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Quantum processors use the native interactions between effective spins
to simulate Hamiltonians or execute quantum gates. In most processors,

the native interactions are pairwise, limiting the efficiency of controlling
entanglement between many qubits. The capability of manipulating
entanglement generated by higher-order interactions is akey challenge
for the simulation of many Hamiltonian models appearing in various
fields, including high-energy and nuclear physics, as well as quantum
chemistry and error correction applications. Here we experimentally
demonstrate control over a class of native interactions between trapped-ion
qubits, extending conventional pairwise interactions to a higher order.
By exploiting state-dependent squeezing operations, we realize and
characterize high-fidelity gates and spin Hamiltonians comprising three-
and four-body spin interactions. Our results demonstrate the potential
of high-order spininteractions as atoolbox for quantum information

applications.

Useful quantum computers and simulators rely on the controllable gen-
erationof quantumentanglement betweentheir elementary constituents,
suchas qubits or effective spins. Such entanglement allows the efficient
exploration of alarge state space, which can speed up the computation of
certain problems' or the simulation of the dynamics or phases of model
physical systems**, The generation of entanglement relies on the native
interactions between subsets of spins, which in most quantum platforms
is pairwise*®. However, higher-order interactions are often featured in
Hamiltonian modelsin nuclear and high-energy physics’'° and spin sys-
tems" ™, aswellas quantum circuits and algorithms in quantum chemis-
try'®, error correction codes?** and other applications® . Sequential
or parallel application of universal one- and two-body gate sets can, in
principle, generate any unitary mapping in Hilbert space that is equiva-
lent to evolutionunder high-order interactions'. Yet, such constructions
carry alarge overhead in the number of Trotterization steps®® or entan-
glingoperations®, thereby limiting the practical performance of suchan
approachinthe presence of decoherence and noise.

From a fundamental view, few-body (>2) interactions can lead to
qualitatively different behaviours compared with pairwise interactions,

asseen across different fields of physics®>*. The study and search for
N-body interactions has, thus, become a central research avenue in
most quantum platforms, from neutral atoms® *°and superconduct-
ing systems®**"~** to chains of trapped atomic ions*>***, Yet, for
trapped-ion processors, which feature dense and controllable qubit
connectivity through phonon modes and very long qubit coherence
times, robust tunable and scalable interactions beyond the pairwise
limit have never been demonstrated.

Here we demonstrate a new class of native higher-order interac-
tions between qubitsinatrapped-ion quantum processor. To do this, we
apply a state-dependent squeezing optical drive, which is a simple
extension over the conventional state-dependent displacement
used for Mglmer-Sgrensen (MS) pairwise gates****°. Such squeezing
operations have been applied to trapped-ion systems to improve
the performance of pairwise gates®*. Here we instead exploit
state-dependent squeezing to generate three- and four-body inter-
actions™**. We outline avenues to extend the scheme and highlight
its potential use for quantum computation and simulation at
larger scales.
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Fig.1|Native operations of a trapped-ion quantum processor. a, Linear chain
of laser-cooled ion spinsina chip trap. An array of opticalbeams addressing
individual ions enables exquisite control over the state of each spin and its
coupling to collective phonon modes using Raman transitions (the additional
global beam that forms the Raman pairsis not shown). b, Spin-dependent
displacement of one phonon mode and its representation over the motional phase
space. Simultaneous driving of the first red- and blue-sideband transitions of one
ion near resonance with one phonon mode displaces the phonon wavepacket
(grey Gaussian) into two distinct trajectories by +a, depending on the state of that

spinalong the x direction over its Bloch sphere (purple arrow). ¢, Spin-dependent
squeezing of one phonon mode. Simultaneous resonant driving of the second red-
and blue-sideband transitions of one ion and one phonon mode squeezes (anti-
squeezes) the phonon wavepacket along one direction of phase space by e (€%)
depending on the state of that spin along the x direction. ¢, the phonon wavepacket
isinitially displaced from the origin to illustrate that the squeezing operation
scales any initial displacement in a state-dependent manner. The thinlinesinb

and crepresent the sideband spectrum and narrow purple and green Gaussians
represent the spectral content of the Raman coupling near the sidebands.

