e.g., Gurobi (2015).

Further, since piecewise affine inclusion models can be used
to over-approximate nonlinear dynamics up to a desired
precision, the proposed algorithms are also applicable for
discriminating among nonlinear models. In addition, we
propose a slight modification/extension to standard AMD
algorithms in order to separate as many models as possible
even when not all the models are strictly distinguishable
from each other. The proposed approach in this paper will
benefit various applications such as active fault diagnosis,
intent identification and terrain estimation.

2. PRELIMINARIES

2.1 Notations and Definitions

Let x ∈ Rn denote a vector and M ∈ Rn×m a matrix,
with transpose Mᵀ and M ≥ 0 denotes element-wise non-
negativity. The infinity vector norm of x is denoted by
‖x‖ ! maxi xi, while 0, 1 and I represent the matrix
of zeros, the vector of ones and the identity matrix of
appropriate dimensions. The diag and vec operators are
defined for a collection of matrices Mi, i = 1, . . . , n and
matrix M as follows:

diagni=1{Mi} =




M1

. . .

Mn



 , vecni=1{Mi} =




M1

...
Mn



 ,

diag
k={i,j}

{Mk} =
[
Mi 0
0 Mj

]
, vec

k={i,j}
{Mk} =

[
Mi

Mj

]
,

diagN{M} = IN ⊗M, vecN{M} = 1N ⊗M,

where ⊗ is the Kronecker product. The set of positive
integers up to n is denoted by Z+

n , and the set of integers
from m to n is denoted by Zm

n . Further, we adopt the
definition of Special Ordered Set of degree 1 (SOS-1)
constraints, e.g., in Gurobi (2015), which constrains that
only one element in a set of (continuous, integer or mixed-
integer) variables can be non-zero, i.e., given a set S =
{v1, . . . , vn}, if vi %= 0 for any i, then vj = 0, ∀j %= i.
Such constraints are readily enforced in many off-the-shelf
solvers, e.g., Gurobi (2015), and they often help to speed
up mixed-integer optimization.

2.2 Modeling Framework

Consider N discrete-time piecewise affine inclusion system
models {H!}N!=1, each with states x! ∈ Rn, measure-
ments/outputs z! ∈ Rp, inputs u ∈ Rm, process noise
w! ∈ Rmw , and measurement noise v! ∈ Rmv . The system
dynamics for each piece/subregion i ∈ Z+

q! of model H!

(with its domain partitioned into q! subregions) is given
by:
(
A!,ix!(k)+B

u
!,iu(k)

+Bw
!,iw!(k) + f

!,i

)
≤x!(k + 1)≤

(
A!,ix!(k)+B

u
!,iu(k)

+B
w
!,iw!(k) + f!,i

)
, (1)

z!(k) = C!x!(k) +Du
! u(k) +Dv

! v!(k) + g!. (2)

with known constant matrices and vectors of appropriate
dimensions, Φ!,i and Φ!,i for all Φ ∈ {A,Bu, Bw, f}, where
x!(k + 1) denotes the state at the next time instant, and
their corresponding polytopic subregions I!,i is given by
the following linear constraints:

Sx
!,ix!(k) + Su

!,iu(k) + Sw
!,iw!(k) + β!,i ≤ 0, (3)

with Sx
!,i, Su

!,i, Sw
!,i,β!,i of appropriate dimensions. Note

the above piecewise affine inclusion models could also
represent an over-approximation/abstraction of nonlinear
models that can be obtained via affine abstraction meth-
ods in (Singh, Shen, and Yong, 2018); Jin et al. (2020).

The states x! can be divided into controlled states x! ∈
Rnx and uncontrolled states y! ∈ Rny with ny = n − nx

accordingly. As a consequence, we have

x!(k) !
[
x!(k)" y!(k)"

]"
. (4)

The initial condition for modelH!, denoted by x0
! = x!(0),

is constrained to a polyhedral set with c0 inequalities:

x0
! ∈ X0 := {x ∈ Rn : P0x ≤ p0}, ∀" ∈ Z+

N . (5)

Moreover, the states x! and y! satisfy polyhedral state
constraints with cx and cy inequalities:

x!(k) ∈ Xx,! :={x ∈ Rnx : Px,!x ≤ px,!}, (6)
y!(k) ∈ Xy,! :={y ∈ Rny : Py,!y ≤ py,!}. (7)

On the other hand, the controlled inputs u must also
satisfy the following polyhedral constraints with cu in-
equalities:

u(k) ∈ U := {u ∈ Rmu : Quu ≤ qu}. (8)

The process and measurement noises, w! and v!, are also
polyhedrally constrained with cw and cy inequalities:

w!(k) ∈ W! := {w ∈ Rmw : Qw,!w ≤ qw,!}, (9)
v!(k) ∈ V! := {v ∈ Rmv : Qv,!v ≤ qv,!}. (10)

The readers are referred to [Remark 1, Ding et al. (2018)]
for a description of the well-posedness of the formulation.

2.3 Matrices Concatenation

Given time horizon T , we first introduce some useful time-
concatenated notations for system variables/signals. The
time-concatenated states and outputs are as follows:

x!,T = vecTk=0{x!(k)}, z!,T = vecTk=0{z!(k)},
while the time-concatenated inputs and noises are

uT=vecT−1
k=0{u(k)}, w!,T=vecT−1

k=0{w!(k)},
v!,T=vecT−1

k=0{v!(k)}.
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Using the above time-concatenated inputs, noise, states
and outputs, the corresponding time-concatenated state
and subregion inequalities in (1) and (3) as well as the
output equation in (2) can be written as:

M!,ix!,T + Γu
!,iuT + Γw

!,iw!,T + F!,i,T + α!,i ≤ 0, (11)

Ωx
!,ix!,T + Ωu

!,iuT + Ωw
!,iw!,T + β!,i,T + ζ!,i ≤ 0, (12)

z!,T = E!x!,T + Fu
! uT + F v

! v!,T +G!, (13)

for all $ ∈ Z+
N , i ∈ Z+

q! , where α!,i=vecT−1
k=0{vec2n{s!,i(k)}}

and ζ!,i = vecT−1
k=0{vec2p{s!,i(k)}}. s!,i(k) is the uncon-

strained continuous slack variable for each piece/subregion
i. Specifically, when s!,i(k) = 0, the subregion i is valid at
k time step, while when s!,i(k) is free/unconstrained, the
subregion i and corresponding inequalities in (11) and (12)
hold trivially. Thus, for each k ∈ Z0

