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Conical intersections often control the reaction products of photochemical
processes and occur when two electronic potential energy surfaces
intersect. Theory predicts that the conical intersection will resultina
geometric phase for awavepacket on the ground potential energy surface,
and although conical intersections have been observed experimentally,

the geometric phase has not been directly observed in amolecular system.
Here we use a trapped atomic ion system to perform a quantum simulation

of aconicalintersection. Theion’s internal state serves as the electronic
state, and the motion of the atomic nucleiis encoded into the motion of
theions. The simulated electronic potential is constructed by applying
state-dependent optical forces to the ion. We experimentally observe a clear
manifestation of the geometric phase using adiabatic state preparation
followed by motional state measurement. Our experiment shows the
advantage of combining spin and motion degrees for quantum simulation of

chemical reactions.

Simulation of the quantum mechanics of molecules is an important
and natural utilization of quantum simulators, with applications
in calculating ground state energies and chemical reaction rates'’.
Classical computers have difficulty simulating the exact dynamics of
evenrelatively simple molecules, usually resorting to an assortment of
approximations to overcome the exponentially scaling Hilbert space.
The Born-Oppenheimer approximation oftenis used to limit the size
ofthe Hilbert space, taking advantage of the mass differences between
nucleiand electrons to separate their wavefunctions. The slow-moving
nuclear positions canthenbe treated as parameters when calculating
the energy state of the fast-moving electrons. This allows one to visual-
ize themovement of the nucleion electronic state-dependent adiabatic
potential energy surfaces parameterized by the nuclear coordinates.
This approximation breaks down when the potential energy surfaces
crossataconicalintersection®*. Near these singularities, the couplings
between the nuclear and electronic coordinates become too strong
toignore. In the vicinity of these intersections, non-trivial geometric
phases comeinto play’. Suchaphase depends onthe direction of travel

and the solid angle encompassed by the nuclear wavefunction as it
makes a loop with respect to the conical intersection. Phase interfer-
ence not predicted by the energy dynamics of the system can result
if different parts of the wavefunction take different paths around the
intersection. Despite experimental proposals utilizing ultra-short laser
pulses with stable phase differences®’, direct observation of geometric
phase has been elusive. This is because conical intersections are dif-
ficultto probeinreal systems owing to the ultra-fast and non-radiative
nature of state transitions in their vicinity®°.

Quantum simulators do not run into the scaling problems that
classical computers experience when performing chemical calcula-
tions®"'%, They have already been suggested as a means of probing
conicalintersections and other molecular phenomena®™ ™, Early results
oncalculating branching ratios have been demonstrated on supercon-
ducting systems?’, and a similar phenomenon in condensed matter
systems has been simulated with ultra-cold atom systems?®. Here, we
explore geometric phase interference in a system based on chains of
trapped ions, whichare proving to be arobust and highly controllable
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Fig.1| Overview of the simulated conical intersection and the
effects on the wavefunction. a, An adiabatic evolution that
switches x-mode (H,(t) = v, + ?—T[&x(dx + d}:)) coupling and y-mode

(Hy(6) = vAi, + %iﬁ,(dy + d;)) coupling toproduce H(t) =H,(t) + H,(t)and a

conical intersection. The plots show the spatial probability distributions of the
wavefunction at the beginning and the end of the evolution, based on classical
simulations. Owing to the path taken by the wavefunction around a conical
intersection, there is geometric phase interference in the final result. All classical
simulations were done with the open source package QuTiP*.b, The potential
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energy surface produced by H,(t) + H (1) when setting vto1kHzand Qto 3kHz,
revealing a conical intersection. The orange torus represents the spatial
distribution of the ground subspace, where the wavefunction should remain
throughout the adiabatic evolution. ¢, The probability distribution of the final state
based on classical simulations, if there were no conical intersection and thus no
geometric phase interference, allowing the wavefunction to meet withiitself. d, The
approximate effect of a 2 o, terminthe Hamiltonian is arotation proportional to
At, where tis the time of the evolution, as shown in this classical simulation.
Experimentally, this term can arise from detuning in the applied laser pulses.

way of simulating other quantum mechanical systems* 2, Two internal
states of anion are chosen to represent a qubit, and lasers are used to
coherently manipulate these states. Laser interactions that couple the
qubitstates to the motion of the chain are used to coherently entangle
the ions with their own vibrational states. We utilize these vibrations
to act as nuclear coordinates in a hybrid digital-analog approach to
quantum simulation™?’, We use adiabatic evolution of an ion’s wave-
function to provide an experimental demonstration of the creation
and control of a conical intersection. The final spatial distribution of
the wavefunction is measured, exhibiting interference arising from
non-trivial geometric phase.

