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Abstract

Additive manufacturing (AM) provides a data-rich environment for collecting a variety of process data. This
crucial data can be used to develop effective machine learning (ML) models for anomaly detection and process
monitoring. These models are important for users to understand and identify process variations within the AM
process, which are directly related to the formation of defects. However, many ML models are data hungry and
require copious amounts of data for model training. Because of this, small to medium-sized manufacturers can be
at a disadvantage, as collecting, processing, and analyzing large amounts of data can be cost prohibitive, leading
to limited sample availability. Despite this limitation, there are several commonly used approaches for improving
the usability and effectiveness of small-scale data sets, including feature extraction, data augmentation, and
transfer learning approaches. These approaches allow for either dimension reduction of the data through feature
extraction, increase in training diversity and size via augmentation techniques, or the transfer and alignment of
knowledge from one or more sources of data to improve a target model’s performance. This paper aims to explore
these three popular techniques for small-scale dataset enhancement, provide insights into their use in AM, and
discuss potential limitations and future research directions related to knowledge fusion and advanced learning
techniques.

Keywords: Additive manufacturing; data augmentation; feature extraction; machine learning; process monitoring;
small-scale data; transfer learning.

1. Introduction

Additive manufacturing (AM) is a rapidly growing and expanding field within a diverse variety of applications
and industries. This can be attributed to the collection of benefits it provides, including reduced costs, process
waste, as well as enhanced manufacturing flexibility and minimized time to market [1], [2]. In addition, AM
technologies have also allowed for the development of unique and complex part geometries, which would have
been nearly impossible to create using traditional manufacturing techniques [1], [2], [3]. Due to this large
collection of benefits, AM applications have been developed and implemented for a variety of applications in
manufacturing [2], [4], [5], medical [6], [7], [8], construction [9], [10], [11], and even for in-space manufacturing
[3], [12]. One of the major hurdles for the broader adoption of AM is its part and process certification [13]. There
have been a variety of promising research directions focused on defect detection and part certification in AM [2],
[14], [15], [16]. Different AM processes provide a data-rich environment that allow AM users to collect various
forms of data, as well as leverage that data to make informed decisions regarding the design and quality of the
printed part.

From this data-rich environment, AM users can specifically leverage artificial intelligence (Al) to improve part
quality and better understand the complexity of AM processes. Within Al, machine learning (ML) has greatly
improved process monitoring and defect detection capabilities across a variety of advanced manufacturing
techniques [17], [18], [19]. ML has been specifically leveraged to improve a variety of aspects of AM process
quality, including part certification, process monitoring, and defect detection [19], [20], [21], [22]. However,
despite the benefits and widespread utilization of ML in AM, there are still some challenges when directly
applying ML to AM. These limitations are primarily related to the high process uncertainty, lack of consistency
across builds, and high part design complexity [23]. These different challenges make it difficult to develop robust
and accurate ML-based process monitoring and defect detection frameworks. This can be attributed to the fact



50
51

52
53
54
55
56
57
58
59
60
61

62

63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83

that it is difficult to generalize these frameworks across varying AM systems, due to the high variations in machine
setups, process parameters, material selection, and environmental factors [23], [24].

In addition to the limitations regarding generalizability, traditional ML frameworks also require a sufficiently
large sample size, which can be very expensive to collect. In the AM environment, it is common for practitioners
to leverage primarily small-scale datasets due to the prohibitively high cost of collecting, processing, and
analyzing larger datasets [25]. These small-scale datasets are characterized by their limited sample size,
especially when comparing with the dimensionality and diversity of data formats. In fact, it is possible for AM
practitioners to collect a variety of different data types simultaneously in this data-rich environment; however, the
cost of the AM experiments, as well as the cost of processing and aligning large groups of data, leads to the sample
size limitations [26], [27], [28]. This is especially challenging for small-to-medium sized manufacturers (SMMs),
who rely more heavily on small-scale datasets to make informed decisions, which can limit their overall
capabilities of process modeling and part certification [29].
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Figure 1: Overview of small-scale AM data enhancement framework for improved process modeling
capabilities and how they impact the training data for ML training.

Three main approaches can be leveraged to enhance the usability of small-scale datasets for AM process
modeling and part certification, as illustrated in Figure 1. These include (1) feature extraction, (2) data
augmentation, and (3) transfer learning. Firstly, feature extraction methods enhance the capabilities of small-
scale datasets by identifying key, low-dimensional attributes that are informative of the process condition or defect
occurrences [30], [31]. These techniques include transform-based and statistical-based methods, which allow AM
users to use their existing data more efficiently and effectively. In addition, data augmentation techniques have
also shown promising benefits for improving the usability of small-scale datasets [32], [33]. These techniques
focus on enhancing the existing data availability by increasing and augmenting the training data, without the need
to collect new data. This can provide data hungry ML models with more diverse data to train with, helping to
facilitate the development of more robust models [34]. Common data augmentation techniques include data
manipulation techniques, such as cropping, flipping, noise injection, and other common methods used in computer
vision [35], oversampling techniques such as the SMOTE algorithm [36], and generative modeling methods, such
as generative adversarial networks and diffusion generative models [32], [34]. Finally, transfer learning (TL) can
be leveraged to enhance data availability by transferring knowledge from one or more domains to another related
domain [37], [38], [39]. This includes the ability to transfer key features, individual samples, or even model
parameters to better leverage knowledge from a collection of smaller training sets [40]. This can lead to improved
model robustness and generalizability, which has shown great benefits to small-scale dataset modeling [41], [42].