T−1, a piecewise affine
inclusion model with the state in subregion i has to satisfy:

s!,i(k) = 0, s!,j(k) #= 0, ∀i, j ∈ Z+
q! , i #= j. (14)

We explicitly encode the above to enforce that only one
subregion/piece is valid at each time step, by introducing
a binary variable a!,i(k) that satisfies the following:

∀$ ∈ Z+
N , ∀k ∈ Z0

T , ∀i ∈ Z+
q! , : a!,i(k) ∈ {0, 1}, (15a)

∑q!
i=1 a!,i(k) = 1, SOS-1:{a!,i(k), s!,i(k)}. (15b)

All the matrices and vectors in (11)–(13) are defined
in the Appendix with suitable dimensions. Further, the
uncertain variables for each model $ are concatenated as
x̄! = vec{x!,T , w!,T }.
Then, given N discrete-time piecewise affine inclusion
models, there are I =

(N
2

)
model pairs and let the mode

ι ∈ {1, · · · , I} denote the pair of models (†, ‡). Then, we
define the pair-concatenated state, output and noises:

xι
T = vec

!={†,‡}
{x!,T }, zιT = vec

!={†,‡}
{z!,T },

wι
T = vec

!={†,‡}
{w!,T }, vιT = vec

!={†,‡}
{v!,T }.

The states, corresponding subregions and outputs over the
entire time horizon in (11), (12) and (13) for each pair ι
can be written as simple functions of the state xι

T , input
vectors uT , and noise wι

T , v
ι
T :

M ιxι
T + Γι

uuT + Γι
ww

ι
T + F ι

T ≤ 0, (16)
zιT =Eιxι

T + F ι
uuT + F ι

vv
ι
T +Gι, (17)

where the matrices and vectors M ι, Γι
u, Γ

ι
w, F

ι
T , E

ι, F ι
u,

F ι
v and Gι are defined in the Appendix. Moreover, the

uncertain variables for each pair ι are concatenated as
x̄ι = vec{xι

T , wι
T , vιT }.

We then concatenate the polyhedral state constraints in
(6) and (7) in terms of time and pair. For x̂ ∈ {x, y}, let

P̄x̂,! = diagT {Px̂,!}, p̄x̂,! = vecT {px̂,!},
P̄ ι
x̂ = [diag!={†,‡}{P̄x̂,!} 0], p̄ιx̂ = vec!={†,‡}{p̄x̂,!}.

Then, we can rewrite the polyhedral constraints as:

P̄ ι
x̂x̄

ι ≤ p̄ιx̂.

Further, the initial state constraint in (5) can be written
as P̄ ι

0 x̄
ι ≤ p̄ι0 with

P̄ ι
0 = diag2{[P0 0]}, p̄ι0 = vec2{p0}.

Similarly, let

Q̄u = diagT {Qu}, Q̄ι
† = diag!={†,‡} diagT {Q†,!},

q̄u = vecT {qu}, q̄ι† = vec!={†,‡} vecT {q†,!}, † ∈ {w, v}.

Then, the input constraints in (8) and (9) for all k are:
Q̄uuT ≤ q̄u and Q̄ι

††
ι
T ≤ q̄ι†. Hence, in terms of x̄ι, we have

a polyhedral constraint of the form Hι
x̄x̄

ι ≤ hι
x̄, with

Hι
x̄ =




P̄ ι
0 0 0
0 P̄ ι

y 0
0 0 diag{Q̄ι

w, Q̄
ι
v}



,

hι
x̄= vec{p̄ι0, p̄ιy, q̄ιw, q̄ιv}.

Note that the above definitions of matrices and vectors
for the piecewise affine inclusion model in (1) are different
from the ones in Ding et al. (2018); (Singh, Ding, Ozay,
and Yong, 2018) that were defined for affine (inclusion)
models (i.e., a special case of our considered model in (1)
with only one piece/subregion).

3. PROBLEM FORMULATION

The goal of this paper is to design an AMD algorithm
for piecewise affine inclusions, i.e., we look to find an
admissible input for the models such that this input causes
the reachable output set of any pair of models to have no
intersection for at least one time instant over the entire
time horizon T , considering all possible realizations of set-
valued uncertainties.

Problem 0 (Active Model Discrimination for {H!}N!=1).
Given N piecewise affine inclusion models {H!}N!=1, and
state, input and noise constraints, i.e., (5)–(10), find
an optimal input sequence u∗

T to minimize a given cost
function J(uT ) such that for all possible initial states x0

! ,
process noise w!,T and measurement noise v!,T , only one
model is valid, i.e., the output trajectories of any pair of
models have to differ by a threshold ε in at least one time
step. The optimization problem can be formally stated as:

u∗
T = argmin

uT

J(uT )

s.t. ∀k ∈ Z0
T−1 : (8) holds, (18a)

∀ x0
! , w!,T ,α!,i, ζ!,i, a!,i(k) :

(5), (7), (9), (11), (12), (15) hold.

}
: (6) holds, (18b)

∀ x0
! , w

ι
T , vιT ,α!, ζ!, a!,i(k) :

(5), (7), (9), (10), (15)–(17) hold.

}
:
{∃k′ ∈ Z0

T−1 :
‖z†(k′)−z‡(k′)‖≥ε},

(18c)

where J(·) is a convex objective function of the inputs uT .

Note that the above problem is similar to the one con-
sidered in Niu et al. (2022). The key difficulty of solving
this problem is the presence of the constraint (15) and
the corresponding integer variables a!,i(k) on the left-
hand side of (18b) and (18c) that leads to binary vari-
ables/constraints in the lower/inner level of any resulting
bilevel optimization problem formulations. In Niu et al.
(2022), this problem is directly solved but requires the use
of (multi-)parametric optimization subroutines for mixed-
integer linear problems, which can be computationally
expensive and is often restricted to very small problems.
Thus, Niu et al. (2022) also proposed strategies for re-
ducing the computational time. Even so, the problem is
often still computational expensive and limited to smaller
problems. In this paper, we propose to solve an alternative
reformulation, given in the problem below, that does not
require (multi-)parametric programming; thus, it is faster
and more tractable, but with a slight loss of optimality.

