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We derive a family of optimal protocols, in the sense of saturating the quantum Cramér-Rao bound, for
measuring a linear combination of d field amplitudes with quantum sensor networks, a key subprotocol of general
quantum sensor network applications. We demonstrate how to select different protocols from this family under
various constraints. Focusing primarily on entanglement-based constraints, we prove the surprising result that
highly entangled states are not necessary to achieve optimality in many cases. Specifically, we prove necessary
and sufficient conditions for the existence of optimal protocols using at most k-partite entanglement. We prove
that the protocols which satisfy these conditions use the minimum amount of entanglement possible, even when
given access to arbitrary controls and ancillas. Our protocols require some amount of time-dependent control, and
we show that a related class of time-independent protocols fail to achieve optimal scaling for generic functions.
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I. INTRODUCTION

Entanglement is a hallmark of quantum theory and plays
an essential role in many quantum technologies. Consider
single-parameter metrology, where one seeks to determine
an unknown phase θ that is independently and identically
coupled to d sensors via a linear Hamiltonian Ĥ . Given a
probe state ρ̂, evolution under Ĥ encodes θ into ρ̂ where it
can then be measured. If the sensors are classically correlated
the ultimate attainable uncertainty is the so-called standard
quantum limit �θ ∼ 1/

√
d [1], which can be surpassed only

if the states are prepared in an entangled state [2,3]; if O(d )-
partite entanglement is used, the Heisenberg limit �θ ∼ 1/d
can be achieved [4–6]. The necessity of entanglement for
optimal measurement has also been explored in numerous
other contexts [7,8], for instance, in sequential measurement
schemes (where one may apply the encoding unitary multiple
times) [9,10], in the presence of decoherence [11–14], when
the coupling Hamiltonian is nonlinear [15–17], or in reference
to resource theories for metrology [18–21].

In this paper, we consider the amount of entanglement
required to saturate the quantum Cramér-Rao bound, which
lower-bounds the variance of measuring an unknown quan-
tity [22–25], in the prototypical multiparameter setting of
a quantum sensor network, where d independent, unknown
parameters θ (boldface denotes vectors) are each coupled to
a unique quantum sensor. Specifically, we revisit the problem
of optimally measuring a single linear function q(θ) [26–35],
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which is a crucial element of optimal protocols for more gen-
eral quantum sensor network problems (the case of measuring
one or multiple analytic functions [36,37] and the case where
the parameters θ are not independent [38] reduce asymptot-
ically to the linear problem considered here). Therefore, we
focus on measuring a single linear function of independent
parameters for ease of presentation while emphasizing that
our results generalize.

Given the similarity of measuring a single linear function
to the single-parameter case and the fact that such functions
of local parameters are global properties of the system, one
might expect (provided all the local parameters nontrivially
appear in q) that d-partite entanglement is necessary. This
intuition is reinforced by the fact that all existing optimal
protocols for this problem do, in fact, make use of d-partite
entanglement [26,27,32].

We show that such intuition is faulty and only holds in the
case where q is approximately an average of the unknown
parameters. In particular, we derive a family of protocols
that saturate necessary and sufficient algebraic conditions to
achieve optimal performance in this setting, and we prove
necessary and sufficient conditions on q for the existence
of optimal protocols using at most (k < d )-partite entan-
glement. The more uniformly distributed q is among the
unknown parameters, the more entanglement is required. We
also consider other resources of interest, such as the av-
erage entanglement used over the course of the protocol,
as well as the number of entangling gates needed to per-
form these protocols, and discuss optimizing them within our
scheme.

Finally, we address the impracticality of certain assump-
tions that have typically been made in the more theoretically
focused literature on function estimation protocols. Specifi-
cally, we show that so-called probabilistic protocols fail to
achieve the Heisenberg limit except for a narrow class of
functions.
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II. PROBLEM SETUP

We first briefly review the problem of measuring a linear
function of unknown parameters in a quantum sensor network
[26,27,29–32]. Consider a network of d qubit quantum sen-
sors coupled to d independent, unknown parameters θ ∈ Rd

via a Hamiltonian of the form

Ĥ (s) =
d∑

i=1

1

2
θiσ̂

z
i + Ĥc(s), (1)

where σ̂
x,y,z
i are the Pauli operators acting on qubit i and Ĥc(s)

for s ∈ [0, t] is any choice of time-dependent, θ-independent
control Hamiltonian, potentially including coupling to an ar-
bitrary number of ancillas. That is, Ĥc(s) accounts for any
possible parameter-independent contributions to the Hamil-
tonian, including those acting on any extended Hilbert space
with a (finite) dimension larger than that of the network of
d qubit sensors directly coupled to the unknown parameters
[39]. We encode the parameters θ into a quantum state ρ̂ via
the unitary evolution generated by a Hamiltonian of this form
for a time t . Given some choices of initial probe state, con-
trol Ĥc(s), final measurement, and classical postprocessing,
we seek to construct an estimator for a linear combination
q(θ) = α · θ of the unknown parameters, where α ∈ Rd is a
set of known coefficients. Throughout this paper, we assume
without loss of generality that ‖α‖∞ = |α1|. Reference [27]
established that the fundamental limit for the mean-square
error M of an estimator for q is

M � ‖α‖2
∞

t2
, (2)

where t is the total evolution time.
Equation (2) is derived via the single-parameter quantum

Cramér-Rao bound [15,22–25]. This is somewhat surprising:
while we seek to measure only a single quantity q(θ), d
parameters control the evolution under Eq. (1), so we do not a
priori satisfy the conditions for the use of the single-parameter
quantum Cramér-Rao bound. However, we can justify its va-
lidity for our system: consider an infinite set of imaginary
scenarios, each corresponding to a choice of artificially fixing
d − 1 degrees of freedom and leaving only q(θ) free to vary.
Under any such choice, our final quantum state depends on
a single parameter q, and we can apply the single-parameter
quantum Cramér-Rao bound. While this requires giving our-
selves information that we do not have, additional information
can only reduce M, and, therefore, any such choice provides
a lower bound on M when we do not have such information.
To obtain the tightest possible bound there must be some
choice(s) of artificially fixing d − 1 degrees of freedom that
gives us no (useful) information about q(θ). We will derive
algebraic conditions that characterize such choices.

Thus, we may apply the single-parameter quantum
Cramér-Rao bound

M � 1

F (q)
� 1

t2‖ĝq‖2
s

, (3)

where F is the quantum Fisher information, ĝq = ∂Ĥ/∂q
(the partial derivative fixes the other d − 1 degrees of free-
dom), and the seminorm ‖ĝq‖s is the difference of the largest

and smallest eigenvalues of ĝq [15]. For our problem, the
best choice of fixing extra degrees of freedom—in the sense
of yielding the tightest bound via Eq. (3)—gives ‖ĝq‖2

s =
1/‖α‖2

∞, yielding Eq. (2) [27]. The proof of this fact is pro-
vided in Appendix F for completeness.

III. CONDITIONS FOR SATURABLE BOUNDS

While the argument above justifies applying the single-
parameter bound in our multiparameter scenario, it offers no
roadmap for constructing optimal protocols. The quantum
Fisher information matrix F (θ) provides an information-
theoretic solution to this issue. When calculating F (θ) we
restrict to pure probe states, as the convexity of the quantum
Fisher information matrix implies mixed states fail to produce
optimal protocols [40,41]. For pure probe states and unitary
evolution for time t under the Hamiltonian in Eq. (1), it has
matrix elements [41]

F (θ)i j = 4
[

1
2 〈{Ĥi(t ), Ĥ j (t )}〉 − 〈Ĥi(t )〉〈Ĥ j (t )〉], (4)

where {·, ·} denotes the anticommutator and

Ĥi(t ) = −
∫ t

0
dsÛ †(s)ĝiÛ (s), (5)

with ĝi = ∂Ĥ/∂θi = σ̂ z
j /2 and Û the time-ordered exponen-

tial of Ĥ . The expectation values in Eq. (4) are taken with
respect to the initial probe state.

Choosing d − 1 degrees of freedom to fix in hopes of using
the single-parameter bound then corresponds to a basis trans-
formation θ → q, where we take q1 = q to be our quantity
of interest, and the other arbitrary q j>1 are the extra degrees
of freedom. This basis transformation has a corresponding
Jacobian J such that F (q) = J
F (θ)J . To obtain the bound
in Eq. (2) and have no information about q(θ) from the ex-
tra degrees of freedom qj>1, F (q) must have the following
properties:

F (q)11 = t2

α2
1

, (6)

F (q)1i = F (q)i1 = 0 (∀ i �= 1) (7)

(recall |α1| = ‖α‖∞ without loss of generality). Via the in-
verse basis transformation q → θ, we find Eqs. (6) and (7) are
satisfied if and only if

F (θ)1 j = F (θ) j1 = α j

α1
t2, (8)

where we assume here and for the rest of the main text that
|α1| > |α j | ∀ j > 1 for ease of presentation. Our main result
(see Theorem 1) is unchanged by this assumption, although its
proof and that of several other results becomes more tedious.
The explicit derivation of Eq. (8), along with the general-
ization of our results beyond this assumption, is provided in
Appendix F.

Finally, we remark that the problem of function estima-
tion is mathematically equivalent to the concept of nuisance
parameters in the literature on classical (cf. Ref. [42]) and
quantum estimation theory [43–45]. One finds similarly de-
rived bounds in these contexts [46]. However, the protocols
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we now describe, and especially their entanglement features,
are new to this work.