The rest of this paper is organized as follows: Section 2 will introduce and discuss feature extraction techniques
and their application and benefit for small datasets in AM. Section 3 will introduce data augmentation techniques,
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and Section 4 will discuss transfer learning. Section 5 will address some key limitations and future research
directions and Section 6 will conclude the work.

2. Feature Extraction Methods and Their AM Applications
2.1. Overview of Feature Extraction Methods

Feature extraction is a fundamental technique in ML that involves transforming raw data into a reduced,
meaningful set of features. These features represent essential information from the original data, enabling more
efficient analysis and improved performance of ML algorithms [43]. Feature extraction serves several critical
purposes in data analytics and ML: (1) it reduces the dimensionality, making the data more manageable and
reducing computational complexity [44]; (2) extracting relevant features enhances the performance of machine
learning models [45]; (3) extracted features are often more interpretable than raw data, enabling a deeper
understanding of the underlying patterns [46]. There are a variety of different feature extraction techniques,
covering a wide range of applications; however, we can group them into two main categories:

o Statistical features include measures like mean, variance, skewness, and kurtosis, providing insights into the
central tendency, spread, and shape of the data distribution. These features are widely used in various
applications for their simplicity and effectiveness [47].

o Transform-based features include methods such as wavelet transformation, principal component analysis
(PCA), and manifold learning, which enable a compact representation of data in a transformed space, reducing
dimensionality and highlighting relevant patterns [48]. There are several other specialized techniques designed
for specific data types and applications. Some of these methods that can be considered in AM applications
include frequency domain features [49], [50], time-domain features [51], [52], geometric features [53], [54],
[55], texture features [56] and many others.

These tailored methods cater to diverse datasets, ensuring a comprehensive approach to extracting valuable
information. Ultimately, the continuous evolution of these techniques enriches the field of feature extraction, as
well as advancing the realm of data analytics and machine learning.

Table 1: Overview of feature extraction for dimension reduction in AM

,];;;2 Featu;/[eeg:;t;:ctlon Modeling Algorithms References
K-means clustering [571,[58]
Principal component-based Dual control charting and monitoring statistics [55], [59]
feature extraction techniques | Decision tree (DT); linear/quadratic discriminant 201, [60]
(PCA, vPCA, MPCA, etc.) analysis (LDA/ QDA); k-nearest neighbors [ él] ’
(KNN); support vector machines (SVM)

PN process Self-organizing map (SOM) [62]
Variational autoencoder Gaussian mixture sparse representation; K-means [63]
(VAE) clustering
Geometric features DT; LDA; QDA; KNN; and SVM [61], [64]
Tensor factorization Bayesian change detection [65]

Igl:t%‘e fitffggzcsiifﬁ) Eﬁlgig:gpr(e)gzon Likelihood ratio test approach [66],[67]
Regions of interest of
spatters, plumes, and melt SVM, convolutional neural network (CNN) [68]
pool
SIFT.features based on melt Bag of words (BoW); SVM [69]
pool image morphology
Spectral intensity graph SVM [70][71]
Multi-dimensional visual
feature extraction from CT SVM [72]
images
lfr(;\:iéntf;ilz ;::::;;n and Bayesian classifier [73],[21]
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Summary statistics of Logistic regression and artificial neural network
acoustic };mission sionals (ANN); Physics-Guided Long Short-Term [74], [75]
£ Memory (LSTM) Networks
PCA on acoustic emission . .
Time AE signals Hidden semi-Markov model (HSMM) [76]
Series Breprocess1ng of acoustic DBN, SVM [77]
Data signals
Wavelet-based signal Spectral CNN and CNN [501, [78]
decomposition
LSTM-autoencoder Adaptive boosting and one-class SVM [79]
Graph Fourier transform SVM, DT, KNN, LDA, K-Means, and NN [80]
Spectral graph theory-based | Sparse representation-based classification, NN, 81]
methods KNN, Naive Bayes (NB), SVM, and DT
Point Kernel correlation-based Statistical control charting [82]
methods
Cloud Low-rank tensor
Data W . One-class classification [83]
decomposition
Recurrent  network-based
methods One-class Graph NN [84]

2.2. Feature Extraction Applications in AM

AM processes provide a data-rich environment, where a variety of sensors and metrological techniques can
be applied for in-situ and ex-situ data acquisition [85], [86], [87]. For instance, in acoustic-based monitoring,
signals can be generated from the plasma in selected laser melting (SLM) [66] and the stepper motors in fused
deposition modeling (FDM) processes [67]. Similarly, in image-based monitoring, the inputs consist of both
optical and thermal imagery [88]. Moreover, point cloud data can be obtained by 3D scanning to characterize the
geometric accuracy and surface quality of the printed components [82]. Ultrasonic and X-ray CT data can also be
collected for internal structure characterization [89] and thus leveraged for defect detection [62], [69]. These
different data are of critical importance, as AM routinely encounters process induced issues such as cracks,
delamination, rough surfaces, and lack of fusion, all of which stem from the layer-wise material deposition [90],
[91]. Therefore, in-process data collection, processing, and modeling are needed to identify and mitigate the
impacts of process variation and defect formation. However, the process data can be complex and contain high-
dimensional time series, images, or even multidimensional tensors. The high dimensionality of the data makes the
model training computationally expensive. Because of this, it can be beneficial to extract essential low-
dimensional process features for monitoring, e.g., defect detection [52], [69], [92]. Following feature extraction,
diverse ML and other modeling techniques can be employed to establish connections between these extracted
process features and the occurrence of defects. Table 1 provides a summary of various methods for feature
extraction and data-driven defect detection in AM. This collection of applications showcases the significance of
dimensionality reduction-based feature extraction approaches in advancing the quality and defect monitoring
capabilities within additive manufacturing. Overall, the availability of diverse feature extraction techniques
provides an opportunity for more efficient, reliable, and high-quality production in the rapidly evolving AM
industry.