Results and discussion
Model Hamiltonian and ideal results
Initially, we consider an ideal Hamiltonian of the form

N Q . .
Figeal = 5 (P2 + P2 + X2 +)%) + 7 (06X +8,). @

Nl <

This Hamiltonian describesa spin-l particleinatwo-dimensional (2D)
harmonic oscillator with vibrational frequency v, where the spin of the
particleis coupled toits own position via the Pauli operators o, and g,
with astrength Q. The dimensionless positions,xandy,and momenta,

prand p,, are normalized by a factor of\/% and y/mv, respectively,

where m is the particle’s mass, and we set /1=1 throughout the
manuscript. The positions and momenta are first considered as

parameters for the spin Hamiltonian, as in the Born-Oppenheimer
approximation. The energies of the spin eigenstates, which correspond
totheelectronic eigenstates, are coupled in opposite ways to the posi-
tionsinthe harmonicoscillators. The eigenenergies for the higher (+)

and lower (-) states in thissystemare F, (x,y) = ; (p,z( + pj) + Vi(x,)),
whereV,(x,y) = % (2+y?)+ %\/ 22x2 + 222 isthe spin-dependent
potential energy of the system. A plot of V.(x, y) is shown in Fig. 1b,
where a conical intersection can clearly be seen.

Animportant feature of this semi-classical Hamiltonianis the possi-
bility of ageometric phase that depends only on the movement through
space>*’. This phase is entirely separate from the energy-dependent
one that accumulates over time and is most prominent during an adi-
abaticevolutionwithinasingle eigenenergy subspace, whentransitions
to other subspaces canbeignored (see ‘Trotter product evolution and
adiabatic criteria’ section in Methods). Specifically, if x and y were
time-dependent parameters in this system (x(¢) and y(¢)), and the sys-
temwereto startin one of the eigenstates of the Hamiltonian in equa-
tion (1), we would see the following adiabatic time evolution:

()

t
Texp (—i/ dt’l:l(t’)) [¢0n.0)

— i/ dEa(R(¥)) gia(®) |Pn(R(D))).

@

Here, Tis the time ordering operator, R(¢) = (x(¢), y(¢)) is the position
of the particle, E,(R(?)) is the position-dependent energy of the nth
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Fig.2| Experimental data before the Fourier transform. a, Result of Fourier
pushonsecond ion, thatis, applying the unitary evolution U(ky, k) =

exp (— éax(kx)? + kyj)) using spin-dependent laser interactions, after
adiabatically evolving the first ion around the conical intersection. The second
ionstartsin the positive g, eigenstate (left) and o, eigenstate (right), and the plots
show measured values of (0,) based on 100 experiments for each data point. Axes
are the k vectors associated with the push, calculated based on experimental
laser interaction strengths. The data are rotated by 49° compared with theory,
most probably owing to an ac Stark shift caused by laser interactions during the

-25 0 2.5 5.0
k (6 = 49)

experiment. Taking a 2D inverse Fourier transform of this data will provide the
spatial distribution of the wavefunction. b, Cutout of experimental dataalonga
line 49° to the horizontal, with o, eigenstate (left) and o, eigenstate (right),
compared with classically simulated data with the same laser interaction
parameters. Shot noise dominates our measurement uncertainty, especially
when the expected value is zero (this uncertainty is indicated by the dashed
orange lines), and we see good qualitative agreement up to this point. Error bars
are calculated based on a binomial distribution with 100 shots per data point.

eigenstate |¢,(R(®))) and y,(¢) is the geometric phase associated
with that state, described by the equation

t
Vn = l'/ dt’ (P (R( )| Vr¥a(R(E))) - R(t) 3

R¢
- f AR’ - (5 (R)| Vi Yu(R)), @

Ro

where R, = R(0) and R;= R(t) are initial and final positions. Given
that the spin eigenstates as a function of position can be written as

£y = 5(10) & ==

|1)), this amounts to the integral
x2+y?

1 [ ydx—xd
+__f Y- Xy ©)
X(

T2 ) X242

Berry originally pointed out that, if the path taken through this position
space were to performa closed loop Caround adegeneracy point, the
phase would be equal to one-half of the solid angle, 21, subtended by
theloop around that point: y(C) = . Wavepackets that travel in opposite
directions around the degeneracy point acquire opposing geometric

phasesthatinterfere destructively, an effect we experimentally verify
in this work.