IV. A FAMILY OF OPTIMAL PROTOCOLS

We now derive a family of protocols that achieve Eq. (8).
A particular protocol consists of preparing a pure initial state
ρ̂0 = |ψ (0)〉〈ψ (0)|, evolving ρ̂0 under the unitary generated
by Ĥ (s) for time t , performing some positive operator-valued
measurement, and computing an estimator for q from the
measurement outcomes. Given ρ̂0 and Ĥ (s), F (θ) can be
computed via Eq. (4).

The protocols we propose will use Ĥc(s) to coherently
switch between probe states with different sensitivities to the
unknown parameters θ, thereby accumulating an overall sen-
sitivity to the unknown function of interest, q. In particular,
we consider the following set T of N = 3d−1 one-parameter
families of catlike states:

|ψ (τ; ϕ)〉 = 1√
2

(|τ〉 + eiϕ | − τ〉), (9)

where each family of states is labeled by a vector τ ∈ {0,±1}d

such that

|τ〉 =
d⊗

j=1

{|0〉, τ j �= −1
|1〉, τ j = −1,

(10)

and ϕ ∈ R parametrizes individual states in the family. We
require that τ1 = 1, as any optimal protocol must always be
sensitive to this most important parameter (see Lemma 2 in
Appendix A). Each of the probe states described in Eqs. (9)
and (10) is a superposition of exactly two states in the σ̂ z

basis (which we call “branches”). Note that these states use
no ancilla.

Our protocols proceed in three main stages: a state ini-
tialization stage, a parameter encoding stage, and, finally, a
measurement stage. In the state initialization stage, we prepare
the probe state |ψ (τ; 0)〉 that is then coupled to the parameters
in the parameter encoding stage via a Hamiltonian of the form
of Eq. (1). During this parameter encoding stage, we use the
control Hamiltonian to coherently switch between families
of probe states at particular (optimized) times, such that the
relative phase between the branches is preserved during the
switches [that is, Ĥc(s) changes τ, but not ϕ]. This can be
done using finitely many controlled-NOT (CNOT) and σ̂ x gates.
We stay in the family of states |ψ (τ (n); ϕ)〉 for time pnt ,
where pn ∈ [0, 1] such that

∑
n pn = 1. Here n indexes some

enumeration of the families of states in T . There are three
possibilities for the relative phase that qubit j induces between
the two branches due to the time spent in family n. If τ

(n)
j = 0,

then no relative phase is accrued because qubit j is disentan-
gled. If τ

(n)
j = 1, the relative phase imprinted by σ̂ z

j /2 is pnθ jt ,

while if τ
(n)
j = −1, the relative phase is −pnθ jt . Thus, the jth

qubit always induces a relative phase of pnτ
(n)
j θ jt . Accounting

for all qubits, being in family n for time pnt induces a relative
phase

φn =
∑

j

pntτ (n)
j θ j . (11)

Given some time-dependent probe |ψ (t )〉 which is in each
family |ψ (τ (n); ϕ)〉 for time pnt , the total phase φ accumulated
between the branches over the course of the entire parameter
encoding stage of the protocol is

φ =
∑

n

φn =
∑

n

∑
j

pntτ (n)
j θ j =

∑
j

(T p) jθ jt, (12)

where we implicitly defined p = (p1, . . . , pN )
 and the d ×
N matrix T with matrix elements Tmn = τ (n)

m . If p is chosen
such that T p ∝ α this total phase is ∝ qt . More formally,
choosing p such that

T p = α

α1
(13)

achieves the saturability condition in Eq. (8). Algebraic details
of this calculation are provided in Appendix B.

Any non-negative solution (in the sense that pn � 0 ∀ n)
to Eq. (13) specifies a valid set of states and evolution times
satisfying Eq. (8). Because the system in Eq. (13) is highly un-
derconstrained, such protocols do not necessarily use all 3d−1

families of states in T . As an illustrative example, consider
the solutions to Eq. (13) for two qubits. The available families
of states are described by

T = (τ (1) τ (2) τ (3) ) =
(

1 1 1
1 −1 0

)
. (14)

By Eq. (13), the fraction of time spent in each family of states
must satisfy

p1 + p2 + p3 = 1, (15)

p1 − p2 = α2

α1
. (16)

Solving in terms of p1 leads to the one-parameter family of
solutions p2 = p1 − α2

α1
and p3 = 1 + α2

α1
− 2p1, where pn ∈

[0, 1] for all n. Without loss of generality, assume α1 = 1.
Then non-negativity is achieved by

p1 ∈
{[

α2,
1+α2

2

]
, α2 � 0[

0, 1+α2
2

]
, α2 < 0.

(17)

There are many solutions satisfying these constraints. Of
particular note, there is a two-family protocol that does not re-
quire using exclusively maximally entangled states: for α2 >

0, let p1 = α2 so that p2 = 0 and p3 = 1 − α2; for α2 < 0, let
p1 = 0 so that p2 = −α2 and p3 = 1 + α2.

We refer to protocols achieving Eq. (13) [or, equivalently,
Eq. (8)] as optimal. Note, however, that achieving these con-
ditions is a property of the probe state(s) used and does not a
priori guarantee the existence of measurements to extract q.
Therefore, we now move on to describing the third main stage
of our protocols, which is the explicit measurement scheme:
apply a sequence of σ̂ x

i and CNOT gates to the final state of a
protocol to transform it into 1/

√
2(|0〉 + eiqt/α1 |1〉)(|0 · · · 0〉).

Then perform single-qubit phase estimation to measure
q [47].

Such phase estimation is not as simple as it might appear,
however. Because we are interested in how our error scales
in the t → ∞ limit, a naive approach loses track of which
2π interval the phase is in [48–50]. We could assume that
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this information is known a priori [27], but this is unjus-
tified in practice as the required knowledge is of precision
∼|α1|/t ; i.e., it is already within the Heisenberg limit. More
realistically, starting with any t-independent prior knowledge
of the unknown phase, we use the so-called robust phase
estimation protocols from Refs. [51–53] to saturate Eq. (2)
up to a modest constant factor. Such protocols work by op-
timally dividing the total time t into K stages with stage k
using a time 2νktk such that 2

∑K
k=1 νktk = t . In each stage,

one encodes the parameters into the state for a time tk and
then makes a (σ̂ x or σ̂ y) measurement. This is repeated 2νk

times in order to obtain an estimate of q, which in each
stage becomes a more and more precise estimate. Provided
the time of the final stage scales linearly with the total time,
i.e., tK ∼ t , Heisenberg scaling in time is still achieved and
we can estimate q with a mean-square error achieving the
bound in Eq. (2) up to a constant factor. For complete-
ness, we review this measurement scheme in more detail in
Appendix C.

To summarize, a full optimal protocol is as follows:
(1) Using any relevant experimental desiderata and opti-

mization algorithm, find a non-negative solution p to Eq. (13).
(2) Restrict p to its N nonzero elements, and restrict T

to the corresponding columns. If desired, reorder the ele-
ments of p and the columns of T . The N τ corresponding to
the columns of T will be the families of states used in the
protocol.

(3) Initialize a quantum state on the d qubits to |0〉⊗d .
(4) Using CNOT and σ̂ x gates, prepare |ψ (τ (1); 0)〉, the first

state of the protocol. Couple the state to the Hamiltonian
Ĥ and remain in this family for time p1tk , leading to state
|ψ (τ (1); φ1)〉, where φ1 = ∑

j p1tkτ
(1)
j θ j . Here, tk is the time

required by the current step of the robust phase estimation
protocol.

(5) Using CNOT and σ̂ x gates, coherently switch to
|ψ (τ (2); φ1)〉 from |ψ (τ (1); φ1)〉. Remain in this family for
time p2tk , leading to state |ψ (τ (2); φ1 + φ2)〉, with φ2 =∑

j p2tkτ
(2)
j θ j .

(6) Repeat this process for all states in the restricted T ,
staying in the family parametrized by τ (n) for time pntk , lead-
ing to a final state |ψ (τ (N ); qtk )〉.

(7) Using CNOT and σ̂ x gates, convert this final state to
1/

√
2(|0〉 + eiqtk |1〉)|0〉⊗d−1.

(8) Make a measurement on the first qubit of the final state
(see Appendix C for more details) and repeat starting from
step 3. After 2νk repetitions, move to the next stage of the
robust phase estimation protocol, and use an updated evolu-
tion time tk . After a number of stages, K , as prescribed by the
robust phase estimation protocol, extract a final estimate of q
with a mean-square error achieving the bound in Eq. (2) up to
a constant factor.

Having described the full details of the protocol, including
the subtleties involved in subdividing the total time t into
different stages in order to implement robust phase estimation,
in the rest of the paper, for simplicity of presentation, we
will simply consider the total encoding time t and act as if
the parameters can be encoded into the state in one step,
using evolution for this full time. This should be viewed as
a notational shorthand such that t can be replaced with the

relevant tk at any given stage when implementing the full
protocol.