Moreover, we also propose a slight modification/extension
of standard AMD problems (that strictly enforces separa-
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Using the above time-concatenated inputs, noise, states
and outputs, the corresponding time-concatenated state
and subregion inequalities in (1) and (3) as well as the
output equation in (2) can be written as:

M!,ix!,T + Γu
!,iuT + Γw

!,iw!,T + F!,i,T + α!,i ≤ 0, (11)

Ωx
!,ix!,T + Ωu

!,iuT + Ωw
!,iw!,T + β!,i,T + ζ!,i ≤ 0, (12)

z!,T = E!x!,T + Fu
! uT + F v

! v!,T +G!, (13)

for all $ ∈ Z+
N , i ∈ Z+

q! , where α!,i=vecT−1
k=0{vec2n{s!,i(k)}}

and ζ!,i = vecT−1
k=0{vec2p{s!,i(k)}}. s!,i(k) is the uncon-

strained continuous slack variable for each piece/subregion
i. Specifically, when s!,i(k) = 0, the subregion i is valid at
k time step, while when s!,i(k) is free/unconstrained, the
subregion i and corresponding inequalities in (11) and (12)
hold trivially. Thus, for each k ∈ Z0

T−1, a piecewise affine
inclusion model with the state in subregion i has to satisfy:

s!,i(k) = 0, s!,j(k) #= 0, ∀i, j ∈ Z+
q! , i #= j. (14)

We explicitly encode the above to enforce that only one
subregion/piece is valid at each time step, by introducing
a binary variable a!,i(k) that satisfies the following:

∀$ ∈ Z+
N , ∀k ∈ Z0

T , ∀i ∈ Z+
q! , : a!,i(k) ∈ {0, 1}, (15a)

∑q!
i=1 a!,i(k) = 1, SOS-1:{a!,i(k), s!,i(k)}. (15b)

All the matrices and vectors in (11)–(13) are defined
in the Appendix with suitable dimensions. Further, the
uncertain variables for each model $ are concatenated as
x̄! = vec{x!,T , w!,T }.
Then, given N discrete-time piecewise affine inclusion
models, there are I =

(N
2

)
model pairs and let the mode

ι ∈ {1, · · · , I} denote the pair of models (†, ‡). Then, we
define the pair-concatenated state, output and noises:

xι
T = vec

!={†,‡}
{x!,T }, zιT = vec

!={†,‡}
{z!,T },

wι
T = vec

!={†,‡}
{w!,T }, vιT = vec

!={†,‡}
{v!,T }.

The states, corresponding subregions and outputs over the
entire time horizon in (11), (12) and (13) for each pair ι
can be written as simple functions of the state xι

T , input
vectors uT , and noise wι

T , v
ι
T :

M ιxι
T + Γι

uuT + Γι
ww

ι
T + F ι

T ≤ 0, (16)
zιT =Eιxι

T + F ι
uuT + F ι

vv
ι
T +Gι, (17)

where the matrices and vectors M ι, Γι
u, Γ

ι
w, F

ι
T , E

ι, F ι
u,

F ι
v and Gι are defined in the Appendix. Moreover, the

uncertain variables for each pair ι are concatenated as
x̄ι = vec{xι

T , wι
T , vιT }.

We then concatenate the polyhedral state constraints in
(6) and (7) in terms of time and pair. For x̂ ∈ {x, y}, let

P̄x̂,! = diagT {Px̂,!}, p̄x̂,! = vecT {px̂,!},
P̄ ι
x̂ = [diag!={†,‡}{P̄x̂,!} 0], p̄ιx̂ = vec!={†,‡}{p̄x̂,!}.

Then, we can rewrite the polyhedral constraints as:

P̄ ι
x̂x̄

ι ≤ p̄ιx̂.

Further, the initial state constraint in (5) can be written
as P̄ ι

0 x̄
ι ≤ p̄ι0 with

P̄ ι
0 = diag2{[P0 0]}, p̄ι0 = vec2{p0}.

Similarly, let

Q̄u = diagT {Qu}, Q̄ι
† = diag!={†,‡} diagT {Q†,!},

q̄u = vecT {qu}, q̄ι† = vec!={†,‡} vecT {q†,!}, † ∈ {w, v}.

Then, the input constraints in (8) and (9) for all k are:
Q̄uuT ≤ q̄u and Q̄ι

††
ι
T ≤ q̄ι†. Hence, in terms of x̄ι, we have

a polyhedral constraint of the form Hι
x̄x̄

ι ≤ hι
x̄, with

Hι
x̄ =




P̄ ι
0 0 0
0 P̄ ι

y 0
0 0 diag{Q̄ι

w, Q̄
ι
v}



,

hι
x̄= vec{p̄ι0, p̄ιy, q̄ιw, q̄ιv}.

Note that the above definitions of matrices and vectors
for the piecewise affine inclusion model in (1) are different
from the ones in Ding et al. (2018); (Singh, Ding, Ozay,
and Yong, 2018) that were defined for affine (inclusion)
models (i.e., a special case of our considered model in (1)
with only one piece/subregion).

3. PROBLEM FORMULATION

The goal of this paper is to design an AMD algorithm
for piecewise affine inclusions, i.e., we look to find an
admissible input for the models such that this input causes
the reachable output set of any pair of models to have no
intersection for at least one time instant over the entire
time horizon T , considering all possible realizations of set-
valued uncertainties.

Problem 0 (Active Model Discrimination for {H!}N!=1).
Given N piecewise affine inclusion models {H!}N!=1, and
state, input and noise constraints, i.e., (5)–(10), find
an optimal input sequence u∗

T to minimize a given cost
function J(uT ) such that for all possible initial states x0

! ,
process noise w!,T and measurement noise v!,T , only one
model is valid, i.e., the output trajectories of any pair of
models have to differ by a threshold ε in at least one time
step. The optimization problem can be formally stated as:

u∗
T = argmin

uT

J(uT )

s.t. ∀k ∈ Z0
T−1 : (8) holds, (18a)

∀ x0
! , w!,T ,α!,i, ζ!,i, a!,i(k) :

(5), (7), (9), (11), (12), (15) hold.

}
: (6) holds, (18b)

∀ x0
! , w

ι
T , vιT ,α!, ζ!, a!,i(k) :

(5), (7), (9), (10), (15)–(17) hold.

}
:
{∃k′ ∈ Z0

T−1 :
‖z†(k′)−z‡(k′)‖≥ε},

(18c)

where J(·) is a convex objective function of the inputs uT .