2.3. Limitations and Challenges of Feature Extraction-based Methods

Feature extraction methods are significant tools in ML modeling for AM, but they demonstrate certain
limitations that impact their applicability and effectiveness. Some key limitations include: (1) feature extraction
methods may tend to oversimplify the AM data, which can potentially lead to information loss. When removing
“irrelevant” process features, there is a risk of discarding subtle, yet significant patterns present in the original
data, given the complex process dynamics in AM [93]. (2) The effectiveness of feature extraction methods heavily
depends on the technique used for feature selection. Inaccurate or inappropriate selection methods can result in
suboptimal feature sets and degrade the performance of machine learning models [94]. (3) Feature extraction for
AM can be sensitive to noise and outliers due to high AM process uncertainty or sensing capacity, leading to the
inclusion of irrelevant features [95]. (4) Purely data-driven feature extraction methods are tailored to specific AM
datasets and may not generalize well across different AM systems [96]. These limitations and challenges highlight
the need for careful incorporation of domain knowledge when applying feature extraction methods to AM.
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3. Data Augmentation
3.1. Overview of Data Augmentation Techniques

Data augmentation is a widely used framework that involves techniques (such as transformation, sampling,
and machine/deep learning) to create novel samples. The newly generated data should be similar to the actual data
but with realistic diversity [97]. In practice, data augmentation can be utilized to (1) expand the sample size of the
original dataset, (2) address the issues related to class imbalance, and (3) provide better model generalization. In
AM applications, data augmentation techniques have been applied to solve the above-mentioned issues in small
datasets with great success [98]. Furthermore, small datasets are also common in other areas such as medical
imaging where data augmentation has also been utilized [99]. With effective data augmentation for small datasets,
the effect of overfitting can also be potentially reduced, leading to better model performance [100]. Furthermore,
data augmentation can also increase the diversity of the dataset and thereby improve the overall generalization of
the model [101].

Depending on the dataset type (images, time series, etc.) and the various applications, data augmentation
approaches can be grouped into three main categories: traditional techniques, machine learning/oversampling
techniques, and deep learning techniques. As summarized in Figure 2:

o Traditional augmentation techniques consist of modifying the spatial features of a dataset. This approach
includes geometric modifications (cropping, stretching, flipping, translation, rotation, zoom, image mix-up,
etc.), intensity modification (contrast, brightness, color change), noise injection, and kernel filtering. These
techniques are commonly used in computer vision [102].

e Machine learning/oversampling techniques consist of duplicating or synthesizing new samples by increasing
the number of samples based on a minority class. These techniques include popular methods, such as random
sampling and synthetic minority over-sampling techniques (SMOTE) [36]. Some variations of SMOTE include
borderline-SMOTE (B-SMOTE) [103], or Adaptive Synthetic Sampling (ADASYN) [104]. In the context of
time series analysis, the barycenter averaging (DBA) [105] time warping technique is one technique that can
be used to generate new data based on existing time series data.

o Deep learning techniques involve using advanced neural networks to learn the data distribution and then
generate synthetic samples. This method includes techniques such as neural style transfer (NST) to transfer
and combine style features between two images [106]. The most popular deep learning-based data
augmentation research is mainly on the development of generative models, such as the generative adversarial
network (GAN) [107], the diffusion models (DM) [108], variational autoencoder (VAE) [109], normalizing
flow (NF) [110], and energy-based models (EBM) [111].

Each of these techniques plays a crucial role in solving issues faced with small datasets and comes with its own
distinct advantages and limitations.

AM Data °* Acoustic )
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? * Process Parameters
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Figure 2: Overview of data augmentation frameworks.
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3.2. Data Augmentation Applications in AM

In practice, certain AM process models are constrained in their training performance due to the inherently small
sample size for certain products, and the rare occurrence of abnormal states (for defect detection cases). Moreover,
deep learning models, which heavily rely on dataset quality, may perform poorly when trained on small or
imbalanced datasets. Data augmentation techniques play a pivotal role in addressing these issues. Traditional
augmentation, such as image rotation with affine transformation, has been combined with data annotation and
self-supervised learning to predict scan direction and melt pool position in laser powder bed fusion (LPBF) AM
[112].

Generative deep learning models (as illustrated in Figure 3), especially GANSs, are among the most employed
augmentation techniques in AM. For instance, Hertlein ef al. [113] utilized the augmentation capability of a
conditional GAN to generate images predicting the optimal structure used for topology optimization in AM
design. The accuracy of the cGAN predictions has been shown to improve the iterations of topology optimization.
Li et al. [114] proposed a data augmentation technique using an attention-stacked GAN (AS-GAN) framework
applied to a sequential AM dataset. While GAN models have long dominated the generative models’ domain,
emerging diffusion models, such as denoising diffusion implicit models (DDIM), [115] are also demonstrating
significant potential. Diffusion models can achieve state-of-the-art augmentation performance by perturbing the
training data with noise and then generating/augmenting the dataset by denoising the perturbed data [116], [117].
In inkjet AM, monitoring the deposited droplets, specifically their volume, is crucial for improving the quality of
the printed product. However, limitations in the micrometer scale and the number of texture features available
make it challenging to fully explore the relationship between defects and their causes. To address this issue, Zhang
et al. [118] utilized a multi-scale conditional diffusion model to restore distorted time series signals by generating
signals without irregularities, thereby improving the volume consistency of the deposited material. Furthermore,
Yangue et al. developed a novel DDIM model for data augmentation of FFF process layer-wise images [117].
This allows for an increase in the amount of available training data through high quality, synthetic image
generation that can accurately capture the AM layer-wise variations.

