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Quantum simulation of conical intersections 
using trapped ions

Jacob Whitlow    1,2, Zhubing Jia    1,3,6, Ye Wang    1,2,7, Chao Fang    1,2, 
Jungsang Kim    1,2,3,4 & Kenneth R. Brown    1,2,3,5 

Conical intersections often control the reaction products of photochemical 
processes and occur when two electronic potential energy surfaces 
intersect. Theory predicts that the conical intersection will result in a 
geometric phase for a wavepacket on the ground potential energy surface, 
and although conical intersections have been observed experimentally, 
the geometric phase has not been directly observed in a molecular system. 
Here we use a trapped atomic ion system to perform a quantum simulation 
of a conical intersection. The ion’s internal state serves as the electronic 
state, and the motion of the atomic nuclei is encoded into the motion of 
the ions. The simulated electronic potential is constructed by applying 
state-dependent optical forces to the ion. We experimentally observe a clear 
manifestation of the geometric phase using adiabatic state preparation 
followed by motional state measurement. Our experiment shows the 
advantage of combining spin and motion degrees for quantum simulation of 
chemical reactions.

Simulation of the quantum mechanics of molecules is an important 
and natural utilization of quantum simulators, with applications 
in calculating ground state energies and chemical reaction rates1,2. 
Classical computers have difficulty simulating the exact dynamics of 
even relatively simple molecules, usually resorting to an assortment of 
approximations to overcome the exponentially scaling Hilbert space. 
The Born–Oppenheimer approximation often is used to limit the size 
of the Hilbert space, taking advantage of the mass differences between 
nuclei and electrons to separate their wavefunctions. The slow-moving 
nuclear positions can then be treated as parameters when calculating 
the energy state of the fast-moving electrons. This allows one to visual-
ize the movement of the nuclei on electronic state-dependent adiabatic 
potential energy surfaces parameterized by the nuclear coordinates. 
This approximation breaks down when the potential energy surfaces 
cross at a conical intersection3,4. Near these singularities, the couplings 
between the nuclear and electronic coordinates become too strong 
to ignore. In the vicinity of these intersections, non-trivial geometric 
phases come into play5. Such a phase depends on the direction of travel 

and the solid angle encompassed by the nuclear wavefunction as it 
makes a loop with respect to the conical intersection. Phase interfer-
ence not predicted by the energy dynamics of the system can result 
if different parts of the wavefunction take different paths around the 
intersection. Despite experimental proposals utilizing ultra-short laser 
pulses with stable phase differences6,7, direct observation of geometric 
phase has been elusive. This is because conical intersections are dif-
ficult to probe in real systems owing to the ultra-fast and non-radiative 
nature of state transitions in their vicinity8–10.

Quantum simulators do not run into the scaling problems that 
classical computers experience when performing chemical calcula-
tions2,11,12. They have already been suggested as a means of probing 
conical intersections and other molecular phenomena13–19. Early results 
on calculating branching ratios have been demonstrated on supercon-
ducting systems20, and a similar phenomenon in condensed matter 
systems has been simulated with ultra-cold atom systems21. Here, we 
explore geometric phase interference in a system based on chains of 
trapped ions, which are proving to be a robust and highly controllable 
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parameters for the spin Hamiltonian, as in the Born–Oppenheimer 
approximation. The energies of the spin eigenstates, which correspond 
to the electronic eigenstates, are coupled in opposite ways to the posi-
tions in the harmonic oscillators. The eigenenergies for the higher (+) 

and lower (−) states in this system are E±(x, y) =
ν
2
(p2

x + p2
y) + V±(x, y), 

where V±(x, y) =
ν
2
(x2 + y2) ± 1

√2
√Ω2x2 +Ω2y2  is the spin-dependent 

potential energy of the system. A plot of V±(x, y) is shown in Fig. 1b, 
where a conical intersection can clearly be seen.

