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Abstract 10 

Additive manufacturing (AM) provides a data-rich environment for collecting a variety of process data. This 11 
crucial data can be used to develop effective machine learning (ML) models for anomaly detection and process 12 
monitoring. These models are important for users to understand and identify process variations within the AM 13 
process, which are directly related to the formation of defects. However, many ML models are data hungry and 14 
require copious amounts of data for model training. Because of this, small to medium-sized manufacturers can be 15 
at a disadvantage, as collecting, processing, and analyzing large amounts of data can be cost prohibitive, leading 16 
to limited sample availability. Despite this limitation, there are several commonly used approaches for improving 17 
the usability and effectiveness of small-scale data sets, including feature extraction, data augmentation, and 18 
transfer learning approaches. These approaches allow for either dimension reduction of the data through feature 19 
extraction, increase in training diversity and size via augmentation techniques, or the transfer and alignment of 20 
knowledge from one or more sources of data to improve a target model’s performance. This paper aims to explore 21 
these three popular techniques for small-scale dataset enhancement, provide insights into their use in AM, and 22 
discuss potential limitations and future research directions related to knowledge fusion and advanced learning 23 
techniques. 24 
 25 
Keywords: Additive manufacturing; data augmentation; feature extraction; machine learning; process monitoring; 26 
small-scale data; transfer learning. 27 

1. Introduction 28 

Additive manufacturing (AM) is a rapidly growing and expanding field within a diverse variety of applications 29 
and industries. This can be attributed to the collection of benefits it provides, including reduced costs, process 30 
waste, as well as enhanced manufacturing flexibility and minimized time to market [1], [2]. In addition, AM 31 
technologies have also allowed for the development of unique and complex part geometries, which would have 32 
been nearly impossible to create using traditional manufacturing techniques [1], [2], [3]. Due to this large 33 
collection of benefits, AM applications have been developed and implemented for a variety of applications in 34 
manufacturing [2], [4], [5], medical [6], [7], [8], construction [9], [10], [11], and even for in-space manufacturing 35 
[3], [12]. One of the major hurdles for the broader adoption of AM is its part and process certification [13]. There 36 
have been a variety of promising research directions focused on defect detection and part certification in AM [2], 37 
[14], [15], [16]. Different AM processes provide a data-rich environment that allow AM users to collect various 38 
forms of data, as well as leverage that data to make informed decisions regarding the design and quality of the 39 
printed part. 40 

From this data-rich environment, AM users can specifically leverage artificial intelligence (AI) to improve part 41 
quality and better understand the complexity of AM processes. Within AI, machine learning (ML) has greatly 42 
improved process monitoring and defect detection capabilities across a variety of advanced manufacturing 43 
techniques [17], [18], [19]. ML has been specifically leveraged to improve a variety of aspects of AM process 44 
quality, including part certification, process monitoring, and defect detection [19], [20], [21], [22]. However, 45 
despite the benefits and widespread utilization of ML in AM, there are still some challenges when directly 46 
applying ML to AM. These limitations are primarily related to the high process uncertainty, lack of consistency 47 
across builds, and high part design complexity [23]. These different challenges make it difficult to develop robust 48 
and accurate ML-based process monitoring and defect detection frameworks. This can be attributed to the fact 49 
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that it is difficult to generalize these frameworks across varying AM systems, due to the high variations in machine 50 
setups, process parameters, material selection, and environmental factors [23], [24].  51 

In addition to the limitations regarding generalizability, traditional ML frameworks also require a sufficiently 52 
large sample size, which can be very expensive to collect. In the AM environment, it is common for practitioners 53 
to leverage primarily small-scale datasets due to the prohibitively high cost of collecting, processing, and 54 
analyzing larger datasets [25]. These small-scale datasets are characterized by their limited sample size, 55 
especially when comparing with the dimensionality and diversity of data formats. In fact, it is possible for AM 56 
practitioners to collect a variety of different data types simultaneously in this data-rich environment; however, the 57 
cost of the AM experiments, as well as the cost of processing and aligning large groups of data, leads to the sample 58 
size limitations [26], [27], [28]. This is especially challenging for small-to-medium sized manufacturers (SMMs), 59 
who rely more heavily on small-scale datasets to make informed decisions, which can limit their overall 60 
capabilities of process modeling and part certification [29].  61 

 62 

Figure 1: Overview of small-scale AM data enhancement framework for improved process modeling 63 
capabilities and how they impact the training data for ML training. 64 

Three main approaches can be leveraged to enhance the usability of small-scale datasets for AM process 65 
modeling and part certification, as illustrated in Figure 1. These include (1) feature extraction, (2) data 66 
augmentation, and (3) transfer learning. Firstly, feature extraction methods enhance the capabilities of small-67 
scale datasets by identifying key, low-dimensional attributes that are informative of the process condition or defect 68 
occurrences [30], [31]. These techniques include transform-based and statistical-based methods, which allow AM 69 
users to use their existing data more efficiently and effectively. In addition, data augmentation techniques have 70 
also shown promising benefits for improving the usability of small-scale datasets [32], [33]. These techniques 71 
focus on enhancing the existing data availability by increasing and augmenting the training data, without the need 72 
to collect new data. This can provide data hungry ML models with more diverse data to train with, helping to 73 
facilitate the development of more robust models [34]. Common data augmentation techniques include data 74 
manipulation techniques, such as cropping, flipping, noise injection, and other common methods used in computer 75 
vision [35], oversampling techniques such as the SMOTE algorithm [36], and generative modeling methods, such 76 
as generative adversarial networks and diffusion generative models [32], [34]. Finally, transfer learning (TL) can 77 
be leveraged to enhance data availability by transferring knowledge from one or more domains to another related 78 
domain [37], [38], [39]. This includes the ability to transfer key features, individual samples, or even model 79 
parameters to better leverage knowledge from a collection of smaller training sets [40]. This can lead to improved 80 
model robustness and generalizability, which has shown great benefits to small-scale dataset modeling [41], [42].  81 