: Diffusion
: Model

: GAN

Real AM : N"‘Se- = , .
Layer-wise Images : enerator
. Y 4 ) :

Input Output

— Elow - = — Normallzmg
F]ow

Figure 3: Examples of popular generative modeling techniques applied to AM.

One area where data augmentation has been greatly utilized is for addressing class imbalance problems. In AM
defect detection studies, the minority class (defects) is typically smaller and imbalanced compared to the normal
class. Several studies have attempted to tackle this imbalance issue using various techniques applied to various
manufacturing systems including AM [119]. Some of these techniques include class-weighted techniques [50],
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semantic segmentation techniques [120], active learning [121], isolation forest [122], [123], and few-shot learning
[124]. Furthermore, many studies still rely on data augmentation techniques, which can provide more diversity,
versatility, and generalization to the dataset to address class imbalance problems for smaller class datasets [87].
Specifically, Chung et al. [125] proposed a GAN model incorporated with a classier for an effective cooperative
training mechanism within an AM process, particularly for the supervised classification of imbalanced states.
Moreover, a cluster-based adaptive data augmentation (CADA) has also been developed by Dasari et al [126] for
oversampling of the minority class in the defects classification of AM. Table 2 summarizes examples of data
augmentation techniques based on deep learning, oversampling, machine learning, and traditional techniques, all
of which are applied to AM. This summary emphasizes the rise of deep learning techniques (such as GAN and
diffusion models) over other techniques.

Table 2: Overview of data augmentation applications in AM

Methods Algorithms Applications References
GAN Balance abnormal samples [97], [114], [125],
for anomaly detection [127],[128], [129]
Deep learning-enabled VAE Defect detection ' [130], [131]
. DDPM Image super-resolution [132]
generative models Layer-wise monitoring of
DDIM AM [117]
NF Defect detection [133]
Cluster-based adaptive
data augmentation Data augmentation [126]
(CADA)
Statistical shape analysis Augmen.tatlon.fo'r CNN
(SSA) georr.let.rlc deviation [134]
. prediction
Oversampling and Augmentation for metal
machine learning SMOTE AM printability prediction [128], [135]
. Augmentation for in situ
Bootstrapping porosity detection [136]
Stratified sampling with | 1y 0 o diction [137]
ensemble technique
Time stretching, pitch Acoustic data augmented to [138]
shifting, & amplifying anomaly detection
. Augmentation for part
! quality detection [139]
Flip, crop, gaussian noise, | Augmented data for part [140]
Traditional and blur classification
Translation, mirroring, L .
brightness, & contrast In situ video monitoring [141]
Gaussian Kernel and . .
Gaussian noise Quality analysis [142]

3.3. Limitations and Challenges of Data Augmentation

Despite the advantages of employing data augmentation for small datasets, it also comes with some limitations.
These limitations include (1) data/domain-specific complexity, (2) the risk of overfitting and limited effectiveness,
and (3) the intracity of certain data augmentation techniques.

Firstly, certain types of AM data have different characteristics or feature complexities that could be challenging
to address with certain data augmentation techniques. For instance, some traditional techniques are not suitable
for direct application on time series data (e.g., signal data) [97]. Data complexity can also lead to augmentation
techniques failing to understand the distributions of the datasets, resulting in issues such as mode collapse [143],
generalization or optimization [144] and memorization issues [145].

Secondly, data augmentation can reduce the effectiveness of training by introducing more data duplication to
the training and further overfitting the model. In other words, excessive data augmentation can introduce bias to
the training, which can further deteriorate the level of overfitting of the model [100], [101]. Training effectiveness

7



240
241
242
243
244
245
246
247
248

249

250

251
252
253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268
269

270
271
272
273
274

275
276
277
278
279
280
281
282
283

is also reduced by the introduction of more unrealistic patterns or little diversity or variations.

Finally, data augmentation techniques, such as deep learning methods, tend to be computationally expensive
in terms of time and resources. For instance, diffusion generative models such as DDPM can require very high
computational costs for training before being able to generate high quality images [115]. Deep learning models
also require the development of robust network architectures and the need for large datasets to train the model,
both of which are not always easily achievable in AM practice. However, despite these limitations, strong data
augmentation techniques could provide robust solutions for the many issues related to small-scale dataset usability
in AM.

4. Transfer Learning
4.1. Overview of Transfer Learning

Transfer learning (TL) is another commonly used technique for improving model performance in situations
where data may be very limited. TL allows us to leverage knowledge from one or more source datasets to improve
the performance of a related, but slightly different target dataset [37]. This framework of knowledge sharing has
seen great success in a variety of applications and industries, including medical image transfer [146], [147],
industrial manufacturing and agriculture [148], [149], [150], speech and pattern recognition [151], and time series
analysis [152], [153]. In addition to these general applications, TL has also shown promising results in enhancing
the usability and effectiveness of small-scale datasets [41], [42], [154]. This is because TL frameworks require
less data from each domain, facilitate reduced processing time, and are able to combine and leverage knowledge
from multiple small, related groups of data [42].