An important feature of this semi-classical Hamiltonian is the possi-
bility of a geometric phase that depends only on the movement through 
space5,30. This phase is entirely separate from the energy-dependent 
one that accumulates over time and is most prominent during an adi-
abatic evolution within a single eigenenergy subspace, when transitions 
to other subspaces can be ignored (see ‘Trotter product evolution and 
adiabatic criteria’ section in Methods). Specifically, if x and y were 
time-dependent parameters in this system (x(t) and y(t)), and the sys-
tem were to start in one of the eigenstates of the Hamiltonian in equa-
tion (1), we would see the following adiabatic time evolution:

|ψ(t)⟩ = T exp (−i∫
t

dt′ ̂H(t′)) ||ψn,0⟩

= e−i∫
tdt′En(R(t′))eiγn(t) |ψn(R(t))⟩ .

(2)

Here, T is the time ordering operator, R(t) = (x(t), y(t)) is the position 
of the particle, En(R(t)) is the position-dependent energy of the nth 

way of simulating other quantum mechanical systems22–28. Two internal 
states of an ion are chosen to represent a qubit, and lasers are used to 
coherently manipulate these states. Laser interactions that couple the 
qubit states to the motion of the chain are used to coherently entangle 
the ions with their own vibrational states. We utilize these vibrations 
to act as nuclear coordinates in a hybrid digital–analog approach to 
quantum simulation13,29. We use adiabatic evolution of an ion’s wave-
function to provide an experimental demonstration of the creation 
and control of a conical intersection. The final spatial distribution of 
the wavefunction is measured, exhibiting interference arising from 
non-trivial geometric phase.

Results and discussion
Model Hamiltonian and ideal results
Initially, we consider an ideal Hamiltonian of the form

̂Hideal =
ν
2 (p

2
x + p2

y + x2 + y2) + Ω

√2
(σ̂xx + σ̂yy) . (1)

This Hamiltonian describes a spin- 1
2

 particle in a two-dimensional (2D) 
harmonic oscillator with vibrational frequency ν, where the spin of the 
particle is coupled to its own position via the Pauli operators σx and σy 
with a strength Ω. The dimensionless positions, x and y, and momenta, 

px and py, are normalized by a factor of 1
√mν

 and √mν , respectively, 

where m is the particle’s mass, and we set ℏ = 1 throughout the 
manuscript. The positions and momenta are first considered as 
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Fig. 1 | Overview of the simulated conical intersection and the  
effects on the wavefunction. a, An adiabatic evolution that  
switches x-mode (Hx(t) = ν ̂nx +

Ωt
2τ

σ̂x( ̂ax + ̂a†x)) coupling and y-mode 

(Hy(t) = ν ̂ny +
Ωt
2τ

σ̂y( ̂ay + ̂a†y )) coupling to produce H(t) = Hx(t) + Hy(t) and a 

conical intersection. The plots show the spatial probability distributions of the 
wavefunction at the beginning and the end of the evolution, based on classical 
simulations. Owing to the path taken by the wavefunction around a conical 
intersection, there is geometric phase interference in the final result. All classical 
simulations were done with the open source package QuTiP47. b, The potential 

energy surface produced by Hx(τ) + Hy(τ) when setting ν to 1 kHz and Ω to 3 kHz, 
revealing a conical intersection. The orange torus represents the spatial 
distribution of the ground subspace, where the wavefunction should remain 
throughout the adiabatic evolution. c, The probability distribution of the final state 
based on classical simulations, if there were no conical intersection and thus no 
geometric phase interference, allowing the wavefunction to meet with itself. d, The 
approximate effect of a ∆

2
σz  term in the Hamiltonian is a rotation proportional to 

Δτ, where τ is the time of the evolution, as shown in this classical simulation. 
Experimentally, this term can arise from detuning in the applied laser pulses.
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eigenstate |ψn(R(t))⟩  and γn(t) is the geometric phase associated  
with that state, described by the equation

γn = i∫
t

dt′ ⟨ψn(R(t′))|∇Rψn(R(t′))⟩ ⋅ Ṙ(t′) (3)

= i∫
Rf

R0

dR′ ⋅ ⟨ψn(R′)|∇R′ψn(R′)⟩, (4)

where R0 = R(0) and Rf = R(t) are initial and final positions. Given 
that the spin eigenstates as a function of position can be written as 

|±(x, y)⟩ = 1
√2
(|0⟩ ± x+iy

√x2+y2
|1⟩), this amounts to the integral

γ± = 1
2 ∫

xf ,yf

x0 ,y0

ydx − xdy
x2 + y2

. (5)

Berry originally pointed out that, if the path taken through this position 
space were to perform a closed loop C around a degeneracy point, the 
phase would be equal to one-half of the solid angle, 2π, subtended by 
the loop around that point: γ(C) = π. Wavepackets that travel in opposite 
directions around the degeneracy point acquire opposing geometric 

phases that interfere destructively, an effect we experimentally verify 
in this work.

