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Abstract

The calculation of off-diagonal matrix elements has various applications in fields such as
nuclear physics and quantum chemistry. In this paper, we present a noisy intermediate
scale quantum algorithm for estimating the diagonal and off-diagonal matrix elements
of a generic observable in the energy eigenbasis of a given Hamiltonian without explicitly
preparing its eigenstates. By means of numerical simulations we show that this approach
finds many of the matrix elements for the one and two qubits cases. Specifically, while
in the first case, one can initialize the ansatz parameters over a broad interval, in the
latter the optimization landscape can significantly slow down the speed of convergence
and one should therefore be careful to restrict the initialization to a smaller range of
parameters.
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1 Introduction

The landscape of quantum computing technology has shifted dramatically over the previous
four decades. Once considered a theoretical endeavour, quantum computing is today a vi-
brant experimental pursuit. With the advent of noisy intermediate scale quantum (NISQ)
devices [1,2], considerable effort has been directed into developing algorithms that can run in
the presence of noise on quantum computing systems with 50–70 qubits and restricted qubit
connectivity. These algorithms are known as NISQ algorithms, and common examples include
the variational quantum eigensolver (VQE) [3–5] and the quantum approximate optimization
algorithm (QAOA) [6,7].

There has been an explosion of recent work on NISQ algorithms to address problems such
as finding ground state of Hamiltonians [3–5, 8–19] quantum simulation [20–33], combi-
natorial optimization [6, 7], quantum metrology [34–36], and machine learning [37–41].
Notwithstanding these research efforts, the practical application of NISQ devices is still a long
way off. To attain a practical quantum advantage in the NISQ era, it is crucial to examine
different algorithms. Here, we build on the works of Gerjouy et al. [42–44], which had only
been implemented on classical computers, and apply them to calculating off-diagonal matrix
elements of generic observables.

Many problems in nuclear physics and other sciences make extensive use of off-diagonal
matrix elements. Consider the Brueckner-Bethe-Goldstone equation solution; the nuclear
potential is computed from the off-diagonal matrix elements of the Brueckner reaction ma-
trix [45]. Generalized eigenvalue problems for obtaining energy levels of time-dependent Eu-
clidean correlators [46] in lattice quantum chromodynamics (QCD) are highly dependent on
information acquired from off-diagonal elements of the matrix of correlators. The rotational-
vibrational coupling in quantum chemistry considers the off-diagonal block in the matrix of
kinematic coefficients [47]. Calculations of off-diagonal elements have also been used to de-
termine the diamagnetic susceptibility and form factor of atoms such as helium [48]. Given
the importance of finding the off-diagonal matrix elements of generic observables, it is perti-
nent to explore the potential of NISQ devices for the aforementioned task. Recent work has
shown that the complexity of the measurement circuit in NISQ devices can be significantly
reduced, thus significantly improving their performance [49–56], and that one could tap on
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them and [10] to evaluate off-diagonal elements with an extended swap test circuit with one
ancilla qubit.

In this paper, we provide an NISQ algorithm for hybrid classical-quantum computation
of matrix elements (both diagonal and off-diagonal) of a given observable W in the energy
eigenbasis. These are typically complex numbers and one cannot simply minimize them as
in standard VQE. However, variational approaches have been used for decades on classical
computers, and we can build on this experience and test the performance of more general
variational approaches, as the ones put forward in Refs. [42–44] on NISQ devices. Our al-
gorithm thus uses a variational function which, at its equilibrium points, returns the values
we aim to compute. This is possible thanks to the introduction of purposefully built Lagrange
multipliers to encode the constraints for the underlying problem. For our model problems,
we discuss approaches for both exact and iterative evaluation of Lagrange multipliers. Var-
ious numerical simulations show that, for a single-qubit problem, our approach can find all
the matrix elements even when one initializes randomly the trial functions over a very broad
range of parameters. For two-qubit problems one may need to prepare the state closer to an
eigenstate, although further improvements are still to be explored.