Another parameter that can be added to our systemis the energy
difference between the |0) and |1) spin states, A. This would add éaZ
to our Hamiltonian, which creates an avoided crossing in the systzem
where the conical intersection would be. If 4 <« , this type of system
isstill highly non-adiabatic inbehaviour and also allows for geometric
phaseinterference based on the solid angle argument, where the solid

A
systemis less obvious however, because we are missing the singularity
associated with the intersection. However, by movinginto therotating
spin frame, we bring back the intersection with the new Hamiltonian

angleisnow 21 (1 - ) (refs.5,30). The topological nature of this

H=Hyo + \/—%(e"'“(x —iy)o_ + h.c.). 6)

Here, A, o is the classical 2D harmonic oscillator, 0+ = %(ox Fioy)
and h.c.indicates the Hermitian conjugate. The potential energy surface
isthesameasinequation (1), but the axes are rotating. When the energy
differenceis small compared with the strength of the coupling, this has
the effect of adiabatically moving the wavefunction around the intersec-
tion. The geometric phase remains present in the system, despite this
unitary transformation, as does the topological nature of the system.
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Fig. 3| Experimental data after the Fourier transform. a, Experimental results
(left) and classical simulation results (right) after adiabatic evolution of ion
chain’s wavefunction around a conical intersection in normal coordinate space,
defined by A(¢) = H,(¢) + H,(¢) fromFig. 1, where v =2t x 3kHz, 2 =21 x 6 kHz
and total evolution time 7 =330 ps. The experimental data are the inverse Fourier
transform of the raw experimental datain Fig. 2 rotated by 49° due to ac Stark
shift compensation. In theory, this should be a pure probability distribution, as is
the case for the classical simulation results, but experimental error and
measurement statistics allow for negative values. The experimental datashow a
clear sign of phase interference on the opposite site of the conical intersection, in
agreement with the results produced by classical simulation. b, This plot shows
the integral of one-half of the distribution divided by the integral of the other
half, where the line defining the halfway point is rotated by the angle 6. The dip in
the experimental results and the qualitative agreement with the classical
simulation indicate the presence of geometric phase interference. Error bars are
calculated based on propagation of error through the inverse Fourier transform,
then a Taylor expansion when taking the ratios.

Amoreaccurate model requires coupling between the nuclear and
electronic quantum states because of the proximity totheintersection
and breakdown of the Born-Oppenheimer approximation. Assuming
vanishing A, this leads to the following fully quantum Hamiltonian

" N R 2, . K 2, . R
Higeal = VA, + Vi, + on(ax + a;) + Eoy(ay + a;). 7)

Here, we have replaced position { and momentum p, by ladder
1, . 4t —i s -
operators \/—5(asc +d) and ﬁ(af - d,), respectively, where € {x, y}.

This Hamiltonian is associated with the Jahn-Teller effect, or Rashba
coupling if position is replaced by momentum in the spin—-motion
coupling, asis common in condensed matter physics®**. The subspace
of degenerate ground states for this Hamiltonian forms aring around
the origin as one would expect from the energy surfaces plotted in
Fig. 1b. Importantly, the arguments for geometric phase still apply in
this fully quantized picture, just with alarger Hilbert space.

The essence of our experiment is as follows: Start with a qubit in
theeigenstate of g, |+), and inthe ground state of a 2D harmonic oscil-
lator. Then, adiabatically turn on coupling to the motional modes of

the harmonic oscillator in such a way that the path taken by the wave-
function splits up and meets on the other side. Ideally, we turnonboth
the motional couplings at once, as described by

() = vt + v, + %ax(dx +d)+ g—:ay(dy +a)). 8)

Here ris the time of the evolution. The equations of motion based on
the dynamics of the Hamiltonian are
. Q
() ==V (0~ (),
9

Owing to the symmetry breaking of starting in the |+) state, (o)
dominates for small ¢t (Supplementary Note 4). There is thus an initial
push in the negative x direction, followed by a path that encircles the
intersection. Experimentally, we performed the evolution by breaking
the coupling tothexmode andy modeinto separate stepsin time and
treating the overall unitary as a Trotter product (see ‘Trotter product
evolution and adiabatic criteria’ section in Methods). This discretiza-
tion allows for a digital approach to our simulation where we can cali-
brate for each pulse type as opposed to calibrating for the whole
evolution. This procedure is shown in Fig. 1a, along with classically
simulated data. The final ideal state of the trajectoryisacrescent shape
owing to interference on the other side of the conical intersection.
Importantly, this interference must be a result of geometric phase
because the system will remain in the ground state throughout the
adiabatic evolution, leading to no energy-dependent phase difference.
This attribution is confirmed by Fig. 1c, where aHamiltonian with only
thebottom portion of the potential energy is used to simulate the evo-
lution, resulting in a ring. In Fig. 1d, we show the results if éaz
wereincluded, where A < Q, v. The wavefunctionis rotated slightly as
predicted by moving into the rotating frame in equation (6).