The rest of this paper is organized as follows: Section 2 will introduce and discuss feature extraction techniques 82 
and their application and benefit for small datasets in AM. Section 3 will introduce data augmentation techniques, 83 
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and Section 4 will discuss transfer learning. Section 5 will address some key limitations and future research 84 
directions and Section 6 will conclude the work. 85 

2. Feature Extraction Methods and Their AM Applications  86 

2.1. Overview of Feature Extraction Methods 87 

Feature extraction is a fundamental technique in ML that involves transforming raw data into a reduced, 88 
meaningful set of features. These features represent essential information from the original data, enabling more 89 
efficient analysis and improved performance of ML algorithms [43]. Feature extraction serves several critical 90 
purposes in data analytics and ML: (1) it reduces the dimensionality, making the data more manageable and 91 
reducing computational complexity [44]; (2) extracting relevant features enhances the performance of machine 92 
learning models [45]; (3) extracted features are often more interpretable than raw data, enabling a deeper 93 
understanding of the underlying patterns [46]. There are a variety of different feature extraction techniques, 94 
covering a wide range of applications; however, we can group them into two main categories:  95 

• Statistical features include measures like mean, variance, skewness, and kurtosis, providing insights into the 96 
central tendency, spread, and shape of the data distribution. These features are widely used in various 97 
applications for their simplicity and effectiveness [47]. 98 

• Transform-based features include methods such as wavelet transformation, principal component analysis 99 
(PCA), and manifold learning, which enable a compact representation of data in a transformed space, reducing 100 
dimensionality and highlighting relevant patterns [48]. There are several other specialized techniques designed 101 
for specific data types and applications. Some of these methods that can be considered in AM applications 102 
include frequency domain features [49], [50], time-domain features [51], [52], geometric features [53], [54], 103 
[55], texture features [56] and many others.  104 

 105 
These tailored methods cater to diverse datasets, ensuring a comprehensive approach to extracting valuable 106 

information. Ultimately, the continuous evolution of these techniques enriches the field of feature extraction, as 107 
well as advancing the realm of data analytics and machine learning.  108 

Table 1: Overview of feature extraction for dimension reduction in AM 109 
Data 
Type 

Feature Extraction 
Methods Modeling Algorithms References 

Image 
Data 

Principal component-based 
feature extraction techniques  
(PCA, vPCA, MPCA, etc.) 

K-means clustering [57],[58] 
Dual control charting and monitoring statistics [55], [59] 
Decision tree (DT); linear/quadratic discriminant 
analysis (LDA/ QDA); k-nearest neighbors 
(KNN); support vector machines (SVM) 

[20], [60], 
[61] 

Interpolated process 
characterization Self-organizing map (SOM) [62] 

Variational autoencoder 
(VAE) 

Gaussian mixture sparse representation; K-means 
clustering [63] 

Geometric features DT; LDA; QDA; KNN; and SVM [61], [64] 
Tensor factorization Bayesian change detection [65] 
Integrated spatiotemporal 
decomposition & regression Likelihood ratio test approach [66],[67] 

Regions of interest of 
spatters, plumes, and melt 
pool 

SVM, convolutional neural network (CNN) [68] 

SIFT features based on melt 
pool image morphology Bag of words (BoW); SVM [69] 

Spectral intensity graph SVM [70][71] 
Multi-dimensional visual 
feature extraction from CT 
images 

SVM [72] 

Local intensity variation and 
surface texture features Bayesian classifier [73],[21] 
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Time 
Series 
Data 

Summary statistics of 
acoustic emission signals 

Logistic regression and artificial neural network 
(ANN); Physics-Guided Long Short-Term 
Memory (LSTM) Networks 

[74], [75] 

PCA on acoustic emission 
AE signals Hidden semi-Markov model (HSMM) [76] 

Preprocessing of acoustic 
signals DBN, SVM [77] 

Wavelet-based signal 
decomposition Spectral CNN and CNN [50], [78] 

LSTM-autoencoder Adaptive boosting and one-class SVM [79] 
Graph Fourier transform SVM, DT, KNN, LDA, K-Means, and NN [80] 

Point 
Cloud 
Data 

Spectral graph theory-based 
methods 

Sparse representation-based classification, NN, 
KNN, Naïve Bayes (NB), SVM, and DT [81] 

Kernel correlation-based 
methods Statistical control charting [82] 

Low-rank tensor 
decomposition One-class classification [83] 

Recurrent network-based 
methods One-class Graph NN [84] 

 110 

2.2. Feature Extraction Applications in AM  111 

AM processes provide a data-rich environment, where a variety of sensors and metrological techniques can 112 
be applied for in-situ and ex-situ data acquisition [85], [86], [87]. For instance, in acoustic-based monitoring, 113 
signals can be generated from the plasma in selected laser melting (SLM) [66] and the stepper motors in fused 114 
deposition modeling (FDM) processes [67]. Similarly, in image-based monitoring, the inputs consist of both 115 
optical and thermal imagery [88]. Moreover, point cloud data can be obtained by 3D scanning to characterize the 116 
geometric accuracy and surface quality of the printed components [82]. Ultrasonic and X-ray CT data can also be 117 
collected for internal structure characterization [89] and thus leveraged for defect detection [62], [69]. These 118 
different data are of critical importance, as AM routinely encounters process induced issues such as cracks, 119 
delamination, rough surfaces, and lack of fusion, all of which stem from the layer-wise material deposition [90], 120 
[91]. Therefore, in-process data collection, processing, and modeling are needed to identify and mitigate the 121 
impacts of process variation and defect formation. However, the process data can be complex and contain high-122 
dimensional time series, images, or even multidimensional tensors. The high dimensionality of the data makes the 123 
model training computationally expensive. Because of this, it can be beneficial to extract essential low-124 
dimensional process features for monitoring, e.g., defect detection [52], [69], [92]. Following feature extraction, 125 
diverse ML and other modeling techniques can be employed to establish connections between these extracted 126 
process features and the occurrence of defects. Table 1 provides a summary of various methods for feature 127 
extraction and data-driven defect detection in AM. This collection of applications showcases the significance of 128 
dimensionality reduction-based feature extraction approaches in advancing the quality and defect monitoring 129 
capabilities within additive manufacturing. Overall, the availability of diverse feature extraction techniques 130 
provides an opportunity for more efficient, reliable, and high-quality production in the rapidly evolving AM 131 
industry. 132 