Note that the above problem is similar to the one con-
sidered in Niu et al. (2022). The key difficulty of solving
this problem is the presence of the constraint (15) and
the corresponding integer variables a!,i(k) on the left-
hand side of (18b) and (18c) that leads to binary vari-
ables/constraints in the lower/inner level of any resulting
bilevel optimization problem formulations. In Niu et al.
(2022), this problem is directly solved but requires the use
of (multi-)parametric optimization subroutines for mixed-
integer linear problems, which can be computationally
expensive and is often restricted to very small problems.
Thus, Niu et al. (2022) also proposed strategies for re-
ducing the computational time. Even so, the problem is
often still computational expensive and limited to smaller
problems. In this paper, we propose to solve an alternative
reformulation, given in the problem below, that does not
require (multi-)parametric programming; thus, it is faster
and more tractable, but with a slight loss of optimality.

Moreover, we also propose a slight modification/extension
of standard AMD problems (that strictly enforces separa-

tion of all model pairs) to separate as many model pairs
as possible, which can be useful in certain settings where
not all model pairs are distinguishable. To achieve this,
the problem below introduces a binary variable bι for each
model pair indexed by ι ∈ Z+

I to indicate the successful
discrimination for each pair and penalize the objective
function to separate as many pairs of models as possible,
i.e., bι = 1 implies the successful discrimination of the ι-th
model pair (†, ‡) with at least ε, which is equivalent to

∀ι ∈ Z+
I , ∃k ∈ Z0

T : ‖z†(k)− z‡(k)‖ ≥ ε− s̄ι, (19a)
SOS-1 : {bι, s̄ι}, bι ∈ {0, 1}, (19b)

where s̄ι ∈ R is an unconstrained/free continuous slack
variable. bι = 1 enforces that s̄ι = 0, and consequently,
(19a) holds with s̄ι = 0 (i.e., the output sets differ by
a ‘distance’ of at least ε). Otherwise, if bι = 1, s̄ι is
unconstrained and (19a) trivially holds.

The reformulated AMD problem is then as shown in
Problem 1. Note that the reformulation is such that its
optimal solution is a feasible (but potentially suboptimal)
solution to Problem 0.

Problem 1 (Active Model Discrimination for {H"}N"=1).
Given N well-posed piecewise affine inclusion models
{H"}N"=1, and state, input and noise constraints, i.e., (5)–
(10), such that for all possible initial states x0

" , process
noise w",T and measurement noise v",T , the models are
separated as much as possible, i.e., the output trajectories
of as many model pairs as possible have to differ by a
threshold ε in at least one time instance. The optimization
problem can be formally written as:

u∗
T = argmin

uT ,bι
J(uT )− λ

∑I
ι=1 b

ι

s.t. ∀k ∈ Z0
T−1 : (8) holds, (20a)

∀k ∈ Z0
T , ∀$ ∈ Z+

N , ∀i ∈ Z+
q" : (15) holds, (20b)

∀ x0
! , w

ι
T , vιT ,α!, ζ! :

(5), (7), (9), (11) hold.

}
: (6), (12) hold, (20c)

∀x0
! , w

ι
T , vιT ,α!, ζ! :

(5), (7), (9), (10), (16), (17) hold.

}
: (19) holds, (20d)

where λ is a constant tuning parameter 1 for penalizing the
binary variables bι.

In contrast to Problem 0, the key change in our alternative
reformulation in Problem 1 is to move the ‘problematic’
constraint (12), (15) and the corresponding integer vari-
ables a",i(k) to the right hand side of (20b) and (20c). In
doing so, we allow the designer of the separating input (in
the upper/outer level) to take on the ‘responsibility’ for
selecting the subregions (via (15) that enforces (14)) and
for enforcing that the selected subregions (via (12)) must
be satisfied. Thus, (20b) and (20c) both guarantee that
the system dynamics remains in the selected subregion and
the controlled state constraints are satisfied, in spite of all
possible realizations of uncertainties over the entire time
horizon for each model. However, by requiring that the
designer of the separating input to satisfy this additional
‘responsibility,’ the solution to Problem 1 is only sufficient
(and potentially suboptimal) for solving Problem 0.

Remark 1. Since the piecewise affine inclusion mod-
els described by (1)–(3) can also represent an over-
approximation/abstraction of nonlinear models (algorithms
1 For instance, a large λ (e.g., λ = 100) will incentivize separation
of as many model pairs as possible over minimizing control effort.

for automating the abstraction process can be found in
(Singh, Shen, and Yong, 2018); Jin et al. (2020)), the
AMD algorithm we propose for solving Problem 1 can also
be applied to solve the active discrimination problem for
nonlinear models.

4. MAIN RESULT

In this section, we first formulate Problem 1 as a bilevel
optimization problem, which then is recast as an equiv-
alent single-level MILP by applying KKT conditions to
the lower/inner problem (where there are no longer any
integer variables). The bilevel formulation is as follows:

Lemma 1 (Bilevel Optimization Formulation). Given
a separability index ε, the active model discrimination
problem in Problem 1 is equivalent to a bilevel optimization
problem with the following outer problem:

u∗
T = argmin

uT ,bι
J(uT )− λ

∑I
ι=1 b

ι (POuter)

s.t. ∀k ∈ Z0
T−1 : (8) holds, (21a)

∀k ∈ Z0
T , ∀$ ∈ Z+

N , ∀i ∈ Z+
q" : (15) holds, (21b)

∀ x0
! , w

ι
T , vιT ,α!, ζ! :

(5), (7), (9), (11) hold

}
: (6), (12) hold, (21c)

∀ι ∈ Z+
I :

δι∗(uT ) ≥ ε− s̄ι,
(19b) holds, (21d)

where δι∗ is the solution of the inner problem:
δι∗(uT ) = min

δι,xι
T ,wι

T ,vι
T

δι (PInner)

s.t. ∀ι ∈ Z+
I , k ∈ Z0

T : (16), (17) hold, (22a)

∀ι ∈ Z+
I , k ∈ Z0

T : ‖z†(k)− z‡(k)‖ ≤ δι, (22b)

∀ x0
" , w

ι
T , v

ι
T : (5), (7), (9), (10) hold, (22c)

with the ι-th model pair being (†, ‡) where †, ‡ ∈ Z+
N , ‡ (= †.

Proof. The proof follows a similar procedure as in Ding
et al. (2018).

