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Abstract
There is an ambiguity in how to apply the replica trick to spin glass models which have addi-
tional order parameters unrelated to spin glass order—with respect to which quantities does
one minimize vs maximize the action, and in what sequence? Here we show that the correct
procedure is to first maximize with respect to “replica” order parameters, and then minimize
with respect to “conventional” order parameters. With this result, we further elucidate the
relationship between quenched free energies, annealed free energies, and replica order—it
is possible for the quenched and annealed free energies to differ even while all replica order
parameters remain zero.

Keywords Spin glasses · Replica trick · Disordered systems

1 Introduction

1.1 Opening Remarks

Spin Hamiltonians in which the interaction coefficients are random variables feature in var-
ious domains of theoretical physics. They are used to model spin glasses, systems in which
the magnetic moments are frozen but disordered at low temperature [1–4]. Relatedly, they
have been used to establish deep connections between statistical mechanics and optimiza-
tion problems in computer science [5, 6]. Quantum random Hamiltonians have also received
renewed interest due to relationships to holography, quantum gravity, and non-Fermi liquids
[7, 8]. These examples are by no means exhaustive, and countless more references can be
found in those given above.

Analysis of such Hamiltonians is difficult, even for mean-field models in which every
degree of freedom interacts equivalently with all others. In this mean-field context, which
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is the focus of the present work, the “replica trick” has proven to be instrumental [2, 6, 9]
(see also the recent Ref. [10] for a historical overview). Although sometimes described as a
purely mathematical (and hardly rigorous) manipulation, many physical phenomena related
to ergodicity-breaking can be seen quite naturally via the replica theory.

A further aspect of random Hamiltonians that the replica trick quantifies is the distinction
between “quenched” and “annealed” free energies. For example, consider a classical Ising
model (spins labeled by i ∈ {1, · · · , N }) of the form

H =
∑

i j

Ji jσiσ j , (1)

where σi ∈ {+1,−1}, and the set of couplings {Ji j } ≡ J is drawn randomly from some joint
probability distribution P(J ). The partition function Z(J ) ≡ Tre−β H is clearly a function of
the couplings J . The quenched and annealed free energy densities, fQ and fA respectively,
differ in whether one averages log Z(J ) or Z(J ) itself:

fQ ≡ − lim
N→∞(Nβ)−1

EJ log Z(J ), fA ≡ − lim
N→∞(Nβ)−1 logEJ Z(J ), (2)

where EJ · · · ≡ ∫ dJ P(J ) · · · denotes an average over J .
The quenched free energy fQ is the physically relevant quantity for disordered systems [2,

3], since it treats the couplings as fixedparameterswhen computing thermodynamic quantities
and only averages over them afterwards (note in particular that derivatives of fQ yield the
disorder-averaged values of observables). Yet the annealed free energy fA can be important
as well—it is considered in the context of inference problems [11] and has applications in
randommatrix theory [12]. Moments of the partition function are also of interest for quantum
gravity, owing to relationships between gravitational path integrals and matrix integrals, e.g.,
as in Ref. [13]. Finally, at the very least, fA serves as a simple lower bound to fQ by Jensen’s
inequality.

Thus it is natural to ask whether the two free energies are in fact equivalent in a given
model at a given point in the phase diagram. In the inference context, this informs the ability
to perform “quiet planting”, as discussed in Ref. [11]. It is also a practical matter in general,
since the annealed free energy is more straightforward to evaluate than the quenched free
energy (and see Ref. [14] for examples in which the two can be proven to be equal without
needing to calculate the latter). One often finds that there are distinct “phases” in which
fQ = fA and in which fQ �= fA. In particular, Ref. [14] gives a proof that fQ �= fA at
low temperature in any mean-field model (whether classical or quantum) with infinite-range
random interactions between local degrees of freedom such as spins or bosons (which itself
stands in contrast to the behavior in certain fermionic analogues [15, 16]).

Yet in situations where fQ �= fA, the implications for the quenched free energy itself
(which we reiterate is the relevant thermodynamic quantity for disordered systems) are in
fact quite subtle. The replica trick mentioned above identifies whether fQ �= fA as part
of a larger calculation of the quenched free energy, and it makes clear that there is a close
relationship to the order parameters used to describe the (quenched) system. The purpose
of the present paper, however, is to clarify that relationship by resolving certain ambiguities
in the application of the replica trick. To the best of our knowledge, this issue has not been
discussed in the literature (with one exception, which we discuss below). Since even stating
the problem requires some explanation,we feel that it is best to beginwith a concrete example.

Before proceeding,wemust acknowledge twocaveats. First, the results here solely concern
fully-connected models with Gaussian random interactions. These models are already quite
rich and of significant interest in their own right (as the above references and those therein
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can attest), but it would of course be valuable to consider whether and how our results
extend beyond mean-field theory. Second, as noted above, the replica trick is in general
rather heuristic and certainly not rigorous—there are situations in which it is either known
or conjectured not to give correct results [17, 18]. Our results should be viewed as similarly
heuristic. Yet given the enormous success of the replica trick in mean-field models, we do
not see this as a major detraction.

1.2 An Example—The Sherrington–Kirkpatrick Model

Consider the famous Sherrington-Kirkpatrick (SK) model for a classical Ising spin glass
[19]:

H =
∑

i< j

Ji jσiσ j , (3)

where each Ji j is an independent Gaussian with mean zero and variance 1/N (thus the
interactions are infinite-range). The annealed free energy of this model is straightforward to
evaluate:

EJ Z(J ) =
∑

σ

exp

[
(N − 1)β2

4

]
= exp

[
(N − 1)β2

4
+ N log 2

]
, (4)

and thus

fA = − 1

β
log 2 − β

4
. (5)

The replica trick enters for the calculation of the quenched free energy, via the mathemat-
ical identity

EJ log Z(J ) = lim
n→0

n−1 logEJ Z(J )n . (6)

Note that the left-hand side is precisely −Nβ fQ. For positive integer n, EJ Z(J )n can be
evaluated without much more difficulty than EJ Z(J ). The result can be expressed (see Refs.
[2, 3] for details) as an integral over the off-diagonal components of matrix Qαα′ , where
α, α′ ∈ {1, · · · , n} label the different factors (“replicas”) of Z(J ):

EJ Z(J )n ∼
∫

dQ exp
[− NnβSn(Q)

]
, (7)

where
∫
dQ is shorthand (up to unimportant prefactors) for the integral over all components

of Q, with effective replicated action

Sn(Q) ≡ −β

4
+ β

2n

∑

α<α′
Q2

αα′ − 1

nβ
log Tr exp

[
β2
∑

α<α′
Qαα′σασα′

]
. (8)

Eq. (7) is then evaluated by saddle point at large N , and the saddle-point value of Sn(Q) in
the limit n → 0 is precisely fQ (see Eq. (6)). Note that the equations determining the saddle
points can be written

Qαα′ = 〈σασα′ 〉
eff, (9)

where 〈 · 〉eff denotes a thermal expectation value at unit temperaturewith respect to the single-
site but many-replica Hamiltonian Heff ≡ −β2∑

α<α′ Qαα′σασα′
. We can thus interpret

Qαα′ as the order parameter characterizing the degree of correlation between replicas α and
α′.
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First note that the annealed free energy is recovered simplyby setting Q = 0 inEq. (8). This
makes sense—averaging over J introduces terms into the action which couple the replicas
and (due to the mean-field nature of the model) can be expressed solely in terms of Q. Those
terms vanish when Q = 0, meaning that EJ Z(J )n ∼ [EJ Z(J )]n and the right-hand side of
Eq. (6) becomes logEJ Z(J ).

Determining the quenched free energy requires considering all values of Q, however. One
of the more mysterious aspects of the replica trick is that Eq. (7) is dominated as n → 0
by the saddle point which maximizes Sn(Q), i.e., the saddle point which seems to give the
smallest contribution to EJ Z(J )n . As bizarre as it is, the final expression for the quenched
free energy has been rigorously verified through independent (but far more technical and
opaque) means [20–23], so one can safely accept this prescription of maximizing the action.
We can thus summarize the expressions for the two free energies as (with n → 0 implied)

fQ = max
Q

Sn(Q), fA = Sn(0). (10)

Note that the two are equal if and only if Sn(Q) is maximized at Q = 0.
When the maximum is at Q �= 0, we refer to the system as having “replica order”. An

important subtlety is that replica order does not necessarily imply spin glass order—it is
standard to identify spin glass order with saddle points that further break the permutation
symmetry between the n replicas, corresponding physically to broken ergodicity1. That said,
spin glass order is a specific type of replica order and is often found in practice (such as in
the SK model at low temperature).

There is evidently a relationship between whether fQ = fA and replica order. In the SK
model, this relationship is quite straightforward — fQ = fA if and only if there is no replica
order. One can see why from Eq. (9)—Q = 0 signifies that the replicas are uncorrelated, and
thus EJ Z(J )n factors into [EJ Z(J )]n . Given this, it is tempting to extrapolate and assume
that Q = 0 always implies fQ = fA. However, one of our main results is that this is not
true—it is possible for the two free energies to differ even in the absence of replica order. To
see why, we must turn to more complex models in this work.

1.3 Summary of Results

The SK and related models are special in that they only have spin glass order parameters.
More complicated models (even still infinite-range) may have additional order parameters
unrelated to spin glass order. The replicatedpartition functionwill then take the form (compare
to Eq. (7))

EJ Z(J )n =
∫

dRdQ exp
[− NnβSn(R, Q)

]
, (11)

where Q denotes the set of order parameters characterizing inter-replica correlations as in the
SK model, and R denotes those characterizing single-replica properties. More precisely, the
variables Qαα′ will carry two replica indices2 and the variables Rα will carry a single replica
index. We refer to the two-index quantities as “replica” order parameters and the one-index

1 We refer to standard textbooks [2, 6, 9] for a full discussion of this point, but briefly, broken ergodicity and
the existence of multiple equilibrium states implies that some replicas may lie in the same state while others
lie in different states, hence a lack of permutation symmetry among replicas.
2 In fact, the quantities Q will carry only two replica indices (as opposed to higher numbers as well) only
when the couplings Ji j are Gaussian-distributed and enter linearly into the Hamiltonian, such as in Eq. (3).
This is by far the situation most considered in the literature, at least for infinite-range models, and we focus
on it as well.
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quantities as “conventional” order parameters. The action Sn(R, Q) of course depends on
the specific model under consideration. We give explicit examples in the following sections
(and note that this form holds only in fully-connected models).

While in principle one again simply has to identify the dominant saddle point, the presence
of conventional order parameters makes this task even more delicate. We know that the
replica trick entails maximizing the action with respect to Q, but since the conventional order
parameters are unrelated to inter-replica correlations, one would expect to still minimize
with respect to R. Yet the operations of maximizing over Q and minimizing over R do not
generically commute, and so one still has to determine in which order to perform the two (if
this really is the correct procedure to follow). This is the ambiguity in the replica trick that
we alluded to above.