2.3. Limitations and Challenges of Feature Extraction-based Methods 133 

Feature extraction methods are significant tools in ML modeling for AM, but they demonstrate certain 134 
limitations that impact their applicability and effectiveness. Some key limitations include: (1) feature extraction 135 
methods may tend to oversimplify the AM data, which can potentially lead to information loss. When removing 136 
“irrelevant” process features, there is a risk of discarding subtle, yet significant patterns present in the original 137 
data, given the complex process dynamics in AM [93]. (2) The effectiveness of feature extraction methods heavily 138 
depends on the technique used for feature selection. Inaccurate or inappropriate selection methods can result in 139 
suboptimal feature sets and degrade the performance of machine learning models [94]. (3) Feature extraction for 140 
AM can be sensitive to noise and outliers due to high AM process uncertainty or sensing capacity, leading to the 141 
inclusion of irrelevant features [95]. (4) Purely data-driven feature extraction methods are tailored to specific AM 142 
datasets and may not generalize well across different AM systems [96]. These limitations and challenges highlight 143 
the need for careful incorporation of domain knowledge when applying feature extraction methods to AM.  144 
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3. Data Augmentation 145 

3.1. Overview of Data Augmentation Techniques 146 

Data augmentation is a widely used framework that involves techniques (such as transformation, sampling, 147 
and machine/deep learning) to create novel samples. The newly generated data should be similar to the actual data 148 
but with realistic diversity [97]. In practice, data augmentation can be utilized to (1) expand the sample size of the 149 
original dataset, (2) address the issues related to class imbalance, and (3) provide better model generalization. In 150 
AM applications, data augmentation techniques have been applied to solve the above-mentioned issues in small 151 
datasets with great success [98]. Furthermore, small datasets are also common in other areas such as medical 152 
imaging where data augmentation has also been utilized [99]. With effective data augmentation for small datasets, 153 
the effect of overfitting can also be potentially reduced, leading to better model performance [100]. Furthermore, 154 
data augmentation can also increase the diversity of the dataset and thereby improve the overall generalization of 155 
the model [101]. 156 

 157 
Depending on the dataset type (images, time series, etc.) and the various applications, data augmentation 158 

approaches can be grouped into three main categories: traditional techniques, machine learning/oversampling 159 
techniques, and deep learning techniques. As summarized in Figure 2: 160 

• Traditional augmentation techniques consist of modifying the spatial features of a dataset. This approach 161 
includes geometric modifications (cropping, stretching, flipping, translation, rotation, zoom, image mix-up, 162 
etc.), intensity modification (contrast, brightness, color change), noise injection, and kernel filtering. These 163 
techniques are commonly used in computer vision [102].  164 

• Machine learning/oversampling techniques consist of duplicating or synthesizing new samples by increasing 165 
the number of samples based on a minority class. These techniques include popular methods, such as random 166 
sampling and synthetic minority over-sampling techniques (SMOTE) [36]. Some variations of SMOTE include 167 
borderline-SMOTE (B-SMOTE) [103], or Adaptive Synthetic Sampling (ADASYN) [104]. In the context of 168 
time series analysis, the barycenter averaging (DBA) [105] time warping technique is one technique that can 169 
be used to generate new data based on existing time series data. 170 

• Deep learning techniques involve using advanced neural networks to learn the data distribution and then 171 
generate synthetic samples. This method includes techniques such as neural style transfer (NST) to transfer 172 
and combine style features between two images [106]. The most popular deep learning-based data 173 
augmentation research is mainly on the development of generative models, such as the generative adversarial 174 
network (GAN) [107], the diffusion models (DM) [108], variational autoencoder (VAE) [109], normalizing 175 
flow (NF) [110], and energy-based models (EBM) [111]. 176 
 177 
Each of these techniques plays a crucial role in solving issues faced with small datasets and comes with its own 178 

distinct advantages and limitations.  179 

 180 

Figure 2: Overview of data augmentation frameworks. 181 
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3.2. Data Augmentation Applications in AM 182 

In practice, certain AM process models are constrained in their training performance due to the inherently small 183 
sample size for certain products, and the rare occurrence of abnormal states (for defect detection cases). Moreover, 184 
deep learning models, which heavily rely on dataset quality, may perform poorly when trained on small or 185 
imbalanced datasets. Data augmentation techniques play a pivotal role in addressing these issues. Traditional 186 
augmentation, such as image rotation with affine transformation, has been combined with data annotation and 187 
self-supervised learning to predict scan direction and melt pool position in laser powder bed fusion (LPBF) AM 188 
[112].  189 

Generative deep learning models (as illustrated in Figure 3), especially GANs, are among the most employed 190 
augmentation techniques in AM. For instance, Hertlein et al. [113] utilized the augmentation capability of a 191 
conditional GAN to generate images predicting the optimal structure used for topology optimization in AM 192 
design. The accuracy of the cGAN predictions has been shown to improve the iterations of topology optimization. 193 
Li et al. [114] proposed a data augmentation technique using an attention-stacked GAN (AS-GAN) framework 194 
applied to a sequential AM dataset. While GAN models have long dominated the generative models’ domain, 195 
emerging diffusion models, such as denoising diffusion implicit models (DDIM), [115] are also demonstrating 196 
significant potential. Diffusion models can achieve state-of-the-art augmentation performance by perturbing the 197 
training data with noise and then generating/augmenting the dataset by denoising the perturbed data [116], [117]. 198 
In inkjet AM, monitoring the deposited droplets, specifically their volume, is crucial for improving the quality of 199 
the printed product. However, limitations in the micrometer scale and the number of texture features available 200 
make it challenging to fully explore the relationship between defects and their causes. To address this issue, Zhang 201 
et al. [118] utilized a multi-scale conditional diffusion model to restore distorted time series signals by generating 202 
signals without irregularities, thereby improving the volume consistency of the deposited material. Furthermore, 203 
Yangue et al. developed a novel DDIM model for data augmentation of FFF process layer-wise images [117]. 204 
This allows for an increase in the amount of available training data through high quality, synthetic image 205 
generation that can accurately capture the AM layer-wise variations.  206 