We would like to point out that a quantum variational approach for calculating matrix ele-
ments was proposed recently in [57], which relied on the preparation of the energy eigenstates
corresponding to which the overlap for the given observable is to be calculated. Unlike this
work, our approach does not involve the preparation of the energy eigenstates, hence avoid-
ing the accompanying quantum resource requirements. Although our choice of ansatz may
seem to resemble existing work in the literature [8, 12, 18], none of these results works for
the off-diagonal matrix elements of a generic observable. Moreover, our approach is funda-
mentally different and uses Lagrange multipliers to encode the constraints for the underlying
problem into the refined objective. Using Lagrange multipliers, it is possible to convert a con-
strained optimization problem into an unconstrained optimization problem, as the constraints
are incorporated as a component of the objective. This approach enables the utilization of
techniques for unconstrained optimization, such as those based on the derivative test.

In our algorithm, the number of overlaps to be evaluated scales efficiently with the number
of basis states utilized in designing the ansatz. Furthermore, it is worth noting that these
overlaps need to be computed only once, after which they are multiplied by the coefficients
obtained from the optimization process in the iterative algorithm.

2 The classical variational algorithms for off-diagonal elements

Given a system with Hamiltonian H with different eigenenergies Ei and the corresponding
eigenfunctions |φi〉 and an observable W , what we aim to find are the elements Fi, j=〈φi|W |φ j〉.

One natural approach would be to find the different eigenfunctions of the Hamiltonian
and then evaluate the elements, including the off-diagonal ones. However, one may not need
to do this. In [42,43] the authors showed a variational approach to find such elements which
we summarize in the following. First, we can use a variational ansatz for the eigenfunctions
|φi〉 ≈ |φi,t(η⃗i)〉 parametrized by the parameters η⃗i . We can then write a variational function
F v

i, j that has a zero derivative to η⃗i when F v
i, j = Fi, j . Such an approach can readily give both

diagonal and off-diagonal elements. In the following we consider a normalized parametriza-
tion of the trial eigenfunctions |φi,t(η⃗i)〉, and an extension to the case of non normalized trial
eigenfunctions is discussed in the App.C.

We first note that, for a given Hermitian matrix W , we can always write WR = (W +W T )/2
and WI = (W−W T )/2, where AT is the transposition of A, respectively for the real components
and for the imaginary ones. We can then consider the case for which the observable W is only
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real or only imaginary, and for this we build a variational function Fv which is given by F v
i, j

plus Lagrangian multipliers multiplied by the constraints. These multipliers and constraints
are built such that Fv = F v

i, j at its equilibrium points. More specifically, the variational function
F v

i, j is given by

Fv =



φi,t

�

�W
�

�φ j,t

�

+



Li,a

�

� (H − Ei)
�

�φi,t

�

+



φi,t

�

� (H − Ei)
†
�

�Li,b

�

+



L j,a

�

� (H − E j)
�

�φ j,t

�

+



φ j,t

�

� (H − E j)
†
�

�L j,b

�

+λ
�


φi,t

�

�W
�

�φ j,t

�

∓



φ j,t

�

�W
�

�φi,t

��

, (1)

where, in the last line, one uses the sign − or + depending on whether W is real or imaginary
respectively. In Eq.(1), the first term is the expectation value we aim to compute, while the
others are the constraints with their corresponding Lagrange multiplier. The second and third
lines set the constraint that

�

�φi,t

�

and
�

�φ j,t

�

are eigenstates, while the last line is to ensure
that the function estimates only the real or the imaginary part. Note that one can expand the
variational algorithm to the case of non-normalized wavefunctions simply by adding new con-
straints on the normalization of