In this paper, we show that the correct procedure is to first maximize with respect to Q,
giving an effective action solely in terms of R, and then minimize with respect to R. In other
words,

− lim
N→∞(Nβ)−1

EJ log Z(J ) = min
R

[
max

Q

[
Sn(R, Q)

]]
, (12)

which we refer to as the “min-max” prescription. To the best of our knowledge, this prescrip-
tion has not yet been articulated in the literature. While one can often succeed in selecting
the correct saddle point on physical grounds [24–27], it is nonetheless desirable to have
an explicit procedure such as Eq. (12) which does not require independent insight. This is
especially true given the renewed interest in quantum models, which generically contain
conventional order parameters almost by definition3.

Themin-max prescription explains how the quenched and annealed free energies can differ
even without replica order. Since the maximization over Q occurs separately for each value
of R, the maximum is at a function Qc(R), and we can write fQ = minR Sn(R, Qc(R)). On
the other hand, the annealed free energy is still recovered by setting Q = 0, but now for all
values of R and with the minimization over R remaining. We thus have that

fQ = min
R

Sn
(
R, Qc(R)

)
, fA = min

R
Sn
(
R, 0

)
. (13)

Denote the values of R at which the two minima are obtained by RQ and RA respectively.
Clearly we have that fQ = fA if Qc(R) = 0 for all R, and slightly more generally4, fQ = fA
if Qc(RA) = 0. Yet replica order refers to whether Qc(RQ) = 0. It can very well be that
RQ �= RA, and there is nothing preventing one from having Qc(RQ) = 0 even though
Qc(RA) �= 0. In such a situation, the two free energies differ (since RQ �= RA) but there is
no replica order (since Qc(RQ) = 0).

One would be hard-pressed to justify having both fQ �= fA and Q = 0 without the
min-max prescription in mind, for it is still true that the replicated action Sn(R, Q) reduces
to that of the annealed calculation by setting Q = 0. One then has to explain how the same
action can yield different results in the quenched and annealed situations. For example, if
one were to perform the optimizations in the opposite order—maxQ minR Sn(R, Q)—then
it would be the case that Q = 0 implies fQ = fA. The min-max prescription avoids this by
having a separate maximization over Q for each value of R, so that one can have Q = 0 for
some but not all R.

3 When expressed as path integrals, the degrees of freedom in quantum models have imaginary-time depen-
dence, meaning that the (single-replica) imaginary-time correlation function appears as a conventional order
parameter once averaging over disorder.
4 To see this, note for all R and Q, we have by definition that Sn(R, Qc(R)) ≥ Sn(R, 0) ≥ Sn(RA, 0). Thus
if Qc(RA) = 0, the minimum of Sn(R, Qc(R)) must be at RA, meaning fQ = Sn(RA, 0) = fA.
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It remains to justify the min-max prescription, Eq. (12). We do so in Sects. 3 and 4.
Sect. 3 studies systems consisting of a generic collection of random energy models (REMs).
These models are useful because they can be analyzed both through replicas and by direct
calculation. By considering a sufficiently broad class of REMs, we show that only the min-
max prescription gives the correct quenched free energy in all cases. This same approach was
used in Ref. [28]—the only work of which we are aware to explicitly consider how to apply
the replica trick to models with conventional order parameters—albeit applied to a much
more restricted class of models (and we in fact disagree with certain of their conclusions, as
discussed below). Sect. 4 then considers the rigorous theory of infinite-range spin glasses,
generalized to models with conventional order parameters. Although a complete analysis
is beyond the scope of this work, we show that the “Aizenman-Sims-Starr” scheme, which
is a starting point for many rigorous results, can be adapted to include conventional order
parameters precisely by following the min-max prescription. Examples of this can already
be found in the mathematical literature [29–31], and the purpose of this section is to establish
the relevance of those results in the present context and generalize them further.

Beforehand, we revisit the replica theory of the transverse-field p-spin model in Sect. 2.
This is important for two reasons. First, for all that we have already said, we have not yet
demonstrated that different prescriptions in the replica theory can yield different results for
a model of independent interest. The transverse-field p-spin model turns out to be such a
system. It has been well-studied both to understand the effects of quantum fluctuations on
spin glass phases [24, 25, 32–34] and in the context of quantum computing [35–37].

Second, the transverse-field p-spin model also provides an example in which fQ �= fA
without there being any replica order. The proof inRef. [14] applies to thismodel (with a trivial
generalization5), meaning that fQ �= fA at low temperature, regardless of the transverse
field strength. On the other hand, the commonly-accepted phase diagram of this model is
completely featureless, and in particular has Q = 0 at all temperatures, for fields exceeding a
critical value �c [24, 25, 32]. This pair of observations was in fact the original motivation for
the presentwork.Wehave argued above that themin-maxprescription is preciselywhat allows
for both to hold simultaneously, and it is satisfying to see this explicitly in the transverse-field
p-spin model at large field.

2 Transverse-Field p-Spin Model

The transverse-field p-spin model consists of all-to-all random interactions between the
z-components of N spin-1/2s (plus a uniform transverse field):

Hp =
∑

(i1···i p)

Ji1···i p σ̂
z
i1

· · · σ̂ z
i p

− �
∑

i

σ̂ x
i , (14)

where the first sum is over all tuples of p indices (i.e., i1 < · · · < i p), and each Ji1···i p is
Gaussian-distributedwithmean 0 and variance p!/2N p−1. Here σ̂ a denotes the a-component

5 Strictly speaking, Ref. [14] considers models that consist only of infinite-range Gaussian interactions, but it
is clear from the proof technique that the result holds regardless of any other terms in the Hamiltonian as well
(as long as those terms are independent of the random interactions). In short, averaging the partition function
over the Gaussian couplings always gives a factor with exponent going as β2 (see Eq. (4) for an example),
irrespective of what other terms are in the Hamiltonian. This translates to an upper bound on the annealed free
energy going as −β, hence fA → −∞ as β → ∞, again regardless of any additional terms. Yet in systems
with a finite local Hilbert space, such behavior cannot occur in the quenched free energy. See Ref. [14] for
further details.
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of the Pauli spin operator, while σ without a hat will denote a classical variable taking values
±1. The integer p is considered another parameter of the model. We shall specifically take
the large-p limit, since this allows for explicit final expressions and justifies the ansatz used
at a later stage, but the same qualitative features can be confirmed at finite p (at least within
that ansatz) using Eq. (26) below. We follow Ref. [24] in our derivation of the replicated
effective action, then show that different prescriptions yield different phase diagrams.

To evaluate the n’th moment of the partition function, we first express it as a classical
partition function following the usual Suzuki-Trotter procedure:

EJ
(
Tre−β Hp

)n

= EJTr exp

⎡

⎣− β

M

M∑

τ=1

n∑

α=1

∑

(i1···i p)

Ji1···i p σ
α
i1 (τ ) · · · σα

i p
(τ ) +

n∑

α=1

N∑

i=1

H�(σα
i )

⎤

⎦, (15)

where σα
i (τ ) denotes the value of spin i on replica α at imaginary-time slice τ ∈ {1, · · · , M},

and

H�(σα
i ) ≡

M∑

τ=1

(
σα

i (τ )σα
i (τ + 1)

2
log coth

β�

M
+ 1

2
log

1

2
sinh

2β�

M

)
. (16)

Carrying out the average over disorder gives

EJ
(
Tre−β Hp

)n

=Tr exp

⎡

⎣
∑

(i1···i p)

p!β2

4N p−1M2

∑

αα′

∑

ττ ′
σα

i1 (τ )σα′
i1 (τ ′) · · · σα

i p
(τ )σα′

i p
(τ ′)+

∑

αi

H�(σα
i )

⎤

⎦

∼ Tr exp

[
Nβ2

4M2

∑

αα′

∑

ττ ′

(
1

N

∑

i

σα
i (τ )σα′

i (τ ′)
)p

+
∑

αi

H�(σα
i )

]
,

(17)

introducing order parameters gives

EJ
(
Tre−β Hp

)n ∼
∫

DRDQ exp

⎡

⎣Nβ2

4M2

∑

α

∑

ττ ′
Rα(τ, τ ′)p + Nβ2

4M2

∑

α �=α′

∑

ττ ′
Qαα′(τ, τ ′)p

⎤

⎦

· Tr exp
[
∑

αi

H�(σα
i )

]
∏

α

∏

τ<τ ′
δ

(
Rα(τ, τ ′) − 1

N

∑

i

σα
i (τ )σα

i (τ ′)
)

·
∏

α<α′

∏

ττ ′
δ

(
Qαα′(τ, τ ′) − 1

N

∑

i

σα
i (τ )σα′

i (τ ′)
)

,

(18)

and introducing Lagrange multipliers gives

EJ
(
Tre−β Hp

)n ∼
∫

DRDQDKD� exp

⎡

⎣Nβ2

4M2

∑

α

∑

ττ ′
Rα(τ, τ ′)p + Nβ2

4M2

∑

α �=α′

∑

ττ ′
Qαα′(τ, τ ′)p

⎤

⎦
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· exp
[
− Nβ2

2M2

∑

α

∑

τ<τ ′
Kα(τ, τ ′)Rα(τ, τ ′) − Nβ2

2M2

∑

α<α′

∑

ττ ′
�αα′(τ, τ ′)Qαα′(τ, τ ′)

]

·
(
Tr exp

[
∑

α

H�(σα) + β2

2M2

∑

α

∑

τ<τ ′
Kα(τ, τ ′)σα(τ )σα(τ ′)

]

· exp
[

β2

2M2

∑

α<α′

∑

ττ ′
�αα′(τ, τ ′)σα(τ )σα′

(τ ′)
])N

, (19)

where
∫ DRDQDKD� denotes the integral over all components of R, Q, K , �. See Ref.

[24], as well as Refs. [6, 9, 38], for details of each step above.
The remaining integrals can be evaluated by saddle point at large N . At the dominant

saddle point, Rα(τ, τ ′) can be interpreted6 as the (imaginary-time) autocorrelation function
of replica α:

Rα(τ, τ ′) = 1

N

∑

i

〈
σ̂ αz

i (τ )σ̂ αz
i (τ ′)

〉
, (20)

where 〈 · 〉 denotes the thermal expectation value with respect to the original Hamiltonian Hp ,
understood to act independently on each replica, and σ̂ αz

i (τ ) ≡ eτ Hp σ̂ αz
i e−τ Hp (with time-

ordering implied). Similarly, Qαα′(τ, τ ′) can be interpreted as the inter-replica correlation
function:

Qαα′(τ, τ ′) = 1

N

∑

i

〈
σ̂ αz

i (τ )
〉〈
σ̂ α′z

i (τ ′)
〉
. (21)

The quantities K and � are the Lagrange multipliers corresponding to R and Q respectively
(see the discussion in App. A).