  207 

Figure 3: Examples of popular generative modeling techniques applied to AM. 208 

One area where data augmentation has been greatly utilized is for addressing class imbalance problems. In AM 209 
defect detection studies, the minority class (defects) is typically smaller and imbalanced compared to the normal 210 
class. Several studies have attempted to tackle this imbalance issue using various techniques applied to various 211 
manufacturing systems including AM [119]. Some of these techniques include class-weighted techniques [50], 212 
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semantic segmentation techniques [120], active learning [121], isolation forest [122], [123], and few-shot learning 213 
[124]. Furthermore, many studies still rely on data augmentation techniques, which can provide more diversity, 214 
versatility, and generalization to the dataset to address class imbalance problems for smaller class datasets [87]. 215 
Specifically, Chung et al. [125] proposed a GAN model incorporated with a classier for an effective cooperative 216 
training mechanism within an AM process, particularly for the supervised classification of imbalanced states. 217 
Moreover, a cluster-based adaptive data augmentation (CADA) has also been developed by Dasari et al [126] for 218 
oversampling of the minority class in the defects classification of AM. Table 2 summarizes examples of data 219 
augmentation techniques based on deep learning, oversampling, machine learning, and traditional techniques, all 220 
of which are applied to AM. This summary emphasizes the rise of deep learning techniques (such as GAN and 221 
diffusion models) over other techniques. 222 

Table 2: Overview of data augmentation applications in AM 223 

 224 
3.3. Limitations and Challenges of Data Augmentation225 

 226 
Despite the advantages of employing data augmentation for small datasets, it also comes with some limitations. 227 

These limitations include (1) data/domain-specific complexity, (2) the risk of overfitting and limited effectiveness, 228 
and (3) the intracity of certain data augmentation techniques.  229 

 230 
Firstly, certain types of AM data have different characteristics or feature complexities that could be challenging 231 

to address with certain data augmentation techniques. For instance, some traditional techniques are not suitable 232 
for direct application on time series data (e.g., signal data) [97]. Data complexity can also lead to augmentation 233 
techniques failing to understand the distributions of the datasets, resulting in issues such as mode collapse [143], 234 
generalization or optimization [144] and memorization issues [145].  235 

 236 
Secondly, data augmentation can reduce the effectiveness of training by introducing more data duplication to 237 

the training and further overfitting the model. In other words, excessive data augmentation can introduce bias to 238 
the training, which can further deteriorate the level of overfitting of the model [100], [101]. Training effectiveness 239 

Methods Algorithms Applications  References 

Deep learning-enabled 
generative models 

GAN Balance abnormal samples 
for anomaly detection 

[97], [114], [125], 
[127], [128], [129] 

VAE Defect detection [130], [131] 
DDPM Image super-resolution [132] 

DDIM Layer-wise monitoring of 
AM [117] 

NF Defect detection  [133] 

 
Oversampling and 
machine learning 

Cluster-based adaptive 
data augmentation 
(CADA) 

Data augmentation [126] 

Statistical shape analysis 
(SSA) 

Augmentation for CNN 
geometric deviation 
prediction 

[134] 

SMOTE Augmentation for metal 
AM printability prediction [128], [135] 

Bootstrapping Augmentation for in situ 
porosity detection [136] 

Stratified sampling with 
ensemble technique Defect prediction  [137] 

 
Traditional 

Time stretching, pitch 
shifting, & amplifying 

Acoustic data augmented to 
anomaly detection [138] 

Flip Augmentation for part 
quality detection [139] 

Flip, crop, gaussian noise, 
and blur 

Augmented data for part 
classification  [140] 

Translation, mirroring, 
brightness, & contrast In situ video monitoring  [141] 

Gaussian Kernel and 
Gaussian noise Quality analysis [142] 
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is also reduced by the introduction of more unrealistic patterns or little diversity or variations.   240 
 241 
Finally, data augmentation techniques, such as deep learning methods, tend to be computationally expensive 242 

in terms of time and resources. For instance, diffusion generative models such as DDPM can require very high 243 
computational costs for training before being able to generate high quality images [115]. Deep learning models 244 
also require the development of robust network architectures and the need for large datasets to train the model, 245 
both of which are not always easily achievable in AM practice. However, despite these limitations, strong data 246 
augmentation techniques could provide robust solutions for the many issues related to small-scale dataset usability 247 
in AM.  248 

4. Transfer Learning  249 

4.1. Overview of Transfer Learning 250 

Transfer learning (TL) is another commonly used technique for improving model performance in situations 251 
where data may be very limited. TL allows us to leverage knowledge from one or more source datasets to improve 252 
the performance of a related, but slightly different target dataset [37]. This framework of knowledge sharing has 253 
seen great success in a variety of applications and industries, including medical image transfer [146], [147], 254 
industrial manufacturing and agriculture [148], [149], [150], speech and pattern recognition [151], and time series 255 
analysis [152], [153]. In addition to these general applications, TL has also shown promising results in enhancing 256 
the usability and effectiveness of small-scale datasets [41], [42], [154]. This is because TL frameworks require 257 
less data from each domain, facilitate reduced processing time, and are able to combine and leverage knowledge 258 
from multiple small, related groups of data [42].  259 