V. MINIMUM-ENTANGLEMENT SOLUTIONS

We now focus on solutions from our family of protocols
that require the minimum amount of entanglement. Specifi-
cally, we prove necessary and sufficient conditions on α for
the existence of a protocol that uses at most k-partite entan-
glement. This is the primary technical result of our paper. We
emphasize that, while the protocols in the previous section use
a particular choice of controls that does not include ancilla
qubits, Theorem 1 applies to any protocol making use of a
Hamiltonian described via Eq. (1).

Theorem 1 (Main result). Let q(θ) = α · θ. Without loss of
generality, let ‖α‖∞ = |α1|. Let k ∈ Z+ so that

k − 1 <
‖α‖1

‖α‖∞
� k. (18)

An optimal protocol to estimate q(θ), where the parameters θ

are encoded into the probe state via unitary evolution under
the Hamiltonian in Eq. (1), requires at least, but no more than,
k-partite entanglement.

Theorem 1 justifies our claim that d-partite entanglement
is not necessary unless ‖α‖1 is large enough, i.e., in the
case of measuring an average (αi = 1

d ∀ i). We now sketch
the proof, providing full details in Appendix D. The proof
comes in two parts. First, using k-partite-entangled states from
the set of catlike states considered above, we show the exis-
tence of an optimal protocol, subject to the upper bound of
Eq. (18). Second, we show that, subject to the conditions in
the theorem statement, there exists no optimal protocol using
at most (k − 1)-partite entanglement, proving the lower bound
of Eq. (18).

Part 1. Define T (k) to be the submatrix of T with all
columns n such that

∑
m |Tmn| > k are eliminated, which en-

forces that any protocol derived from T (k) uses only states that
are at most k-partite entangled. Define system A(k) as

T (k)p(k) = α/α1, (19)

p(k) � 0. (20)

Let α′ = α/α1 and define system B(k) as

(T (k) )
y � 0, (21)

〈α′, y〉 < 0. (22)

By the Farkas-Minkowski lemma [54,55], system A(k) has a
solution if and only if system B(k) does not, so it is suffi-
cient to show that system B(k) does not have a solution if∑

j>1 |α′
j | � k − 1, where we used that α′

1 = 1. This can be
shown by contradiction.

Part 2. The probe state must always be maximally sensitive
to the first sensor qubit (see Lemma 2 in Appendix A), so
F (θ)1 j only accumulates in magnitude when qubit j is en-
tangled with the first qubit [intuitively, Eq. (4) is similar to a
connected correlator]. Using this, we show that satisfying the
condition in Eq. (8) requires ‖α‖1/‖α‖∞ > k − 1.

Theorem 1 provides conditions for the existence of so-
lutions to Eq. (13) with limited entanglement, but it is not
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constructive. To obtain an explicit protocol, simply solve the
system of linear equations T (k)p = α.

Of course, instantaneous entanglement is not the only re-
source that one might want to minimize. For instance, one
might also be interested in minimizing average entanglement
over the entire protocol. This possibility is considered in
Sec. VI. Other, more general, resource restrictions can be
handled by setting up a constrained optimization problem
that picks out certain solutions to the system of linear equa-
tions T (k)p = α subject to a cost function E (p). For example,
if certain pairs of sensors are easier to entangle than others,
due to, for instance, their relative spatial location in the net-
work, that could be encoded into E (p). More complicated
optimizations could also take into consideration the ordering
of the states used in the protocols. For example, because our
protocols require coherently applying CNOT gates to move
between different families of entangled states, and these gates
may be costly or error-prone resources, one might wish to find
protocols that minimize the usage of these gates. We discuss
this possibility and the potential tradeoff between minimizing
entanglement and CNOT gates in Sec. VII.

VI. AVERAGE ENTANGLEMENT

As mentioned above, one might also wish to minimize not
just the size of the most-entangled family of states, but also
the average entanglement used (given by weighting the size of
each entangled family by the proportion of time that the family
is used in the protocol). In this section (with some details
deferred to Appendix E), we show that there exists a class
of optimal protocols, ones that we name “non-echoed,” that
minimize this average entanglement. The formal definition is
as follows:

Definition 2 (Non-echoed protocols). Consider some α ∈
Rd encoding a linear function of interest. Let T be the matrix
which describes our families of catlike probe states, and let p
specify a valid protocol such that p � 0 and T p = α/‖α‖∞.
We say that the protocol defined by p is “non-echoed” if, ∀i
such that pi is strictly greater than 0, sgn(Ti j ) ∈ {0, sgn(α j )}.

At any stage of a non-echoed protocol, letting the portion
of the relative phase accumulated between the two branches of
the probe state associated to the parameter θi be given by ciθi,
two conditions must hold: (1) |ci| < |αi| and (2) sgn(ci ) =
sgn(αi ). More intuitively, sensitivity to each parameter is ac-
cumulated “in the correct direction” at all times, meaning one
does not use any sort of spin echo to produce a sensitivity to
the function of interest, hence the name “non-echoed.”

We now prove two useful statements about non-echoed
protocols.

Lemma 1. Non-echoed protocols use minimum average
entanglement.

Proof. We start with T p = α/‖α‖∞. Then

‖α‖1/‖α‖∞ = sgn(α)
(T p)

= (sgn(α)
T )p = w
p, (23)

where we have defined w j = ∑
i |Ti j | to be the sum of the

absolute value of the elements of the jth column of T . That is,
w j represents how entangled the corresponding catlike family
of states is. But, then, clearly w
p is the average entanglement

of the entire protocol. Furthermore, the second half of the
proof of Theorem 1, given in Appendix D, shows that the
minimum average entanglement of any optimal protocol is
given by ‖α‖1/‖α‖∞ (see the discussion after the completion
of the proof). �

The intuition behind this lemma is that if one always accu-
mulates phase in the “correct direction,” then the total amount
of entanglement used over the course of the protocol must be
minimized, as any extra entanglement would lead to becoming
overly sensitive to some parameter, which would require some
sort of echo to correct.

We further have the following theorem, which can be
viewed as an extension of Theorem 1.

Theorem 3. For any α ∈ Rd , there exists an optimal non-
echoed protocol with minimum instantaneous entanglement
for measuring q = α · θ.

The proof of this theorem is given in Appendix E, and
it proceeds in a very similar way to the proof of Theorem
1. The main difference is that one also restricts the allowed
state families to be those with the correct sign so as to be
non-echoed. And, analogously to how one can find a protocol
with minimum entanglement, one can also obtain a solution
that minimizes average entanglement by restricting T to only
include columns such that sgn(Ti j ) = sgn(αi ) for all i, j and
then solving the corresponding system of linear equations.

VII. CNOT COSTS OF MINIMUM-
ENTANGLEMENT PROTOCOLS

We now address another resource of potential interest: how
many entangling (CNOT) gates are required to perform our pro-
tocols with a focus on the minimum-entanglement protocols.

We will again assume, for simplicity, that ‖α‖∞ = α1 =
1 > |α2| � |α3| � · · · � |αd |. Furthermore, without loss of
generality, we will adopt the convention that an optimal proto-
col specified by a p � 0 such that T p = α begins by preparing
a state in the family described by the first column of T and
evolving for time p1t , and then proceeds to the appropriate
state (i.e., the one with phase p1t) in the family described
by the second column, then evolving for time p2t , and so on,
until eventually moving to the measurement state. If pi = 0,
the corresponding state family is skipped and not prepared.
By construction, the number of CNOT gates needed to perform
this protocol is the number of gates required to generate the
first state, plus the number needed to convert from the first
state to the second state, and so on. Finally, one should add
the number of gates needed to prepare the measurement state,
which disentangles all qubits, from the final probe state [56].
The number of gates required to move from state i to state
i + 1 corresponds to the number of elements of τ (i) that are ±1
but 0 in τ (i+1) and vice versa. In what follows, we will often
consider only the gates that are used to convert between probe
states (i.e., we will not consider the initial state preparation or
final measurement preparation). This is physically motivated
by the fact that these intermediate gates may be more difficult
to perform or may be more susceptible to noise. Furthermore,
assuming one is interested in the value of q at some particular
moment (and not, say, continuously), one might be free to
prepare and purify the initial probe state in advance of the
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actual sensing task, which also justifies ignoring the initial
CNOT cost.

Assume that N states are used in the protocol, i.e., p is
such that it contains at most N nonzero elements. It is clear
that at most O(N

2
) CNOT gates are needed. However, this is

not necessarily optimal. In fact, Ref. [27] provides a protocol
that uses d states and only (d − 1) = O(d ) intermediate CNOT

gates. This “disentangling protocol” consists of using a maxi-
mally entangled Greenberger-Horne-Zeilinger state (up to σ̂ x

gates) for a time |αd |t , then disentangling the last qubit and
using the (d − 1)-entangled state for time (|αd−1| − |αd |)t be-
fore disentangling the next-to-last qubit and so on until reach-
ing the final state corresponding to τ = (1, 0, . . . , 0)
. This
final state is used for time (|α1| − |α2|)t = (1 − |α2|)t . The

disentangling protocol does not minimize the instantaneous
entanglement, but it does minimize average entanglement (as
it is a non-echoed protocol—see Sec. VI).

Even more interestingly, Ref. [27] also provides a protocol,
which we refer to as the “echoing” protocol, that uses zero
intermediate CNOT gates. It proceeds by using d exclusively
maximally entangled states (thereby minimizing neither av-
erage nor, in most cases, instantaneous entanglement), but
judiciously echoing away the extra sensitivity that this extra
entanglement induces.