Note that two of the saddle-point equations are simply

Kα(τ, τ ′) = pRα(τ, τ ′)p−1, �αα′(τ, τ ′) = pQαα′(τ, τ ′)p−1, (22)

which allows us to eliminate K and � (although see App. A). Furthermore, since all replicas
are equivalent and each has a separate time-translation invariance, we can take as an ansatz
solutions of the form

Rα(τ, τ ′) = R(τ − τ ′), Qαα′(τ, τ ′) = Qαα′ . (23)

This is especially justified given the expressions in Eqs. (20) and (21). Thus the partition
function reduces to the form in Eq. (11):

EJ
(
Tre−β Hp

)n ∼
∫

DRDQ exp
[− NnβSn(R, Q)

]
, (24)

with effective action

Sn(R, Q) = (p − 1)β

4M

∑

τ

R(τ )p + (p − 1)β

4n

∑

α �=α′
Q p

αα′

6 Note that Eqs. (20) and (21) follow directly from Eq. (18), without needing to introduce the effective single-
spin Hamiltonian seen in Eq. (19). The saddle-point equations give R and Q additional interpretations as

expectation values of σα(τ)σα(τ ′) and σα(τ)σα′
(τ ′) with respect to that single-spin Hamiltonian, but we

will not need those interpretations for the present analysis.

123



Revisiting the Replica Trick: Competition … Page 9 of 33 125

− 1

nβ
log Tr exp

[
∑

α

H�(σα) + pβ2

4M2

∑

α

∑

ττ ′
R(τ − τ ′)p−1σα(τ)σα(τ ′)

]

· exp
⎡

⎣ pβ2

4M2

∑

α �=α′

∑

ττ ′
Q p−1

αα′ σα(τ)σα′
(τ ′)

⎤

⎦. (25)

Extremizing Eq. (25) with respect to R and Q is still not quite tractable (even without the
subtleties of taking n → 0). Thuswe consider the large-p limit, in which a static 1RSB ansatz
is known to be valid [24, 25]: take R(τ −τ ′) = R independent of time, and divide the replicas
into n/m groups of m replicas each, such that Qαα′ = Q for α and α′ in the same group and
Qαα′ = 0 otherwise. In the n → 0 limit, m is taken to lie between 0 and 1, with m < 1 and
Q > 0 corresponding to spin glass order [2, 3, 6]. Following some Hubbard-Stratonovich
transformations and further algebra—see Ref. [24]—the effective action becomes

Sn(R, m, Q) = (p − 1)β

4

(
R p + (m − 1)Q p

)

− 1

mβ
log
∫

dy√
π

e−y2
(∫

dz√
π

e−z22 cosh β

√
h(y, z)2 + �2

)m

,

(26)

where h(y, z) ≡ y
√

pQ p−1 + z
√

p(R p−1 − Q p−1). The large-p limit can now be taken
depending on the values of R and Q:

• pR p−1 → 0, pQ p−1 → 0: The action can be expanded as

Sn(R, m, Q) ∼−1

β
log 2 cosh β�+ (p − 1)β

4
R p − p

4�
R p−1 tanh β�+ (p − 1)β

4
(m − 1)Q p .

(27)

To leading order, it is simply Sn ∼ −β−1 log 2 cosh β�. There is a saddle point at

R ∼ 1

β�
tanh β�, m = 1, Q = 0, (28)

which does not have spin glass order (technically all values of Q are degenerate atm = 1,
but the fact that m = 1 means that there is no spin glass order regardless).

• pR p−1 → ∞, pQ p−1 → 0: The action can be expanded as

Sn(R, m, Q) ∼ − 1

β
log 2 + (p − 1)β

4
R p − pβ

4
R p−1

− �2

pβ R p−1 + (p − 1)β

4
(m − 1)Q p. (29)

This regime also yields a saddle point at

R ∼ 1 − 4�2

p2β2 , m = 1, Q = 0, (30)

near which Sn ∼ −β−1 log 2 − β/4 to leading order.
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Fig. 1 Effective action of the transverse-field p-spin model to leading order at large p. Rows and columns
indicate the values of R and Q (the action is independent of R and/or Q to leading order whenever each is
strictly less than 1), and any m-dependence is indicated in the table entry. Subleading terms, given in the main
text but not here, yield distinct saddle points in each of the three regions (the SG saddle point exists only for
β > 2

√
log 2). QPM stands for the “quantum paramagnetic” saddle point, CPM for “classical paramagnetic”,

and SG for “spin glass”

• pR p−1 → ∞, pQ p−1 → ∞ (with pR p−1− pQ p−1
� ∞): The action can be expanded

as

Sn(R, m, Q) ∼ − 1

mβ
log 2 + (p − 1)β

4
R p − pβ

4
R p−1

+ (p − 1)β

4
(m − 1)Q p − pβ

4
(m − 1)Q p−1

− �2

mpβQ p−1 + �2

m2 pβQ2p−2

(
R p−1 − Q p−1).

(31)

If β < 2
√
log 2, then there is no saddle point with respect to m, meaning the maximum

is at m = 1 and this case reduces to the previous one. Yet if β > 2
√
log 2, then there is

an additional saddle point at

R ∼ 1 − 2�2

p2β
√
log 2

, m ∼ 2
√
log 2

β
, Q ∼ 1 − �2

p2 log 2
, (32)

with action Sn ∼ −√
log 2.

We have thus identified three distinct saddle points. Eq. (28) is termed the “quantum param-
agnetic” (QPM) saddle point, Eq. (30) is termed the “classical paramagnetic” (CPM) saddle
point, and Eq. (32) (when it exists) is termed the “spin glass” (SG) saddle point. Note that the
QPM and CPM saddle points do not have spin glass order and differ only in the value of R,
whereas CPM and SG have similar values of R but differ in the presence of spin glass order.
The corresponding QPM, CPM, and SG phases are those portions of the phase diagram in
which each saddle point is dominant.

The values of the action in these three regions are illustrated in Fig. 1 (note that we
do not consider R < Q on physical grounds—the correlation between replicas should not
exceed the imaginary-time correlation within a single replica). The question remains of how
to extremize the action. Here we consider six possibilities7:

7 This is not an exhaustive list. Barring a rigorous derivation (which this paper does not provide), there is
always the possibility that a more complicated prescription may be correct and simply happen to reduce to the
min-max prescription in the cases considered here.We cannot rule this out, and encourage further investigation.
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• Min-max prescription:

f = min
R

max
m,Q

Sn(R, m, Q). (33)

• Max-min prescription:

f = max
m,Q

min
R

Sn(R, m, Q). (34)

• Full minimization:

f = min
R,m,Q

Sn(R, m, Q). (35)

• Full maximization:

f = max
R,m,Q

Sn(R, m, Q). (36)

• Local stability (minimization): Among the two (for β < 2
√
log 2) or three (for β >

2
√
log 2) stable saddle points identified above, select the one with the lowest free energy.

• Local stability (maximization): Among those same saddle points, select the one with the
highest free energy.

As stated in Sect. 1, we argue for Eq. (33), themin-max prescription. Eq. (34) shares the sensi-
ble behavior of minimizing over conventional and maximizing over replica order parameters,
and differs only in the order in which those two are performed. Eqs. (35) and (36) strike us as
less justifiable, and we include them mainly for comparison. Minimizing among the stable
saddle points has been advocated for previously [28] (we discuss this prescription further in
Sect. 3), and we include the corresponding maximization for completeness as well. Note that
these last two are different than fully minimizing or maximizing over all order parameters,
since the stable saddle points are local minima with respect to R but maxima with respect to
m and Q.

Fig. 2 shows the phase diagrams that result from many of these prescriptions. The dif-
ferences are rather striking. The min-max phase diagram, first of all, is quite sensible and
matches that reported in the literature [24, 25]. The max-min phase diagram, however, com-
pletely lacks a QPM phase. Minimizing among stable saddle points overlooks the entire SG
phase, whereas maximizing gives inverted behavior as a function of �, predicting that the
QPM phase would be dominant at low � but not at high �. Full minimization and full maxi-
mization are not shown, as they give particularly unrealistic results—either would disregard
all of the above saddle points for being local minima in the direction of R but local maxima
in the direction of m and Q. Thus it is clear that the issue of which prescription to follow
does have significant consequences, and the purpose of the following sections is to provide
evidence that Eq. (33) is the correct one to follow.

Before proceeding, we also observe that at large � and sufficiently low temperature, the
system is indeed in a situation (using the min-max prescription) where fQ �= fA without
there being any replica order — fQ is given by the QPM saddle point and fA by CPM8.
Furthermore, this occurs exactly as described in Sect. 1.3. For values of R near that of the
CPM saddle point, the maximization over replica order parameters gives m < 1 and Q ∼ 1,
while for values of R near that of QPM, instead m = 1 and Q = 0.

8 One can easily confirm, by reproducing the steps from Eq. (15) to Eq. (26) but with n = 1 throughout,
that calculating fA is indeed equivalent to minimizing over R while fixing m = 1 and Q = 0, i.e., fA =
minR Sn(R, 1, 0).
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Fig. 2 Phase diagram for the transverse-field p-spin model (at large p) following different prescriptions for
extremizing the action, as discussed in the main text. QPM stands for the “quantum paramagnetic” phase,
CPM for “classical paramagnetic”, and SG for “spin glass”

Lastly, it is interesting to consider the results of Refs. [26, 27] from this perspective.
The authors analyzed the closely related quantum spherical p-spin model, and in the course
of determining the equilibrium phase diagram, observed that there can be multiple stable
solutions to the saddle-point equations. They used physical arguments to rule out certain
solutions and obtain the correct phase diagram, but noticed that their reasoning does not
correspond to any simple rule for comparing the free energies alone—the higher free energy
must be chosen when comparing certain solutions in certain parameter ranges, but the lower
free energy must be chosen when comparing others.

Given the close analogy between the spherical model and the Isingmodel considered here,
we expect the min-max prescription to provide an explanation for those observations. The
“spurious” paramagnetic solution found inRefs. [26, 27] corresponds to theCPMsaddle point
here, andwe indeedfind that it is rendered invalid at low temperature by themaximization over
spin glass order parameters.We further find that the saddle point with the higher free energy is
selected when crossing the continuous phase boundary, while that with the lower free energy
(after neglecting the spurious solution) is selectedwhen crossing the discontinuous boundary,
all analogous to that of Refs. [26, 27]. It would be worthwhile to revisit the spherical model
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and explicitly confirm that the min-max prescription yields the correct behavior there — we
leave this for future work.

3 Collections of Random EnergyModels

The random energy model (REM) [39–41] and its generalizations [28, 42, 43] occupy an
important place in spin glass theory because they are some of very few models that can
be solved straightforwardly both with and without the replica trick. They can thus be used
to test many of the assertions made in the replica theory. In that spirit, here we consider a
generalization of the REM that involves both conventional and replica order parameters, and
for which different prescriptions for extremizing the action result in different free energies.
Only the min-max prescription leads to the correct free energy in all cases.

This same strategy was used in Ref. [28] for the special case of a spin-1 REM. However,
we disagree with the conclusion of that paper. Ref. [28] claims that one should identify the
set of “locally stable” saddle points, in the sense of being a local minimum with respect to
conventional order parameters and a local maximumwith respect to replica order parameters,
and then select the locally stable saddle point with the lowest free energy. This prescription
strikes us as problematic for two reasons:

• Many models exhibit first-order spin glass transitions, in which the replica order param-
eters jump discontinuously as one crosses the phase boundary [38, 44]. For those models
that do not have any conventional order parameters, it is by now well-established that the
saddle point with the highest free energy still must be chosen, even though both saddle
points in question remain locally stable across the transition.