 260 
In general, we can categorize three main approaches of TL, which include instance-based transfer, feature-261 

based transfer (domain adaptation), and model-based transfer [25], [40]. These three different forms of TL cover 262 
most applications and provide a broader, more effective grouping mechanism to better discuss implementation 263 
techniques and are visualized in Figure 4.  264 

• Instance-based transfer focuses on identifying and directly transferring the most similar-to-target samples 265 
from one or more source distributions, into a single target domain [155]. This approach aims to bolster and 266 
increase the number of training samples, which can result in a more accurate and robust model. A common 267 
approach to implementing instance-based methods is through a sample reweighting scheme between source 268 
and target samples [156], [157], [158].  269 

• Feature-based transfer, also known as domain adaptation, aims to capture and align feature distributions from 270 
the source to the target domains [40], [159]. This is a slightly different approach compared to instance-based 271 
transfer, as it works to identify and align key feature distributions within the data. This can lead to more 272 
accurate and efficient models, as it leverages additional source samples, while efficiently extracting and 273 
aligning the key features.  274 

• Model-based transfer involves transferring knowledge from a pre-trained source model(s) to improve a related 275 
target model’s performance [160], [161]. This approach does not involve any data or distribution alignment, 276 
as it relies primarily on transferring pre-trained source model parameters, and then fine-tuning the target model 277 
to better fit the target data. This allows the user to develop a more stable source model, where there is generally 278 
more data, and then fine-tune the performance to better fit the target data distribution.  279 
 280 
Overall, there are a variety of different approaches and methods of implementing transfer learning, each with 281 

its own unique approach and distinct advantages.  282 
 283 
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 284 

Figure 4: Overview of the three main forms of transfer learning, showcasing how to leverage and transfer source 285 
and target domain knowledge. 286 

4.2. Applications of Transfer Learning in AM 287 

On top of the broad impact and implementation of these models, some approaches to transfer learning have 288 
already been implemented in AM, including examples of instance-, feature-, and model-based TL. These different 289 
applications cover everything from process parameter estimation to process monitoring and defect modeling, 290 
including transferring knowledge between processes and materials. Tang et al. provide a detailed survey covering 291 
various applications of TL in AM [25]. One unique instance of TL in AM implements instance-based transfer 292 
learning to use prior experimental data for process optimization of a target printing process in laser-based AM 293 
[162]. In their framework, the previous experimental process optimization data are directly leveraged as initial 294 
experimental data to guide the sequential target optimization studies. This ultimately reduced the amount of costly 295 
and time-consuming optimization experimentation needed for the target study [162]. In addition, another study 296 
leverages feature-based TL to develop a statistical transfer learning framework to predict the shape-dependent 297 
variations of novel printed geometries [25], [163]. This was accomplished by using the shape-dependent part of 298 
source geometries and creating a shared latent space around these local features. This shared latent space from the 299 
source examples can then result in a trained model that can be applied to predict the shape-dependent parts of 300 
novel geometries. In addition to this example, a handful of other research applications have focused on applying 301 
model-based TL for shape deviation prediction in AM [164], [165], [166], [167]. Furthermore, Senanayaka et al. 302 
leveraged a hybrid model- and instance-based TL framework to better understand the effects of AM process 303 
conditions on the thermal-defect relationship [168]. This work focuses on initially grouping similar source and 304 
target samples, training source models, and then transferring parameters from multiple models to develop a more 305 
accurate target classifier. Finally, TL has also been leveraged for predicting distortion, as well as transferring 306 
machine calibration and compensation knowledge [169], [170]. Despite these specific applications, TL is a 307 
generally less researched and less implemented solution for handling small datasets, as compared to feature 308 
extraction approaches in AM. However, there have been several promising implementations of TL in metal-based 309 
AM, detailed in Table 3, which showcases the potential to further improve model accuracy in small-scale dataset 310 
applications.  311 

4.3. Limitations and Challenges for Transfer Learning 312 

Despite the potential advantages associated with TL, there are some key limitations related to implementing 313 
TL in AM, which are primarily focused on (1) high process variability and AM setup diversity; and (2) data 314 
privacy concerns.  315 

 316 
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Firstly, there are a variety of factors that can affect the resulting distribution of AM process data, including 317 
material properties, process parameters, part geometry, and environmental factors. Because of the significant 318 
diversity between AM applications, there can be difficulty directly implementing off-the-shelf TL methods for 319 
AM. This is because most traditional approaches to TL rely on the source and target datasets being similarly 320 
structured and distributed [171]. Without sufficient understanding of the relationships between those AM systems, 321 
there is a significant risk of negative transfer in TL, which can jeopardize the modeling performance and lead to 322 
misleading decisions [25].  323 

 324 
Secondly, there are significant data privacy and intellectual property theft concerns that arise when externally 325 

sharing thermal process data and related process knowledge [29], [172], [173], [174]. This stems from the idea 326 
that the AM process data can potentially contain sensitive design information that can be extracted and leveraged 327 
to perform re-identification attacks [60]. These malicious attacks are designed to extract geometric information 328 
and utilize it to identify critical design aspects or entire part geometries from available data. This can then be 329 
leveraged to recreate the part and steal the intellectual property of the AM user. This is a serious concern for a 330 
variety of AM applications, especially for instances of rapid prototyping, where design information is considered 331 
highly confidential [29]. Without the development of secure data sharing frameworks [29], [60] or implementation 332 
of decentralized learning frameworks, such as federated learning [175], [176], there is a significant threat of 333 
intellectual property theft when participating in collaborative modeling or data sharing.  334 

Table 3: Overview of transfer learning algorithms in AM 335 
Methods Applications References 
Instance-

based 
Support rapid process modeling in aerosol jet printing. [177] 
Leverage data from previous studies for laser-based AM.  [162] 

Feature-
based 

Support rapid process modeling in aerosol jet printing via affine transformation.  [177] 
Transfer shape features to predict shape-dependent parts.  [163] 