In general, we can categorize three main approaches of TL, which include instance-based transfer, feature-
based transfer (domain adaptation), and model-based transfer [25], [40]. These three different forms of TL cover
most applications and provide a broader, more effective grouping mechanism to better discuss implementation
techniques and are visualized in Figure 4.

o Instance-based transfer focuses on identifying and directly transferring the most similar-to-target samples
from one or more source distributions, into a single target domain [155]. This approach aims to bolster and
increase the number of training samples, which can result in a more accurate and robust model. A common
approach to implementing instance-based methods is through a sample reweighting scheme between source
and target samples [156], [157], [158].

o Feature-based transfer, also known as domain adaptation, aims to capture and align feature distributions from
the source to the target domains [40], [159]. This is a slightly different approach compared to instance-based
transfer, as it works to identify and align key feature distributions within the data. This can lead to more
accurate and efficient models, as it leverages additional source samples, while efficiently extracting and
aligning the key features.

o Model-based transfer involves transferring knowledge from a pre-trained source model(s) to improve a related
target model’s performance [160], [161]. This approach does not involve any data or distribution alignment,
as it relies primarily on transferring pre-trained source model parameters, and then fine-tuning the target model
to better fit the target data. This allows the user to develop a more stable source model, where there is generally
more data, and then fine-tune the performance to better fit the target data distribution.

Overall, there are a variety of different approaches and methods of implementing transfer learning, each with
its own unique approach and distinct advantages.
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Figure 4: Overview of the three main forms of transfer learning, showcasing how to leverage and transfer source
and target domain knowledge.

4.2. Applications of Transfer Learning in AM

On top of the broad impact and implementation of these models, some approaches to transfer learning have
already been implemented in AM, including examples of instance-, feature-, and model-based TL. These different
applications cover everything from process parameter estimation to process monitoring and defect modeling,
including transferring knowledge between processes and materials. Tang et al. provide a detailed survey covering
various applications of TL in AM [25]. One unique instance of TL in AM implements instance-based transfer
learning to use prior experimental data for process optimization of a target printing process in laser-based AM
[162]. In their framework, the previous experimental process optimization data are directly leveraged as initial
experimental data to guide the sequential target optimization studies. This ultimately reduced the amount of costly
and time-consuming optimization experimentation needed for the target study [162]. In addition, another study
leverages feature-based TL to develop a statistical transfer learning framework to predict the shape-dependent
variations of novel printed geometries [25], [163]. This was accomplished by using the shape-dependent part of
source geometries and creating a shared latent space around these local features. This shared latent space from the
source examples can then result in a trained model that can be applied to predict the shape-dependent parts of
novel geometries. In addition to this example, a handful of other research applications have focused on applying
model-based TL for shape deviation prediction in AM [164], [165], [166], [167]. Furthermore, Senanayaka et al.
leveraged a hybrid model- and instance-based TL framework to better understand the effects of AM process
conditions on the thermal-defect relationship [168]. This work focuses on initially grouping similar source and
target samples, training source models, and then transferring parameters from multiple models to develop a more
accurate target classifier. Finally, TL has also been leveraged for predicting distortion, as well as transferring
machine calibration and compensation knowledge [169], [170]. Despite these specific applications, TL is a
generally less researched and less implemented solution for handling small datasets, as compared to feature
extraction approaches in AM. However, there have been several promising implementations of TL in metal-based
AM, detailed in Table 3, which showcases the potential to further improve model accuracy in small-scale dataset
applications.

4.3. Limitations and Challenges for Transfer Learning
Despite the potential advantages associated with TL, there are some key limitations related to implementing

TL in AM, which are primarily focused on (1) high process variability and AM setup diversity; and (2) data
privacy concerns.
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Firstly, there are a variety of factors that can affect the resulting distribution of AM process data, including
material properties, process parameters, part geometry, and environmental factors. Because of the significant
diversity between AM applications, there can be difficulty directly implementing off-the-shelf TL methods for
AM. This is because most traditional approaches to TL rely on the source and target datasets being similarly
structured and distributed [171]. Without sufficient understanding of the relationships between those AM systems,
there is a significant risk of negative transfer in TL, which can jeopardize the modeling performance and lead to
misleading decisions [25].

Secondly, there are significant data privacy and intellectual property theft concerns that arise when externally
sharing thermal process data and related process knowledge [29], [172], [173], [174]. This stems from the idea
that the AM process data can potentially contain sensitive design information that can be extracted and leveraged
to perform re-identification attacks [60]. These malicious attacks are designed to extract geometric information
and utilize it to identify critical design aspects or entire part geometries from available data. This can then be
leveraged to recreate the part and steal the intellectual property of the AM user. This is a serious concern for a
variety of AM applications, especially for instances of rapid prototyping, where design information is considered
highly confidential [29]. Without the development of secure data sharing frameworks [29], [60] or implementation
of decentralized learning frameworks, such as federated learning [175], [176], there is a significant threat of
intellectual property theft when participating in collaborative modeling or data sharing.