�

�φi,t

�

to Eq.(1) as shown in [42,43]. In Eq.(1) we have used
the Lagrange multiplier vectors |Li,ν〉 (which, generally, are not normalized) and the scalar
λ. The expressions to evaluate the Lagrange multipliers Li and λ, is obtained by expanding
Eq. (1) to first order, and sets all the terms to zero. Details of such computations are found
in App.A. For instance, we can take a small variation |δφi〉 to the exact eigenfunctions |φex

i 〉,
which gives |φi,t〉= |φex

i 〉+ |δφi〉, and setting the first order corrections to the exact result of
the function F v

i, j to zero, we obtain

λ= −1 , (2)

(H − Ei)|Li,ν〉= −ξνR,IWR/I |φ j〉 . (3)

with ξνR,I = ±1. More precisely, for the real case ξνR = 1 whether ν = a, b while for the

imaginary case ξa
R = 1 and ξb

R = −1. What is important to state, though, is that in principle
we do not know the value Ei and thus this will be approximate by the expectation value of the
Hamiltonian for that wave function, i.e. Ei ≈ 〈φi|H|φi〉.

At this point we should solve Eq.(3) for |Li,ν〉, but this is not straightforward because
H − 〈φi|H|φi〉 is not invertible. For the purpose of computing these Lagrange multipliers we
thus use a modified Hamiltonian

Hmod,i = H −
H|φi〉〈φi|H
〈φi|H|φi〉

, (4)

such that the matrix Hmod,i − 〈φi|H|φi〉 is not singular.
When it is difficult to evaluate the inverse of Hmod,i − 〈φi|H|φi〉 exactly, it is also possible

to implement an iterative approach. As shown in [43], we can find |Li,ν〉 by minimizing

M(|Li,ν〉) = 〈Li,ν|
�

Hmod,i − 〈φi|H|φi〉
�

|Li,ν〉+ 〈φ j|WR|Li,ν〉 , (5)

for the real case, and

M(|Li,ν〉) = 〈Li,ν|
�

Hmod,i − 〈φi|H|φi〉
�

|Li,ν〉 , (6)

for the imaginary one. One thus ends up with two variational principles, one for the derivation
of the Lagrange multipliers |Li,ν〉 and one for the derivation of matrix elements




φi,t

�

�W
�

�φ j,t

�

.
More details on the derivation of Eq. 5 and 6 can be found in App.B.
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2.1 Scaling analysis for the overlap calculation

We consider Hamiltonians H and observables W which can be written as linear combination
of poly(n) unitaries where n is the number of qubits over which the Hamiltonian is defined. A
typical example is a local spin Hamiltonian which can be written as a sum of polynomially many
n-qubit Pauli matrices. Furthermore, we consider a number of ansatz states and Lagrange
multipliers that scales polynomially with the system size (number of qubits) as this is often
sufficient to obtain accurate results, e.g. using a Krylov basis [18,58–60].

We thus highlight that there are three types of overlaps that need to be computed for the
successful implementation of our NISQ algorithm,

• 〈φi|H|φi〉: Since the number of terms in the Hamiltonian and the number of ansatz
states |φi〉 are polynomially many in number of qubits, the overlaps 〈φi|H|φi〉 can be
calculated efficiently [61].

• 〈Li,ν|Hmod,i|Li,ν〉: the estimation of these overlaps requires the calculation of the terms of
the form 〈φi|H|φi〉, 〈Li,ν|H|Li,ν〉 and 〈Li,ν|H|φi〉. Since the number of ansatz states and
Lagrange multipliers scale polynomially with the system size, also the aforementioned
overlaps can be evaluated efficiently.

• 〈φ j|WR|Li,ν〉: Since the operator W can be expressed as a linear combination of poly-
nomially many unitaries, it is easy to see that also the overlaps 〈φ j|WR|Li,ν〉 can be
calculated efficiently.

The number of overlaps to evaluate scales as O(n2 + nm) where n is the number of basis
states of

�

�φi,t

�

and m that of
�

�Li,ν

�

. Here, n2 comes from terms such as



φi,t

�

�W
�

�φ j,t

�

, while
nm comes from terms of type




Li,a

�

� (H − Ei)
�

�φi,t

�

. As previosuly explained, all these overlaps
only have to be computed once and are then multiplied by the coefficients resulting from the
optimization process in the iterative algorithm. It should be noted, however, that the accuracy
resulting from the number of queries to the quantum computer used to evaluate the overlaps
depends on many factors including the number of basis elements considered, the size of the
system and both the Hamiltonian and observable under investigation.