Another parameter that can be added to our system is the energy 
difference between the |0⟩ and |1⟩ spin states, Δ. This would add Δ

2
σz   

to our Hamiltonian, which creates an avoided crossing in the system 
where the conical intersection would be. If Δ ≪ Ω, this type of system 
is still highly non-adiabatic in behaviour and also allows for geometric 
phase interference based on the solid angle argument, where the solid 

angle is now 2π (1 − Δ
√Ω2+Δ2

) (refs. 5,30). The topological nature of this 

system is less obvious however, because we are missing the singularity 
associated with the intersection. However, by moving into the rotating 
spin frame, we bring back the intersection with the new Hamiltonian

̂H = ̂HH.O. +
Ω

√2
(e−iΔt(x − iy)σ− + h.c.). (6)

Here, ̂HH.O.  is the classical 2D harmonic oscillator, σ± = 1
2
(σx ∓ iσy)   

and h.c. indicates the Hermitian conjugate. The potential energy surface 
is the same as in equation (1), but the axes are rotating. When the energy 
difference is small compared with the strength of the coupling, this has 
the effect of adiabatically moving the wavefunction around the intersec-
tion. The geometric phase remains present in the system, despite this 
unitary transformation, as does the topological nature of the system.
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Fig. 2 | Experimental data before the Fourier transform. a, Result of Fourier 
push on second ion, that is, applying the unitary evolution U(kx, ky) =
exp (− i

2
σx(kx ̂x+ ky ̂y)) using spin-dependent laser interactions, after 

adiabatically evolving the first ion around the conical intersection. The second 
ion starts in the positive σz eigenstate (left) and σy eigenstate (right), and the plots 
show measured values of ⟨σz⟩ based on 100 experiments for each data point. Axes 
are the k vectors associated with the push, calculated based on experimental 
laser interaction strengths. The data are rotated by 49° compared with theory, 
most probably owing to an ac Stark shift caused by laser interactions during the 

experiment. Taking a 2D inverse Fourier transform of this data will provide the 
spatial distribution of the wavefunction. b, Cutout of experimental data along a 
line 49° to the horizontal, with σz eigenstate (left) and σy eigenstate (right), 
compared with classically simulated data with the same laser interaction 
parameters. Shot noise dominates our measurement uncertainty, especially 
when the expected value is zero (this uncertainty is indicated by the dashed 
orange lines), and we see good qualitative agreement up to this point. Error bars 
are calculated based on a binomial distribution with 100 shots per data point.
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A more accurate model requires coupling between the nuclear and 
electronic quantum states because of the proximity to the intersection 
and breakdown of the Born–Oppenheimer approximation. Assuming 
vanishing Δ, this leads to the following fully quantum Hamiltonian

̂Hideal = ν ̂nx + ν ̂ny +
Ω

2 σ̂x( ̂ax + ̂a†x) +
Ω

2 σ̂y( ̂ay + ̂a†y ). (7)

Here, we have replaced position ξ and momentum pξ by ladder 

operators 1
√2
( ̂aξ + ̂a†ξ )  and −i

√2
( ̂aξ − ̂a†ξ ) , respectively, where ξ ∈ {x, y}. 

This Hamiltonian is associated with the Jahn–Teller effect, or Rashba 
coupling if position is replaced by momentum in the spin–motion 
coupling, as is common in condensed matter physics31–33. The subspace 
of degenerate ground states for this Hamiltonian forms a ring around 
the origin as one would expect from the energy surfaces plotted in  
Fig. 1b. Importantly, the arguments for geometric phase still apply in 
this fully quantized picture, just with a larger Hilbert space.