Experimental results

We performed the experiment on aroomtemperature system designed
to trap "'Yb* ions***. To have access to higher order normal modes
that are less susceptible to electric field noise and heating rates*, we
optimized the systemtoaddress the centreion of a five-ion string. The
atomic states and the motional modes are manipulated with laser-based
interactions to mimic the desired Hamiltonian (see ‘Experimental setup
and trapped ion Hamiltonian’sectionin Methods). The normal coordi-
nate distribution was measured using a ‘Fourier push’ method*”*%, By
using asecond ion that couples into the same modes that we used for
the simulation, we can perform two separate spin-dependent pushes

to create the unitary evolution U(k,, k) = exp (—éox(kx)f + kyy)). We

then extract the characteristic function or the Fourier transform of
the spatial distribution by measuring the expectation of the Pauli opera-
tor o, for this ion (see ‘Measurement procedure’ section in Methods).
The even (odd) information is obtained by starting the second ion in
the positive o, (0,) eigenstate. The results of these measurements are
shown in Fig. 2a. The results have been rotated by about 49° owing to
adetuning from the resonant transition, most probably caused by ac
Stark shifts, adding an effective energy difference in the spinstates. In
Fig.2b, we see a cutout of this data along the 49° line, where the most
prominent features are present, in comparison with classical simula-
tion. After k= 3.3, the dataevens out at about zero, which corresponds
to the point of highest shot noise when making measurements. We cut
off at this point when taking the inverse Fourier transform to avoid
high-frequency features due to the shot noise.

Theresult of taking the inverse Fourier transform of the measured
dataisshowninFig.3a, whereaclear crescent shape emerges after the
adiabaticevolution. We rotated the axes by the necessary 49° to match
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the high-density region with the ideal evolution. This is effectively a
post-measurement ac Stark shift compensation. In this experiment,
wechosev=2m x3 kHzand Q =2mn x 6 kHz, and we determine our Stark
shift to be around 4 = 21t x 0.8 kHz on the basis of simulations. These
numbers were subject to drift of about 10% over the course of the day,
resulting in some experimental uncertainty. We chose an experimental
time of 330 ps, which does not satisfy the criteria for adiabaticity for a
linear ramp based only on energy level spacing. However, owing to
symmetries in the system, some transitions are forbidden and the
effective splitting between statesis higher (see ‘Trotter product evolu-
tion and adiabatic criteria’ section in Methods). Still, because our
experiment only approximately met the adiabatic condition, there
were slight oscillations due to non-adiabatic transitions. The time of
330 psisalso perfectly timed with the most outward point of the initial
oscillation (thatis, ZTH), making the crescent-shaped wavefunction the
most visible. Note that no post-processing of the data was done other
thannormalization of the distribution. The results should be a probabil-
ity distribution in theory, but negative quantities appear in the far
corners due to measurement statistics and experimental error from
drift over the course of the experiment.

The measured distribution exhibits all the sought-after qualita-
tive features, specifically regions of maximum and minimum density
on aring-like shape. We also compare it with the ideal results using
the ratio of the distribution on one-half of the plot versus that on the
other, adjusting the angle 6 of the line that defines the halfway point.
This is described mathematically by

S pdxdyP(x,y)

RO ="~~~
O =7 dcdyPrey)

10)

Here, P(x, y) is the spatial distribution of the wavepacket. The indicates
the angle of the dividing line, with 8 = 0 corresponding to a vertical
line, and the ‘+’and ‘~’signs indicate whether the integral was taken on
the positive or negative side of that line. Ideally, almost all of the dis-
tribution is on one side of the plot for 8 = 0, and this ratio goes to one
as 6 approaches +=. Experimentally, we see this general pattern but
shifted up owing toéxperimental noise. This noise can come from many
things, including non-adiabatic dynamics, off-resonant coupling into
other modes, motional phase mismatch, frequency drifts in our
motional modes, our system not starting in the harmonic oscillator
ground state, our system heating over time and system preparation
and measurementerror. The qualitative agreement shows the robust-
ness of this effect to noise.