This bilevel problem can then be recast into a single-level
MILP that can be readily solved using off-the-shelf solvers,
given as follows:

Theorem 1 (Active Model Discrimination for {H"}N"=1).
Given a separability index ε, the bilevel optimization prob-
lem in Lemma 1 is equivalent to the following mixed-
integer optimization problem:

u∗
T = argmin

uT ,x̃",ν"
1,ν

"
2,a",i(k),s",i(k),

x̄ι,µι
1,µ

ι
2,µ

ι
3,b

ι,s̄ι,δι

J(uT )− λ
∑I

ι=1
bι

s.t. Q̄uuT ≤ q̄u, (23)

∀$ ∈ Z+
N , ∀a ∈ Z+

cx : (32a)− (32e) hold, (24)

∀ι ∈ Z+
I :






δι + s̄ι ≥ ε,

bι ∈ {0, 1}, SOS-1 : {bι, s̄ι},
0 = 1− µι

3
T1,

0 =
∑i=κ

i=1
µι
1,iH

ι
x̄(i,m) +

∑j=ξ

j=1
µι
2,jR

ι
1(j,m)

+
∑k=ρ

k=1
µι
3,kR

ι
2(k,m), ∀m = 1, · · · , η,

H̃ι
x̄,ix̄

ι − hι
x̄,i ≤ 0, µι

1,i ≥ 0, ∀i = 1, . . .κ,

R̃ι
1,j x̄

ι − rι1,j − Sι
1,juT ≤ 0,

µι
2,j ≥ 0, ∀j = 1, . . . ξ,

R̃ι
2,kx̄

ι − δι − rι2,k − Sι
2,kuT ≤ 0, µι

3,k ≥ 0,

∀k = 1, . . . ρ,

(25)
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∀!∈Z+
N ,∀m∈Z+

α : SOS-1:{ν"1,a,m, P̃ "
x,mx̃"

a−P̃ "
u,muT−p̄"m}, (26)

∀! ∈ Z+
N , ∀n ∈ Z+

γ : SOS-1 : {ν"2,a,n, H̃"
nx̃

"
a − h̃"

n}, (27)

∀ι ∈ Z+
I ,∀i ∈ Z+

κ : SOS-1 : {µι
1,i, H̃

ι
x̄,ix̄

ι − hι
x̄,i}, (28)

∀ι∈Z+
I , ∀j∈Z+

ξ : SOS-1: {µι
2,j , R̃

ι
1,j x̄

ι−rι1,j−S̃ι
1,juT }, (29)

∀ι∈Z+
I , ∀k∈Z+

ρ : SOS-1: {µι
3,k, R̃

ι
2,kx̄

ι−δι−rι2,k−S̃ι
2,kuT }, (30)

∀! ∈ Z+
N ,∀i ∈ Z+

q! ,
∀k ∈ Z0

T−1
:

{
SOS-1 : {a",i(k), s",i(k)}
a",i(k) ∈ {0, 1},

∑q!
i=1

a",i(k)=1,
(31)

where ν!1,a,m, ν!2,a,n, µ
ι
1,i, µ

ι
2,j and µι

3,k are dual variables

from KKT conditions, while P̃ !
∗,m is the m-th row of P

!
∗,

∗ ∈ {x, u}, H̃!
n is the n-th row of H!, H̃ι

x̄,i is the i-th

row of Hι
x̄, R̃

ι
1,j and S̃ι

1,j are the j-th row of Rι
1 and Sι

1,

respectively, R̃ι
2,k and S̃ι

2,k are the k-th row of Rι
2 and

Sι
2, respectively, η = IT (n + mw + mv) is the number

of columns of Hι
x̄, κ = 2IT (c0 + cw + cv) is the number of

rows of Hι
x̄, ξ = 2IT (cx + cy) is the number of rows of Rι

1
and ρ = 2ITp is the number of rows of Rι

2.

Proof. We formulate the responsibility of the controlled
input in (20c) as a semi-infinite constraint that can be
written as:

P
"

xx̄
" ≤ P

"

uuT + p
"
, ∀x̄" ∈

{
x̄" : P

"
xx̄

" ≤ P
"
uuT + p̄", H

"
x̄" ≤ h

"
}

.

From (Shen et al., 2022, Lemma 1, Section 4), we can
derive the equivalent mixed-integer constraints as:

0 =
∑m=α

m=1 ν
!
1,a,mP

!
x(m, †) +

∑n=γ
n=1 ν

!
2,a,nH

!
(n, †) (32a)

− P
!

x(a, †), ∀† = 1, . . .ψ,

πa = P
!

x,ax̃
!
a − P

!

u,auT − p
!
a,πa ≤ 0, (32b)

P̃ !
x,mx̃!

a − P̃ !
u,muT − p̄!m ≤ 0, (32c)

ν!1,a,m ≥ 0, ∀m = 1, . . .α, (32d)

H̃!
nx̃

!
a − h̃!

n ≤ 0, ν!2,a,n ≥ 0, ∀n = 1, . . . γ, (32e)

ν!1,a,m(P̃ !
x,mx̃!

a − P̃ !
u,muT − p̄!m) = 0, (32f)

ν!2,a,n(H̃
!
nx̃

!
a − h̃!

n) = 0, (32g)

where ν!1,a,m, ν!2,a,n are dual variables from the KKT

conditions, while P̃ !
∗,m is the m-th row of P

!
∗, ∗ ∈ {x, u},

H̃!
n is the n-th row of H

!
. The complementary slackness

constraints given in (32f) and (32g) are imposed using
SOS-1 conditions in (27) and (28), respectively.

Furthermore, consider a!,i∗(k) = 1 for some k ∈ Z0
T−1,

then the additional constraint
∑qhl

i=1 a!,i(k) = 1 ensures
that a!,i(k) = 0 for all i '= i∗. Then because of the SOS-1
constraints, it follows that s!,i(k) is unconstrained for all
i '= i∗. Since this holds for any k ∈ Z0

T−1, then for each
model pair, the set of feasible states for both models lies
within the same subregion.

To obtain the remaining parts of the MILP formulation,
we refer the reader to similar steps in (Ding et al., 2018,
Section IV).

5. SIMULATION EXAMPLES

In this section, we apply the proposed approach to a
lunar/planetary assisted drive system and a vehicle lane
changing scenario. Both examples are implemented in
MATLAB 2019b with Gurobi v9.5. Note the vehicle lane
changing example uses a sparse notation to conserve space.

5.1 Lunar/Planetary Assisted Drive

First, we consider a parameter identification problem for
a lunar/planetary rover navigating an environment with
uncertain terrain parameters. The rover dynamics evolves
according to a simple viscoelastic model with the damping
coefficient being the uncertain parameter, as follows:

x(k + 1) = x(k) + vx(k)δt,

vx(k + 1) =− k
M x(k) +

(
1− c

M δt
)
vx(k)+

δt
M u(k)+w(k)δt,

where x and vx are the position and velocity of the rover
in m and m

s respectively, u is the acceleration input in m
s2 ,

w is the process noise signal in m
s2 , and M,k, and c are the

mass, spring constant, and damping coefficient in kg, N
m ,

and Ns
m respectively. δt is the sampling time in s. For this

example, we have:

u(k) ∈ [−20, 20]ms2 , δt = 0.5s, k = 0.002N
m ,

w(k) ∈ [−0.001, 0.001]ms2 , M = 5kg.