The quantum processor, operated at the Duke Quantum Center, is
based onachain of 'Yb* atomicions confinedinalinear Paultrapona
chip®** (Fig.1a).Eachion represents a qubit or effective spin compris-
ing two ‘clock’ levelsinits electronic ground-state (| ,) = |[F=1, M= 0)
and |V,) =|F =0, M=0)). We drive motion-sensitive optical Raman
transitions on the spin levels using pairs of non-co-propagating
beams far detuned from any electronic transitions with a beatnote
near the qubit frequency splitting®. The spins are initialized and meas-
ured using resonant optical pumping and state-dependent fluores-
cence techniques, resulting in a state preparation and measurement
error of <0.5% perion®.

The native entangling operations between spins are mediated by
phonons and are driven by Raman transitions. The phonons reside in
collectivemodes of motion that feature non-local and dense connectivity
with the spins. We simultaneously drive the red- and blue-sideband transi-
tionstodisplace or squeeze the motionalsstate of ionsin selective modes™.
Driving the first-sideband transitions of the nth ion near the resonance
ofasingle phonon mode generates aspin-dependent displacement 6)((")a,
where fi)((") isatransverse Pauli matrix and ais the complex displacement
parameter. The phonon wavepacket of that mode, represented in the
phase space of its harmonic motion**®, is therefore displaced by +aif the
spin points upwards along the x basis but by —a if the spin points down-
wards (Fig. 1b; equation (3) provides amathematical description).

Alternatively, driving the second-sideband transitions of the
nth ion at twice the resonance frequency of a single phonon mode
squeezes the phonon wavepacket by afactor eto” alongthe horizontal
phonon coordinate g, where §is given in equation (6); it is squeezed
by a factor e ¥ if the spin points downwards along the x axis, but anti-
squeezed by €fif the spin points upwards along x (Fig. 1c; equation (5)
provides a mathematical description). Temporal control over the
amplitudes and phases of the Raman beams over time ¢ enables
full control over the magnitudes and phases of both a(t) and &(t),
respectively, as well as the determination of spin axes of the spin-
dependent forces (Methods and refs. 53,54). Crucially, the displace-
ment and squeezing operations depend on the state of the spins,
but are independent of the initial phonon state in the Lamb-Dicke
regime (when the radial motion along the optical beam is much
smaller than the wavelength of the optical drive).

Coupling between different spins is realized by the accumula-
tion of spin-dependent geometric phase @ that shifts the phase of the
quantum state as |¢)~>e ®|¢), similar to the underlying mechanism of

the pairwise MSinteraction. Here the geometric phaseis accumulated
by asequence of alternating displacement and squeezing operations,
whichmove the phonon wavepacketinclosed loopsinthe phase space.

To demonstrate higher-order interactions, we first consider the
conventional MSinteraction between twoionsina chain of three. Fol-
lowing cooling and spin initialization in the |¢§D §3)> state via optical
pumping, we drive the lowest-frequency radial phonon mode (‘zig-zag’
mode) with a sequence of displacement operations that are on reso-
nance with this mode; this sequence alternately acts on the two edge
ions (Extended Data Fig. 1a), generating a rectangular-shaped loop in
the motional phase space (Fig. 2a)*. The accumulated geometric phase
corresponds to the phase-space area enclosed in the loop, which is
given by & = $,6"0'>. We control @, = a? by scaling the amplitude
of the displacement pulses and fixing the total duration of the
sequence to about 180 ps. We suppress the displacement of other
phonon modes by pulse shaping of the displacement waveforms® and
also suppress the effect of uncompensated level shifts using a pair of
echo pulses (Methods). The application of this phase gate jointly flips

W (3)>with probability Py @y = sinz(qﬁo),

z z

thespin pairinto the state |t

whichis detected via state-dependent fluorescence (Fig. 2a). We deter-
mine the scale of @, by fitting the data in Fig. 2a to a sine-squared
function as afunction of the Raman beam intensity.

We extend the pairwise interaction by interspersing the sequence
squeezing operations that act only on the middle spinand are onreso-
nance with the zig-zag phonon mode (Extended Data Fig. 1b). These
operationsarerealized as pairs of squeezing and anti-squeezing pulses
that sandwich the displacement operations (Fig. 2). The squeezing
forces scale the momentum displacements by the spin-dependent
factor e = cosh()1 + sinh(f)&ff), where 1 is the identity matrix.
The geometric phase is then given by the scaled rectangular area

@ = @, (cosh(§)o’a” + sinh(§)o 676, o
manifesting two- and three-body interaction terms.