• When a model does have both conventional and replica order parameters, the Hessian
of the action will generically have off-diagonal terms which couple fluctuations in the
two. Unless one is willing to disregard the off-diagonal elements (which we shall soon
show is erroneous in any case), it is unclear even how to interpret the statement of local
stability since the eigenvectors of the Hessian have components along both conventional
and replica fluctuations9.

Thus we feel that the issue of which prescription to follow remains unsettled10, and here
consider an even broader class of REMs so as to help resolve it.

First we review the original REM. It is a system of N spin-1/2s for which the Hamiltonian
HREM(σ z) (diagonal in the σ z basis) is merely an independent Gaussian random variable
for each of the 2N basis states. Each energy level has mean zero and variance N/2. While
technically a random variable, one can easily show (see Ref. [6]) that with probability 1 in
the N → ∞ limit, the density of states at energy per spin ε scales as exp [N (log 2 − ε2)] for
|ε| ≤ √

log 2 and is zero otherwise. Thus the free energy per spin f is, again with probability

9 We did not run into this issue in Sect. 2 only because the off-diagonal elements of the Hessian happened to
be subleading at large p. That said, we found that the prescription of minimizing among stable saddle points
gave incorrect results nonetheless.
10 There is another sense in which one could define local stability, in terms of the eigenvalues of the Hessian
with respect to fluctuations in individual elements of the overlap matrix Qαα′ . It is known that the dominant
saddle point of the replicated action has positive eigenvalues even in the n → 0 limit [6, 45], just as a
conventional action in terms of conventional order parameters would. We see no reason why the requirement
of positive eigenvalues would not continue to hold for an action with simultaneous replica and conventional
order parameters. However, this sense of local stability still does not allow one to choose frommultiple locally
stable saddle points at first-order transitions. Thus the issue of the correct prescription remains.
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1 in the N → ∞ limit,

f = − lim
N→∞

1

Nβ
log
∫ √

log 2

−√
log 2

dε exp
[

N
(
log 2 − ε2 − βε

)]

=
{

− 1
β
log 2 − β

4 , β ≤ 2
√
log 2

−√
log 2, β > 2

√
log 2

.

(37)

Note that since Eq. (37) holds with probability 1, it gives the average (quenched) free energy
density as well. Also note the phase transition at βc ≡ 2

√
log 2—the entropy is positive and

the energy density varies with temperature for β < βc, whereas the entropy is zero and the
energy density is frozen at its lowest value for β > βc. The former is the “paramagnetic”
phase and the latter is identified as the “spin glass” phase.

Our generalization, termed the “multi-REM”, is simply a collection ofREMsparametrized
by the variable R ∈ [0, 1]. At each value of R, we take there to be exp [Ns(R)] basis states.
Each of those exp [Ns(R)] energy levels is the sum of a deterministic term Nh(R) and aREM
term of variance N�(R)/2 (again independent of all others). The three functions s(R), h(R),
and �(R) are parameters of the model. For present purposes, the physical interpretation of
the quantity R is unimportant. Note that the original REM is the special case

s(R) =
{
log 2, R = 1

−∞, R < 1
, h(R) = 0, �(R) = 1, (38)

and the spin-1 REM of Ref. [28] is the special case

s(R) = R log 2 − R log R − (1 − R) log (1 − R), h(R) = −DR,

�(R) =
{
1, R = 1

0, R < 1
. (39)

Further examples, corresponding to the REM in a magnetic field or with additional ferro-
magnetic interactions, can be found in Ref. [40].

The exact same argument as for the REM implies that the density of states for the random
term at a given value of R is exp [N (s(R) − ε2/�(R))] for |ε| ≤ √

�(R)s(R) and is zero
otherwise. Since the total energy is Nh(R) + Nε, the free energy density is

f = − lim
N→∞

1

Nβ
log
∫ 1

0
dR
∫ √

�(R)s(R)

−√
�(R)s(R)

dε exp

[
N

(
s(R) − ε2

�(R)
− βh(R) − βε

)]

= − lim
N→∞

1

Nβ
log
∫ 1

0
dR

⎧
⎨

⎩
exp

[
N
(

s(R) − βh(R) + β2�(R)
4

)]
, β ≤ 2

√
s(R)
�(R)

exp
[

N
(

− βh(R) + β
√

�(R)s(R)
)]

, β > 2
√

s(R)
�(R)

= min
R∈[0,1]

⎧
⎨

⎩
− s(R)

β
+ h(R) − β�(R)

4 , β ≤ 2
√

s(R)
�(R)

h(R) − √
�(R)s(R), β > 2

√
s(R)
�(R)

.
(40)

In cases where s(R) = −∞ for certain values of R (such as Eq. (38) above), those values
should simply be omitted from the final minimization over R.

Eq. (40) is the exact expression for the free energy. Let us now see how to recover it from
the replica trick. Denoting individual states by σ and (somewhat sloppily) indicating those
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belonging to a given value of R by σ ∈ R, the partition function is

Z =
∫ 1

0
dR
∑

σ∈R

exp
[− Nβh(R) − βE(σ )

]
, (41)

where E(σ ) is the REM contribution to the energy of state σ—it is a Gaussian of mean zero
and variance N�(R)/2, independent of all other energies. The n’th moment of Z is, after
some algebra (see Ref. [6]),

EE Zn =
∫ 1

0

n∏

α=1

dRα

∑

σ 1∈R1

· · ·
∑

σ n∈Rn

exp

[
−Nβ

n∑

α=1

h(Rα) + Nβ2

4

∑

αα′
δ
σασα′ �(Rα)

]
.

(42)

In REM-like models such as this, the factor δ
σασα′ serves as the overlap Qαα′—it can only

take the values 0 and 1, but we nonetheless extremize the action in Eq. (42) over all possible
values of the matrix Qαα′ . Much as we did for the transverse-field p-spin model, assume
that the dominant extremum has Rα = R independent of α, and make a 1RSB ansatz—the
replicas divide into n/m groups of m each, with δ

σασα′ = 1 (meaning σα = σα′
) for α and

α′ in the same group, and δ
σασα′ = 0 (meaning σα �= σα′

) otherwise. The action of Eq. (42)
is then

Sn(R, m) ∼ − s(R)

mβ
+ h(R) − mβ�(R)

4
, (43)

and the question is once again how to select the dominant extremum.
First consider the min-max prescription. Recalling that m ∈ [0, 1] in the n → 0 limit, we

have that

min
R∈[0,1] max

m∈[0,1] Sn(R, m) = min
R∈[0,1]

⎧
⎨

⎩
− s(R)

β
+ h(R) − β�(R)

4 , β ≤ 2
√

s(R)
�(R)

h(R) − √
�(R)s(R), β > 2

√
s(R)
�(R)

. (44)

This is identical to the exact expression in Eq. (40). Thus the min-max prescription gives the
correct result for any multi-REM, regardless of the forms of s(R), h(R), and �(R).

It remains only to confirm that there exist instances of multi-REMs—i.e., choices of s(R),
h(R), and �(R)—for which any other prescription gives a result different from Eq. (44).
We can then claim that the min-max prescription is unambiguously the correct one. Fig. 3
presents such an instance (or at least one for which the prescriptions of Sect. 2 all give distinct
results), namely:

s(R) = 1 + R

2
log

2

1 + R
+ 1 − R

2
log

2

1 − R
, h(R) = − (1 − R)2

4
, �(R) = R3.

(45)

Furthermore, one can confirm that at the correct saddle point (indicated by the star in Fig. 3),
∂2Sn(R, m)/∂ R2 < 0. This example demonstrates that even the local stability of the saddle
point would be misleading without the min-max prescription in mind—it appears to be
unstable to fluctuations in R, but is stable along the path (R, m(R)) (solid line in Fig. 3) due
to the off-diagonal element of the Hessian.
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Fig. 3 Replicated action Sn(R, m) (Eq. (43)) at β = 5 for the multi-REM with functions s(R), h(R), and
�(R) given in Eq. (45). Sufficiently negative values of Sn(R, m) are not colored (note that Sn(R, m) → −∞
asm → 0 for all R �= 1). Black symbols indicate the order parameter values obtained by extremizing Sn(R, m)

following different prescriptions—min–max (star), max-min, full minimization, full maximization, annealed
free energy (see Eqs. (33) through (36)). The yellow line is the curve m(R) which maximizes Sn(R, m) for
each value of R — the min-max prescription corresponds to minimizing along this line (colour figure online)

4 Generalized Aizenman–Sims–Starr Scheme

The Aizenman-Sims-Starr scheme [46] is a variational expression for the free energy of the
classical p-spin model. It has played an essential role in the rigorous proofs of predictions
from the replica theory [20, 23]. Here we do not aim to obtain any rigorous results, but rather
showhowa straightforwardgeneralizationof theAizenman-Sims-Starr schemeautomatically
identifies themin-max prescription as the correct procedure. Special cases of this already exist
in themathematical literature [29–31], even going further to obtain an explicit final expression
for the free energy (which we do not do here). First we review the original scheme following
Ref. [46], and then present the min-max generalization.

4.1 Existence of the Free Energy

Consider the classical p-spin model:

H (N )
J (σ ) =

∑

(i1···i p)

Ji1···i p σi1 · · · σi p , (46)
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where (unlike in Sect. 2) each σi is simply a classical variable taking values±1 and H (N )
J (σ )

is simply a function of the 2N possible configurations σ ≡ {σi }N
i=1. We indicate the system

size as a superscript for later convenience. For technical reasons that will become clear, we
assume that p is even. The same results can be derived for odd p, but substantially more
work is required.

The Aizenman-Sims-Starr scheme consists of two observations:

• The free energy resulting from Eq. (46) is equivalent to that of a model in which each
spin interacts not with the other N − 1 spins but with a “bath” of auxiliary spins.

• The free energy resulting from Eq. (46) is greater than or equal to that of any model
in which each spin interacts with a “bath” having certain properties (including the bath
alluded to in the previous point).

To derive the first statement, we begin by showing that the average free energy density f
satisfies

f = lim
N→∞ lim sup

L→∞
F (N+L) − F (L)

N
, (47)

where F (N ) denotes the disorder-averaged free energy of size N . Both the existence of a
well-defined f ≡ limN→∞ F (N )/N in the first place and its equivalence to Eq. (47) follow
from the sub-additivity of the free energy, i.e., F (N+L) ≤ F (N ) + F (L) (see App. B). Thus
our first task amounts to proving this sub-additivity.

Let σ ≡ {σi }N
i=1 denote a set of N spins and α ≡ {α j }L

j=1 denote a separate set of L spins.