3 Results

We will now show examples which elucidate the effectiveness of an hybrid classical-quantum
implementation of this variational approach. We will consider both a single and a two-qubit
Hamiltonian and we will use both the exact and the iterative approaches to get the Lagrange
multiplier.

3.1 Models

We consider two scenarios. The first scenario is a two level system with Hamiltonian

H1 = X , (7)

and W1 = HdW D
1 Hd where

W D
1 =

�

5 2− 2 j
2+ 2 j 3

�

. (8)

W D
1 is thus the matrix in the energy eigenbasis, as Hd diagonalizes the Hamiltonian H1.
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In the second case we consider the following 2− qubit Hamiltonian

H2 = 2X ⊗ I+ I⊗ X + 2Z ⊗ X , (9)

while we take an W D
2 (therefore in the energy eigenbasis) as the following Hermitian complex

matrix

W D
2 =







1 3+ 1 j 5− 3 j 13+ 8 j
3− 1 j 4 20+ 5 j 25+ 10 j
5+ 3 j 20− 5 j 7 6− 15 j
13− 8 j 25− 10 j 6+ 15 j 10






. (10)

The matrix W2 in the computational basis, which we use in the computations, can be obtained
from W D

2 and the eigenvalues of H2.

3.2 Implementation for hybrid classical-quantum computation

We test the usefulness of the variational principle from Eq.(1) on a hybrid classical-quantum
algorithm. Since the solutions can be found where the derivatives are zero, we use a classical
optimization algorithm which performs a gradient descent after having evaluated the gradients
of F v

i, j over the parameters η⃗i . The quantum part of the algorithm helps with the evaluation of
the gradients. In practice, one can evaluate all the relevant overlaps once, and then use such
knowledge to evaluate the gradients for any given value of the η⃗i . To evaluate the overlaps
we write the states

�

�φi,t

�

as

�

�φi,t(θ )
�

= cos(θi) |0〉+ sin(θi) |1〉 . (11)

for the one-qubit case, and for the two-qubit case we consider the parametrization
�

�φi,t(αi ,βi ,γi)
�

= cos(αi) |00〉+ sin(αi) cos(βi) |01〉
+ sin(α) sin(βi) cos(γi) |10〉+ sin(αi) sin(βi) sin(γi) |11〉 . (12)

Note that here we only consider real trial functions, which is sufficient for our examples,
and a generalization to complex ones is straightforward. Furthermore, we currently use a vari-
ational representation of the eigenfunctions which scales linearly with the size of the Hilbert
space. In practice, for systems with large Hilbert space, for which a quantum computer would
come in handy, one would have to resort to a much smaller parameter space, for example using
a limited Krylov basis [62, 63]. For the Lagrange multipliers

�

�Li,ν

�

we use an unnormalized
ansatz of the form

�

�Li,ν

�

= ci |0〉+ di |1〉 , (13)

for the one qubit case and
�

�Li,ν

�

= ci |00〉+ di |01〉+ ei |10〉+ fi |11〉 , (14)

for the qubit case, where the parameters of Eq.(13,14) are real numbers.
All quantum computations are implemented on the IBM Belem QPU simulator [64] using

error mitigation. The overlaps are evaluated by averaging 50 estimates of the overlaps each
done with 1000 shots.