We demonstrate the action of this phase gate (Fig. 2b,c) on the

initial states || "1 §3)> and 1”1 §3)>, for atotal sequence time of

less than 300 ps, including all the displacement, echo and squeezing
operations. Similar to the MS interaction, this gate jointly flips the state
of the two edge spins, but with probability P(T(I)T(3)) = sinz(eifdio) ,
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Fig.2|Quantum phase gates. a, MS phase gate between ion numbers1and 3
using displacement operations of one phonon mode using Milburn’s scheme*’
(Fig.1a). The phase-space area of the enclosed rectangular contour @, controls
the spin evolution, jointly flipping the initial state |l§1) §3)> into the state |T§1) §3)>.
Here Df,’”(a) and Dl(,") (a) denote the momentum and position displacement
operations, respectively, applied on the nthion. b,c, Interspersing spin-
dependent squeezing operations S?(x€) onion number 2 in between
displacement stages along the p coordinate scales the accumulated phase-space
area @ conditioned on the state of that spin (equation (1)). Ina-c, the phonon
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wavepacket is brought back toits original state at the end of the gate operation to
erase the spin-phonon correlations developed during the gate. Measured data
(circles) and centre of the error bars are presented as mean values, bars represent
lobinomial uncertainties, solid lineinais a fit to a sine-squared function and
dot-dashlinesinband care the analytically calculated unitary evolution for the
system parameters estimated independently. Ina and ¢ (b), each data point is
derived from 400 (200) measurements. The applied experimental sequences are
presented in Extended Data Fig. 1a,b.

whose dependence on a?is scaled by afactor ef (¢¥) and is conditioned
on the state of the middle spin pointing upwards (downwards) along
the x direction. The calculated evolution of €= 0.27, estimated inde-
pendently from equation (6) given the applied optical force amplitude,
agrees well with the observation.

This many-body entanglement operation features full control over
the amplitudes of the two- and three-body terms appearing in equa-
tion (1). We can, for example, eliminate the contribution of the two-
body term by setting &, = 1/ cosh € (because the term e-imool _ _
isspinindependent) and generate a pure three-body term with ampli-
tude mtanh&. We note that maximally entangled states between three
spinsin this case require only 1 dB of squeezing (tanh £ = %) (ref.53).

We perform a limited characterization of this pure three-body
interaction by measuring the output states for each of the eight distinct
three-qubit input eigenstates, all in the z basis. The ideal population
distributions of the expected states are equal weightings of the two
complementary three-qubit states for each input state (Fig. 3a, wire
frames). The measured spin population distributions are shown as
solid bars in this figure (Supplementary Fig. 4 shows the numerical
values), resulting in an average population fidelity of (95.8 + 0.9)%,
uncorrected for state preparation and measurement and single-
qubit gate errors. We further study the coherence in this three-
body mapping from two particular input states ‘if,l) gz) §3)> and

4@ (3)> into the expected Greenberger-Horne-Zeilinger (GHZ)

z z z

states % ()¢§1)¢§2)¢§3)> + 101 §3)>>. We measure the entanglement
of these particular GHZ states using the parity fringe witness obser-
vable®” (Fig. 3b), and extract state fidelities # = (94.8 +1.5)% and
F =(94.4 £1.9)%, respectively, uncorrected for state preparation
and measurement and single-qubit gate errors. We compare these results
withanindependently calibrated error model (Supplementary Note 1),
andfind very good agreement. Theleading types of error—uncorrelated
bit-flipand phase-flip errors—are similar tothe errors affecting two-qubit
MS gates that are commonly used to create GHZ states®*®*,

The sequence of displacement and squeezing operations can be
realized at various laser intensities, providing continuous control over
the values of £ and @, that can be implemented in equation (1). This
control allows gatesto berealized that are taken from a continuous set
in the form U(§, ®,) = exp(-i®,H,) and are equivalent to the unitary
evolution generated by a unitless, effective spin Hamiltonian
H. () = ®/®, setting i = 1. This equivalence allows the application of
gates that can simulate the evolution of spins by the same effective
Hamiltonian H but for different values of @, using asingle sequence
of displacement and squeezing operations, and scaling the amplitude
ofthe beams that displace the edge ions. We demonstrate the evolution
by the effective Hamiltonian associated with equation (1) for {=0.23