Conclusion

We provide experimental evidence for geometric phase interfer-
ence in simulated conical intersections in trapped ions. We utilize
spin-dependent laser pushes to create an adiabatic potential energy
surface that mimics that of a small molecule. We adiabatically evolve
theionchainunder the Hamiltonian, then measure interference in the
spatial distribution owing to the accumulated geometric phase. These
findings should advance work on quantum simulation of chemical
systems with trapped ions to include systems with strong nuclear-
electronicinteractions.

The next step is to utilize conical intersections to work towards
quantum advantage for a practical problemin quantum chemistry. One
canimagine asystem that utilizes multiple ions to create more compli-
cated potential energy surfaces with more than one crossing between
morethantwo levels. There are also many more motional modes avail-
ableinlargeionchains, meaning we can create high-dimensional poten-
tial energy surfaces with multiple crossings, quickly escalating the
necessary Hilbert space while maintaining simulability on trapped
ionsystems. Work has also been done to utilize the second-order side-
bandsintrappedion systems for entangling gates®*°. Such operations
increase the complexity of the potential energy surfaces available by

adding quadratic terms. We can also utilize the bosonic modes asbath
modesinanopen quantum system"**, allowing us to take advantage
of decoherence as atool that mimics noise in the environment.

There are also tools from digital quantum simulation that can be
utilized in analog simulations. Frequency- and amplitude-modulated
pulses canbe used to couple into specific modes while decoupling from
others, overcoming the problem of mode crowding and off-resonant
coupling***. Fermionic degrees of freedom can be brought in via the
Jordan-Wigner or Bravyi-Kitaev transformations, well-established
techniques that map Pauli operators to Fermionic ones***, We can use
the Trotter product formula to combine these modulation techniques
and Fermionic mappings with the non-adiabatic bosonic models simu-
lated in this paper to create molecular Hamiltonians of arbitrary size
and complexity, if the number of ions and the coherence times allow
for it. This hybrid digital-analog approach can scale in a polynomial
way with the number of degrees of freedom that we wish to simulate®”,
opening up the path to practical quantum advantage for scientific
computation.

We have recently become aware of work done by the University
of Sydney on a similar experiment with a single trapped ion quantum
simulator*®. Their experiment explores the effects of geometric phase
onthe dynamics of a wavefunction as it travels around an engineered
conical intersection. This complements our own experiment as it
demonstrates how the time-dependent behaviour of a system not in
an eigenstate of the Hamiltonian can be affected by geometric phase
innon-trivial ways.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41557-023-01303-0.
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Methods

Experimental setup and trapped ion Hamiltonian

The system utilizes the hyperfine states of the centre ion as its qubits,
thatis, |F = 0,m; = 0) = |0y and |F = 1, m; = 0) = |1) of the %S, ,, manifold,
splitby (2m)12.6428 GHz*®. The ions it in a pseudo-harmonic potential
on amicro-fabricated linear Paul trap that can be modelled as a quan-
tum harmonic oscillator*’. We use 370 nm light, resonant with the
2S,, > *P,, transition, to perform Doppler cooling, detection and
initialization.

Transitions between qubit state are made via Raman transition
with two tones of a pulsed 355 nmlaser***'. Such transitions can be cou-
pledto the motion of theion by detuning one of the laser tones from the
resonant transition frequency by the frequency of the harmonic motion
oftheion. The detuning can be negative or positive, referred to as red
orbluesideband transitions, respectively. The effective Hamiltonians
inthe interaction frame for each tone can be written as

Heq = vl + %(mae‘""’ +o_ate®),

N ) ) .
Hyye = vii + 7(0_(18_“? +o0.a’e?).

The parameters v, Q and ¢ are the detuning from the motional transi-
tion, the Rabi frequency and the phase of the laser, respectively. Note
that both the atomic transition coupling and the motional coupling
havebeenincorporatedinto Q (Supplementary Note 1). One can com-
pletely recreate equation (7) intheinteraction picture of the system by
utilizing many tones on the same acousto-optic modulators (AOMs)
that couple into two modes.