We consider 3 uncertain models defined such that each
model describes the robot dynamics given c ∈ C!, where
C! = [cl,!, cu,!]. For each model, we abstracted/over-
approximated the uncertain linear models,Jin et al. (2020),
for each Model + ∈ {1, 2, 3} with cl,1 = 0.05, cu,1 = 0.2,
cl,2 = 0.3, cu,2 = 0.5, cl,3 = 0.6, and cu,3 = 0.8 to yield a
piecewise affine inclusion model with two subregions that
describes the rover trajectories:

A",2 = A",1 = A", A",1 = A",2 = A",

Bu
" = Bw

" =

[
0
δt
m

]
, C" =

[
1 0
0 1

]
, Du

" =
[
0 0
0 0

]
, Dv

" =
[
1 0
0 1

]

Sx
",1 = Sx

",2 =




1 0
−1 0
0 1
0 −1



 ,β",1 =




180
90
180
0



 ,β",2 =




180
0

180
90



 ,

where A" !
[

1 δt
− k

m (1− cu,!

m δt)

]
, A" !

[
1 δt

− k
m (1− cl,!

m δt)

]
. The

system output is given by:

z!(k) = C!

[
x(k)
vx(k)

]
+Du

! u(k) +Dv
! v(k)

with measurement noise v(k) = [v1(k) v2(k)]# with
vi(k) ∈ [−0.001, 0.001], for all i ∈ {1, 2}. The system is
initialized with: x(0) = 0 and vx(0) ∈ [0.5, 0.6].

Solving the AMD problem with J(·) = ‖ · ‖ and λ = 100
yields {u(k)}4k=0 = {20, 20, 20, 14.0864, 0}. The result
from executing this input is shown in Figure 1, which
shows the output reachable sets of each model. Here, we
see that the output reachable sets are disjoint and thus, a
system observer/operator with access to the agent’s tra-
jectory could identify the true damping coefficient range
of the lunar/planetary terrain.
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∀!∈Z+
N , ∀m∈Z+

α : SOS-1:{ν"1,a,m, P̃ "
x,mx̃"

a−P̃ "
u,muT−p̄"m}, (26)

∀! ∈ Z+
N , ∀n ∈ Z+

γ : SOS-1 : {ν"2,a,n, H̃"
nx̃

"
a − h̃"

n}, (27)

∀ι ∈ Z+
I , ∀i ∈ Z+

κ : SOS-1 : {µι
1,i, H̃

ι
x̄,ix̄

ι − hι
x̄,i}, (28)

∀ι∈Z+
I , ∀j∈Z+

ξ : SOS-1: {µι
2,j , R̃

ι
1,j x̄

ι−rι1,j−S̃ι
1,juT }, (29)

∀ι∈Z+
I , ∀k∈Z+

ρ : SOS-1: {µι
3,k, R̃

ι
2,kx̄

ι−δι−rι2,k−S̃ι
2,kuT }, (30)

∀! ∈ Z+
N , ∀i ∈ Z+

q! ,
∀k ∈ Z0

T−1
:

{
SOS-1 : {a",i(k), s",i(k)}
a",i(k) ∈ {0, 1},

∑q!
i=1

a",i(k)=1,
(31)

where ν!1,a,m, ν!2,a,n, µ
ι
1,i, µ

ι
2,j and µι

3,k are dual variables

from KKT conditions, while P̃ !
∗,m is the m-th row of P

!
∗,

∗ ∈ {x, u}, H̃!
n is the n-th row of H!, H̃ι

x̄,i is the i-th

row of Hι
x̄, R̃

ι
1,j and S̃ι

1,j are the j-th row of Rι
1 and Sι

1,

respectively, R̃ι
2,k and S̃ι

2,k are the k-th row of Rι
2 and

Sι
2, respectively, η = IT (n + mw + mv) is the number

of columns of Hι
x̄, κ = 2IT (c0 + cw + cv) is the number of

rows of Hι
x̄, ξ = 2IT (cx + cy) is the number of rows of Rι

1
and ρ = 2ITp is the number of rows of Rι

2.

Proof. We formulate the responsibility of the controlled
input in (20c) as a semi-infinite constraint that can be
written as:

P
"

xx̄
" ≤ P

"

uuT + p
"
, ∀x̄" ∈

{
x̄" : P

"
xx̄

" ≤ P
"
uuT + p̄", H

"
x̄" ≤ h

"
}

.

From (Shen et al., 2022, Lemma 1, Section 4), we can
derive the equivalent mixed-integer constraints as:

0 =
∑m=α

m=1 ν
!
1,a,mP

!
x(m, †) +

∑n=γ
n=1 ν

!
2,a,nH

!
(n, †) (32a)

− P
!

x(a, †), ∀† = 1, . . .ψ,

πa = P
!

x,ax̃
!
a − P

!

u,auT − p
!
a,πa ≤ 0, (32b)

P̃ !
x,mx̃!

a − P̃ !
u,muT − p̄!m ≤ 0, (32c)

ν!1,a,m ≥ 0, ∀m = 1, . . .α, (32d)

H̃!
nx̃

!
a − h̃!

n ≤ 0, ν!2,a,n ≥ 0, ∀n = 1, . . . γ, (32e)

ν!1,a,m(P̃ !
x,mx̃!

a − P̃ !
u,muT − p̄!m) = 0, (32f)

ν!2,a,n(H̃
!
nx̃

!
a − h̃!

n) = 0, (32g)

where ν!1,a,m, ν!2,a,n are dual variables from the KKT

conditions, while P̃ !
∗,m is the m-th row of P

!
∗, ∗ ∈ {x, u},

H̃!
n is the n-th row of H

!
. The complementary slackness

constraints given in (32f) and (32g) are imposed using
SOS-1 conditions in (27) and (28), respectively.

Furthermore, consider a!,i∗(k) = 1 for some k ∈ Z0
T−1,

then the additional constraint
∑qhl

i=1 a!,i(k) = 1 ensures
that a!,i(k) = 0 for all i '= i∗. Then because of the SOS-1
constraints, it follows that s!,i(k) is unconstrained for all
i '= i∗. Since this holds for any k ∈ Z0

T−1, then for each
model pair, the set of feasible states for both models lies
within the same subregion.