3.3 Single qubit using an exact evaluation of the Lagrange multipliers

We now consider the model with a single qubit, with Hamiltonian H1 from Eq.(7) and the
matrix W1 derived from the matrix in the energy eigenbasis Eq.(8). We use a classical opti-
mization algorithm by deriving analytically the derivatives of Eq. (1) with respect to the angles
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Figure 1: Plots for the real and imaginary parts of the matrix elements versus itera-
tions of the classical optimization algorithm, through exact calculation of

�

�L1,ν

�

and
�

�L2,ν

�

in the 1-qubit case and with error mitigation. Panels (a,c,e) are the results
for the real part of W1 in the energy eigenbasis, while (b,d,f) for the imaginary part.
Panels (a,b) show the matrix elements while panels (c) to (f) show the angles θi of
the trial eigenfunctions. Each panel shows the results from a total of 150 runs, where
the angles have been randomly initialized between 0 and 2π. In all panels, the lines
represent the medians of the runs converging to a specific value and the error inter-
vals include 92% of the corresponding runs. In panels (c) and (e), the angles have
been mapped to be ∈ (−π2 , π2 ) in order to fix the global phase of the φi , as detailed
in Section 3.3.
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of Eqs. (11) and the parameters of Eq. (13); the expectation values and gradients are evalu-
ated using overlaps computed on the IBM Belem quantum processor’s simulator. In Fig. 1 we
show the estimated value of the element of WR/I versus number of iterations of the classical
optimization procedure, panels (a) and (b), and the values of the angles αi which parametrize
the trial eigenfunctions, panels (c) to (f). In the left panels, (a, c, e), we consider the real part
of the observable W , i.e. WR, while in the right panels (b, d, f), the imaginary part, WI . In
each of the two cases we show the results from 150 runs of the protocol with initial angles
for the two eigenfunctions α1 and α2 chosen uniformily between −π and π. The line in each
of the panels is obtained by the median value of the expectation value or angle between 50
runs which end in the same vicinity. The colored background reflects the value taken by the
middle 92% of the corresponding realizations. In panels (a) and (b) we observe that while
in the initial steps the angles cover the all range from −π to π, and the expectation values
take a very large range of possible values, within 20 iterations the prediction of the matrix
elements is very accurate, both for the real, panel (a), and imaginary part, panel (b). We note
that the accuracy in the angles may not be as good as that on the matrix elements. This is
one advantage of using this variational approach which is tailored to give the matrix elements
directly. As a technical, but important, detail: for WR, we had to fix the global phase of the
trial eigenfunctions, otherwise the expectation value may show the wrong sign. For this rea-
son, when plotting the angles and evaluating the corresponding matrix elements, we mapped
them between the angles −π/2 and π/2 so that the cosine of the angle would be positive.
Such procedure is not needed for the imaginary elements of W because they have boths signs
for each value since the matrix is Hermitian, and for this reason the plotted range of angles in
panels (d) and (f) is between 0 and 2π.

One could also think of variationally computing the ground and excited states by extending
the well-known VQE to higher-energy states with the addition of a constraint on the orthog-
onality of the |φi〉 [65], but in order to compute the n−th eigenstate, this method requires to
also compute all (n − 1) previous states. This approach can also work, however in a differ-
ent way from the one we use in which we can randomly initialize the system parameters and
explore the expectation values that emerge. We could also fix Ei and E j with Ei < E j , and
compute the ground state of a new Hamiltonian (H − E j)2, and then evaluate the off-diagonal
matrix elements of W . However, this approach requires a highly non-local Hamiltonian.

Lastly, when computing the quantity 〈φi|W
�

�φ j

�

one could use indirect measurement
methods e.g. Hadamard test, that, with the help of an additional ancilla, can return the real
and imaginary parts of 〈φi|W

�

�φ j

�

, see [10]. This comes at the expense though, of having to
implement the controlled−U operation, which is challenging for NISQ devices [66]. Instead,
we have only considered unitaries that are made of linear combinations of Pauli matrices, since
their expectation values can be computed efficiently, see Sec. 2.1 and Refs. [49–56].