Consider independent Hamiltonians H (N )
J (σ ), H (L)

J (α), and H (N+L)
J (σ, α). All three are of

the form in Eq. (46), but the couplings have different variances (p!/2N p−1, p!/2L p−1, and
p!/2(N + L)p−1 respectively). In particular, the covariances of the energies are

EH (N )
J (σ )H (N )

J (σ ′) ∼ N

2

(
σ · σ ′)p

, EH (L)
J (α)H (L)

J (α′) ∼ L

2

(
α · α′)p

,

EH (N+L)
J (σ, α)H (N+L)

J (σ ′, α′) ∼ N + L

2

(
N

N + L

(
σ · σ ′)+ L

N + L

(
α · α′)

)p

,

(48)

where we define

σ · σ ′ ≡ 1

N

∑

i

σiσ
′
i , α · α′ ≡ 1

L

∑

j

α jα
′
j . (49)

Lastly define the “interpolation Hamiltonian”

HJ (σ, α; λ) ≡ √
λ

(
H (N )

J (σ ) + H (L)
J (α)

)
+ √

1 − λ H (N+L)
J (σ, α), (50)

and corresponding λ-dependent free energy F(λ) ≡ −β−1
E log

∑
σα exp [−β HJ (σ, α; λ)].

Note that F(0) = F (N+L) and F(1) = F (N ) + F (L). Thus we shall prove that F (N+L) ≤
F (N ) + F (L) by showing that dF(λ)/dλ ≥ 0 for all λ ∈ [0, 1].

The key tool is “Gaussian integration by parts” [21, 23]: if {Xa} is any collection of mean-
zero Gaussian random variables, and f (X) is any differentiable function of the variables,
then (assuming f (X) does not grow so rapidly that the averages fail to exist)

E
[
Xa f (X)

] =
∑

b

E
[
Xa Xb

]
E

[
∂ f (X)

∂ Xb

]
. (51)
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We do not prove Eq. (51) here (see instead the above references), but note that the formula
can be viewed as a generalization of Wick’s theorem11. We shall repeatedly use Eq. (51) in
situations analogous to the present one, i.e., where we have a Gaussian mean-zero Hamil-
tonian HJ (σ, α; λ) depending on a parameter λ, a “bare” probability distribution w(σ, α)

(uniform in the present context but not more generally), the free energy

F(λ) ≡ − 1

β
E log

∑

σα

w(σ, α) exp
[

− β HJ (σ, α; λ)
]
, (52)

and we aim to compute dF(λ)/dλ. Gaussian integration by parts gives

dF(λ)

dλ
=
∑

σα

E

[
∂ HJ (σ, α; λ)

∂λ

w(σ, α) exp
[− β HJ (σ, α; λ)

]
∑

ργ w(ρ, γ ) exp
[− β HJ (ρ, γ ; λ)

]
]

=
∑

σα

∑

σ ′α′
E

[
∂ HJ (σ, α; λ)

∂λ
HJ (σ ′, α′; λ)

]

· E

[
∂

∂ HJ (σ ′, α′; λ)

w(σ, α) exp
[− β HJ (σ, α; λ)

]
∑

ργ w(ρ, γ ) exp
[− β HJ (ρ, γ ; λ)

]
]

= −β
∑

σα

∑

σ ′α′
E

[
∂ HJ (σ, α; λ)

∂λ
HJ (σ ′, α′; λ)

]

· E

[
δσσ ′δαα′

w(σ, α) exp
[− β HJ (σ, α; λ)

]
∑

ργ w(ρ, γ ) exp
[− β HJ (ρ, γ ; λ)

]

−w(σ, α)w(σ ′, α′) exp
[− β HJ (σ, α; λ) − β HJ (σ ′, α′; λ)

]
(∑

ργ w(ρ, γ ) exp
[− β HJ (ρ, γ ; λ)

])2

]
.

(53)

Denote by 〈 · 〉(1)λ the “one-replica” thermal expectation value

〈 · · · 〉(1)
λ

≡
∑

σα

· · · E w(σ, α) exp
[− β HJ (σ, α; λ)

]
∑

ργ w(ρ, γ ) exp
[− β HJ (ρ, γ ; λ)

] , (54)

and denote by 〈 · 〉(2)λ the “two-replica” thermal expectation value

〈 · · · 〉(2)
λ

≡
∑

σα

∑

σ ′α′
· · · Ew(σ, α)w(σ ′, α′) exp

[− β HJ (σ, α; λ) − β HJ (σ ′, α′; λ)
]

(∑
ργ w(ρ, γ ) exp

[− β HJ (ρ, γ ; λ)
])2 .

(55)

Then we can express Eq. (53) succinctly as

1

β

dF(λ)

dλ
= −

〈
E

[
∂ HJ (σ, α; λ)

∂λ
HJ (σ, α; λ)

] 〉(1)
λ

+
〈
E

[
∂ HJ (σ, α; λ)

∂λ
HJ (σ ′, α′; λ)

] 〉(2)
λ

.

(56)

Note that Eq. (56) holds regardless of the degrees of freedom being summed over (even the
decomposition into σ and α is unnecessary) and regardless of the bare distribution w(σ, α).

11 To see this, consider the case where f (X) is simply a product of Gaussians: f (X) = ∏
k Xbk . Then

Eq. (51) amounts to the statement E[Xa
∏

k Xbk ] = ∑
k E[Xa Xbk ]E[∏l �=k Xbl ], which is Wick’s theorem

expressed recursively.
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In the present case, using Eq. (50) with Eq. (48),

E

[
∂ HJ (σ, α; λ)

∂λ
HJ (σ ′, α′; λ)

]
= N + L

4

[
N

N + L

(
σ · σ ′)p + L

N + L

(
α · α′)p

−
(

N

N + L

(
σ · σ ′)+ L

N + L

(
α · α′)

)p]
.

(57)

The right-hand side has the property (at least for even p) that it is automatically non-negative
and vanishes when σ = σ ′ and α = α′—the non-negativity because the function x p is
convex, and the vanishing because σ ·σ = α ·α = 1. Thus the one-replica term of Eq. (56) is
zero and the two-replica term is non-negative. This proves that dF(λ)/dλ ≥ 0 and F (N+L) ≤
F (N ) + F (L), as claimed.

4.2 The Original Variational Principle

With Eq. (47) in hand, we now use the indicated order of limits (1 � N � L) to simplify
F (N+L) and F (L). For the size-(N + L) system, again denote the first N spins by {σi }N

i=1
and the remaining L spins by {α j }L

j=1 , and write the Hamiltonian as

H (N+L)
J (σ, α) = E(0,p)(α) + E(1,p−1)(σ, α) + · · · + E(p,0)(σ ), (58)

where E(q,p−q)(σ, α) denotes the sum of terms involving q of the N spins and p − q of the
L spins:

E(q,p−q)(σ, α) ≡
∑

(i1···iq )

∑

( jq+1··· jp)

Ji1···iq jq+1··· jp σi1 · · · σiq α jq+1 · · · α jp . (59)

Note that here each coupling has variance p!/2(N + L)p−1, and thus E(q,p−q)(σ, α) has
variance scaling with N and L as N q L1−q (times a prefactor). One can show (see Ref. [46])
that the terms with q ≥ 2 do not affect the free energy, since their variances vanish in the
limit N/L � 1. Thus for the purpose of evaluating f , we can approximate the size-(N + L)

Hamiltonian by

H (N+L)
J (σ, α) ∼ E(0,p)(α) + E(1,p−1)(σ, α)

= E(0,p)(α) +
∑

i

⎛

⎝
∑

( j2··· jp)

Ji j2··· jp α j2 · · · α jp

⎞

⎠ σi .
(60)

As for the size-L system, its Hamiltonian is not quite equal to E(0,p)(α) because the
couplings in the latter have slightly too small variance. However, we do have the equality (in
distribution)

H (L)
J (α) = E(0,p)(α) +

∑

( j1··· jp)

J ′
j1··· jp

α j1 · · · α jp , (61)

where J ′ is independent of E(0,p) and

EJ ′2
j1··· jp

= p!
2

(
1

L p−1 − 1

(N + L)p−1

)
∼ (p − 1)N

2

p!
L p

. (62)
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Thus define the quantities

hi (α) ≡
∑

( j2··· jp)

Ji j2··· jp α j2 · · · α jp , U (α) ≡
∑

( j1··· jp)

J ′
j1··· jp

α j1 · · · α jp , (63)

which are independent of each other and have covariances (in the limit 1 � N � L)

Ehi (α)hi ′(α
′) ∼ δi i ′

p

2

(
α · α′)p−1

, EU (α)U (α′) ∼ (p − 1)N

2

(
α · α′)p

. (64)

Note that we are again using the dot product defined in Eq. (49). Also define the probability
distribution

w(α) ≡ exp
[−βE(0,p)(α)

]
∑

γ exp
[−βE(0,p)(γ )

] . (65)

Eqs. (60) and (61) together with these definitions allow us to write Eq. (47) as (with the limit
1 � N � L implied)

f ∼ − 1

Nβ
E log

∑

σα

w(α) exp

[
−β
∑

i

hi (α)σi

]

+ 1

Nβ
E log

∑

α

w(α) exp
[

− βU (α)
]
. (66)

The averages in Eq. (66) are over all random variables—E(0,p), hi , and U .
Eq. (66) can indeed be interpreted as each spin σi experiencing only a local field hi (α)

depending on “bath” degrees of freedom labeled by α (plus a correction term depending
solely on the bath). The factor w(α) is simply a Boltzmann distribution for the bath states
(see Eq. (65)). While not useful on its own, since the right-hand side is no easier to evaluate
than the original free energy, this expression does suggest the form that a more general bath
should take if to be compared against the p-spin model. Miraculously, as we explain in what
follows, the right-hand side of Eq. (66) evaluated for any such bath is less than or equal to
f , which gives us the variational expression we seek.
Thus now letα denoteany degrees of freedomandw(α)denoteany probability distribution

on α. Suppose there is an associated dot product α · α′ with α · α = 1. Define the Gaussian
random functions hi (α) and U (α) (independent of each other) such that

Ehi (α)hi ′(α
′) = δi i ′

p

2

(
α · α′)p−1

, EU (α)U (α′) = (p − 1)N

2

(
α · α′)p

, (67)

and lastly define

f ≡ − 1

Nβ
E log

∑

σα

w(α) exp

[
−β
∑

i

hi (α)σi

]

+ 1

Nβ
E log

∑

α

w(α) exp
[

− βU (α)
]
, (68)

where the averages12 are over hi and U . Note that we recover the previous expressions by
taking α to be the set of L spins in a size-(N + L) p-spin model, with α ·α′ ≡ L−1∑

j α jα
′
j

12 One can allow forw(α) to itself be random and independent of the other quantities, as is the case in Eq. (65).
Since f ≥ f for any individual realization of w(α), it trivially holds that f ≥ Ew f as well.
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andw(α) given by Eq. (65). Ref. [46] refers to any such bath as a “random overlap structure”
(ROSt)—we have that the L spins of a p-spin model themselves form a ROSt.