Model-
based 

Quantify uncertainty in LPBF via transfer learned process maps.  [178] 
Model shape deviation via transfer learning across processes.   [167] 
Predict distortion via Bayesian model transfer among materials [169] 
Grouped similarity transfer learning for understanding the effects of process 
conditions. [168] 

Model transfer for fine-tuning neural network for the prediction of deposition 
height in directed energy deposition (DED).  [179] 

Improved model of kinematics induced geometric variations in AM parts via 
CNN fine-tuning.   [171] 

Transfer common information from a surface to a new one with only low-
resolution data.  [163] 

Transfer source model to retrain a target model for monitoring of a different 
material in LPBF.   [180] 

Material-adaptive monitoring for wire-arc AM via a property-concatenated 
transfer learning.   [181] 

Transfer model parameters across polymer composites for predicting stress-
strain curves.  [182] 

 336 

5. Future Research Opportunities and Directions 337 

Although there has been a generous amount of research addressing the small-scale data challenge in AM, there 338 
are still a few key challenges and opportunities for future research. The opportunities focus primarily on 339 
Knowledge Fusion and Improved Learning Strategies, which encompass both the inclusion of additional domain 340 
knowledge to the modeling, as well as leveraging more advanced learning techniques for model training to 341 
improve the usability of existing data. The general overview of these approaches is outlined in Figure 5. On the 342 
other hand, some of the key challenges to be addressed relate primarily to how practitioners can participate in data 343 
sharing and collaborative modeling, while simultaneously ensuring their data and intellectual property are kept 344 
confidential if needed. As the interconnectedness of machines, computers, and personnel continues to increase, 345 
data privacy is becoming a more prominent concern and has become an increasingly important area of research. 346 
Overall, this overview is not all-inclusive, but rather focuses on a few prominent research areas.  347 

 348 
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 349 

Figure 5: Overview of opportunities to improve small-scale data usability and address remaining challenges. 350 

5.1. Advanced Learning  351 

5.1.1. Active Learning 352 
More advanced and strategic approaches to how ML models are trained can have a major impact on how the 353 

final model is able to perform, especially in cases with a limited amount of labeled training data. One popular 354 
learning strategy is known as Active Learning (AL), which is specifically designed to improve training efficiency 355 
by querying and identifying informative points in the instance space and then leveraging an external source to 356 
provide labels for the selected samples [183], [184]. In many cases, this involves leveraging an experienced human 357 
user to provide the model with feedback for the labeled samples, which is commonly referred to as human-in-the-358 
loop ML [183], [185], [186], [187]. This iterative training process results in improved efficiency, reduced data 359 
annotation costs, and the ability for the model to achieve improved performance and generalizability, as compared 360 
to traditional supervised learning methods [183], [185].  In general, active learning has been successfully deployed 361 
in a variety of applications, including for natural language processing models [183], [184], [188], remote sensing 362 
and image analysis [184], [189], [190] and industrial applications of fault detection and uncertainty quantification 363 
[191], [192], [193]. For AM, active learning has been leveraged to improve in-situ process monitoring capabilities 364 
[194], [195], [196], enhanced ink-jet droplet pinch off behavior prediction [197], and prediction capabilities for 365 
tensile properties of additively manufactured components [198].  366 

 367 
In addition to the traditional form of AL, there is also a variation known as Incremental Learning (IL), which 368 

is sometimes also referred to as Lifelong Learning or Continual Learning. IL is similar to the traditional form of 369 
active learning, where the model is continuously learning from new data over time [199], [200], [201]. This 370 
approach is useful when there can be changes in the data distributions over time or instances of concept drifting, 371 
where it may be impractical to completely retrain the model whenever new data are available. Furthermore, this 372 
is a more resource-efficient approach to training as the objective is for the model to learn from incremental 373 
amounts of new data, without forgetting the previous information [202], [203]. Applications of IL include 374 
medical-based applications [201], [202], object detection and segmentation [200] and wire-arc AM defect 375 
detection [204]. Overall, AL can be especially useful for small-scale AM datasets, where AM labeling costs can 376 
be prohibitive due to time, cost, and labor limitations [20], [194].  377 

5.1.2. Multi-task Learning (MTL) 378 
 379 
A second approach for advanced learning strategies is referred to as multi-task learning, where the focus is 380 

developing frameworks and ML models that can exploit existing relationships between related tasks to improve 381 
the generalization and model(s) performance on these tasks [205], [206], [207]. The foundation of this framework 382 
focuses on the idea that learning multiple tasks jointly allows for knowledge from one task(s) to be leveraged for 383 
other task(s) to improve the generalizability performance of all tasks [206]. This specifically works to help handle 384 
data availability and sparsity challenges, where the amount of labeled data from one task may be inadequate to 385 
train an accurate learner [205]. Furthermore, MTL is closely related to TL, where the goal of TL to leverage data 386 
from a source task to improve performance on a target task [206], [208], [209]. However, there are two key 387 
distinctions between MTL and TL [206], [208]: (1) all tasks and related data are treated with equal weight, 388 
whereas TL focuses most attention on the performance of the target task, (2) the flow of knowledge for MTL is 389 
shared between all tasks, whereas TL generally shares knowledge from the source task to the target task. In 390 
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general, there are a wide range of applications for multi-task learning, including natural language processing [210], 391 
computer vision [211], and time series predictions [212], among others [208]. In addition to traditional 392 
applications, due to their similarity and relation to TL, there has been research focused on blending together TL, 393 
MTL, and Federated Learning approaches to further improve data usability and model performance in cases of 394 
shared data [209], [213]. Overall, MTL learning provides a unique and promising direction for enhancing the 395 
learning strategy when leveraging limited, small-scale data in AM.   396 

5.1.3. Advanced Representation Learning 397 
 398 
There is also an approach to overcoming the limited data challenge by altering how the data is represented and 399 

learned through machine learning models. Two examples of this approach include Granular Computing and 400 
Siamese Networks, which can both be powerful approaches, but are not fully utilized in AM. Furthermore, these 401 
techniques can have limitations in terms of generalization, data dependency, model complexity, or simplicity.  402 