To illustrate these protocols in the language of the current
paper, we provide T and p (where, for simplicity of notation,
we restrict T and p to the states that are used for a nonzero
fraction of time) for the case d = 8 and αi > 0:

T disentangling =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, pdisentangling =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α8

α7 − α8

α6 − α7

α5 − α6

α4 − α5

α3 − α4

α2 − α3

α1 − α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

and

T echoing =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 −1
1 1 1 1 1 1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, pechoing =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+α8
2

α7−α8
2

α6−α7
2

α5−α6
2

α4−α5
2

α3−α4
2

α2−α3
2

α1−α2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

In the case of the disentangling protocol, the number of CNOT

gates needed is heavily dependent on the ordering of the
states. For example, consider, instead, ordering the states in
the following way:

T disentangling =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 0 1 0 1 1 1 1
1 0 1 0 1 0 1 1
1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

Here, the number of CNOT gates required is now (d − 1) +
(d − 2) + · · · + 1 = �(d2). Thus, it is not only the choice
of states that affects the CNOT cost of a protocol, but also
their ordering. Naively, finding an optimal set of states and
their optimal ordering is a difficult problem, as if one finds a
protocol using N states, there are N! orders to check.

While we were unable to find a general solution to this
optimization problem, numerics allow us to provide a prag-
matic analysis of the cost. To begin, we considered the
naive approach of finding a random (non-echoed) minimum

entanglement solution using d states for random problem
instances and, then, using this solution set, we brute-force
searched over all column orderings of T restricted to families
of states specified by this solution to find an optimal ordering
in terms of CNOT cost. This was done for d ∈ [3, 10] sensors
with 20 random instances each. Without loss of generality,
the random problem instances were taken to have all positive
coefficients. We observe a CNOT cost scaling ∼d2, indicating
that a random minimum-entanglement solution, even with op-
timal ordering, does not have the optimal linear-in-d scaling.
See Fig. 1.

Consequently, more nuanced algorithms for finding a
minimum-entanglement solution with better CNOT costs are
desirable. To this end, we considered a greedy algorithm
that yields a �(d ) CNOT cost whenever it does not fail. The
algorithm works by building up the full sensitivity to one
parameter before switching coherently to a new state family
(in this way, it is non-echoed—see Sec. VI). Consequently,
each time we switch to a new state, one sensor qubit can be
disentangled and never reentangled. In particular, we seek to
build up sensitivity to the parameters according to their weight
in q; i.e., we build up sensitivity to parameters going from the
smallest corresponding |α j | to the largest. The full algorithm
is completed in at most d steps [57].
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FIG. 1. CNOT costs versus number of sensors d for minimum-
entanglement protocols. We consider twenty randomly chosen
function instances that do not fail to yield a valid protocol via
the greedy algorithm and compare the CNOT costs of the greedy
algorithm to a random solution whose states are then ordered op-
timally. When it returns a valid protocol, the greedy algorithm
recovers optimal linear scaling with d for the CNOT cost, whereas
randomly chosen states have quadratic scaling, even with optimal
state ordering.

However, this greedy algorithm can fail to produce a valid
protocol, as it does not enforce the condition that ‖p‖1 =
1. This condition will be violated for some functions—
typically those with many coefficients with approximately
equal magnitude. Still, when it works, this algorithm succeeds
in producing CNOT-efficient minimum-entanglement proto-
cols, as shown in Fig. 1. Finding more general algorithms
that always succeed for this task remains an interesting open
problem.

Independent of the algorithm used to minimize the CNOT

count of an optimal protocol, the takeaway message is the
same: there is an apparent tradeoff between entanglement- and
gate-based resources. The disentangling protocol minimizes
average entanglement, but not necessarily instantaneous en-
tanglement, and requires only O(d ) intermediate entangling
gates; the echoing protocol uses maximal entanglement, but
requires only single-particle intermediate gates. Protocols that
minimize instantaneous entanglement do so at the cost of
more intermediate entangling gates. Depending on the pri-
mary sources of error or the physical constraints on any
given quantum sensor network implementation, one of these
resources might be more important to minimize than the other.
In general, determining the optimal CNOT scaling for protocols
that minimize instantaneous and/or average entanglement is a
crucial open question for future work.

VIII. TIME-INDEPENDENT PROTOCOLS

Another approach to constructing protocols is to use so-
called probabilistic protocols. These protocols eschew control
and instead exploit the convexity of the quantum Fisher infor-
mation by staying in one family throughout any given run of
the protocol, but by letting this family vary over different runs.

Intuitively, each family is sensitive to a different function qn

such that q = ∑N
n=1 pnqn, where N is the number of families

from T used in the protocol, and pn is the frequency that
family n is used. In this way, one can create an estimator for
q using those for qn. In order to generate a Fisher information
matrix satisfying Eq. (8) [27,32], the pn should come from a
solution to Eq. (13). These protocols have the advantage of
requiring no control, but, unfortunately, suffer worse scaling
with d than ours for generic functions when the available
resources are comparable.

In particular, to fairly account for resources, we must fix a
total time t to perform all stages of our protocol. Therefore,
when considering a probabilistic protocol that uses multiple
families from T , but does not switch coherently between
them, we must assign a time tn to family n such that

N∑
j=1

tn = t . (27)

Note, we have used the fact that no stages of a probabilistic
protocol with the families in T can be performed simul-
taneously. One could imagine protocols that parallelize the
measurement of some qj that involve disjoint sets of sensors.
However, such protocols are necessarily nonoptimal given
Lemma 2 in Appendix A, which says that any optimal pro-
tocol requires entanglement with the first qubit at all times.

We can bound the maximum of the Fisher information
matrix element F (θ)11 obtainable via such a probabilistic
protocol as

maxF (θ)11 � max
pn,tn

N∑
n=1

pnt2
n , subject to

N∑
n=1

tn = t,

N∑
n=1

pn = 1. (28)

where we used that τ (n)
1 = 1 for all n. The inequality arises due

to the fact that the maximization problem on the right-hand
side of the inequality does not enforce that T p = α/α1. We
could add this as an additional constraint, but it will not be
necessary.

To perform the necessary optimization, consider the La-
grangian

L =
N∑

n=1

pnt2
n + γ1

⎛
⎝t −

N∑
n=1

tn

⎞
⎠ + γ2

⎛
⎝1 −

N∑
n=1

pn

⎞
⎠, (29)

where γ1, γ2 are Lagrange multipliers. Therefore, we obtain
the system of equations

2pntn − γ1 = 0 (∀ n),

t2
n − γ2 = 0 (∀ n),

N∑
n=1

tn = t,

N∑
n=1

pn = 1, (30)
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which can be solved to yield the solution

max
pn,tn

N∑
n=1

pnt2
n = t2

N
2 , (31)

for pn = 1/N and tn = t/N for all n. Therefore,

F (θ)1 j �
t2

N
2 (∀ j), (32)

which clearly fails to achieve the saturability condition for j =
1, unless N = 1, which is only possible for a very small set
of functions (generic functions require N that scale nontriv-
ially with d). Therefore, provided one considers cases where
each qn must be learned sequentially (which is a requirement
for any possibly optimal protocol via Lemma 2), we fail to
achieve saturability even up to a d-independent constant for
generic functions via time-independent protocols.

Note that we have, for simplicity, again restricted ourselves
to the case where α has a single maximal magnitude element.
The more general proof follows almost identically, with some
notational overhead, when generalizing beyond this condition.

IX. CONCLUSION AND OUTLOOK

We have proven that maximally entangled states are not
necessary for the optimal measurement of a linear function
with a quantum sensor network unless the function is suf-
ficiently uniformly supported on the unknown parameters.
While the uniformly distributed case has been considered
extensively in the literature, as it provides the largest possible
separation in performance between entangled and separable
protocols, there is no a priori reason why one should be inter-
ested in only these sorts of quantities. Our results demonstrate
that while the precision gains to be had are less away from
the uniformly distributed regime, the required resources are
also less. This result is of particular relevance to the develop-
ment of near-term quantum sensor networks, where creating
large-scale entangled states may not be practical. Further-
more, while algebraic approaches like the one we consider
here have been used before to generate bounds for the func-
tion estimation problem [27,38], leveraging this approach to
derive protocols that achieve these bounds subject to various
experimental constraints is a new and widely applicable tech-
nique. We emphasize again that these results are also useful
in more general settings, such as the measurement of analytic
functions, as these measurements reduce to the case studied
here [36–38].

To the best of the authors’ knowledge, all information-
theoretically optimal protocols for the estimation of a single
linear function that are currently in the literature are subsumed
by the framework that we develop in this work. What protocol
one chooses to use will depend heavily on the experimental
context; if decoherence is more problematic than the number
of entangling gates that one must perform, then minimum-
entanglement protocols will be preferred to the conventional
protocols. However, if decoherence is mild, but two-qubit
gates introduce significant errors, then a protocol such as the
echoing protocol presented in Ref. [27] will be preferred.
Consequently, the extent to which minimum entanglement
protocols are more or less valuable than their more highly

entangled counterparts depends on the details of the physical
implementation of a quantum sensor network. Either way, the
development of a framework to address these questions is, in
and of itself, an important contribution of this work.