To show that f ≥ f , regardless of any further properties of the bath, define another
“interpolation Hamiltonian”

HJ (σ, α; λ) ≡ √
λ
(

H (N )
J (σ ) + U (α)

)
+ √

1 − λ
∑

i

hi (α)σi , (69)

with free energy g(λ) ≡ −(Nβ)−1
E log

∑
σα w(α) exp [−β HJ (σ, α; λ)]. Note that g(1) −

g(0) = f − f . Thus the statement f ≥ f is equivalent to g(1) ≥ g(0). The derivative
dg(λ)/dλ is again given by Eq. (56) (up to a factor of N ), and we have that

E

[
∂ HJ (σ, α; λ)

∂λ
HJ (σ ′, α′; λ)

]
= N

4

[(
σ · σ ′)p + (p − 1)

(
α · α′)p

−p
(
α · α′)p−1(

σ · σ ′)
]
. (70)

Once again, the right-hand side is (for even p) non-negative due to convexity and vanishing
when σ = σ ′ and α = α′, meaning dg(λ)/dλ ≥ 0 and f ≥ f .

To summarize, this proves that the free energy of the p-spin model is greater than or equal
to the “free energy” (defined in Eq. (68)) of any ROSt. At the same time, we know there is
at least one ROSt (the L spins of a larger p-spin model) whose free energy equals that of the
p-spin model. We can thus somewhat schematically write

f = max
ROSt

f (ROSt), (71)

i.e., the free energy is obtained by maximizing f over all possible ROSts. This is the
Aizenman-Sims-Starr variational expression. Note that it quite suggestively involves a max-
imization rather than minimization over ROSts.

Admittedly, Eq. (71) is still not a useful expression on its own, since the task of evaluating
f for all possible ROSts appears hopelessly difficult. Yet there turns out to be a subset of
ROSts for which f can be evaluated explicitly, and furthermore, the resulting expression
agrees exactly with the action emerging from the replica theory [23]. It can also be shown
(through much work) that no other ROSt can give a larger f than those in this subset. Thus
this line of reasoning, which we shall not expand on any further (see instead Refs. [20–
23]), ultimately provides a rigorous justification for the claim that one must maximize the
replicated action to obtain the correct free energy of the p-spin model.

4.3 The GeneralizedVariational Principle—Naive Attempt

The preceding subsection was concerned entirely with the classical p-spin model. We now
show how to generalize to more complicated models, in particular many which involve
conventional order parameters. As a sufficiently broad class of models, let �σ denote any set
of degrees of freedom indexed by both a “spin” label i ∈ {1, · · · , N } and “component” label
τ ∈ {1, · · · , M}. An individual element of �σ is written σi (τ ). The set of all components of
a given spin is denoted �σi ≡ {σi (τ )}τ , and the set of all τ -components is denoted σ(τ) ≡
{σi (τ )}i . Each individual σi (τ ) is a classical but otherwise arbitrary variable, and there can
be constraints between the different components of each �σi .
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We take the Hamiltonian to be13

H (N )(�σ) =
∑

(i1···i p)

∑

τ1···τp

J
τ1···τp
i1···i p

σi1(τ1) · · · σi p (τp) +
∑

i

H0(�σi )

≡ H (N )
J (�σ) +

∑

i

H0(�σi ),

(72)

where H0 is an arbitrary single-site term, and where the couplings are mean-zero Gaussians
that are independent with respect to spin indices but can have almost arbitrary correlations
with respect to component indices (including restrictions on which combinations of compo-
nents are allowed):

E

[
J

τ1···τp
i1···i p

J
τ ′
1···τ ′

p

i ′1···i ′p

]
= p!

2N p−1 δi1i ′1 · · · δi pi ′p C
τ ′
1···τ ′

p
τ1···τp . (73)

Our analysis requires only two conditions on the correlation matrix C . The first is simply
that it should be permutation-symmetric: for any permutation π of the numbers 1 through p,

C
τ ′
1···τ ′

p
τ1···τp = C

τ ′
π(1)···τ ′

π(p)
τπ(1)···τπ(p)

. (74)

Note that the same permutation π enters for both primed and unprimed indices. Eq. (74)
shouldbe considered asmerely part of the definition that theHamiltonian is “mean-field”,with
statistically equivalent interactions between all sets of spins. As a result of it, the covariance
structure of the energies takes a relatively simple form:

EH (N )
J (�σ)H (N )

J (�σ ′) ∼ N

2
V (σ · σ ′), (75)

V (σ · σ ′) ≡
∑

τ1···τp

∑

τ ′
1···τ ′

p

C
τ ′
1···τ ′

p
τ1···τp

[
σ(τ1) · σ ′(τ ′

1)
] · · · [σ(τp) · σ ′(τ ′

p)
]
, (76)

where the matrix of dot products σ · σ ′ ≡ {σ(τ) · σ ′(τ ′)}ττ ′ is defined as

σ(τ) · σ ′(τ ′) ≡ 1

N

∑

i

σi (τ )σ ′
i (τ

′). (77)

The second condition onC is that the function V (σ ·σ ′), viewed as a function on the space
of M×M matrices, is convex14. This is a technical assumptionneeded for the proof, analogous
to howwe took p to be even in the preceding subsections.Weexpect our conclusions regarding
the min-max prescription to hold more generally (although see Ref. [18]).

This class ofmodels strikes us as themost general to share the all-to-all random interaction
structure of the p-spin model. There are numerous examples of independent interest:

13 Here the sum over (i1 · · · i p) is over all tuples of p spin indices, i.e., over all i1 through i p such that
i1 < · · · < i p , whereas the sum over τ1 · · · τp is over all τ1 through τp without any restriction on the ordering.
14 To be completely explicit, we are requiring that for any matrices X and Y , and any λ ∈ [0, 1],

V
(
(1 − λ)X + λY

) ≤ (1 − λ)V (X) + λV (Y ).

An immediate consequence is that, again for any X and Y ,

V (X) +
∑

ττ ′
Yττ ′

∂V (X)

∂ Xττ ′
≤ V (X + Y ).
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• Original p-spin model: M = 1, with σi ∈ {+1,−1}. Note that we now allow for
longitudinal fields by the inclusion of the single-site term H0.

• Higher spins: Again M = 1, but now σi takes values in an arbitrary set {s1, · · · , sS}.
• Sphericalmodels: Still M = 1, nowwithσi ∈ (−∞,∞). Tokeep the spectrumbounded,

one usually imposes the “spherical constraint”
∑

i σ 2
i = N . While technically outside

the class of models we are considering, these can easily be included by adding a Lagrange
multiplier to H0 that enforces the spherical constraint [47, 48].

• Classical rotors: There are many ways to generalize the p-spin model to higher-
component spins. Take each σi (τ ) ∈ [−S, S] for some S > 0, with the constraint
that

∑
τ σi (τ )2 = S2 for each i . Our flexibility in choosing C allows for many different

types of interactions even within this situation.
• Transverse-field Ising models (in Suzuki-Trotter representation): Large M , with

σi (τ ) ∈ {+1,−1}. H0 should include a term coming from the transverse field under
Trotterization, as in Sect. 2. However, keep in mind that to truly relate to a quantum
transverse-field model, one would require the opposite limit (M → ∞ at finite N ) to
that considered here (finite M as N → ∞).

• Quantum-mechanical particles: Again large M , now with σi (τ ) ∈ (−∞,∞) subject
to a spherical constraint. Compared to transverse-field Ising models, one only needs a
different H0 coming instead from the Trotterization of the kinetic energy P̂2

i . The subtlety
about taking M → ∞ vs N → ∞ still applies.

• Coherent-state path integrals for spins: Depending on the interaction structure between
quantum spins, it may be more convenient to use coherent states as the basis for the path
integral [49]. This still fits into the class of models we consider, but slightly more thought
is required—τ should label both imaginary time and the spin component, with constraints
among those spin components at the same imaginary time. Regardless, H0 still includes
a term coming from Trotterization, and the M → ∞ vs N → ∞ comment still applies.

Our analysis of the general model in Eq. (72) immediately applies to all of these situations.
While many of them do not involve literal spins, we shall continue to refer to each �σi as a
spin and each σi (τ ) as a component of that spin.

We first attempt to apply the analysis of Sects. 4.1 and 4.2. We shall immediately run into
difficulties, even for simply proving the sub-additivity of the free energy. The remedy that
we propose will in fact allow us to carry out all subsequent steps of the analysis as well, and
in doing so, the min-max prescription will emerge naturally.

As before, consider spins {�σi }N
i=1 and {�α j }L

j=1, together with the three independent Hamil-

tonians H (N )(�σ), H (L)(�α), and H (N+L)(�σ , �α). The random terms of the Hamiltonians have
covariances given by Eq. (75) and the analogous expressions for the size-L and size-(N + L)

systems. Define the interpolation Hamiltonian

H(�σ , �α; λ) ≡ √
λ

(
H (N )

J (�σ) + H (L)
J (�α)

)
+ √

1 − λ H (N+L)
J (�σ , �α)

+
∑

i

H0(�σi ) +
∑

j

H0(�α j )

≡ HJ (�σ, �α; λ) +
∑

i

H0(�σi ) +
∑

j

H0(�α j ), (78)

with free energy F(λ) ≡ −β−1
E log

∑
�σ �α exp [−β H(�σ, �α; λ)]. Note that it is only the

random part of the Hamiltonians that we interpolate between as λ varies. We still have that
F(0) = F (N+L) and F(1) = F (N )+F (L), so sub-additivity would again result from showing
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that dF(λ)/dλ ≥ 0. The derivative is given by Eq. (56) (with the single-site terms as part of
the bare distribution w(�σ, �α)), and we now have that

E

[
∂ HJ (�σ , �α; λ)

∂λ
HJ (�σ ′, �α′; λ)

]
= N + L

4

[
N

N + L
V (σ · σ ′) + L

N + L
V (α · α′)

−V

(
N

N + L
σ · σ ′ + L

N + L
α · α′

)]
.

(79)

Here we run into a problem—although Eq. (79) is again automatically non-negative due to
the convexity of V , the model under consideration need not have σ · σ = α · α for all �σ
and �α, even for single-component spins15. Thus the one-replica term of Eq. (56) need not be
zero, and since the one- and two-replica terms come with opposite signs, there is no reason
to expect dF(λ)/dλ ≥ 0 for all (or any) λ ∈ [0, 1].

4.4 The GeneralizedVariational Principle—Min–Max Prescription

We circumvent the above issue by restricting the trace to be only over configurations having
certain values of σ(τ) · σ(τ ′) and α(τ) · α(τ ′). Namely, pick some symmetric matrix Rττ ′
and define the R-dependent “restricted partition function”

Z (N )(R) ≡
∑

�σ

(R)
exp

[− β H (N )(�σ)
]
, (80)

where the superscript (R) indicates that only those configurations with σ(τ) · σ(τ ′) = Rττ ′
for all τ and τ ′ (abbreviated σ · σ = R) are to be summed over. The full partition function
can then be written as the sum of Z (N )(R) over all possible values of R:

Z (N ) =
∑

R

Z (N )(R). (81)

Define f (R) ≡ − limN→∞(Nβ)−1
E log Z (N )(R) and f ≡ − limN→∞(Nβ)−1

E log Z (N ).
We shall derive an Aizenman-Sims-Starr variational expression for each f (R) (compare to
Eq. (71)):

f (R) = max
ROSt

f (R,ROSt). (82)

Then Eq. (81) can be evaluated by saddle-point at large N to give

f = min
R

max
ROSt

f (R,ROSt). (83)

Note that this is precisely the min-max prescription, interpreting the matrix Rττ ′ as a set of
conventional order parameters16—after all, the need to introduce Rττ ′ stems solely from the
structure of the configuration space, without any reference to replicas or correlations between
energy levels.