 403 
Granular computing is the concept of processing highly complex information across multiple levels of 404 

granularity [214], [215]. This focuses on changing the representation of complex information through 405 
deconstruction into smaller, more manageable granules. These granules can capture different levels of detail and 406 
variance in the data. Example usage of granular computing includes outlier and fault detection [216], [217], text 407 
classification [218], and improving federated learning frameworks  [215]. Overall, this unique approach makes it 408 
a potentially promising option for handling some of the inherent variability and uncertainty in complex AM 409 
process data and AI-based modeling. 410 

 411 
Siamese networks take another approach to representation learning, in which the main objective is to extract 412 

meaningful information through similarity comparison of input vectors [219], [220], [221]. This framework 413 
leverages two identical neural network architectures, where each is able to learn a hidden representation of a 414 
defined input [220], [222]. The two architectures work in parallel and output a semantic similarity measure of the 415 
projected representation for each input. Traditionally, these architectures are used for image-based applications 416 
[222], including signature and facial verification [222], few-shot learning [223], and visual tracking tasks [224], 417 
[225]. There are some applications of Siamese networks for AM [226], [227]; however, there are still opportunities 418 
for more in-depth investigation and broader application of these frameworks in AM.  419 

5.2. Knowledge Fusion 420 

5.2.1. Multimodal Data Fusion 421 
 422 
As previously mentioned, AM is a data-rich environment, meaning that practitioners are able to collect a 423 

diverse range of different data types from the AM process [228], [229]. These various data streams relate to 424 
different aspects of the AM process itself and allow the ability to measure the process variability from multiple 425 
perspectives [228], [230]. This idea is commonly referred to multimodal data fusion and has become an 426 
increasingly popular research topic in AM [231], [232], [233], [234]. By leveraging multimodal data, practitioners 427 
can leverage two or more different types of AM data to improve the efficiency and effectiveness of their ML 428 
models [233]. Here, fusible data might include ex-situ data (e.g., post-processed CT data [89], [232]) and in-situ 429 
sensing (e.g., layer wise imagery [231], [234], acoustic [231], vibration [235], and a variety of other data types 430 
[26]). However, the diversity of this data does not directly translate to increased sample sizes, which is a key 431 
challenge for AM practitioners. In summary, the multimodal data fusion approach focuses on improving the 432 
robustness and accuracy of ML models by including and supplementing data from various, complimentary data 433 
sources.   434 

Another approach to fusing additional data and knowledge into the ML modeling framework focuses on 435 
leveraging simulation-based data to further improve model performance and generalization in cases of limited 436 
data [236], [237], [238], [239]. Simulation-based data allows for the generation of data samples that are 437 
representative of the physical process or parameters being modeled. This can result in the ability for simulated 438 
data to be directly leveraged with the existing, real-world data to increase the diversity and size of limited training 439 
data [239], [240], [241], [242]. In addition, simulation data can also be leveraged to directly train a general ML 440 
model for the application. This pretrained model can then be further fine-tuned using the real-world samples and 441 
experimental data [237], [243], [244], [245]. There has been some interest in leveraging simulation-based data for 442 
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AM, specifically for metal-based AM [246], [247], [248]; however, there are still significant research 443 
opportunities in this field [237]. 444 

5.2.2. Context and Domain Fusion 445 
 446 
Furthermore, there has been increasing research interest in context-aware machine learning to further improve 447 

ML performance. Contextual learning focuses on implementing real-world context and domain-specific 448 
knowledge into the model and training data space [249], [250], [251]. A specific and increasingly popular method 449 
of contextual learning is known as the Physics Informed ML (PIML) approach. The goal with PIML is to include 450 
prior knowledge about the physics related to the specific domain or application being modeled [242], [252] into 451 
the ML model. The PIML framework bridges the two approaches of Knowledge Fusion and Advanced Learning, 452 
as depicted in Figure 5. This is because PIML frameworks can be applied to both the preprocessing stages and 453 
training stages of the ML model [87], [251], [253]. This is accomplished by either constraining or preprocessing 454 
the training data based on the related system physics [242], [251], or incorporating partial differential equations 455 
into the training process itself [242], [251], [252]. The use of either approach to PIML can result in a more robust 456 
model with enhanced generalizability and interoperability [87], [242], [252]. For AM applications, the use of 457 
PIML is rapidly growing and shows the potential for continued growth for defect detection and reduction [254], 458 
[255] and developing a stronger understanding of process-structure-property relationship [87], [256], [257], [258]. 459 
In summary, researchers and practitioners need to be aware of data-driven modeling constraints and alternative 460 
approaches, such as PIML, to maximize the effectiveness of model implementation in AM. 461 

5.3. Privacy Challenges for ML in AM 462 

Despite the potential opportunities for future work as described previously, there are still some concerns when 463 
it comes to sharing data and collaborating across multiple, independent AM users. collaborative modeling and 464 
data sharing is a potentially strong way to improve prediction performance, but does create data privacy concerns 465 
once the data is shared outside of the organization, especially within AM [60]. The two most common approaches 466 
of collaborative modeling are Centralized and Decentralized Collaborative Modeling, where the data is 467 
aggregated and fed to a central model or the central model is decentralized to each local user, respectively. These 468 
two approaches are outlined in Figure 6. 469 

 470 

 471 
Figure 6: An overview of the two key approaches for enhancing collaborative modeling security and privacy: 472 
(A) depicts centralized collaborative modeling, where local user data is secured and aggregated; (B) depicts a 473 

decentralized collaborative modeling framework, where models are trained locally. 474 