The essence of our experiment is as follows: Start with a qubit in 
the eigenstate of σx, |+⟩, and in the ground state of a 2D harmonic oscil-
lator. Then, adiabatically turn on coupling to the motional modes of 

the harmonic oscillator in such a way that the path taken by the wave-
function splits up and meets on the other side. Ideally, we turn on both 
the motional couplings at once, as described by

̂H(t) = ν ̂nx + ν ̂ny +
Ωt
2τ σ̂x(

̂ax + ̂a†x) +
Ωt
2τ σ̂y(

̂ay + ̂a†y ). (8)

Here τ is the time of the evolution. The equations of motion based on 
the dynamics of the Hamiltonian are

⟨ẍ⟩ = −ν2 ⟨x⟩ − Ωνt
√2τ

⟨σx⟩ ,

⟨ÿ⟩ = −ν2 ⟨y⟩ − Ωνt
√2τ

⟨σy⟩ .
(9)

Owing to the symmetry breaking of starting in the |+⟩ state, ⟨σx⟩  
dominates for small t (Supplementary Note 4). There is thus an initial 
push in the negative x direction, followed by a path that encircles the 
intersection. Experimentally, we performed the evolution by breaking 
the coupling to the x mode and y mode into separate steps in time and 
treating the overall unitary as a Trotter product (see ‘Trotter product 
evolution and adiabatic criteria’ section in Methods). This discretiza-
tion allows for a digital approach to our simulation where we can cali-
brate for each pulse type as opposed to calibrating for the whole 
evolution. This procedure is shown in Fig. 1a, along with classically 
simulated data. The final ideal state of the trajectory is a crescent shape 
owing to interference on the other side of the conical intersection. 
Importantly, this interference must be a result of geometric phase 
because the system will remain in the ground state throughout the 
adiabatic evolution, leading to no energy-dependent phase difference. 
This attribution is confirmed by Fig. 1c, where a Hamiltonian with only 
the bottom portion of the potential energy is used to simulate the evo-
lution, resulting in a ring. In Fig. 1d, we show the results if Δ

2
σz   

were included, where Δ ≪ Ω, ν. The wavefunction is rotated slightly as 
predicted by moving into the rotating frame in equation (6).

Experimental results
We performed the experiment on a room temperature system designed 
to trap 171Yb+ ions34,35. To have access to higher order normal modes 
that are less susceptible to electric field noise and heating rates36, we 
optimized the system to address the centre ion of a five-ion string. The 
atomic states and the motional modes are manipulated with laser-based 
interactions to mimic the desired Hamiltonian (see ‘Experimental setup 
and trapped ion Hamiltonian’ section in Methods). The normal coordi-
nate distribution was measured using a ‘Fourier push’ method37,38. By 
using a second ion that couples into the same modes that we used for 
the simulation, we can perform two separate spin-dependent pushes 

to create the unitary evolution U(kx, ky) = exp (− i
2
σx(kx ̂x + ky ̂y)) . We 

then extract the characteristic function or the Fourier transform of 
the spatial distribution by measuring the expectation of the Pauli opera-
tor σz for this ion (see ‘Measurement procedure’ section in Methods). 
The even (odd) information is obtained by starting the second ion in 
the positive σz (σy) eigenstate. The results of these measurements are 
shown in Fig. 2a. The results have been rotated by about 49° owing to 
a detuning from the resonant transition, most probably caused by ac 
Stark shifts, adding an effective energy difference in the spin states. In 
Fig. 2b, we see a cutout of this data along the 49° line, where the most 
prominent features are present, in comparison with classical simula-
tion. After k ≈ 3.3, the data evens out at about zero, which corresponds 
to the point of highest shot noise when making measurements. We cut 
off at this point when taking the inverse Fourier transform to avoid 
high-frequency features due to the shot noise.