To obtain the remaining parts of the MILP formulation,
we refer the reader to similar steps in (Ding et al., 2018,
Section IV).

5. SIMULATION EXAMPLES

In this section, we apply the proposed approach to a
lunar/planetary assisted drive system and a vehicle lane
changing scenario. Both examples are implemented in
MATLAB 2019b with Gurobi v9.5. Note the vehicle lane
changing example uses a sparse notation to conserve space.

5.1 Lunar/Planetary Assisted Drive

First, we consider a parameter identification problem for
a lunar/planetary rover navigating an environment with
uncertain terrain parameters. The rover dynamics evolves
according to a simple viscoelastic model with the damping
coefficient being the uncertain parameter, as follows:

x(k + 1) = x(k) + vx(k)δt,

vx(k + 1) =− k
M x(k) +

(
1− c

M δt
)
vx(k)+

δt
M u(k)+w(k)δt,

where x and vx are the position and velocity of the rover
in m and m

s respectively, u is the acceleration input in m
s2 ,

w is the process noise signal in m
s2 , and M,k, and c are the

mass, spring constant, and damping coefficient in kg, N
m ,

and Ns
m respectively. δt is the sampling time in s. For this

example, we have:

u(k) ∈ [−20, 20]ms2 , δt = 0.5s, k = 0.002N
m ,

w(k) ∈ [−0.001, 0.001]ms2 , M = 5kg.

We consider 3 uncertain models defined such that each
model describes the robot dynamics given c ∈ C!, where
C! = [cl,!, cu,!]. For each model, we abstracted/over-
approximated the uncertain linear models,Jin et al. (2020),
for each Model + ∈ {1, 2, 3} with cl,1 = 0.05, cu,1 = 0.2,
cl,2 = 0.3, cu,2 = 0.5, cl,3 = 0.6, and cu,3 = 0.8 to yield a
piecewise affine inclusion model with two subregions that
describes the rover trajectories:

A",2 = A",1 = A", A",1 = A",2 = A",

Bu
" = Bw

" =

[
0
δt
m

]
, C" =

[
1 0
0 1

]
, Du

" =
[
0 0
0 0

]
, Dv

" =
[
1 0
0 1

]

Sx
",1 = Sx

",2 =




1 0
−1 0
0 1
0 −1



 ,β",1 =




180
90
180
0



 ,β",2 =




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0
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90



 ,

where A" !
[

1 δt
− k

m (1− cu,!

m δt)

]
, A" !

[
1 δt

− k
m (1− cl,!

m δt)

]
. The

system output is given by:

z!(k) = C!

[
x(k)
vx(k)

]
+Du

! u(k) +Dv
! v(k)

with measurement noise v(k) = [v1(k) v2(k)]# with
vi(k) ∈ [−0.001, 0.001], for all i ∈ {1, 2}. The system is
initialized with: x(0) = 0 and vx(0) ∈ [0.5, 0.6].

Solving the AMD problem with J(·) = ‖ · ‖ and λ = 100
yields {u(k)}4k=0 = {20, 20, 20, 14.0864, 0}. The result
from executing this input is shown in Figure 1, which
shows the output reachable sets of each model. Here, we
see that the output reachable sets are disjoint and thus, a
system observer/operator with access to the agent’s tra-
jectory could identify the true damping coefficient range
of the lunar/planetary terrain.

Plot of vx(k) vs x(k)

Fig. 1. Separated output sets corresponding to 3 different
regions of friction coefficient, l ∈ {1, 2, 3}, with ε =
0.01.

5.2 Vehicle Lane Changing Example

Similar to (Singh, Ding, Ozay, and Yong, 2018), we con-
sider an intent estimation problem in a vehicle lane chang-
ing scenario with three intent models for the other car
" ∈ {I, C,M} (see (Singh, Ding, Ozay, and Yong, 2018)
for details): the Inattentive driver is unaware of the ego
car and maintains his speed, the Cautious driver tends to
yield the lane to ego car or the Malicious driver does not
want to yield the lane to the ego car. However, to improve
on the single-region inclusion model considered in (Singh,
Ding, Ozay, and Yong, 2018) for over-approximating Du-
bins dynamics, we utilize a tighter/more precise inclusion
model in the form of a piecewise affine inclusion model with
two subregions that is obtained from the affine abstraction
approach in Jin et al. (2020) and is given by:

A1=[(1, 3) :0.9048; (2, 4) :21.781]6×6;

A2=[(1, 3) :0.9048; (2, 4) :26.6212]6×6;

Bu
1 =Bu

2 =Bw
1 =Bw

2 =B=[(3, 1) :1; (4, 2) :1; (6, 3) :1]6×3;

F1=[f
1
, f1]=

[
(1, 1) : [−3.4680, 5.8193];
(1, 2) : [−9.2068, 9.2068]

]

6×1

;

F2=[f
2
, f2] =

[
(1, 1) : [−4.1616, 6.9832];
(1, 2) : [−10.8352, 10.8352]

]

6×1

;

where we used a sparse matrix notation with the size
indicated in the subscript. Note that the subscripts i ∈
{1, 2} in the above matrices and vectors denote the indices
for the subregions and when using the affine abstraction
approach in Jin et al. (2020), the obtained results are such
that Ai = Ai = Ai, B

u
i = Bu

i = Bu
i and B

w
i = Bw

i = Bw
i

for all i ∈ {1, 2}.
Combining the abstraction with the intention models and
using Euler method for time discretization with sampling
time δt = 0.4s, † ∈ {1, 2}, we have the following models:

Inattentive Driver (" = I) :
AI,† = AI,† = I+ δtA†,

Bu
I,† = B

u
I,† = Bw

I,† = B
w
I,† = I+ δtB,

CI = CI = [(1, 6) : 1]1×6, DI = DI = 0, V I = V I = 1,

f
I,† = δtf†, fI,† = δtf†, S

x
I,† = [(1, 3) : 1; (2, 3) : −1]2×6,

βI,1 = [25;−20],βI,2 = [30;−25];

Cautious Driver (" = C) :
ÃC = [(6, 3) : −Kd,C ; (6, 4) : Lp,C ; (6, 6) : Kd,C ]6×6,

B̃C = [(6, 2) : Ld,C ]6×3, AC,† = AC,1† = I+ δt(A† + ÃC),

Bu
C,† = B

u
C,† = Bw

C,† = B
w
C,† = I+ δt(B + B̃C),

CC = CC = [(1, 6) : 1]1×6, DC = DC = 0, V C = V C = 1,

f
C,† = δtf†, fC,† = δtf†, S

x
C,† = [(1, 3) : 1; (2, 3) : −1]2×6,

βC,1 = [25;−20],βC,2 = [30;−25];