5.3.1. Centralized Collaborative Modeling 475 
 476 
Sharing data between users allows for a collection of independent manufacturers to develop a larger, more 477 

effective set of training samples. This can result in the development of more accurate and robust models, which 478 
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are trained on these larger and more diverse, collaborative sets of training data [29]. However, directly sharing 479 
data outside of an organization can put AM users at risk for data privacy breaches and intellectual property theft 480 
due to design attributes that can be embedded in the process data [29], [259]. To combat this significant threat, 481 
two key different approaches to data privacy and security can be leveraged to improve the safety of this shared 482 
data.  483 

 484 
Firstly, the use of encryption and access control methods can provide a strong barrier to the protection of data 485 

privacy and security [260], [261], [262], [263], [264]. Encryption-based methods, such as homomorphic 486 
encryption, allow users to leverage an encryption key to randomize the data and put it into an unrecognizable 487 
state. In turn, the receiving party leverages a decryption key to reverse the encryption and leverage the data [261], 488 
[265], [266]. Homomorphic encryption, in particular, provides the added benefit of being able to perform 489 
computation and analysis on the encrypted data, making it easier to use the data than traditional methods [267]. 490 
However, an important limitation of using encryption is the reliance on encryption/decryption keys, which create 491 
a potential vulnerability that can be exploited by malicious actors [268], [269], [270].  492 

 493 
Secondly, the development of de-identification mechanisms for the shared data provides an additional measure 494 

focused on data privacy [271], [272]. The goal behind these frameworks is to selectively identify, obscure, and 495 
protect the confidential design aspects of the data being shared. This allows for the data to be leveraged in a 496 
collaborative data sharing framework, while simultaneously ensuring that there are added data privacy protections 497 
for the data. This framework is depicted in Figure 6A. There exists a wide range of applications for these 498 
algorithms, including in healthcare [273], [274], computer vision [259], [275], [276], and AM [29]. These 499 
frameworks work towards providing an added layer of protection that can be blended with existing security 500 
measures, such as encryption, to enhance data privacy and intellectual property protection. 501 

5.3.2. Decentralized Collaborative Modeling 502 
 503 
The second approach to overcome the challenge of privacy concerns when sharing data is Federated Learning 504 

(FL). This approach leverages a decentralized framework for training ML models, without the exchange of client 505 
data [277], [278]. A baseline model is stored at a central server, where copies of this model are then shared with 506 
each client. These clients can then train and update the shared model with their local data, without exchanging 507 
private data to the central server. From here, the model updates from the local stage are then shared with the main 508 
model via an aggregation technique. This iteration continues, further improving the model performance and 509 
allowing clients to leverage small-scale data and still achieve an effective ML [277], [278], [279]. This framework 510 
is highlighted in Figure 6B. In general, this approach improves the data privacy and security concerns associated 511 
with traditional collaborative modeling by removing the need to share local data outside of the client of origin 512 
[176], [280]. In addition, FL has been implemented in a variety of advanced manufacturing applications [175], 513 
[281], including metal-based AM [282], [283], [284]. There are also a variety of resources exploring the use of 514 
Federated Transfer Learning (FTL), which focuses on using data from different feature spaces, in a FL framework, 515 
to enhance usability and privacy [285], [286], [287], [288]. FTL has been implemented in a variety of applications, 516 
including healthcare wearable technology, autonomous driving, and image steganalysis [285].  517 

 518 
However, it is important to note that there are still vulnerabilities and limitations associated with the FL 519 

approach. Firstly, there is the risk of possible model-poisoning and other back-door attacks, which can 520 
compromise data privacy [289], [290]. Secondly, FL can also suffer from communication latency, which is caused 521 
by the need for frequent communication between nodes during the learning process [291]. Overall, there are some 522 
key challenges that come with leveraging FL; however, there is also great potential for developing secure 523 
frameworks for sharing knowledge among different AM users to improve model performance on small-scale 524 
metal-based AM process data. 525 

5.4. Key Research Opportunities  526 

There still exists a need to further explore different ways of implementing and leveraging these tactics. From 527 
some of the previously discussed limitations, there are a handful of clear research directions to further improve 528 
the applicability of these methods. Firstly, for feature extraction, there is a need for the development of more 529 
robust feature extraction techniques, specifically tailored to AM. This is because AM processes exist in a data-530 
rich environment, yet they still possess a high level of variability and diversity across processes and applications. 531 
Because of this, a lot of off-the-shelf feature extraction may not be applicable to each type of data collected from 532 
the AM process. This can lead to difficulty in aligning the different features into a shared space for process and 533 
defect modeling. Secondly, for data augmentation, there are some similar challenges as some of the state-of-the-534 
art methods are not designed to capture the detailed features in the AM process data. Many generative techniques, 535 
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such as GAN models and diffusion models (DDIM/DDPM) are developed based on computer-vision applications, 536 
which have large, developed training sets. In order to better tailor these techniques for AM, research into more 537 
robust variations and modifications is needed. Thirdly, in the case of transfer learning, there is not a widespread 538 
application of feature- and instance-based methods. These methods have not been explored as widely as the model-539 
based methods have, which provides an opportunity for future investigation. In addition, many current TL models 540 
do not consider how transferring AM process knowledge can lead to compromises in user intellectual property 541 
and other data privacy concerns. Recent work by Fullington et al. has addressed some of these initial concerns, 542 
but there is still a need for developing and compounding additional privacy measures [29].  543 

6. Conclusion  544 

This research aims to provide a detailed overview of the available techniques for enhancing small-scale data 545 
set usability, as well as explore their current and potential application for AM. These various methods include 546 
implementing (1) feature extraction techniques, which aim to enhance the usability by identifying and extracting 547 
low-dimensional key attributes from the raw data, (2) data augmentation techniques, which aim to increase the 548 
diversity and size of the training data through augmenting the data, and (3) transfer learning approaches, which 549 
allow users to leverage one or more source datasets to improve a target model performance by sharing and aligning 550 
knowledge between them. Furthermore, there have already been a handful of successful applications of these 551 
enhancement techniques for AM applications, specifically geared towards porosity prediction, process 552 
monitoring, and parameter optimization.  553 
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