The result of taking the inverse Fourier transform of the measured 
data is shown in Fig. 3a, where a clear crescent shape emerges after the 
adiabatic evolution. We rotated the axes by the necessary 49° to match 
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Fig. 3 | Experimental data after the Fourier transform. a, Experimental results 
(left) and classical simulation results (right) after adiabatic evolution of ion 
chain’s wavefunction around a conical intersection in normal coordinate space, 
defined by ̂H(t) = ̂Hx(t) + ̂Hy(t) from Fig. 1, where ν = 2π × 3 kHz, Ω = 2π × 6 kHz 
and total evolution time τ = 330 μs. The experimental data are the inverse Fourier 
transform of the raw experimental data in Fig. 2 rotated by 49° due to ac Stark 
shift compensation. In theory, this should be a pure probability distribution, as is 
the case for the classical simulation results, but experimental error and 
measurement statistics allow for negative values. The experimental data show a 
clear sign of phase interference on the opposite site of the conical intersection, in 
agreement with the results produced by classical simulation. b, This plot shows 
the integral of one-half of the distribution divided by the integral of the other 
half, where the line defining the halfway point is rotated by the angle θ. The dip in 
the experimental results and the qualitative agreement with the classical 
simulation indicate the presence of geometric phase interference. Error bars are 
calculated based on propagation of error through the inverse Fourier transform, 
then a Taylor expansion when taking the ratios.
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the high-density region with the ideal evolution. This is effectively a 
post-measurement ac Stark shift compensation. In this experiment, 
we chose ν = 2π × 3 kHz and Ω = 2π × 6 kHz, and we determine our Stark 
shift to be around Δ = 2π × 0.8 kHz on the basis of simulations. These 
numbers were subject to drift of about 10% over the course of the day, 
resulting in some experimental uncertainty. We chose an experimental 
time of 330 μs, which does not satisfy the criteria for adiabaticity for a 
linear ramp based only on energy level spacing. However, owing to 
symmetries in the system, some transitions are forbidden and the 
effective splitting between states is higher (see ‘Trotter product evolu-
tion and adiabatic criteria’ section in Methods). Still, because our 
experiment only approximately met the adiabatic condition, there 
were slight oscillations due to non-adiabatic transitions. The time of 
330 μs is also perfectly timed with the most outward point of the initial 
oscillation (that is, 

2π
ν

), making the crescent-shaped wavefunction the 
most visible. Note that no post-processing of the data was done other 
than normalization of the distribution. The results should be a probabil-
ity distribution in theory, but negative quantities appear in the far 
corners due to measurement statistics and experimental error from 
drift over the course of the experiment.

The measured distribution exhibits all the sought-after qualita-
tive features, specifically regions of maximum and minimum density 
on a ring-like shape. We also compare it with the ideal results using 
the ratio of the distribution on one-half of the plot versus that on the 
other, adjusting the angle θ of the line that defines the halfway point. 
This is described mathematically by

R(θ) =
∫+,θ dxdy P(x, y)
∫−,θ dxdy P(x, y)

. (10)

Here, P(x, y) is the spatial distribution of the wavepacket. The θ indicates 
the angle of the dividing line, with θ = 0 corresponding to a vertical 
line, and the ‘+’ and ‘−’ signs indicate whether the integral was taken on 
the positive or negative side of that line. Ideally, almost all of the dis-
tribution is on one side of the plot for θ = 0, and this ratio goes to one 
as θ approaches ± π

2
. Experimentally, we see this general pattern but 

shifted up owing to experimental noise. This noise can come from many 
things, including non-adiabatic dynamics, off-resonant coupling into 
other modes, motional phase mismatch, frequency drifts in our 
motional modes, our system not starting in the harmonic oscillator 
ground state, our system heating over time and system preparation 
and measurement error. The qualitative agreement shows the robust-
ness of this effect to noise.

Conclusion
We provide experimental evidence for geometric phase interfer-
ence in simulated conical intersections in trapped ions. We utilize 
spin-dependent laser pushes to create an adiabatic potential energy 
surface that mimics that of a small molecule. We adiabatically evolve 
the ion chain under the Hamiltonian, then measure interference in the 
spatial distribution owing to the accumulated geometric phase. These 
findings should advance work on quantum simulation of chemical 
systems with trapped ions to include systems with strong nuclear–
electronic interactions.

The next step is to utilize conical intersections to work towards 
quantum advantage for a practical problem in quantum chemistry. One 
can imagine a system that utilizes multiple ions to create more compli-
cated potential energy surfaces with more than one crossing between 
more than two levels. There are also many more motional modes avail-
able in large ion chains, meaning we can create high-dimensional poten-
tial energy surfaces with multiple crossings, quickly escalating the 
necessary Hilbert space while maintaining simulability on trapped 
ion systems. Work has also been done to utilize the second-order side-
bands in trapped ion systems for entangling gates39,40. Such operations 
increase the complexity of the potential energy surfaces available by 

adding quadratic terms. We can also utilize the bosonic modes as bath 
modes in an open quantum system13,25,41, allowing us to take advantage 
of decoherence as a tool that mimics noise in the environment.