Table 3: Overview of transfer learning algorithms in AM

Methods Applications References
Instance- Support rapid process modeling in aerosol jet printing. [177]
based Leverage data from previous studies for laser-based AM. [162]
Feature- Support rapid process modeling in aerosol jet printing via affine transformation. [177]
based Transfer shape features to predict shape-dependent parts. [163]
Quantify uncertainty in LPBF via transfer learned process maps. [178]
Model shape deviation via transfer learning across processes. [167]
Predict distortion via Bayesian model transfer among materials [169]
Grouped similarity transfer learning for understanding the effects of process [168]
conditions.
Model transfer for fine-tuning neural network for the prediction of deposition [179]
height in directed energy deposition (DED).
Model- Improved mosiel of kinematics induced geometric variations in AM parts via [171]
based CNN fine-tuning. : . :
Transfer common information from a surface to a new one with only low- [163]
resolution data.
Transfer source model to retrain a target model for monitoring of a different
e [180]
material in LPBF.
Material-adaptive monitoring for wire-arc AM via a property-concatenated [181]
transfer learning.
Trapsfer model parameters across polymer composites for predicting stress- [182]
strain curves.

5. Future Research Opportunities and Directions

Although there has been a generous amount of research addressing the small-scale data challenge in AM, there
are still a few key challenges and opportunities for future research. The opportunities focus primarily on
Knowledge Fusion and Improved Learning Strategies, which encompass both the inclusion of additional domain
knowledge to the modeling, as well as leveraging more advanced learning techniques for model training to
improve the usability of existing data. The general overview of these approaches is outlined in Figure 5. On the
other hand, some of the key challenges to be addressed relate primarily to how practitioners can participate in data
sharing and collaborative modeling, while simultaneously ensuring their data and intellectual property are kept
confidential if needed. As the interconnectedness of machines, computers, and personnel continues to increase,
data privacy is becoming a more prominent concern and has become an increasingly important area of research.
Overall, this overview is not all-inclusive, but rather focuses on a few prominent research areas.
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Figure 5: Overview of opportunities to improve small-scale data usability and address remaining challenges.
5.1. Advanced Learning

5.1.1. Active Learning

More advanced and strategic approaches to how ML models are trained can have a major impact on how the
final model is able to perform, especially in cases with a limited amount of labeled training data. One popular
learning strategy is known as Active Learning (AL), which is specifically designed to improve training efficiency
by querying and identifying informative points in the instance space and then leveraging an external source to
provide labels for the selected samples [183], [184]. In many cases, this involves leveraging an experienced human
user to provide the model with feedback for the labeled samples, which is commonly referred to as human-in-the-
loop ML [183], [185], [186], [187]. This iterative training process results in improved efficiency, reduced data
annotation costs, and the ability for the model to achieve improved performance and generalizability, as compared
to traditional supervised learning methods [183], [185]. In general, active learning has been successfully deployed
in a variety of applications, including for natural language processing models [183], [184], [188], remote sensing
and image analysis [184], [189], [190] and industrial applications of fault detection and uncertainty quantification
[191],[192], [193]. For AM, active learning has been leveraged to improve in-situ process monitoring capabilities
[194], [195], [196], enhanced ink-jet droplet pinch off behavior prediction [197], and prediction capabilities for
tensile properties of additively manufactured components [198].

In addition to the traditional form of AL, there is also a variation known as Incremental Learning (IL), which
is sometimes also referred to as Lifelong Learning or Continual Learning. 1L is similar to the traditional form of
active learning, where the model is continuously learning from new data over time [199], [200], [201]. This
approach is useful when there can be changes in the data distributions over time or instances of concept drifting,
where it may be impractical to completely retrain the model whenever new data are available. Furthermore, this
is a more resource-efficient approach to training as the objective is for the model to learn from incremental
amounts of new data, without forgetting the previous information [202], [203]. Applications of IL include
medical-based applications [201], [202], object detection and segmentation [200] and wire-arc AM defect
detection [204]. Overall, AL can be especially useful for small-scale AM datasets, where AM labeling costs can
be prohibitive due to time, cost, and labor limitations [20], [194].

5.1.2. Multi-task Learning (MTL)

A second approach for advanced learning strategies is referred to as multi-task learning, where the focus is
developing frameworks and ML models that can exploit existing relationships between related tasks to improve
the generalization and model(s) performance on these tasks [205], [206], [207]. The foundation of this framework
focuses on the idea that learning multiple tasks jointly allows for knowledge from one task(s) to be leveraged for
other task(s) to improve the generalizability performance of all tasks [206]. This specifically works to help handle
data availability and sparsity challenges, where the amount of labeled data from one task may be inadequate to
train an accurate learner [205]. Furthermore, MTL is closely related to TL, where the goal of TL to leverage data
from a source task to improve performance on a target task [206], [208], [209]. However, there are two key
distinctions between MTL and TL [206], [208]: (1) all tasks and related data are treated with equal weight,
whereas TL focuses most attention on the performance of the target task, (2) the flow of knowledge for MTL is
shared between all tasks, whereas TL generally shares knowledge from the source task to the target task. In
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general, there are a wide range of applications for multi-task learning, including natural language processing [210],
computer vision [211], and time series predictions [212], among others [208]. In addition to traditional
applications, due to their similarity and relation to TL, there has been research focused on blending together TL,
MTL, and Federated Learning approaches to further improve data usability and model performance in cases of
shared data [209], [213]. Overall, MTL learning provides a unique and promising direction for enhancing the
learning strategy when leveraging limited, small-scale data in AM.

5.1.3. Advanced Representation Learning

There is also an approach to overcoming the limited data challenge by altering how the data is represented and
learned through machine learning models. Two examples of this approach include Granular Computing and
Siamese Networks, which can both be powerful approaches, but are not fully utilized in AM. Furthermore, these
techniques can have limitations in terms of generalization, data dependency, model complexity, or simplicity.