(calculated from equation (6)) and for the initial state |l§1) S §3)>,

presenting the magnetization (ﬁg"))ofeach spin (Fig.4). The observed
spin evolution manifests interference effects owing to the interplay
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Fig.3 | Characterization of a three-body interaction gate. a, Truth table of a
three-body gate XXX(E) = exp(—i%ﬁf(l)ﬁ,(f) 6,((3))generated by asequence of
displacement and squeezing operations. The input and output spin states are
along the zbasis. Each input state is ideally mapped into a pair of output states
(wire frames), and the raw measurements are shown as the solid bars. The
measured populations of these target states are (95.8 + 0.9)%, averaged over the
eight measured configurations. b, Characterization of the parity fringe witness
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afitted amplitude 0f 0.932 + 0.015 for the two states. The extracted GHZ fidelities
for this operation for the two statesare F = (94.8 + 1.5)%and F = (94.4 +1.9)%.
Dataand centre of the error bars are presented as mean values, bars represent 10
binomial uncertainties and each data point is derived from 300 measurements.
The solid lines are fitted sine functions. Inb, the operation Ry(1/2) denotes

single-qubit rotations by azimuthal angle 6 and polar angle 1i/2 on the Bloch
sphere. The measured values are uncorrected for errors in state preparation,

measurement and single-qubit rotations.

observable obtained by the gate. We measure the parity fringe of the output GHZ

state for the two initial states §” 22) 53)>(lightblue) and 9) 22) §3)>(red)with
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Fig. 4| Evolution by effective Hamiltonians with three- and four-body
interactions. a, Spin magnetization <0§")) under displacement and squeezing
operations (Extended Data Fig. 1b) shown as a function of @, for the initial state
?) ¢§2) §3) > Mathematically, this dynamics is equivalent to the evolution

generated by the effective Hamiltonian H ;= @/®, for @ in equation (1). The
effective Hamiltonian comprises two- and three-body terms with magnitudes
¢,=1.03and ¢; = 0.23, asillustrated via the links connecting the different spins.
Here @, has the role of the effective evolution time (in units of A=1) and is
controlled by the amplitude of the Raman beams (described in the main text).
b, Evolution of four spins by the displacement and squeezing operations

(Extended Data Fig. 1c) for the initial state \Tﬁl) 22) l?) l§4)>. Theevolution here is

equivalent to the one generated by an effective Hamiltonian H = ®@/®, for @ in
equation (2) simultaneously containing two-, three- and four-body terms with
amplitudes ¢, =1.10, ¢, = 0.36, ¢5, = 0.31and ¢, = 0.10. The dot-dash lines are
the analytically calculated magnetizations for the same initial states where
amplitudes c are determined from the calculated squeezing parameters. Data
and centre of the error bars are presented as mean values, bars represent 1o
binomial uncertainties and each data point is derived from 400 measurements.
Also, @, is experimentally controlled via scaling the amplitude of the laser
beams acting on the edge ions but fixing all the other sequence parameters.

between the two- and three-body terms in the effective Hamiltonian,
and is in good agreement with the analytically calculated evolution

(Fig. 4, dot-dash lines).

We extend this technique to generate an effective Hamiltonianin
afour-ion chain. Asinthe three-ion gate, we act on two edge ions with
displacement operations, whereas the squeezing is simultaneously

1455

Nature Physics | Volume 19 | October 2023 | 1452-1458


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-023-02102-7

performed on the two middle ions, with squeezing parameters {and {
shownin Extended Data Fig. 1c. Unlike the displacement operation that
is linear in the spin operators, the total scaling factor of the phonons
et e multiplicativeinthe spin operators, owingto the nonlinear
nature of the squeezing operation. Therefore, we realize the geometric
phase of the scaled rectangle as
& = 0o(20{6." + ¢3,6 06"
2

+e300 000 + cy0" 0P 06",

which is equivalent to the effective evolution by Hamiltonian in the
form of H.«(§, {) = ®/®,. The effective Hamiltonian contains two-, three-
and four-body terms whose relative amplitudes are given by ¢, = cosh
& cosh {, ¢c;, =sinh £ cosh {, ¢;, = cosh £ sinh {and ¢, = sinh £ sinh (.
InFig.4b, we demonstrate the evolution by this effective Hamiltonian
for the initial state [1"12 1) §4)> and the applied values £= 0.34
and {=0.29 (as calculated from equation (6)), following the calibration
of @,. The evolution in this case manifests interference between the
four different terms in the Hamiltonian, and is in good agreement
with the theoretically calculated evolution (Fig. 4b, dot-dash lines).