We also briefly point out one more resource-related con-
straint of protocols that rely on time-dependent control
(whether in the form of σ̂ x gates, CNOT gates, or others):
these protocols require precise timing of the gate applications.
Uncertainty in the timing leads directly to a systematic error
in the function being measured. Importantly, however, this
timing issue is a limitation of all known optimal protocols for
the linear function estimation task (see, e.g., Ref. [27]). We
therefore view these limitations as more pertinent to experi-
mental implementation than the theory of resource tradeoffs
that we are considering here.

So far, we have not discussed the situation where we are
constrained to k-partite entanglement, but k is not sufficient
to achieve optimality (for any protocol) via Theorem 1. We
propose the following protocol for such a scenario: Let R
be a partition of the sensors into independent sets where we
do not allow entanglement between sets and allow, at most,
k-partite entanglement within each r ∈ R. Let α(r) denote α

restricted to r. Pick the optimal R such that the condition of
Theorem 1 is satisfied for all r; that is, we ensure that within
each independent set we obtain the optimal variance for the
linear function restricted to that set. The result is a variance

M = 1

t2

∑
r∈R

‖α(r)‖2
∞. (33)

The optimal R is a partition of the sensors into contigu-
ous sets (assuming for simplicity that |αi| � |α j | for i < j)
such that for all r ∈ R,

∑
i∈r |αi|/ maxi∈r |αi| � k, satisfying

Theorem 1. We conjecture that this protocol is optimal, and it
is clearly so if partitioning the problem into independent sets
is optimal. However, one could imagine protocols that use dif-
ferent partitions for some fraction of the time. Intuitively, this
should not improve the performance, but we leave analyzing
this as an open question.

Finally, no optimal time-independent protocols for arbi-
trary linear functions exist in the literature. Finding such
protocols (or proving their nonexistence) remains an open
problem of interest.
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APPENDIX A: A USEFUL LEMMA REGARDING
OPTIMAL PROBE STATES

In this Appendix, we prove a useful lemma restricting the
structure of the probe state for an optimal protocol.

Lemma 2. Any optimal protocol, independent of the
choice of control, requires that 〈Ĥ1(t )〉 = 0, where H1(t ) is
the time-evolved generator of the first parameter and the ex-
pectation value is taken with respect to the initial probe state.

Furthermore, the probe state must be of the form

|ψ 〉 = |0〉|χ0〉 + eiφ |1〉|χ1〉√
2

, (A1)

for all times s ∈ [0, t], where |χ0〉, |χ1〉 are arbitrary states
on the d − 1 remaining sensor qubits plus, potentially, the
arbitrary number of ancilla, and φ is an arbitrary phase in
R—they can be s dependent.

Proof. Consider the expression for the matrix elements of
the quantum Fisher information matrix at time t [Eq. (4) of
the main text]:

F (θ)i j = 4
[

1
2 〈{Ĥi(t ), Ĥ j (t )}〉 − 〈Ĥi(t )〉〈Ĥ j (t )〉], (A2)

where the expectation values are taken with respect to the
initial probe state |ψ (0)〉. Using the integral form of Ĥ j (t )
[Eq. (5) of the main text], we can write

F (θ)11 = 4Var
[
Ĥ1(t )

]
(A3)

= 4

[∫ t

0
ds

∫ t

0
ds′〈ψ (0)|Û †(s)ĝ1Û (s)Û †(s′)ĝ1Û (s′)|ψ (0)〉

]
− 4

[∫ t

0
ds〈ψ (0)|Û †(s)ĝ1Û (s)|ψ (0)〉

]2

(A4)

= 4
∫ t

0
ds

∫ t

0
ds′Cov|ψ (0)〉[ĝ1(s), ĝ1(s′)], (A5)

where we recall

ĝ1(s) := Û †(s)ĝ1Û (s), (A6)

and ĝ1 = ∂Ĥ/∂θ1 is the initial generator with respect to the
first parameter. Once again, the covariance is with respect to
the initial probe state |ψ (0)〉. We can then upper-bound this
as

F (θ)11(t ) � 4
∫ t

0
ds

∫ t

0
ds′√Var|ψ (0)〉[ĝ1(s)]Var|ψ (0)〉[ĝ1(s′)]

(A7)

= 4

[∫ t

0
ds

√
Var|ψ (0)〉[ĝ1(s)]

]2

(A8)

�
[∫ t

0
ds‖ĝ1‖s

]2

(A9)

= t2‖ĝ1‖2
s (A10)

= t2, (A11)

where the first inequality bounds the covariance as the square
root of the product of the variances, the second inequality
bounds the standard deviation of an operator by half the semi-
norm [15], and the final equality uses the fact that ĝ1 = σ̂ z

1/2
has seminorm 1 [58].

Via Eq. (8) of the main text (rigorously derived in Ap-
pendix F) we know that an optimal protocol must have
F11(θ)(t ) = t2. Therefore, an optimal protocol must saturate
the inequalities in Eq. (A7) and Eq. (A9). Equation (A9) is
saturated when Var[ĝ1(s)] = ‖ĝ1(s)‖s = ‖ĝ1‖s for all s. This
holds if and only if |ψ (0)〉 = 1√

2
(|λmin〉 + eiφ |λmax〉), where

|λmin〉 and |λmax〉 are the eigenstates corresponding to the
minimum and maximum eigenvalues of ĝ1(s) for all s ∈ [0, t]

and φ is an arbitrary phase. Given this condition, ĝ1(s) and
ĝ1(s′) act identically on the state |ψ (0)〉 and consequently
are fully correlated when one considers the covariance of
these operators with respect to the state. The Cauchy-Schwarz
inequality in Eq. (A7) is immediately saturated as well.

Importantly, under this condition on the probe state, any
operator in the one-parameter family ĝ1(s) = Û †(s)ĝ1Û (s)
acts identically on |ψ (0)〉 (the unitary does not change the
eigenvalues, and the eigenstates are shared by all ĝ1(s), as
argued above). Thus, one can freely substitute any operator
in the one-parameter family ĝ1(s) = Û †(s)ĝ1Û (s) for another.
Therefore, for such an optimal probe state,

〈H1(t )〉 = −
∫ t

0
ds〈ψ (0)|ĝ1(s)|ψ (0)〉 = t〈ĝ1〉 = 0 (A12)

because ĝ1 ∝ σ̂ z
1 and, consequently, by the argument that we

can replace ĝ1 by ĝ1(s) when acting on the probe state,

〈ψ (s)|ĝ1|ψ (s)〉 = 0 (∀s). (A13)

The statement of the lemma immediately follows. �
Note that Lemma 2 holds for any optimal protocol, not just

those using our catlike states. However, it also justifies our
choice of probe states and why we specifically set τ1 = 1 for
all τ (i.e., to maintain an equal superposition between |0〉 and
|1〉 on the first qubit).

APPENDIX B: PROOF OF THE OPTIMALITY
OF CAT-STATE PROTOCOLS

In this Appendix, we will rigorously prove the optimality
of the time-dependent protocols considered in the main text.

033228-9



EHRENBERG, BRINGEWATT, AND GORSHKOV PHYSICAL REVIEW RESEARCH 5, 033228 (2023)

In particular, we show that the Fisher information matrix
condition for saturability in Eq. (8) of the main text is satisfied
by solutions to Eq. (13) of the main text when we consider
protocols that use σ̂ x and CNOT controls to switch between
families of catlike states in T . That is, we show the following
mapping between saturability conditions:

T p = α

α1
⇒ F (θ)1 j = α

α1
t2, (B1)

where we recall that we have assumed that |α1| = ‖α‖∞ >

|α j | for all j > 1 (in Appendix F, we will generalize beyond
the assumption of a single maximum magnitude α j at the cost
of some notational inconvenience).

Using Lemma 2, we can show that for any optimal protocol
(i.e., not just those using our catlike states)

F (θ)1 j = 2〈{Ĥ1, Ĥ j}〉 (B2)

= 2
∫ t

0
ds

∫ t

0
ds′〈ψ (0)|{ĝ1(s), Û †(s′)ĝ jÛ (s′)}|ψ (0)〉

(B3)

= 2
∫ t

0
ds

∫ t

0
ds′〈ψ (0)|{ĝ1, Û †(s′)ĝ jÛ (s′)}|ψ (0)〉

(B4)

= 2t
∫ t

0
ds′〈ψ (0)|{ĝ1, Û †(s′)ĝ jÛ (s′)}|ψ (0)〉 (B5)

= 2t
∫ t

0
ds′〈ψ (0)|{ĝ1(s′), Û †(s′)ĝ jÛ (s′)}|ψ (0)〉 (B6)

= 4t
∫ t

0
ds′〈ψ (s′)|ĝ1ĝ j |ψ (s′)〉 (B7)

= t
∫ t

0
ds′〈ψ (s′)

∣∣σ̂ z
1 σ̂ z

j

∣∣ψ (s′)〉. (B8)

The third and fifth equalities come from the argument in
the proof of Lemma 2 that we may replace ĝ1(s) with ĝ1 (and
vice versa) when acting on optimal probe states. The penul-
timate equality is just a consequence of the commutativity of
the initial generators.