Malicious Driver (" = M) :
ÃM = [(6, 3) : −Kd,M ; (6, 4) : Lp,M ; (6, 6) : Kd,M ]6×6,

B̃M = [(6, 2) : Ld,M ]6×3, AM,† = AM,† = I+ δt(A† − ÃM ),

Bu
M,† = B

u
M,† = Bw

M,† = B
w
M,† = I+ δt(B − B̃M ),

CM = CM = [(1, 6) : 1]1×6, DM = DM = 0, V M = V M = 1,

f
M,† = δtf†, fM,† = δtf†, S

x
M,† = [(1, 3) : 1; (2, 3) : −1]2×6,

βM,1 = [25;−20],βM,2 = [30;−25],

where Kd,C = 1, Kd,M = 0.9, Lp,C = Lp,M = 12,
Ld,C = Ld,M = 14. Further, the initial conditions are:

ve(0) ∈ [26, 28]
m

s
, vo(0) ∈ [26, 28]

m

s
, ye(0) ∈ [12, 14]m.

The lateral position of the ego car is constrained to be
between 0 and 26 m, while the other initial conditions,
state constraints, input constraints and noise bounds are
as in (Singh, Ding, Ozay, and Yong, 2018).

With J(·) = ‖ · ‖ and λ = 100, our proposed AMD
algorithm obtained the following inputs: {u1(k)}2k=0 =

{−7.5100,−7.4700, 0.0100}, {u2(k)}2k=0 = {−0.2065, 0.3568, 0.4400}.
When compared with the standard AMD (with strict sepa-
ration constraints), the computational cost of the proposed
AMD was around 504 seconds (averaged over 10 runs),
while the standard AMD took over 2 days. Furthermore,
we compared our AMD algorithm with Niu et al. (2022)
using the same settings as the latter, and found that even
though the resulting optimal objective value is larger with
the proposed AMD algorithm (i.e., it is slightly subop-
timal), the computational cost reduces significantly. The
proposed AMD algorithm took several minutes to solve,
while the method in Niu et al. (2022) took over 5 days. This
improvement in computational time is as expected since
(multi-)parametric mixed-integer optimization problems 2

are a much harder class of optimization problems to solve
than (regular) mixed-integer optimization problems.

6. CONCLUSION

In this paper, we proposed a novel AMD problem for piece-
wise affine inclusion systems with bounded uncertainties.
Having observed that the integer variables/constraints
stemming from the mapping of piecewise inclusion and
subregions cause the problem to be very hard to solve with
existing optimization solvers, we proposed an alternative
bilevel optimization reformulation that moves the integer
variables/constraints in the lower level/inner problem to
the higher level/outer problem. By leveraging KKT condi-
tions for the lower level that is now free of binary variables,
we recast the problem as an equivalent single-level MILP
that off-the-shelf solvers can readily solve. Moreover, we
introduced a slight extension with a binary variable to
2 Interested readers are referred to Pistikopoulos et al. (2020) and
references therein for more details, including the computational
complexity, of such problems.
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indicate the discrimination of each model pair that enables
the separation of as many model pairs as possible, if all
models cannot be strictly separated. In our future work,
we will investigate an extension of our proposed machinery
to discriminate among models with signal temporal logic
specifications and objective/utility functions.
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APPENDIX

M! =
q!
vec
i=1

{M!,i},Ωx
! =

q!
vec
i=1

{Ωx
!,i}, F! =

q!
vec
i=1

{F!,i,T },

β! =
q!
vec
i=1

{β!,i,T },α! =
q!
vec
i=1

{α!,i}, ζ! =
q!
vec
i=1

{ζ!,i},

M ι =




diag

!={†,‡}
{M!}

diag
!={†,‡}

{Ω!}



 , F ι
T =




diag

!={†,‡}
{F!}+ diag

!={†,‡}
{α!}

diag
!={†,‡}

{β!}+ diag
!={†,‡}

{ζ!}



 ,

Ωx
!,i =

[
diagT {Sx

!,i} 0
]
,

Eι = diag
!={†,‡}

{E!}, Gι = vec
!={†,‡}

{G!}, E! = diag
T

{C!}, G! = vec
T

{g!},

β!,i,T = vec
T−1

{β!,i}, Rι
1 =

[
M ι Γι

d Γι
w 0

]
,

Rι
2 =

[
Ei −Ej Fd,i −Fd,j 0 0 Fv,i −Fv,j

−Ei Ej −Fd,i Fd,j 0 0 −Fv,i Fv,j

]
,

rι1 = F ι
T , Sι

1 = Γι
u, r

ι
2 =

[
Gi −Gj

Gj −Gi

]
, Sι

2 =
[
Fu,i − Fu,j

Fu,j − Fu,i

]
.

M!,i =





A!,i −I 0 0 · · · 0

−A!,i I 0 0 · · · 0
0 A!,i −I 0 · · · 0

0 −A!,i I 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · · · · A!,i −I

0 0 · · · · · · −A!,i I





2nT×2n(T+1)

,

F!,i,T =
[
f#
!,i

−f
#
!,i f#

!,i
−f

#
!,i . . . f#

!,i
−f

#
!,i

]#
2nT×1

,

For $ = {w, u} : Γ#
!,i = diag

T
{
[

B#
!,i

−B
#
!,i

]
}, F #

! = diag
T

{D#,!},

Ω#
!,i = diag

T
{S#

!,i},Γ
ι
# =




diag

!={†,‡}
vecq!i=1{Γ

#
!,i}

diag
!={†,‡}

vecq!i=1{Ω
#
!,i}



 , F ι
# = vec

!={†,‡}
{F #

! },

Ω#
! = vecq!i=1{Ω

#
!,i},Γ

#
! = vecq!i=1{Γ

#
!,i},

P
!
x =

[
M! Γd

! Γw
!

]
, P

!
u =

[
−Γu

!

]
, p! = −

[
F! + α!

]
,

P
!

x =
[

Ωx
! Ωd

! Ωw
!

[P̄x,! 0] 0 0

]
, P

!

u = −
[
Ωu

!
0

]
, p

!
= −

[
β! + ζ!
−p̄x,!

]
,

H
!
=
[
diag{P !

0, Qd,!, Qw,!},
]
, h

!
=
[
p!0

#
p!d

#
q!w

#]# .