Insummary, we demonstrate a technique to realize native entan-
gling operations comprising higher-order interactions between the
spins of trapped ions. Our approach allows engineering new classes
of programmable native gates and Hamiltonians using current
trapped-ion hardware and requiring only minor alternations in the
optical force spectrum and modest levels of squeezing.

Itis interesting to compare this approach with the alternative
necessary resources of adigital quantum computer usingjust two-body
interactions (and neglecting the cost of single-qubit operations). The
approach presented here allows the preparation of effective Hamilto-
nians comprising families of polynomials of Pauli strings in the x basis
whose order is up to the length N of the chain. Owing to the collective
nature of the phonon modes that are used as a quantum bus, these
polynomials can feature dense connectivity, resulting inmany different
and non-localinteraction terms. This scheme requires a fixed amount
of displacement operations (equivalent to several two-qubit gates)
and additional squeezing operations that carry a run-time overhead
whose relative duration for a fixed optical power grows linearly in N
(ref. 53). Given only two-qubit interactions, the construction of asingle
Pauli string of order n >2 can be realized with 2n two-qubit gates or a
couple of multiqubit MS gates"'>**"¢*, A general spin polynomial with
commuting terms canbe constructed with the sequential application of
Z:zz (’;’) 2ntwo-qubit gates, which grows exponentially in N (ref. 31).
Although some polynomials can be efficiently constructed with two-or
multiqubit MS gates based on two-qubit interactions (where the latter
features potential quadratic speedup compared with the former® ),
the dramatically different scaling of our approach suggests that the
operations presented here can potentially speed up operationsin a
quantum processor.

The speed of operationsinlongion chainsis of greatimportance
because at long evolution times, the gate fidelities are affected by
correlated noise that originates from motional heating, requiring
in-sequence cooling”’. We note that this gate scheme may enjoy a fur-
ther improvement in speed by using light ions (for example, °Be")
with a high Lamb-Dicke parameter 5. This is because the speed of
spin-dependent squeezing operations scales quadratically with r,
whereas spin-dependent displacement operations in conventional
gates scale only linearly with .

This demonstration can be extended to a variety of different
sequences that can improve the robustness of the operations and/or
construct different sets of spin-entangling operations. For example,
the rectangular-shaped loop can be alternatively shaped into other
trajectories in the phase space that would render the operation more
robust to noise (for example, to frequency drifts of the oscillator)

using pulse-shaping techniques®>***°. Furthermore, pulse shaping of
the squeezing pulses enables control over the coupling between spins
and allthe motional modes, despite the density of the second-sideband
spectrum, enabling extension of the technique to longer ion chains®*.

Although the displacement and squeezing operations in this
demonstration were sequentially executed, on-resonance, simultane-
ous> and/or off-resonance operations®* can natively realize additional
classes of quantum gates and spin Hamiltonians comprising high-order
interactions, including pure N-body terms with N> 4. Other gates
with many-body interactions are generally accompanied by other
many-body terms of lower order, asdemonstrated above (Fig. 4b). The
full power and expression of suchinteractionsin trapped-ion quantum
computers may, thus, benefit from machine learning approaches’ to
deploy families of such interactions for speeding up and improving
the performance of general quantum circuits. It could be particularly
useful in variational quantum algorithms” " that can expand the native
set of gates.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41567-023-02102-7.
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Methods

Native ion-phonon interactions

We control the displacement and squeezing operations of the ions
using pairs of optical Raman beams (Supplementary Fig. 1shows the
schematic). The beam that globally addresses the chain traverses an
acousto-optical modulator that is simultaneously driven with two RF
signals A,sin(w.t + ¢.(t)) and A_sin(w_t + ¢_(¢)) that split and shift
its optical frequency into two distinct tones. We simultaneously
drivebothred-andblue-sideband transitions to generate displacement
or squeezing operations, and set their amplitudes A, and A_to be
nearly equal. Control over the beatnote frequency, %(wJr —w_),of the
tones with respect to the carrier transition enables selection of the
driven sidebands transitions; here we address the lowest-frequency
radial mode, denoted as mode number 1 with frequency w,, by tuning
the relative detuning A = %(w+ —w_) — w; tobe onresonance (4=0).