Granular computing is the concept of processing highly complex information across multiple levels of
granularity [214], [215]. This focuses on changing the representation of complex information through
deconstruction into smaller, more manageable granules. These granules can capture different levels of detail and
variance in the data. Example usage of granular computing includes outlier and fault detection [216], [217], text
classification [218], and improving federated learning frameworks [215]. Overall, this unique approach makes it
a potentially promising option for handling some of the inherent variability and uncertainty in complex AM
process data and Al-based modeling.

Siamese networks take another approach to representation learning, in which the main objective is to extract
meaningful information through similarity comparison of input vectors [219], [220], [221]. This framework
leverages two identical neural network architectures, where each is able to learn a hidden representation of a
defined input [220], [222]. The two architectures work in parallel and output a semantic similarity measure of the
projected representation for each input. Traditionally, these architectures are used for image-based applications
[222], including signature and facial verification [222], few-shot learning [223], and visual tracking tasks [224],
[225]. There are some applications of Siamese networks for AM [226], [227]; however, there are still opportunities
for more in-depth investigation and broader application of these frameworks in AM.

5.2. Knowledge Fusion
5.2.1. Multimodal Data Fusion

As previously mentioned, AM is a data-rich environment, meaning that practitioners are able to collect a
diverse range of different data types from the AM process [228], [229]. These various data streams relate to
different aspects of the AM process itself and allow the ability to measure the process variability from multiple
perspectives [228], [230]. This idea is commonly referred to multimodal data fusion and has become an
increasingly popular research topic in AM [231], [232], [233], [234]. By leveraging multimodal data, practitioners
can leverage two or more different types of AM data to improve the efficiency and effectiveness of their ML
models [233]. Here, fusible data might include ex-situ data (e.g., post-processed CT data [89], [232]) and in-situ
sensing (e.g., layer wise imagery [231], [234], acoustic [231], vibration [235], and a variety of other data types
[26]). However, the diversity of this data does not directly translate to increased sample sizes, which is a key
challenge for AM practitioners. In summary, the multimodal data fusion approach focuses on improving the
robustness and accuracy of ML models by including and supplementing data from various, complimentary data
sources.

Another approach to fusing additional data and knowledge into the ML modeling framework focuses on
leveraging simulation-based data to further improve model performance and generalization in cases of limited
data [236], [237], [238], [239]. Simulation-based data allows for the generation of data samples that are
representative of the physical process or parameters being modeled. This can result in the ability for simulated
data to be directly leveraged with the existing, real-world data to increase the diversity and size of limited training
data [239], [240], [241], [242]. In addition, simulation data can also be leveraged to directly train a general ML
model for the application. This pretrained model can then be further fine-tuned using the real-world samples and
experimental data [237], [243], [244], [245]. There has been some interest in leveraging simulation-based data for

12



443
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

462

463
464
465
466
467
468
469
470

471
472

473
474

475
476
477
478

AM, specifically for metal-based AM [246], [247], [248]; however, there are still significant research
opportunities in this field [237].

5.2.2. Context and Domain Fusion

Furthermore, there has been increasing research interest in context-aware machine learning to further improve
ML performance. Contextual learning focuses on implementing real-world context and domain-specific
knowledge into the model and training data space [249], [250], [251]. A specific and increasingly popular method
of contextual learning is known as the Physics Informed ML (PIML) approach. The goal with PIML is to include
prior knowledge about the physics related to the specific domain or application being modeled [242], [252] into
the ML model. The PIML framework bridges the two approaches of Knowledge Fusion and Advanced Learning,
as depicted in Figure 5. This is because PIML frameworks can be applied to both the preprocessing stages and
training stages of the ML model [87], [251], [253]. This is accomplished by either constraining or preprocessing
the training data based on the related system physics [242], [251], or incorporating partial differential equations
into the training process itself [242], [251], [252]. The use of either approach to PIML can result in a more robust
model with enhanced generalizability and interoperability [87], [242], [252]. For AM applications, the use of
PIML is rapidly growing and shows the potential for continued growth for defect detection and reduction [254],
[255] and developing a stronger understanding of process-structure-property relationship [87], [256], [257], [258].
In summary, researchers and practitioners need to be aware of data-driven modeling constraints and alternative
approaches, such as PIML, to maximize the effectiveness of model implementation in AM.

5.3. Privacy Challenges for ML in AM

Despite the potential opportunities for future work as described previously, there are still some concerns when
it comes to sharing data and collaborating across multiple, independent AM users. collaborative modeling and
data sharing is a potentially strong way to improve prediction performance, but does create data privacy concerns
once the data is shared outside of the organization, especially within AM [60]. The two most common approaches
of collaborative modeling are Centralized and Decentralized Collaborative Modeling, where the data is
aggregated and fed to a central model or the central model is decentralized to each local user, respectively. These
two approaches are outlined in Figure 6.

. Shared Model
Centralized Data Shared Main Model No Shared
‘ Data D Data
s @i =
= / \
Process Data Local

Models

Process
Data

N,

. AM User1 AM User 2 AM User n ,:l \_ AM User1 AM User 2 AM User n ',:

Networked Additive Manufacturers Networked Additive Manufacturers

Figure 6: An overview of the two key approaches for enhancing collaborative modeling security and privacy:
(A) depicts centralized collaborative modeling, where local user data is secured and aggregated; (B) depicts a
decentralized collaborative modeling framework, where models are trained locally.