4 Analysis of errors for the single-qubit case

For the single qubit case, both for the real and imaginary part we expect to obtain three dif-
ferent numbers from the variational approach. In Fig.2 we consider, in each panel, the error
from each of these six possible values. More specifically, we consider the real values 2, 5 and
3 in panels (a), (c) and (e) and the values from the imaginary part 2i, −2i and 0 in panels (b),
(d) and (f). In each panel we show the median of the 50 runs approaching that value for three
different cases: completely classical simulations (orange lines), hybrid classical-quantum sim-
ulations without error mitigation (green lines) and with error mitigation (blue lines). Also
in this case the shadowing represent the 92% confidence interval of the corresponding runs
(i.e. between the 4−th and the 96−th percentile). We observe that only the fully classical
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Figure 2: Absolute value of the errors for each matrix element along 20 iterations, for
classical, noisy and error mitigated simulations, along with the 92% confidence level
of the points. Both columns refer to experiments where the Lagrange multipliers
�

�L1,ν

�

and
�

�L2,ν

�

are computed exactly as discussed in Sec. 2. Each panel (a-f) cor-
responds respectively to the matrix elements (in the energy eigenbasis) 2, 2i, 5, −2i,
3 and 0. The orange continuous line corresponds to classical simulations, the blue
dashed line to hybrid classical-quantum simulations with error mitigation, and the
green dotted line to hybrid classical-quantum simulations with no error mitigation.
The presence of only the blue dashed and orange continuous lines in panel (c) imply
that the value from the hybrid computation without error correction, represented in
other panels by the green dotted line, has not converged to a value close enough to 5.

approach is able to reach very small errors and continuously improves as the number of itera-
tions of the optimization routine increase. At the same time, also for the classical approach the
process shows a non-negligible error bar. For the hybrid approach, instead, we observe that
the error reaches a plateau after about 10 iterations. This error is reduced when employing
error-mitigation techniques. We thus associate this performance to an erroneous evaluation of
the overlaps for the gradients. In some cases, as in panel (c) for the value 5, the errors are so
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Figure 3: Exactly the same description as Fig. 1 with the only difference that in
the optimization procedure we have used approximated Lagrange multipliers from
minimization of Eq.(5) or Eq.(6).

important that the hybrid classical-quantum algorithm is not able to converge to this solution
when one does not implement error mitigation.

4.1 Single qubit using an approximate evaluation of the Lagrange multipliers

Fig. 3 is completely analogous to Fig. 1, and thus it shows results for real and imaginary
elements of W and the corresponding angles versus the number of iterations. However, in this
case we used the iterative algorithm from finding the minima of Eq.(5) and Eq.(6). A detailed
description of this code can be found in App. D. Since in this case the Lagrange multipliers |Li,ν〉
are not exact, the optimization is not as accurate. Hence while the medians of the expectation
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values and of the angles approach the exact values, the error bars, here also indicated by the
92% confidence level of the runs ending close to one solution, are larger.

5 Two qubits

To understand how this variational approach would perform on larger systems, we now con-
sider a two-qubit case. We will use the Hamiltonian H2 from Eq.(9) and the observable W2
which in the eigenbasis of the Hamiltonian has the values W D

2 from Eq.(10). The trial eigen-
functions are parametrized as shown in Eq.(12). We consider 300 different initializations and
we show, in Fig. 4 a density plot of the resulting matrix elements versus the number of itera-
tions. By density plot, we mean that for each of the 20 iterations, we consider a vertical range
and divide it into small bins of length 0.2 and count how many points fall into those intervals.
The initial conditions are prepared near the exact angles for the solutions of the eigenfunc-
tions in Eq.(12) with an error ±0.15 from the exact αi , βi and γi . Furthermore, noise from the
quantum machine has not been considered in these two-qubit calculations, and only statistical
errors, i.e. shot-noise, are considered.