We modulate the amplitude of the individually addressing beams
to control the amplitude of the displacement of the target zig-zag mode
as well as to suppress the displacements of all the other off-resonant
modes. The amplitude-shaped waveform is based on the optimal
control technique®* using a sinusoidal basis (Supplementary Fig. 2
shows anexample for asingle displacement stage of athree-ion chain).

The spin-dependent displacement operator on the nthion as a
function of time is given by’

DD (a(t)) = exp (frfij”(oz(t)dT - a*(t)d)), 3)

where d = ¢ + ip denotes the bosonic phonon annihilation operator
of the target lowest-frequency radial mode. The time-dependent
displacement is given by

t
a(t) = %rz"l/- dreil@t+60) 0 (7). 4)
)

Here Q,(¢) is the Rabi frequency that can be varied up to about 1 MHz,
as we independently calibrate experimentally using single-qubit
rotations acting on the carrier transition. The Lamb-Dicke param-
etersn, = 0.08b, characterizing the coupling of the zig-zag motional
mode to the nthspininclude mode participation factors for the zig-zag
mode (number 1) of b,; = (0.41, 0.82, 0.41) for the three-ion chain and
b,;=(0.21,-0.67,0.67,-0.21) for the four-ion chain, assuming a quad-
ratic trapping potential along the chain axis. The applied potentials
give anaverage spacing of about 3.7 umbetween the ions to maximize
coupling with the equidistant fixed-spacing optical Raman beams, for
which w, =2.817 MHz for the three-ion chain and w, = 2.781 MHz for
the four-ion chain, where the radial centre-of-mass frequency in both
configurationsis 3.030 MHz.

The relative phase between the two RF tones 6¢ = (¢, — ¢_)/2
controls the orientation of displacement in the phase space, and the
common phase ¢ = (¢, + ¢_ —m)/2 determines the orientation of
the spin operator on the Bloch sphere & = cos ¢,0{" + sin@,0{". We
nominally tune the phase ¢, = 0 to render the operator 6" = 6" as
considered in the main text, and tune 4 = O to resonantly drive the
lowest-frequency phonon mode and generate the edges of the
rectangular-shaped trajectories whose orientation depends on the
relative phase; motion along the g (-g) coordinate (denoted as D, in
Extended DataFig.1) is realized by setting the relative phase at 6¢ = 0
(6¢ =) and motion along the p (-p) coordinate (denoted as D,
inExtended DataFig.1) isrealized by setting 8¢ = 1/2 (6¢p = 311/2). The
durationofadisplacement pulseis 26 psinthe three-ion configuration
and 44 psinthe four-ion configuration.

We apply squeezing operations on the zig-zag mode by tuning the
relative frequency of the tones at twice the motional frequency,
A = 1w, —w_) - 2w, = 0. Here we use an unmodulated square-shaped
pulse (with about 1 ps for the rise time and fall time of the edges), and

we find that the expected coupling to the other modes is small. This
actson the nthion to squeeze the motion according to the operator

1

Aln) 52 _ 412
Sé")(t) —e:% &) —-a ), 5)

where the projection of the spin operator is controlled by the common
phase of the two tones, ¢ = w+ (¢, + ¢_)/2. We nominally tune ¢ = 0
sothat 8 = 6. The squeezing amplitude andits orientation are, thus,

given by the complex parameter

t
& = %qfﬂ f dr62,(1)ei(AT+60) 6)
0

We tune 4 = 0 to resonantly drive the zig-zag mode and control
the direction in the motional phase space that is squeezed using
8¢ = (¢, - ¢_)/2. Thedirection of squeezing in the experiment is aligned
with the g coordinate, with squeezing (anti-squeezing) correspond-
ing to 6¢ = 0(m). The duration of a squeezing pulse is about 29 ps in
the three-ion configuration and about 49 ps in the four-ion configu-
ration. In particular, the control over the phases 6¢ and 6¢ (deter-
mining the direction of displacement and squeezing operations,
respectively) depends only on the relative phases ¢, — ¢_ of the
two RF signals that are fed into one of the acousto-optical modula-
tors, and do not depend on the relative optical phases of the Raman
beams.