5.3.1. Centralized Collaborative Modeling

Sharing data between users allows for a collection of independent manufacturers to develop a larger, more
effective set of training samples. This can result in the development of more accurate and robust models, which
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are trained on these larger and more diverse, collaborative sets of training data [29]. However, directly sharing
data outside of an organization can put AM users at risk for data privacy breaches and intellectual property theft
due to design attributes that can be embedded in the process data [29], [259]. To combat this significant threat,
two key different approaches to data privacy and security can be leveraged to improve the safety of this shared
data.

Firstly, the use of encryption and access control methods can provide a strong barrier to the protection of data
privacy and security [260], [261], [262], [263], [264]. Encryption-based methods, such as homomorphic
encryption, allow users to leverage an encryption key to randomize the data and put it into an unrecognizable
state. In turn, the receiving party leverages a decryption key to reverse the encryption and leverage the data [261],
[265], [266]. Homomorphic encryption, in particular, provides the added benefit of being able to perform
computation and analysis on the encrypted data, making it easier to use the data than traditional methods [267].
However, an important limitation of using encryption is the reliance on encryption/decryption keys, which create
a potential vulnerability that can be exploited by malicious actors [268], [269], [270].

Secondly, the development of de-identification mechanisms for the shared data provides an additional measure
focused on data privacy [271], [272]. The goal behind these frameworks is to selectively identify, obscure, and
protect the confidential design aspects of the data being shared. This allows for the data to be leveraged in a
collaborative data sharing framework, while simultaneously ensuring that there are added data privacy protections
for the data. This framework is depicted in Figure 6A. There exists a wide range of applications for these
algorithms, including in healthcare [273], [274], computer vision [259], [275], [276], and AM [29]. These
frameworks work towards providing an added layer of protection that can be blended with existing security
measures, such as encryption, to enhance data privacy and intellectual property protection.

5.3.2. Decentralized Collaborative Modeling

The second approach to overcome the challenge of privacy concerns when sharing data is Federated Learning
(FL). This approach leverages a decentralized framework for training ML models, without the exchange of client
data [277], [278]. A baseline model is stored at a central server, where copies of this model are then shared with
each client. These clients can then train and update the shared model with their local data, without exchanging
private data to the central server. From here, the model updates from the local stage are then shared with the main
model via an aggregation technique. This iteration continues, further improving the model performance and
allowing clients to leverage small-scale data and still achieve an effective ML [277], [278], [279]. This framework
is highlighted in Figure 6B. In general, this approach improves the data privacy and security concerns associated
with traditional collaborative modeling by removing the need to share local data outside of the client of origin
[176], [280]. In addition, FL has been implemented in a variety of advanced manufacturing applications [175],
[281], including metal-based AM [282], [283], [284]. There are also a variety of resources exploring the use of
Federated Transfer Learning (FTL), which focuses on using data from different feature spaces, in a FL framework,
to enhance usability and privacy [285], [286], [287], [288]. FTL has been implemented in a variety of applications,
including healthcare wearable technology, autonomous driving, and image steganalysis [285].

However, it is important to note that there are still vulnerabilities and limitations associated with the FL
approach. Firstly, there is the risk of possible model-poisoning and other back-door attacks, which can
compromise data privacy [289], [290]. Secondly, FL can also suffer from communication latency, which is caused
by the need for frequent communication between nodes during the learning process [291]. Overall, there are some
key challenges that come with leveraging FL; however, there is also great potential for developing secure
frameworks for sharing knowledge among different AM users to improve model performance on small-scale
metal-based AM process data.

5.4. Key Research Opportunities

There still exists a need to further explore different ways of implementing and leveraging these tactics. From
some of the previously discussed limitations, there are a handful of clear research directions to further improve
the applicability of these methods. Firstly, for feature extraction, there is a need for the development of more
robust feature extraction techniques, specifically tailored to AM. This is because AM processes exist in a data-
rich environment, yet they still possess a high level of variability and diversity across processes and applications.
Because of this, a lot of off-the-shelf feature extraction may not be applicable to each type of data collected from
the AM process. This can lead to difficulty in aligning the different features into a shared space for process and
defect modeling. Secondly, for data augmentation, there are some similar challenges as some of the state-of-the-
art methods are not designed to capture the detailed features in the AM process data. Many generative techniques,
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such as GAN models and diffusion models (DDIM/DDPM) are developed based on computer-vision applications,
which have large, developed training sets. In order to better tailor these techniques for AM, research into more
robust variations and modifications is needed. Thirdly, in the case of transfer learning, there is not a widespread
application of feature- and instance-based methods. These methods have not been explored as widely as the model-
based methods have, which provides an opportunity for future investigation. In addition, many current TL models
do not consider how transferring AM process knowledge can lead to compromises in user intellectual property
and other data privacy concerns. Recent work by Fullington et al. has addressed some of these initial concerns,
but there is still a need for developing and compounding additional privacy measures [29].

6. Conclusion

This research aims to provide a detailed overview of the available techniques for enhancing small-scale data
set usability, as well as explore their current and potential application for AM. These various methods include
implementing (1) feature extraction techniques, which aim to enhance the usability by identifying and extracting
low-dimensional key attributes from the raw data, (2) data augmentation techniques, which aim to increase the
diversity and size of the training data through augmenting the data, and (3) transfer learning approaches, which
allow users to leverage one or more source datasets to improve a target model performance by sharing and aligning
knowledge between them. Furthermore, there have already been a handful of successful applications of these
enhancement techniques for AM applications, specifically geared towards porosity prediction, process
monitoring, and parameter optimization.
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