In the replica theory, Rττ ′ appears as the “self-overlap”, i.e., the value of the diagonal
entries of the overlap matrix. While simply 1 in the classical p-spin model, they can vary and
must be integrated over more generally. The transverse-field p-spin model of Sect. 2 provides

15 As a simple example, consider a spin-1 model: σi ∈ {−1, 0, 1}. Then σ ·σ ≡ N−1∑
i σ 2

i can lie anywhere
between 0 and 1 depending on the configuration.
16 Again considering the spin-1 example, R is the value of N−1∑

i σ 2
i , which is precisely the order parameter

used in Ref. [28] to analyze the model at large p.
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an explicit example—in the course of simplifying the n’th moment of the partition function
(Eq. (18)), we found the need to introduce not only the inter-replica overlap Qαα′(τ, τ ′) ≡
N−1∑

i σα
i (τ )σα′

i (τ ′) but also the intra-replica overlap Rα(τ, τ ′) ≡ N−1∑
i σα

i (τ )σα
i (τ ′).

As argued then and confirmed now by Eq. (83), the minimization over the self-overlap R
must be performed after the maximization over Q.

To prove Eqs. (82) and (83), we start with an analogue to Eq. (47):

f (R) = lim
N→∞ lim sup

L→∞
F (N ,L)(R, R) − F (L)(R)

N
, (84)

where F (N ,L)(R, R) is the free energy of a size-(N + L) system with separate restrictions
σ ·σ = R andα ·α = R (note that this is stricter than simply requiring the total self-overlap be
R). Eq. (84) follows from an analogue of sub-additivity: F (N ,L)(R, R) ≤ F (N )(R)+F (L)(R)

(see App. B). Thus we first prove this inequality.
Define the interpolation Hamiltonian H(�σ, �α; λ) exactly as in Eq. (78) (hence we still

have Eq. (79) as well), but now with the interpolation free energy

F(R, R; λ) ≡ − 1

β
E log

∑

�σ �α

(R,R)
exp

[− β H(�σ, �α; λ)
]
. (85)

where (R, R) indicates that the sums are only over �σ and �α with σ · σ = α · α = R. Thus
in applying Eq. (56) with Eq. (79), the one-replica term does now vanish—only states with
σ · σ = α · α = R enter into the thermal expectation values to begin with. The derivative
∂ F(R, R; λ)/∂λ is non-negative, and F(R, R; 0) = F (N ,L)(R, R) is less than or equal to
F(R, R; 1) = F (N )(R) + F (L)(R). Eq. (84) follows.

Sincewe are taking M finite as N , L → ∞ (in the order 1 � N � L), the power-counting
of Sect. 4.2 continues to apply here. Thus

H (N+L)(�σ, �α) ∼ E(0,p)(�α) +
∑

iτ

hi (�α; τ)σi (τ ) +
∑

i

H0(�σi ) +
∑

j

H0(�α j ), (86)

H (L)(�α) ∼ E(0,p)(�α) + U (�α) +
∑

j

H0(�α j ), (87)

where hi (�α; τ) and U (�α) are straightforward generalizations of the expressions in Eq. (63),
with covariances

Ehi (�α; τ)hi ′(�α′; τ ′) = δi i ′
p

2

∑

τ2···τp

∑

τ ′
2···τ ′

p

C
τ ′τ ′

2···τ ′
p

ττ2···τp

[
α(τ2) · α′(τ ′

2)
] · · · [α(τp) · α′(τ ′

p)
]

= δi i ′
1

2

∂V (α · α′)
∂[α(τ) · α′(τ ′)] , (88)

EU (�α)U (�α′) = (p − 1)N

2
V (α · α′)

= N

2

[
∑

ττ ′

[
α(τ) · α′(τ ′)

] ∂V (α · α′)
∂[α(τ) · α′(τ ′)] − V (α · α′)

]
. (89)

The second line of Eq. (88) uses the permutation symmetry of C , and the second line of
Eq. (89) uses that

∑
ττ ′ Xττ ′∂V (X)/∂ Xττ ′ = pV (X). Define

w(�α) ≡
exp

[
−βE(0,p)(�α) − β

∑
j H0(�α j )

]

∑(R)

�γ exp
[
−βE(0,p)( �γ ) − β

∑
j H0( �γ j )

] , (90)
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and we can then express f (R) as

f (R) = − 1

Nβ
E log

∑

�σ �α

(R,R)
w(�α) exp

[
−β
∑

iτ

hi (�α; τ)σi (τ ) − β
∑

i

H0(�σi )

]

+ 1

Nβ
E log

∑

�α

(R)
w(�α) exp

[
− βU (�α)

]
.

(91)

The last step is to consider more general baths, still with a fixed value of R, and show that
f (R) ≥ f (R) for the corresponding bath “free energy” f (R). Apart from the presence of R,
this is exactly analogous to what was done in Sect. 4.2. Thus let �α now denote any degrees
of freedom, still labeled by τ but not necessarily by i . Let w(�α) denote any probability
distribution on �α, and let α(τ) · α′(τ ′) denote any dot product such that α(τ) · α(τ ′) = Rττ ′ .
Define Gaussian random functions hi (�α; τ) and U (�α) with the same covariance structure as
in Eqs. (88) and (89), and define

f (R) ≡ − 1

Nβ
E log

∑

�σ �α

(R,R)
w(�α) exp

[
−β
∑

iτ

hi (�α; τ)σi (τ ) − β
∑

i

H0(�σi )

]

+ 1

Nβ
E log

∑

�α

(R)
w(�α) exp

[
− βU (�α)

]
.

(92)

We use the interpolation technique one final time. Define

H(�σ , �α; λ) ≡ √
λ

(
H (N )

J (�σ) + U (�α)

)
+ √

1 − λ
∑

iτ

hi (�α; τ)σi (τ ) +
∑

i

H0(�σi )

≡ HJ (�σ , �α; λ) +
∑

i

H0(�σi ),

(93)

with

g(R; λ) ≡ − 1

Nβ
E log

∑

�σ �α

(R,R)
w(�α) exp

[− β H(�σ, �α; λ)
]
, (94)

so that g(R; 1) − g(R; 0) = f (R) − f (R). Using Eq. (56) with

E

[
∂ HJ (�σ , �α; λ)

∂λ
HJ (�σ ′, �α′; λ)

]
= N

4

[
V (σ · σ ′) − V (α · α′)

−
∑

ττ ′

[
σ(τ) · σ ′(τ ′) − α(τ) · α′(τ ′)

] ∂V (α · α′)
∂[α(τ) · α′(τ ′)]

]
,

(95)

the restriction to states with σ · σ = α · α = R again ensures that the one-replica term
vanishes. Thus ∂g(R; λ)/∂λ ≥ 0, and f (R) ≥ f (R).

To reiterate, we have shown that the restricted free energy f (R) can be expressed as the
maximum of f (R,ROSt) over all ROSts having the same value of the self-overlap R. Since
f is (almost by definition) the minimum of f (R), this establishes the min-max prescription
in Eq. (83).

However, keep in mind that this does not constitute a proof of the min-max prescription,
since we have not carried out the remaining (much harder) steps needed to verify the replica
results—proving that the replicated effective action is equivalent to f (R,ROSt) for a tractable
subset of ROSts, and then proving that the global maximum is attained among that subset.
It very well may be that subsequent steps cannot be carried out so straightforwardly simply
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by considering a restricted free energy, although complete proofs do already exist for certain
special cases [29–31]. Further investigation is certainly warranted.

5 Conclusion

We have shown that when applying the replica trick to a model with not only spin glass order
but additional types as well, the correct procedure is to first maximize the effective action
with respect to replica order parameters Q and then minimize with respect to the remaining
“conventional” order parameters R. As a result, one should consider the question of spin
glass order (or replica order more generally) separately for each value of R—there can be
(and in fact often is) spin glass order for certain values of R but not for others. Whether the
equilibrium state of the system has spin glass order depends on which value of R gives the
lowest free energy.

This distinction is especially important in regimes where the tendency for spin glass order
competeswith other types of order (such as at low temperature and high field in the transverse-
field p-spin model). In that case, we have shown that different prescriptions for applying the
replica trick can lead to dramatically different phase diagrams (see Fig. 2).

The min-max prescription advocated for here also sheds light on the relationship between
the quenched and annealed free energies. While it is straightforward to see that the two free
energies can differ without any spin glass order (the SKmodel in a longitudinal field provides
a simple example), the fact that there need not be any replica order whatsoever is more subtle,
since the actions being extremized to calculate the two become identical when Q = 0. Yet
according to themin-max prescription, the fact that fQ �= fA only implies that there is replica
order for some value RA which may not be the equilibrium value RQ. In this sense, quite
general arguments showing that fQ �= fA at low temperature in mean-field spin models (see
Ref. [14]) in fact imply very little about the quenched system itself, at least on their own.

An important question going forward is the extent to which these conclusions apply
beyondmean-field theory. The analysis presented here is limited tomodelswith infinite-range
Gaussian random interactions—the free energy reduces to an extremization over a matrix
Qαα′ and vector Rα only in such cases. While these models are already quite interesting and
important, it would certainly be worthwhile to investigate whether there are any implications
to the quenched and annealed free energies agreeing more generally. We leave this for future
work.
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AExtremizingwithRespect toOrderParameters vs LagrangeMultipliers

Entirely unrelated to the replica trick and spin glass physics, there are subtleties in how one
extremizes over (conventional) order parameters and their associated Lagrange multipliers.
This is an old topic and we are certainly not the first to consider it (to the point where it
often passes without comment in the literature). Yet since the present work is specifically
concernedwith the order in which one extremizes an action with respect to various quantities,
we feel that it is appropriate to give a clear discussion of the issue here.