We now apply these general results to our specific proto-
cols. Saturating the initial Fisher information conditions in
Eq. (B1) implies that we must show∫ t

0
ds′〈ψ (s′)|σ̂ z

1 σ̂ z
j |ψ (s′)〉 = α j

α1
t . (B9)

Let the gates in our protocols be labeled as Ĝi where Ĝi is
either a CNOT or σ̂ x gate. The gate Ĝi is applied at a time s =
t∗
i . Then, for s ∈ (t∗

k , t∗
k+1), we can write the time-dependent

state as

|ψ (s)〉 = |ψ (τ (k); ϕ)〉 ≡
k∏

i=0

Ĝi|ψ (τ (0); ϕ)〉, (B10)

where |ψ (τ (0); 0)〉 is the initial state of the protocol, ϕ is the
relative phase between the two branches of the state that has
accumulated up to time s, and, therefore, |ψ (τ (k); ϕ)〉 is the
state produced after applying the first k gates. Because our
protocols explicitly use only σ̂ x and CNOT gates to move be-
tween families in T , we have that |ψ (τ (k); ϕ)〉 = (|0〉|χ (k)

0 〉 +

eiϕ |1〉|χ (k)
1 〉)/

√
2, and∫ t

0
ds′〈ψ (s′)|σ̂ z

1 σ̂ z
j |ψ (s′)〉 =

n∑
i=0

(t∗
i+1 − t∗

i )τ (i)
j , (B11)

where we implicitly define t∗
0 = 0 and t∗

n+1 = t as the initial
and final times of the protocol and |χ (k)

0 〉 and |χ (k)
1 〉 are some

states defined on the Hilbert space which excludes the first
qubit sensor. The time t∗

i+1 − t∗
i corresponds to the time we

are in the probe family |ψ (τ (i); ϕ)〉, which in our protocols
is pit . Thus, to satisfy the Fisher information conditions, we
need ∑

i

piτ
(i)
j = α j

α1
⇒ (T p) j = α j

α1
. (B12)

This formally proves optimality of our time-dependent proto-
cols that satisfy T p = α/α1.

APPENDIX C: REVIEW OF ROBUST PHASE ESTIMATION

In this Appendix, we review, for completeness, the phase
estimation protocols of Refs. [51–53] described in the main
text as a method to extract the quantity of interest, q, from the
state

1/
√

2(|0〉 + eiqt/α1 |1〉)(|0 · · · 0〉), (C1)

which is the final state obtained from our family of optimal
protocols.

Again, when we refer to our protocols as optimal, we mean
this in the sense that our protocols achieve the conditions on
the quantum Fisher information matrix that allow the maxi-
mum possible quantum Fisher information with respect to the
parameter q to be obtained. However, to completely specify
the procedure by which one obtains the quantity q, an explicit
phase estimation protocol is needed. As explained in the main
text, such a task is complicated by the fact that for large times
and/or small α1 = ‖α‖∞, it is unclear what 2π interval the
relative phase between the branches of Eq. (C1) is in [48,49].
The phase estimation protocols of Refs. [51–53] demonstrate
how to optimize resources to deal with this issue, while still
saturating the single-shot bound in Eq. (2) of the main text up
to a small d- and t-independent constant. In particular, such
protocols allow us to reach a mean-square error of

M = c2‖α‖2
∞

t2
, (C2)

for some small (explicitly known) constant c. Reference [50]
proves that this constant factor c2 in Eq. (2) can be reduced to,
at best, π2.

While reviewing such phase estimation protocols, we fol-
low the presentation of Ref. [53], which corrects a few minor
errors in Ref. [51], as noted in the corresponding erratum [52].
We refer the reader to Ref. [53] for further details. Conve-
niently, by putting the final state into the form of Eq. (C1),
we have reduced this problem completely to the single-qubit,
multipass version of the problem described in that reference.
Consequently, everything follows practically identically to
their presentation.

Consider dividing the total time t , which is the relevant
resource in our problem, into K stages where we evolve for a
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time Mjδt in the jth stage (δt is some small basic unit of time
and Mj ∈ N). We assume that we have (d, t)-independent,
prior knowledge of q such that we can set δt to satisfy

δtq

‖α‖∞
∈ [0, 2π ). (C3)

In the jth stage, using one of our protocols for a time Mjδt ,
we prepare 2ν j independent copies of the state

|ψ j 〉 = 1√
2

(|0〉 + eiqMjδt/‖α‖∞|1〉)|0 · · · 0〉. (C4)

From now on we will drop the d − 1 qubit sensors in the state
|0 · · · 0〉, as they are irrelevant; however, it is worth noting
that it is not necessary to put the state in this form before
performing measurements. We do so to make the comparison
to Ref. [53] particularly transparent. We then perform a single-
qubit measurement on the first qubit sensor of each of these
state copies, yielding 2ν j measurement outcomes, which we
can use to estimate q. The total time of this K stage protocol
is consequently given by

t = 2
K∑

j=1

ν jMjδt . (C5)

Given this setup, we choose single-qubit measurements
and optimize the choice of ν j, Mj per stage so that we can
learn q bit by bit, stage by stage, in such a way that opti-
mal scaling in d , t is still obtained [Eq. (C2)]. In particular,
consider making two measurements, each ν j times per stage
(thus explaining the factor of 2 we introduced earlier): (i) a σ̂ x

measurement and (ii) a σ̂ y measurement. These measurements
each give us outcomes that are Bernoulli variables (i.e., with
values ∈ {0, 1}) with outcome probabilities

p(x)(0) = 1 + cos(Mjqδt/‖α‖∞)

2
,

p(x)(1) = 1 − p(x)(0),

p(y)(0) = 1 + sin(Mjqδt/‖α‖∞)

2
,

p(y)(1) = 1 − p(y)(0), (C6)

where the first two probabilities are for the σ̂ x measurement
and the latter two are for the σ̂ y measurement. Using both
of these measurements allows us to resolve the twofold de-
generacy in the phase qMjδt/‖α‖∞ within a given [0, 2π )
interval that would arise from, e.g., a σ̂ x measurement alone.
The observed probabilities of obtaining 0 for the σ̂ x and σ̂ y

are independent random variables that converge in probability
to their associated expectation values for ν j → ∞. Let these
observed probabilities be labeled f (x)

0 and f (y)
0 , respectively.

These measurements are nonadaptive, which makes this par-
ticular phase estimation protocol especially appealing.

At each stage, we extract an estimator φ̃ of φ :=
Mjqδt/‖α‖∞ as

φ̃ := atan2
(
2 f (y)

0 − 1, 2 f (x)
0 − 1

) ∈ [0, 2π ), (C7)

where atan2 is the two-argument arctangent with range
[0, 2π ). In the limit ν j → ∞, this estimator indeed converges
to φ, but the “magic” of this phase estimation scheme lies

in the correct reprocessing of data stage-by-stage so that ν j

can be kept (d, t ) independent. Reference [53] demonstrates
rigorously that picking Mj = 2 j−1 for j ∈ {1, . . . , K} and op-
timizing over ν j one can, at each stage, estimate q/‖α‖∞
with a confidence interval of size 2π/(3 × 2 j−1) so that in
each stage we learn another bit of this quantity. The results
of this optimization are ν j that decrease linearly with the step
j so that as the time spent in a stage grows, the statistics we
employ shrink. Importantly, it so happens that we can scale
K → ∞ (i.e., take an asymptotic-in-t limit) while maintaining
νK constant. The net result is a mean-square error given by
Eq. (C2) with c = 24.26π , which is a factor of 24.26 greater
than the theoretical optimal value [50], but with the convenient
feature that the protocol uses nonadaptive measurements. We
refer the interested reader to Ref. [53] for detailed derivation
of the results sketched here.

It is also worth noting that other protocols are possible. For
instance, in Ref. [45], a similar two-step method is described
for the estimation of global parameters (i.e., where the pa-
rameter is not restricted to a local neighborhood of parameter
space). This protocol provides an explicit method to use some
(ultimately negligible) fraction of the sensing time available
to narrow down the location of the parameter q in parameter
space, followed by an optimal local estimation. We emphasize
that the explicit estimation scheme we propose (i.e., the one
in Refs. [51–53]) does not require adaptive measurements,
which is one of its key advantages.

APPENDIX D: FULL PROOF OF THE MAIN THEOREM

In this Appendix, we expand on the proof sketch of Theo-
rem 1 in the main text to fully prove the result. For reference,
this theorem is restated here.

Theorem 1. Let q(θ) = α · θ. Without loss of generality, let
‖α‖∞ = |α1|. Let k ∈ Z+ so that

k − 1 <
‖α‖1

‖α‖∞
� k. (D1)

An optimal protocol to estimate q(θ), where the parameters θ

are encoded into the probe state via unitary evolution under
the Hamiltonian in Eq. (1) of the main text, requires at least,
but no more than, k-partite entanglement.

Proof. We divide our proof into two parts. First, using
k-partite-entangled states from the set of catlike states con-
sidered in the main text, we show the existence of an optimal
protocol, subject to the upper bound of Eq. (D1). Second, we
show that there exists no optimal protocol using at most (k −
1)-partite entanglement, proving the lower bound of Eq. (D1).