There are also tools from digital quantum simulation that can be 
utilized in analog simulations. Frequency- and amplitude-modulated 
pulses can be used to couple into specific modes while decoupling from 
others, overcoming the problem of mode crowding and off-resonant 
coupling42,43. Fermionic degrees of freedom can be brought in via the 
Jordan–Wigner or Bravyi–Kitaev transformations, well-established 
techniques that map Pauli operators to Fermionic ones44,45. We can use 
the Trotter product formula to combine these modulation techniques 
and Fermionic mappings with the non-adiabatic bosonic models simu-
lated in this paper to create molecular Hamiltonians of arbitrary size 
and complexity, if the number of ions and the coherence times allow 
for it. This hybrid digital–analog approach can scale in a polynomial 
way with the number of degrees of freedom that we wish to simulate2,13, 
opening up the path to practical quantum advantage for scientific 
computation.

We have recently become aware of work done by the University 
of Sydney on a similar experiment with a single trapped ion quantum 
simulator46. Their experiment explores the effects of geometric phase 
on the dynamics of a wavefunction as it travels around an engineered 
conical intersection. This complements our own experiment as it 
demonstrates how the time-dependent behaviour of a system not in 
an eigenstate of the Hamiltonian can be affected by geometric phase 
in non-trivial ways.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Experimental setup and trapped ion Hamiltonian
The system utilizes the hyperfine states of the centre ion as its qubits, 
that is, |F = 0,mF = 0⟩ = |0⟩ and |F = 1,mF = 0⟩ = |1⟩ of the 2S1/2 manifold, 
split by (2π)12.6428 GHz48. The ions sit in a pseudo-harmonic potential 
on a micro-fabricated linear Paul trap that can be modelled as a quan-
tum harmonic oscillator49. We use 370 nm light, resonant with the 
2S1/2 → 2P1/2 transition, to perform Doppler cooling, detection and 
initialization.

Transitions between qubit state are made via Raman transition 
with two tones of a pulsed 355 nm laser50,51. Such transitions can be cou-
pled to the motion of the ion by detuning one of the laser tones from the 
resonant transition frequency by the frequency of the harmonic motion 
of the ion. The detuning can be negative or positive, referred to as red 
or blue sideband transitions, respectively. The effective Hamiltonians 
in the interaction frame for each tone can be written as

̂Hred = ν ̂n + Ω

2
(σ+ae−iϕ + σ−a†eiϕ),

̂Hblue = ν ̂n + Ω

2
(σ−ae−iϕ + σ+a†eiϕ).

(11)

The parameters ν, Ω and ϕ are the detuning from the motional transi-
tion, the Rabi frequency and the phase of the laser, respectively. Note 
that both the atomic transition coupling and the motional coupling 
have been incorporated into Ω (Supplementary Note 1). One can com-
pletely recreate equation (7) in the interaction picture of the system by 
utilizing many tones on the same acousto-optic modulators (AOMs) 
that couple into two modes.

Because we trap five ions in this experiment, we are no longer deal-
ing with a distribution over real space but instead over normal-mode 
coordinates. The theoretical distribution is the same, and multi-ion 
normal modes other than the centre-of-mass mode are less susceptible 
to uniform electric field noise36. However, this has the negative effect 
of adding unwanted coupling into other modes (Supplementary Note 
2). In our five-ion chain, we use the third highest frequency mode and 
the lowest frequency mode (also called the zig-zag mode), as shown 
in Supplementary Fig. 2c. Notably, the centre ion does not couple into 
the nearest-neighbour modes, reducing noise during the simulation

Trotter product evolution and adiabatic criteria
We calibrate our system to couple to one mode at a time by applying 
up to two simultaneous tones to our AOMs. We break the evolution of 
the system under the Hamiltonian into N steps, and each step into two 
parts given by the following equation for the Trotter product:

e−it ̂H = e−itx ̂Hxe−ity ̂Hy + 𝒪𝒪(t2), (12)

where ideally t ̂H = tx ̂Hx + ty ̂Hy . With the experimental sequence  
broken up in this way, we can calibrate for each pulse type as opposed 
to calibrating for the whole evolution, at the cost of error from 
non-commuting terms. By making t small enough for each evolution, 
we can remove most of this error. In our experiment, we broke up the 
Hamiltonian in the following way:

̂Hx,j = νx ̂nx +
Ωxj
2N

σx( ̂ax + ̂a†x),

̂Hy,j = νy ̂ny +
Ωy j
2N

σy( ̂ay + ̂a†y ).
(13)

This describes the Hamiltonian at the jth of N steps, where laser power 
is kept constant during each step. The harmonic oscillator term ν ̂n   
can be simulated with a calibrated laser detuning or by adding phase 
proportional to the time of the interaction to the laser pulses at each 
step. We chose the latter because we found it easier to control at the 
cost of a temporal digitization of the oscillator term. This effectively 

breaks the evolution into four steps, with the oscillator term and the 
spin-dependent push treated separately. In our system, Ωx ≈ 2π × 7.5 kHz 
and Ωy ≈ 2π × 5 kHz owing to different motional couplings. We applied 
the x-mode pulse for 40% of the total step time and the y-mode pulse 
for 60%, leading to an effective Ω for both pulses of about 2π × 6 kHz. 
We broke the evolution into N =16 steps, with adiabatically increasing 
laser strengths. This was found to incur a negligible error, based on 
classical simulations.

To minimize the error from decoherence, we also wished to 
shorten our experiment as much as possible while maintaining the 
following adiabatic condition for all times t (ref. 3):

|||||

⟨ψ(t)n||
d
dt

̂H(t) ||ψ(t)m⟩
∆

2
nm(t)

|||||
≪ 1, (14)

where |ψn(t)⟩ and |ψm(t)⟩ are states in the nth and mth eigensubspaces 
at time t, respectively, and Δnm is the difference in energy between these 
two subspaces. Often overlooked in this equation is that d

dt
H(t) needs 

to couple the two subspaces. For our chosen experimental time of 
330 μs, the difference in frequency does not actually qualify for a simple 
energy argument for adiabaticity. Owing to symmetries, however, the 
lowest subspaces are not coupled together, and this condition is met 
to a good approximation. In fact, simulations show that the value on 
the left side of inequality of equation (14) never goes above 0.3 for the 
first eight excited states, and is consistently below 0.2.

Measurement procedure
To confirm the success of our experiment, we need to measure the 
spatial distribution of the ion’s wavefunction. To do this, we expand the 
one-dimensional (1D) ‘Fourier push’ applied in refs. 37,38 to get the 2D 
characteristic function of the spatial distribution. We take advantage 
of the fact that we have multiple ions in our setup, many of which are 
unused during the experiment and therefore their internal states are 
not entangled with the motion. We choose one of the experimental 
ion’s nearest neighbours, which also couples into the modes used 
for simulation, and perform a state-dependent push on it, defined by

U(tx, ty) = e−
i
2
σx(Ωxtx( ̂ax+ ̂a†x )+Ωyty( ̂ay+ ̂a†y )). (15)

Note that the ion is pushed in the two different spatial directions for 
different amounts of time, tx and ty. This is easy enough to accomplish 
because pushes in different directions commute with each other, so 
they can be performed one after another without error. This can be 
recast as

U(kx, ky) = e−
i
2
σx(kxx+kyy). (16)

Some simple algebra tells us that measuring the state of this ion in the 
σz basis provides the following averages:

⟨U(kx, ky)
†σzU(kx, ky)⟩ = ⟨σz cos(kxx + kyy)⟩

+⟨σy sin(kxx + kyy)⟩.
(17)

Therefore, by performing the same experiment twice but preparing 
the extra ion in the positive eigenstate of the σz operator first and the σy 
operator second, we can construct the Fourier transform of the spatial 
distribution, also known as the characteristic function. Experimentally, 
we calculated our Rabi frequencies Ωx and Ωy for our second ion to be 
2π × 5.3 kHz and 2π × 3 kHz, respectively. To obtain Fig. 3a, we pushed 
for up to 110 μs on our x mode and 165 μs on our y mode, creating a 
23 × 23 point grid. We used phase control on our lasers to push in the 
negative direction for each mode.
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