As a concrete example, consider a classical spin-1/2 Ising model with “mean-field” inter-
actions:

H(σ ) = Nε

(
N−1

∑

i

σi

)
, (96)

for some function ε(m). In other words, the energy can be written as a function solely of
the magnetization density N−1∑

i σi . To evaluate the partition function, we can separate the
trace into an outer sum over values of the magnetization m and an inner sum over σ such
that N−1∑

i σi = m:

Z ≡
∑

σ

exp
[− β H(σ )

] =
∫ 1

−1
dm exp

[− Nβε(m)
]∑

σ

δ

(
m − N−1

∑

i

σi

)
. (97)

Defining
∑

σ δ(m−N−1∑
i σi ) ≡ exp [Ns(m)] and evaluating the integral overm by saddle

point, we have that

− lim
N→∞(Nβ)−1 log Z = min

m∈[−1,1]

[
ε(m) − β−1s(m)

]
. (98)

Let us pretend that we do not have an explicit expression for exp [Ns(m)]—while it is
simply a binomial coefficient in the present example, it may not have a closed form more
generally. There are then two ways to proceed. One often sees the δ-function expressed
in integral form as (2π)−1

∫ i∞
−i∞ Ndh exp

[− Nhm + h
∑

i σi
]
(note that h runs along the

imaginary axis). We will discuss this approach momentarily. Alternatively, one can use a
methodmore along the lines of large deviation theory [50] and consider the auxiliary quantity

Z0(h) ≡
∑

σ

exp
[
βh
∑

i

σi

]
= exp

[− Nβg(h)
]
, (99)

where g(h) ≡ −β−1 log 2 cosh βh. Since one could again separate the sum over σ into an
outer and inner sum just as in Eq. (97), we have that17

g(h) = min
m∈[−1,1]

[
− hm − β−1s(m)

]
. (100)

Denote the location of the minimum, which will be a function of h, by m∗(h). There is an
explicit expression for m∗(h): just as Eq. (99) is dominated by σ with magnetizations close
to m∗(h), so is

∂ log Z0(h)

∂h
=
∑

σ

(
β
∑

i

σi

)
exp

[
βh
∑

i σi
]

∑
σ ′ exp

[
βh
∑

i σ ′
i

] ∼ Nβm∗(h), (101)

17 Note that Eq. (100) establishes g(h) as the Legendre transform of s(m). The discussion that follows is
really just an explanation of how to invert the Legendre transform.
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i.e., m∗(h) = −∂g(h)/∂h. At this point, note that if one chooses h so that18 m∗(h) = m,
then from Eq. (100), one has β−1s(m) = −hm − g(h) and

− lim
N→∞(Nβ)−1 log Z = min

m∈[−1,1]

[
ε(m) + hm + g(h)

]
. (102)

Since we have an explicit expression19 for g(h), Eq. (102) can readily be evaluated (keeping
in mind that h is a function of m defined by m∗(h) = m).

In fact, since h solves the equation m = m∗(h) = −∂g(h)/∂h, we can view h as being
determined by extremizing the “action” ε(m) + hm + g(h) at fixed m. Thus the free energy
is determined by extremizing with respect to both m and h. However, note that the second
derivative with respect to h is

∂2g(h)

∂h2 = −Nβ

[〈(
N−1

∑

i

σi

)2〉
−
〈
N−1

∑

i

σi

〉2
]

, (103)

where 〈 · 〉 denotes a thermal expectation value with respect to h
∑

i σi . Thus the second
derivative is automatically negative, and the free energy ismaximized with respect to h. Since
h is really a function of m in Eq. (102), the maximization occurs inside the minimization,
meaning we can write

− lim
N→∞(Nβ)−1 log Z = min

m∈[−1,1]max
h

[
ε(m) + hm + g(h)

]
. (104)

Interestingly, this is another “min-max” prescription, albeit one unrelated to that of the main
text (although see Ref. [51] for an alternate derivation using the interpolation techniques of
Sect. 4).

The same min-max prescription is hidden within the approach to calculating s(m) based
on the integral representation of δ(m − N−1∑

i σi ). In this approach, starting from Eq. (97),
we have that

Z ∼
∫ 1

−1
dm
∫ i∞

−i∞
dh exp

[
− Nβ

[
ε(m) + hm + g(h)

]]
, (105)

with the same g(h) as defined in Eq. (99). The right-hand side can be evaluated by saddle
point, but since h initially runs along the imaginary axis, its contour must be deformed to pass
through the (real) solution to m = −∂g(h)/∂h. We do need that the action be minimized
with respect to h along the trajectory of the contour, but this is fully consistent with the
fact that ∂2g(h)/∂h2 < 0 for real h since the contour passes through the solution vertically.
The second derivative being negative in the real direction implies that it is positive in the
imaginary direction, as required. Thus we are in fact maximizing the action with respect to
real h after all.

Regardless of the approach, it is clear that m and h play different roles. m is undeniably
an order parameter—from the beginning, we use it to decompose the original partition func-
tion (Eq. (97)). h is instead a Lagrange multiplier—we use it to enforce the constraint that

18 Since ∂m∗(h)/∂h is always positive (as one can explicitly check from Eq. (101)) and limh→±∞ m∗(h) =
±1, there is exactly one solution to m∗(h) = m for all m ∈ (−1, 1).
19 One might wonder why we allow ourselves to use the explicit expression for g(h) when we are pretending
to not know the result for s(m). Generically, evaluating s(m) directly will involve a sum over all N degrees
of freedom subject to a constraint (here that

∑
i σi = Nm). On the other hand, Z0(h) is a non-interacting

partition function, and thus evaluating g(h) involves a single sum over one degree of freedom. The latter is
often significantly simpler, hence the reason to consider g(h).
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N−1∑
i σi = m. The conclusion here is that one should first maximize the effective action

with respect to Lagrange multipliers, and then minimize with respect to order parameters.
With the proper ordering in mind, let us lastly consider the solution to the saddle point

equations. We have the pair

∂g(h)

∂h
= −m,

∂ε(m)

∂m
= −h, (106)

where the former is to be solved for h, and then the latter is to be solved for m. Nonetheless,
it is tempting to interpret the latter equation as determining h and then use that expression
in the former to obtain an equation for m. In fact, this is what we do in Sect. 2 of the main
text—we use Eq. (22) to solve for the Lagrange multipliers K and �. Although decidedly
not the procedure we have derived thus far, the substitution h = −∂ε(m)/∂m turns out to be
justified, as we now show.

To be precise, let h∗(m) be the solution to ∂g(h)/∂h = −m, and let h×(m) denote the
function−∂ε(m)/∂m. We have already established that the correct free energy is obtained by
minimizing S∗(m) ≡ ε(m)+h∗m + g(h∗)with respect to m—taking a derivative (assuming
the minimum lies in the interior20 of [−1, 1]) leads to the equation ∂ε(m)/∂m = −h∗(m).
Now instead consider minimizing S×(m) ≡ ε(m)+h×m +g(h×)—taking a derivative gives
[m + ∂g(h×)/∂h×]∂h×/∂m = 0. Thus unless ∂h×/∂m = 0 (a case that can often be treated
separately21), the extrema of S× occur where m = −∂g(h×)/∂h×. Either way — whether
minimizing S∗ or S×—the same equations are being solved (namely Eq. (106)) and the same
two-parameter action is being evaluated (namely ε(m)+hm +g(h)). Thus the correct global
minimum is identified (except for points at which ∂h×/∂m = 0). This is true even though
S∗(m) �= S×(m) for general values of m.

B Consequences of Sub-additivity

We demonstrated in Sect. 4.1 of the main text that the disorder-averaged free energy of
the classical p-spin model is sub-additive, F (N+L) ≤ F (N ) + F (L) (where the superscript
indicates the system size). This implies both that f ≡ limN→∞ F (N )/N exists and that it
can be written as in Eq. (47), reproduced here:

f = lim
N→∞ lim sup

L→∞
F (N+L) − F (L)

N
. (107)

For completeness, we prove this statement here (following Ref. [23]).
The fact that sub-additivity implies the existence of limN→∞ F (N )/N goes by the name

of Fekete’s lemma. To prove it, pick integers M and P , and note that we inductively have

F (K M+P)

K M + P
≤ K F (M)

K M + P
+ F (P)

K M + P
. (108)

Taking K → ∞ gives

lim sup
K→∞

F (K M+P)

K M + P
≤ F (M)

M
. (109)

20 This is natural to expect—∂S∗(m)/∂m = ∂ε(m)/∂m + h∗(m) and h∗(m) → ±∞ as m → ±1, meaning
the minimum cannot lie at either endpoint unless ∂ε(m)/∂m diverges there.
21 For example, suppose ε(m) = m p for p > 2. Then ∂h×/∂m does equal 0 at m = 0, but this is a stationary
point of S∗(m) anyway.
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This holds for all P ∈ {0, 1, · · · , M − 1}, thus lim supN→∞ F (N )/N ≤ F (M)/M . Taking
the liminf as M → ∞ then gives

lim sup
N→∞

F (N )

N
≤ lim inf

M→∞
F (M)

M
, (110)

i.e., the two must be equal and the limit exists.
Having established that f ≡ limN→∞ F (N )/N exists, now turn toEq. (107). Since F (N ) ≥

F (N+L) − F (L) for all L , we certainly have that F (N ) ≥ lim supL→∞[F (N+L) − F (L)].
Dividing by N and taking N → ∞ then gives

f ≥ lim sup
N→∞

lim sup
L→∞

F (N+L) − F (L)

N
. (111)

At the same time, we have that for all N ,

f = lim
j→∞

F ( j N )

j N
= lim

j→∞
1

j

j−1∑

i=0

F ((i+1)N ) − F (i N )

N

≤ lim sup
j→∞

F (( j+1)N ) − F ( j N )

N
≤ lim sup

L→∞
F (N+L) − F (L)

N
.

(112)

Taking N → ∞ then gives

f ≤ lim inf
N→∞ lim sup

L→∞
F (N+L) − F (L)

N
, (113)

and Eq. (107) follows.
Lastly, we needed analogues of these results in Sect. 4.4, wherewe considered the partition

function Z (N )(R) and corresponding free energy F (N )(R) of states restricted to have a certain
value R of the self-overlap (technically a matrix Rττ ′ ). We proved in Sect. 4.4 the following
analogue of sub-additivity: F (N ,L)(R, R) ≤ F (N )(R)+ F (L)(R), where F (N ,L)(R, R) is the
free energy of states in a size-(N + L) system restricted to separately have σ · σ = R and
α · α = R — recall that we divided the spins into {�σi }N

i=1 and {�α j }L
j=1, and defined

σ(τ) · σ(τ ′) ≡ 1

N

∑

i

σi (τ )σi (τ
′), α(τ) · α(τ ′) ≡ 1

L

∑

j

α j (τ )α j (τ
′). (114)

In fact, sub-additivity of the sequence F (N )(R) follows from this result simply by observ-
ing that the set of states with σ · σ = α · α = R is a subset of the states with total
self-overlap R (note that the total self-overlap can be written (Nσ · σ + Lα · α)/(N + L)).
Thus Z (N+L)(R) ≥ Z (N ,L)(R, R) since the sum that is Z (N+L)(R) includes every term
of Z (N ,L)(R, R), and F (N+L)(R) ≤ F (N ,L)(R, R). Fekete’s lemma then proves that
f (R) ≡ limN→∞ F (N )(R)/N exists, and a straightforward generalization of Eqs. (111)
through (113) gives

lim sup
N→∞

lim sup
L→∞

F (N ,L)(R, R) − F (L)(R)

N
≤ f (R) ≤ lim inf

N→∞ lim sup
L→∞

F (N+L)(R) − F (L)(R)

N

≤ lim inf
N→∞ lim sup

L→∞
F (N ,L)(R, R) − F (L)(R)

N
.

(115)
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Thus

f (R) = lim
N→∞ lim sup

L→∞
F (N ,L)(R, R) − F (L)(R)

N
, (116)

which is Eq. (84) from the main text.
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