Part 1. Define T (k) to be the submatrix of T with all
columns n such that

∑
m |Tmn| > k are eliminated, which en-

forces that any protocol derived from T (k) uses only states that
are at most k-partite entangled. Define system A(k) as

T (k)p(k) = α/α1, (D2)

p(k) � 0. (D3)
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Let α′ = α/α1 and define system B(k) as

(T (k) )
y � 0, (D4)

〈α′, y〉 < 0. (D5)

By the Farkas-Minkowski lemma [54,55], system A(k) has a
solution if and only if system B(k) does not. In particular,
this lemma, which, geometrically, is an application of the
hyperplane separation theorem [59], is as follows:

Lemma 3 (Farkas-Minkowski). Consider the system

Ax = b, (D6)

x � 0, (D7)

with A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. The above system has a
solution if and only if there is no solution y to

A
y � 0, (D8)

〈b, y〉 < 0. (D9)

Therefore, to prove the result it is sufficient to show that
system B(k) does not have a solution if

∑
j>1 |α′

j | � k − 1,
where we used that α′

1 = 1. We assume that a solution y exists
and will arrive at a contradiction. Without loss of generality,
we assume that |y j | � |y j+1| for all 1 < j < d . Equation (D5)
implies

∑
j>1 α′

jy j < −y1. (T (k) )
 has a row n∗ given by
τ (n∗ ) = (1, 0, . . . , 0), so by Eq. (D4) any solution y to system
B has y1 � 0. Therefore, | ∑ j>1 α′

jy j | > y1, which, by the
triangle inequality, implies∑

j>1

|α′
j ||y j | > y1. (D10)

Because |α′
j | � 1 for all j, because

∑
j>1 |α′

j | � k − 1, and
because |y j | for j > 1 are ordered in descending order, the
largest the left-hand side of Eq. (D10) can be is

∑k
j=2 |y j |,

leading to

k∑
j=2

|y j | > y1. (D11)

This directly contradicts Eq. (D4) for the column of T (k) given
by τ = (1,−sgn(y2), . . . ,−sgn(yk ), 0, 0, . . . ).

Part 2. Using Eq. (B8), we have that, for any optimal
protocol,

F (θ)1 j = t
∫ t

0
ds′〈ψ (s′)|σ̂ z

1 σ̂ z
j |ψ (s′)〉, (D12)

where we recall that |ψ (s)〉 = U (s)|ψ (0)〉. Because
〈ψ (s′)|σ̂ z

1 |ψ (s′)〉 = 0 for all s′ [see Eq. (A13)], the integrand
is nonzero if and only if |ψ (s′)〉 is such that the first qubit is
entangled with the jth. Define the indicator variable

Ej (s
′) =

{
1 |ψ (s)〉 entangles qubit j and 1
0 else, (D13)

for all j, including any possible ancilla qubits. Here, we define
E1 = 1 even though the first qubit is not “entangled” with
itself. Further define

E (s′) =
∑

j

E j (s
′) � (k − 1), (D14)

where E (s′) is the total number of sensor qubits entangled
with the first qubit at time s′ and the upper bound comes from
our assumption on the partiteness of our probe states. We then
have that

F (θ)1 j � t
∫ t

0
ds′Ej (s

′). (D15)

Furthermore, for any optimal protocol using at most (k −
1)-partite entanglement, we require that∑

j

∣∣∣∣α j

α1
t2

∣∣∣∣ =
∑

j

|F (θ) j1| � t
∑

j

∫ t

0
ds′Ej (s

′)

= t
∫ t

0
ds′ ∑

j

E j (s) � t
∫ t

0
ds′(k − 1)

= (k − 1)t2. (D16)

We now have a contradiction, however, as the theorem state-
ment assumed that∑

j

∣∣∣∣α j

α1
t2

∣∣∣∣ = ‖α‖1

‖α‖∞
t2 > (k − 1)t2. (D17)

This concludes the proof that (k − 1)-partite entanglement in
any form (i.e., not just from catlike probe states) is insufficient
to generate an optimal protocol. �

We also observe that the lower bound on the size of the
least-entangled state used in an optimal protocol is really, at
its core, a lower bound on the average entanglement required
to saturate the conditions on the quantum Fisher information
matrix. Here, average entanglement refers to weighting the
size of the entangled state by the proportion of time it is used
in the protocol. This lower bound is simply ‖α‖1/α∞. The
lower bound on the size of the most-entangled state, or the
bound on instantaneous entanglement, comes from ensuring
that this lower bound on average entanglement is achievable
(that is, if the instantaneous entanglement is too small at
each stage, then the average entanglement required cannot be
reached).

APPENDIX E: MINIMUM-ENTANGLEMENT
NON-ECHOED PROTOCOLS

In this Appendix, we prove that there exist protocols that
minimize both instantaneous and average entanglement. We
recall from Sec. VI the definition of the non-echoed protocols
that minimize average entanglement.

Definition 2 (Non-echoed protocols). Consider some α ∈
Rd encoding a linear function of interest. Let T be the matrix
which describes our families of catlike probe states, and let p
specify a valid protocol such that p � 0 and T p = α/‖α‖∞.
We say that the protocol defined by p is “non-echoed” if, ∀i
such that pi is strictly greater than 0, sgn(Ti j ) ∈ {0, sgn(α j )}.

We now prove Theorem 3 from the main text, which we
again repeat for simplicity.

Theorem 3. For any function encoding α, there exists a
non-echoed optimal protocol with minimum instantaneous
entanglement.

Proof. We proceed with a relatively simple tweak of the
proof of the main theorem. As in that theorem, we assume
without loss of generality that α1 = ‖α‖∞ = 1. Also assume,
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for computational simplicity, that αi>1 < 1 (i.e., there is only
a single maximal-magnitude element of α) and that αi > 0 ∀i.
These latter assumptions can easily be lifted, as we describe
at the end of the proof.

We will again use the Farkas-Minkowski lemma [54,55] to
show that no vector y exists such that

(T (k)
+ )
y � 0, (E1)

〈α, y〉 < 0, (E2)

proving the existence of a non-echoed protocol. Here, T (k)
+ is

T restricted to non-echoed vectors [i.e., (T (k)
+ )i j ∈ {0, 1}] with

weight at most k, where k = �‖α‖1�. Assume a solution y
exists. Noting that (T (k)

+ )
 has a row given by (1, 0, . . . , 0), it
must be that y1 � 0. Furthermore, for y to be a valid solution,
we must have

〈α, y〉 = α1y1 +
∑

i|i �=1,yi�0

αiyi +
∑

i|yi<0

αiyi

= y1 +
∑

i|i �=1,yi�0

αiyi +
∑

i|yi<0

αiyi � 0. (E3)

We proceed with two cases. Suppose that at most k − 1 el-
ements of y are negative. Consider the row of (T (k)

+ )
 that
has a 1 in the first index and exactly on the indices where
yi < 0 (which exists because we have sufficiently restricted
the number of negative elements of y). Then (T (k)

+ )
y � 0
implies that

y1 +
∑

i|yi�0

yi � 0. (E4)

But because αi < 1, this immediately implies that

y1 +
∑

i|yi�0

αiyi � 0, (E5)

which means that Eq. (E3) cannot be true, yielding a contra-
diction.

Now suppose that there are at least k elements of y that are
negative. Let S be the set of indices corresponding to the k − 1
largest, in magnitude, yi. Then the row of (T (k)

+ )
 with a 1 in
the first index and precisely on the indices in S leads to the
condition that

y1 +
∑
i∈S

yi � 0. (E6)

However, given the constraint that αi>1 < 1, we find that

y1 +
∑

i|i �=1,yi�0

αiyi +
∑

i|yi<0

αiyi � y1 +
∑
i∈S

yi � 0, (E7)

which is again a contradiction.
We briefly comment on how to lift the two assumptions we

mentioned earlier. First, in the case where there exist multiple
maximal elements, the same argument that generalizes the
main theorem will also generalize this argument—see Ap-
pendix F. Second, if we allow αi < 0, it is simple to see that a
protocol still exists; simply replace (T (k)

+ )i j = 1 with sgn(αi )
(and leave 0s untouched). �

Thus, Lemma 1 and Theorem 3 prove there exist protocols
that can minimize both instantaneous entanglement (i.e., the

maximum size of a catlike state used in the protocol) and the
average entanglement over the course of the entire protocol.

APPENDIX F: RELAXING THE ASSUMPTION
ON A SINGLE MAXIMUM ELEMENT

In this Appendix, we will generalize beyond the as-
sumption in the main text that |α1| > |α j | for all j > 1.
Conceptually, nothing is changed by relaxing the assumption,
but the algebra becomes somewhat more tedious. In the pro-
cess, we rigorously derive Eq. (2) and Eq. (8) of the main text.

1. Generalizing Equation (8) of the main text

We start with specifically generalizing Eq. (8). To begin,
define

L := {i | |αi| = |α1|}. (F1)

The assumption |α1| > |α j | for all j > 1, stated in the main
text, is equivalent to assuming |L| = 1. For arbitrary size L, we
have the following set of conditions for the single-parameter
bound on q(θ) to be saturable [Eqs. (6) and (7) of the main
text]:

F (q)11 = t2

α2
1

, (F2)

F (q)1i = F (q)i1 = 0 (∀ i �= 1). (F3)

Recall that F (q) = J
F (θ)J , where J is the Jacobian for the
basis transformation from θ to q, q1 = q is the linear function
we wish to measure, and the other qj are some other degrees
of freedom we fix. We will show that Eqs. (F2) and (F3) are
satisfied if and only if∑

i∈L

sgn(α1)

sgn(αi )
F (θ) jiλi = α j

α1
t2, (F4)

where λi � 0 such that
∑

i λi = 1. If |L| = 1, this reduces to
Eq. (8) of the main text.