We implement single-qubit rotations using a composite pulse
sequence (SK1sequence™) toimplement the unitary operation

R () = exp (-i35) @

on the nth spin by driving a single tone of the global beam (4_=0) on
resonance with the carrier transition such that 8 = ¢,. Each single-qubit
gatetakes12.7 ps. We use these single-qubit operations for the prepara-
tion of the initial state along the x axis and for echo pulses Rg’)(in)
that commute with the spin operators in the circuit and suppressing
effects of small uncompensated light shifts.

Experimental calibration

We verify the value of @ =0 by running a short sequence
RV G)D(")(a)R;”) (—g) on the target spin initially in state |V,) and for
variable rotation axis 6. The angle 6, for which the spin-flip probability
is minimal gives @ = 6, + g Similarly, we verify the value of ¢ = 0 by
runningashortsequence R"” (g)sg")Rg’) (—g)on the target spininitially
instate|V,), and find that ¢ = 6,.

We verify the relative orientation of the displacement and squeez-
ing operations, 5¢ with respect to 6¢, by measuring the spin-flip prob-
ability of the edge ions for the squeezed rectangle phase gate by the
sequence in Extended Data Fig. 1b for the initial state|1{"1”1{”) and
the nominal value of §¢ = 0 but for different values of 6¢. For small
displacement and squeezing (&yef < g), the spin-flip probability
is minimized for 8¢ = 0 and is given by p, = sin’(e “®,), whereas it
is maximized for 8¢ = wand is given p, = sin*(e *®,). The measured
values of p, and p, can determine @, and §.

We compensate for light-induced shifts generated during the
displacement and squeezing operations by tuning the relative
amplitude imbalance of the two tones |A, — A_|/|A. + A_| at the level of
about 1%. The imbalance applied during the squeezing and displace-
mentoperationsisindependently tuned to account for different shifts,
for example, from residual coupling to Zeeman states outside of the
space of the spin qubits and detuned by +4.2 MHz from the carrier
spin-flip transition. The orientation of the magnetic field is also tuned
to suppress the Zeeman transition amplitudes.
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We routinely calibrate for drifts in the motional frequency of
the oscillator by driving sequences that combine D™(a)D™(-a)
and scanning for the motional frequency 4 (Supplementary Fig. 3a).
Here we implement D™(-a) by applying the pulse D™(a) and
shifting the motional phase by 8¢>6¢ + 1, which manifests the inverse
of the displacement operation only if the driving is resonant (4 = 0).
When the displacement is driven off-resonantly, the operation is not
reversed and residual coupling between the spin and phonons leads
to anon-zero spin-flip probability, which allows the calibration of the
motional frequency to better than 100 Hz. Similarly, the operations
s{7s®, where s are realized by advancing 8¢ by m, give a similar
dependence on motional frequency. We generated a composite
sequence that uses these operations and allows for an efficient check
ofthe motional frequency (Supplementary Fig. 3b). Additional details
and characterizations of our experimental setup can be found
elsewhere>*>,

Data availability
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findings of this study are available from the corresponding authors
onreasonable request.
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Extended Data Fig.1| Experimental sequences. a, Sequence of displacement
operations acting on the two edge ions and composing the MS interaction,

spin by aspin-dependent factor exp(&f(z)&‘ + (fff)( )asseen from theidentity

enclosing a closed rectangular loop in phase-space and generating the evolution 5(m)(-&D;(zn)(ia)5(m) ©= Dgn)(iea’(‘m)fa)- The operators D;(zn)(i“) and Df,")(ia)
inFig. 2a. b, Superimposing spin-dependent squeezing operations on the denote displacement of the target phonon mode via the nthion by + a along the
second spin scales the displacement generated by the third spin by a factor pandgqcoordinates respectively. S™( + §) denotes the squeezing operator
exp(b,(f){') and consequently also the enclosed phase-space area. This sequence actingonionmand Ré")(in) denotes short single-qubit m-pulses acting on

was applied to the configurations in Fig. 2b-candin Fig. 3and Fig. 4a. the nthion, which commute with the spin-dependent displacement operations
¢, Displacement of the edge two spins and simultaneous squeezing of the and which correct for slowly-varying uncompensated Stark shifts without

middle spins for the four ions configuration presented in Fig. 4b. The altering the target state. See Methods for further details.

simultaneous squeezing scales the displacement generated by the fourth
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