From Fig. 4, we find that some matrix elements are much more stable than others. For
instance the elements 20, 25 and 6 converge in few iterations and they have a large probability
of appearing. Other values, like 13, are unstable and they do not appear unless one chooses
initial conditions for the parameters of the trial eigenfunctions very close to the exact ones.
This is true also for completely classical simulations, hinting at the fact that the landscape of
this optimization problem is particularly difficult, and better classical optimization routines
should be used. What is possibly more striking is that there seems to be converged results
to values which do not belong to W2, as for instance the value ≈ 30. Computing for longer
times we observe that this value drifts, indicating that it is not converged, and hence it is not a
value predicted by the model. From this we deduce that this method can give a good number
of matrix elements, and depending on the amount of noise in the machine, they can be fairly
accurate, but it may also not find some values and possibly return, after limited iterations, a
few values which are not correct.
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20
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Figure 4: Heatmaps for the two-qubit case and for the real (a) and imaginary (b)
elements of W2 in energy eigenbasis, through exact calculation of the Lagrange mul-
tipliers. Both subplots show the convergence to the matrix elements for 300 runs of
20 iterations each, initialized in intervals of radius 0.15 of the optimal angles.
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6 Conclusions

We have considered a variational approach for hybrid classical-quantum computation of the
matrix elements of an observable W in the energy eigenbasis. We have implemented the
method with one qubit to learn some of its basic features, and then we have proceeded to two
qubits to study how the method performs when the size of the systems studied increases. We
have found that the method performs well in the case of one qubit, finding real and imaginary
parts of all matrix elements even when one initializes randomly the trial functions over a very
broad range of parameters. For two qubits, we have provided evidence that the algorithm
can still work (in the sense that it can find the target values) but, in general, it requires an
initialization of the variational parameters much closer to the exact value. As future work, we
may investigate the role of different optimization routines in the classical portion of the hybrid
computation. Overall, the performance of the method is limited by the errors in the estimation
of the gradients and overlaps from the quantum computer, which can be tamed with less noisy
devices and further sampling. We highlight that one can use a much smaller basis, which
represent states closer to those of interest, thus limiting the emergence of spurious incorrect
results. In this case the optimization procedure will also be better controlled. Another way to
improve the performance is to re-initialize the angles from the results after a certain number
of iterations. Here we used normalized trial functions, but the method can be generalized, as
we show in App.C, to non-normalized trial states.
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Appendix

A Variational principle

The variational principle is best gleaned from examples. Here, we restrict ourselves to the de-
termination of off-diagonal matrix elements in quantum mechanics. In order to do so, we write
the expression of the variational principle starting from the trial objective and the constraints,
i.e.

Fv =



φi,t

�

�W
�

�φ j,t

�

, (A.1)

and
B1 = (H − Ei, j)

�

�φi, j

�

= 0 and B†
1 =




φi, j

�

� (H − Ei, j) = 0 . (A.2)

The final expression is obtained by promoting the constraints to the objective by multiplication
by some Lagrange multipliers L and λ. The goal is then to find expressions for L and λ either
exactly or iteratively, and to check which ones are best suited for the variational principle.
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Concretely, the trial quantities of interest and the trial Lagrange multipliers are defined as
�

�φi/ j,t

�

=
�

�φi/ j

�

+
�

�δφi/ j

�

, (A.3)

λt = λ+δλ , (A.4)

and
�

�Li/ j,t

�

=
�

�Li/ j

�

+
�

�δLi/ j

�

. (A.5)

From this, we write the variational form of F, Fv , as

Fv =



φi,t

�

�W
�

�φ j,t

�

+



Li,a,t

�

� (H − Ei)
�

�φi,t

�

+



φi,t

�

� (H − Ei)
†
�

�Li,b,t

�

+



L j,a,t

�

� (H − E j)
�

�φ j,t

�

+



φ j,t

�

� (H − E j)
†
�

�L j,b,t

�

+λ
�


φi,t

�

�W
�

�φ j,t

�

∓



φ j,t

�

�W
�

�φi,t

��

,

(A.6)

and by replacing the trial quantities with equations A.3-A.5, one can get the error δFv as