It will be important to briefly recount how we obtain the
single-parameter bound we are trying to saturate [27,38]. In
particular, referring to Eq. (3) of the main text, we seek a
choice of basis that minimizes ‖ĝq‖2

s , which will yield the
tightest possible bound on M, the mean-square error of q. Let
us formally define our basis for Rd as {α(1),α(2), . . . ,α(d )},
where α(1) = α. We then have that J−1 has rows given by
these vectors. Let {β(1),β(2), . . . ,β(d )} be the basis dual to this
one. That is, these vectors form the columns of J and satisfy
α(i) · β( j) = δi j . We can then write

θ
 = (JJ−1θ)
 = (J−1θ)
J
, (F5)

which allows us to rewrite our Hamiltonian in the convenient
form

Ĥ = 1

2
θ
σ̂ + Ĥc(s) = 1

2

d∑
i=1

(α(i) · θ)β(i) · σ̂ + Ĥc(s), (F6)

where σ̂ = (σ̂ z
1 , . . . , σ̂ z

d )
. Then

ĝq(0) = ∂Ĥ

∂q
= ∂Ĥ

∂ (α(1) · θ)
= β · σ̂

2
, (F7)
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where β = β(1). Because the seminorm is time independent
(see Ref. [15]), we immediately have that∥∥ĝq

∥∥
s
= ‖β‖1, (F8)

and our tightest bound is given by

min
β

‖β‖1,

such that α · β = 1. (F9)

Note that

1 =
∑

i

αiβi �
∑

i

|αi||βi| � |α1|
∑

i

|βi| = |α1|‖β‖1.

(F10)

The first inequality is tight if either sgn(βi ) = sgn(αi ) or βi =
0 for all i. The second is slightly more complicated to saturate.
Recall L = {i | |αi| = |α1|}. Then the second inequality is tight
if and only if

βi = 0 for i /∈ L, (F11)

∑
i∈L

|βi| = 1

|α1| . (F12)

Any solution β specifies the first column of the Jacobian J and
allows us to rewrite the conditions in Eqs. (F2) and (F3) as

F (q)11 = β
F (θ)β = t2

α2
1

, (F13)

F (q)1i = F (q)i1 = (β(i) )
F (θ)β = 0 (∀ i �= 1). (F14)

As α(i) · β( j) = δi j , Eq. (F14) immediately implies that the
vector F (θ)β must be proportional to α and Eq. (F13) spec-
ifies the constant of proportionality. In particular, we require

F (θ)β = t2

α2
1

α. (F15)

Invoking Eqs. (F11) and (F12) and the condition that
sgn(βi ) = sgn(αi ) for βi �= 0, we write βi = λisgn(αi )/|α1|,
where λi � 0 for i ∈ L and λi = 0 for i /∈ L such that

∑
i λi =

1. The individual components of Eq. (F15) imply∑
i∈L

F (θ)i jsgn(αi )λi =
∑
i∈L

F (θ) jisgn(αi )λi

= t2

|α1|α j,
∑

i

λi = 1, λi � 0,

(F16)

which, using |α1| = sgn(α1)α1 and that sgn(α1)sgn(αi ) =
sgn(α1)/sgn(αi ) for i ∈ L, yields∑

i∈L

sgn(α1)

sgn(αi )
F (θ)i jλi =

∑
i∈L

sgn(α1)

sgn(αi )
F (θ) jiλi

= α j

α1
t2,

∑
i

λi = 1, λi � 0,

(F17)

which reduces to Eq. (8) of the main text, when |L| = 1, as
desired.

2. Generalizing the derivation of Equation (13) of the main text

At this point, we can generalize the derivation of Eq. (13)
of the main text to this setting of more than one maximum
element of α. In particular, Lemma 2 can be immediately
extended to the following:

Lemma 4. Any optimal protocol, independent of the
choice of control, requires that 〈Ĥ j (t )〉 = 0 for all j ∈ L and
that the probe state be of the form

|ψ 〉 = (
⊗

j∈L |b j 〉)|χ0〉 + eiφ (
⊗

j∈L |b j + 1〉)|χ1〉√
2

, (F18)

for all times s ∈ [0, t], where

bj =
{

0 if sgn(α j ) = 1
1 if sgn(α j ) = −1,

(F19)

and φ, |χ0〉, |χ1〉 can be arbitrary and s dependent. The addi-
tion inside the second ket of Eq. (F18) is mod 2.

Proof. We have the following two facts: (1)∑
i∈L λi(sgn(α j )/sgn(αi ))F (θ)i j = t2 for all j ∈ L [by

Eq. (F17)] and (2) |F (θ)i j | � F (θ) j j for all i (by the fact that
the Fisher information matrix is positive semidefinite). These
facts imply that an optimal protocol must have F (θ) j j = t2

for all j ∈ L. The fact that 〈Ĥ j (t )〉 = 0 for all j ∈ L and
the fact that all sensors in L must be in a catlike state
over computational basis states follows immediately via
an identical calculation to the proof of Lemma 2 for each
j ∈ L. From Eq. (B8) it follows directly that these catlike
states over the qubit sensors in L must take the form in the
theorem statement in order to achieve the correct sign on the
components of F (θ). �

Using Lemma 4, it is clear that we should restrict the set T
of states such that τ

(n)
j = sgn(α j )/sgn(α1) for all j ∈ L and all

τ (n). This is the generalization of the fact that, when |L| = 1,
we require τ

(n)
1 = 1 for all τ (n).

In addition, given the required form of the optimal states,
it is easy to generalize Eq. (B9) to the condition that∑

i∈L

[
λi

∫ t

0
ds′〈ψ (s′)|σ̂ z

i σ̂ z
j |ψ (s′)〉

]
= α j

α1
t, (F20)

which implies that, for protocols switching between states in
the modified T ,

∑
i∈L

[
λi

n∑
l=0

(t∗
l+1 − t∗

l )τ (l )
j

]
= α j

α1
t, (F21)

where we assume that we switch to the state labeled by τ (l )

at time t∗
l . As before, in our protocols t∗

l+1 − t∗
l = plt . In

addition,
∑

i λi = 1. So an optimal protocol requires

t
n∑

l=0

plτ
(l )
j = α j

α1
t ⇒ T p = α, (F22)

recovering Eq. (13) of the main text for general L, with the
addition that we fix Tjn = τ

(n)
j = sgn(α j )/sgn(α1) for all j ∈

L and all n.

3. Generalizing the proof of Theorem 1 of the main text

Recall, we divided the proof into two parts. First,
we showed the existence of an optimal protocol using
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k-partite-entangled catlike states, subject to the upper bound
of the theorem statement. Second, we showed that, subject
to the lower bound of the theorem statement, there exists no
optimal protocol using only (k − 1)-partite entanglement.

Let us begin by addressing how the first part changes upon
relaxing the assumption that |α1| > |α j | for all j > 1. Note
that, given our choice that τ

(n)
j = sgn(α j )/sgn(α1) for all j ∈

L and all τ (n), the first |L| rows of T (k) yield redundant equa-
tions in Eq. (19) of the main text. Therefore, we can define
T̃ (k) as T (k) with all rows j ∈ L \ {1} eliminated. Similarly, α̃

is α with elements j ∈ L \ {1} eliminated. Furthermore, define
the new system of equations, which we call system Ã:

T̃ (k) p̃(k) = α̃/α1, (F23)

p̃(k) � 0. (F24)

System A has a solution if and only if system Ã does. We
can proceed as in the proof in Appendix D to show via the
Farkas-Minkowski lemma that system Ã has a solution if
‖α‖1/‖α‖∞ � k ⇒ ‖α̃‖1/‖α̃‖∞ � k − |L| + 1. The details
of the proof of this part are completely identical with this
substitution.

The second part of the proof can similarly be adjusted
straightforwardly. In particular, to satisfy the condition of
Eq. (F17), which is the generalization of Eq. (8) in the main
text, for j ∈ L we require

α j

α1
t2 = sgn(α j )

sgn(α1)
t2 =

∑
i∈L

sgn(α1)

sgn(αi )
F (θ)i jλi, (F25)

which implies

t2 =
∑
i∈L

sgn(αi )

sgn(α j )
F (θ)i jλi. (F26)

This in turn implies that for i, j ∈ L

F (θ)i j = sgn(αi )

sgn(α j )
t2. (F27)

Therefore, for all i ∈ L we require F (θ)ii = t2. From here,
arguments identical to those in Appendix D apply to all i ∈ L,
not just i = 1. That is, all the probe states must always be
fully entangled on the qubits in L and matrix elements F (θ)i j

for i ∈ L, j /∈ L can only accumulate magnitude if sensor j is
also entangled with the qubits in L. Assuming the existence
of an optimal protocol using (k − 1)-partite entanglement, a
contradiction arises in an identical way.

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced
measurements: Beating the standard quantum limit, Science
306, 1330 (2004).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology,
Phys. Rev. Lett. 96, 010401 (2006).

[3] L. Pezzé and A. Smerzi, Entanglement, Nonlinear Dynam-
ics, and the Heisenberg Limit, Phys. Rev. Lett. 102, 100401
(2009).

[4] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W.
Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher
information and multiparticle entanglement, Phys. Rev. A 85,
022321 (2012).

[5] G. Tóth, Multipartite entanglement and high-precision metrol-
ogy, Phys. Rev. A 85, 022322 (2012).
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