Because we trap five ions in this experiment, we are no longer deal-
ing with a distribution over real space but instead over normal-mode
coordinates. The theoretical distribution is the same, and multi-ion
normal modes other than the centre-of-mass mode are less susceptible
to uniform electric field noise®®. However, this has the negative effect
of adding unwanted coupling into other modes (Supplementary Note
2).Inour five-ion chain, we use the third highest frequency mode and
the lowest frequency mode (also called the zig-zag mode), as shown
inSupplementary Fig. 2c. Notably, the centreion does not coupleinto
the nearest-neighbour modes, reducing noise during the simulation

Trotter product evolution and adiabatic criteria
We calibrate our system to couple to one mode at a time by applying
up to two simultaneous tones to our AOMs. We break the evolution of
the system under the Hamiltonianinto Nsteps, and each step into two
parts given by the following equation for the Trotter product:
e—itH — e—iql—Le—ityﬂy + O(tz), (12)
where ideally ¢H = t,H, + t,H,. With the experimental sequence
brokenupinthis way, we can calibrate for each pulse type as opposed
to calibrating for the whole evolution, at the cost of error from
non-commuting terms. By making ¢ small enough for each evolution,
we can remove most of this error. In our experiment, we broke up the
Hamiltonianin the following way:

A . . R o
Hx,i = Vil + T;//ox(ax + ax)v
(13)

" N 2, . AF
Hy; = vy, + Woy(ay +dy).

This describes the Hamiltonian at the jth of Nsteps, where laser power
is kept constant during each step. The harmonic oscillator term v
can be simulated with a calibrated laser detuning or by adding phase
proportional to the time of the interaction to the laser pulses at each
step. We chose the latter because we found it easier to control at the
cost of a temporal digitization of the oscillator term. This effectively

breaks the evolution into four steps, with the oscillator term and the
spin-dependent push treated separately. Inour system, Q, = 21 x 7.5 kHz
and Q, = 2m x 5 kHz owing to different motional couplings. We applied
the x-mode pulse for 40% of the total step time and the y-mode pulse
for 60%, leading to an effective Q for both pulses of about 21t x 6 kHz.
We broke the evolution into N =16 steps, with adiabatically increasing
laser strengths. This was found to incur a negligible error, based on
classical simulations.

To minimize the error from decoherence, we also wished to
shorten our experiment as much as possible while maintaining the
following adiabatic condition for all times ¢ (ref. 3):

(O, LA |90,
‘% <1, (14)

where |¢,(6)) and |¢,,,(0)) are states in the nth and mth eigensubspaces
attimet, respectively,and 4,, isthe differencein energy between these
two subspaces. Often overlooked in this equation is that C%H(t) needs
to couple the two subspaces. For our chosen experimental time of
330 ps, thedifferenceinfrequency does not actually qualify for asimple
energy argument for adiabaticity. Owing to symmetries, however, the
lowest subspaces are not coupled together, and this condition is met
to a good approximation. In fact, simulations show that the value on
the left side of inequality of equation (14) never goes above 0.3 for the
first eight excited states, and is consistently below 0.2.

Measurement procedure

To confirm the success of our experiment, we need to measure the
spatial distribution of theion’s wavefunction. To do this, we expand the
one-dimensional (1D) ‘Fourier push”applied inrefs. 37,38 to get the 2D
characteristic function of the spatial distribution. We take advantage
of the fact that we have multiple ions in our setup, many of which are
unused during the experiment and therefore their internal states are
not entangled with the motion. We choose one of the experimental
ion’s nearest neighbours, which also couples into the modes used
for simulation, and perform a state-dependent push onit, defined by

i Lot .
Ut t,) = e—Eox(thx(ax+ax)+9y[y(ay+ay))_ as)

Note that the ion is pushed in the two different spatial directions for
differentamounts of time, t,and ¢,. This is easy enough to accomplish
because pushes in different directions commute with each other, so
they can be performed one after another without error. This can be
recastas

Uty k) = e 2k, (16)
Somesimple algebratells us that measuring the state of thisionin the
o, basis provides the following averages:

(Ulky, k) 0,UCky, k) = (0, cos(kyx + ky)) )
+(oy sin(k,x + k).

Therefore, by performing the same experiment twice but preparing
theextraioninthe positive eigenstate of the o, operator firstand the g,
operator second, we can construct the Fourier transform of the spatial
distribution, also known as the characteristic function. Experimentally,
we calculated our Rabi frequencies Q, and Q, for our secondion to be
21 x 5.3 kHzand 21t x 3 kHz, respectively. To obtain Fig. 3a, we pushed
for up to 110 ps on our x mode and 165 ps on our y mode, creating a
23 x 23 point grid. We used phase control on our lasers to pushin the
negative direction for each mode.
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