δFv = Fv −



φi,t

�

�W
�

�φ j,t

�

= (〈φi|+ 〈δφi|)W (
�

�φ j

�

+
�

�δφ j

�

)− 〈φi|W
�

�φ j

�

+ (



Li,a

�

�+



δLi,a

�

�)[(H − Ei)(|φi〉+ |δφi〉)]

+ [(〈φi|+ 〈δφi|)(H − Ei)
†](

�

�δLi,b

�

+
�

�Li,b

�

) + (



L j,a

�

�+



δL j,a

�

�)[(H − E j)(
�

�φ j

�

+
�

�δφ j

�

)]

+ [(



φ j

�

�+



δφ j

�

�)(H − E j)
†](

�

�δL j,b

�

+
�

�L j,b

�

) + (λ+δλ)((〈φi|+ 〈δφi|)W (
�

�φ j

�

+
�

�δφ j

�

)

∓ (



φ j

�

�+



δφ j

�

�)W (|φi〉+ |δφi〉)) = 0 .

By using constraints A.2 and A.3,discarding terms of second order and putting equal to 0 the
coefficients of |δφ〉 and 〈δφ|, δFv vanishes for all allowed |δφ〉 and 〈δφ|, and we get, for the
real case

〈δφi| → (H − Ei)
�

�Li,b

�

= −(λ+ 1)W
�

�φ j

�

, (A.7)



δφ j

�

�→ (H − E j)
�

�L j,b

�

= λW |φi〉 , (A.8)

|δφi〉 →



Li,a

�

� (H − Ei) = λ



φ j

�

�W , (A.9)

and
�

�δφ j

�

→



L j,a

�

� (H − E j) = −(λ+ 1) 〈φi|W . (A.10)

Multiplying on the left of equation A.7 by 〈φi| and on the left of equation A.8 by



φ j

�

�, and
applying constraint A.2, we get λ = −1/2. |L〉 can be obtained by |L〉 = c1 |φ〉 and made
unique by 〈φ|L〉= c2 = 1. We can see that for the real case

�

�Li,a

�

=
�

�Li,b

�

and
�

�L j,a

�

=
�

�L j,b

�

.
For pure imaginary matrix elements, the procedure is the same, and we get

〈δφi| → (H − Ei)
�

�Li,b

�

= −(λ+ 1)W
�

�φ j

�

, (A.11)



δφ j

�

�→ (H − E j)
�

�L j,b

�

= −λW |φi〉 , (A.12)

|δφi〉 →



Li,a

�

� (H − Ei) = −λ



φ j

�

�W , (A.13)

and
�

�δφ j

�

→



L j,a

�

� (H − E j) = −(λ+ 1) 〈φi|W . (A.14)

Again, λ= −1/2 but this time
�

�Li,a

�

= −
�

�Li,b

�

and
�

�L j,a

�

= −
�

�L j,b

�

.
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B Variational principle for Li,ν

The next step is to derive an expression, exact or approximated, for computing the Lagrange
multiplier

�

�Li,ν

�

. This could in theory be done exactly by inverting (H−Ei) in A.7. In practice, a
near-singularity problem arises because the operator H− Ei , where Ei is the eigenstate energy,
has a zero eigenvalue and therefore cannot be inverted; this can be solved by replacing said
operator by a shifted one that does not have a zero eigenvalue as discussed in the main text. In
addition, in order to get an extremum principle that would give us an approximation to

�

�Li,ν

�

without inverting any matrix, this operator must be positive definite.
An operator that satisfies this condition is Hmod,i − Ei,t = H − HPi,t H

Ei,t
− Ei,t where Pi,t is

the trial projection operator to the eigenstate Pi,t =
�

�φi,t

� 


φi,t

�

� and Ei,t is the trial eigenstate
energy Ei,t =




φi,t

�

�H
�

�φi,t

�

. The idea is to find another variational principle for |Lt〉 (where
we omit the indexes i and ν to lighten the notation) that would replace Eq. (A.11-A.14) , and
that could then be used in the variational principle of Eq. (A.6) to find better approximations
of the trial functions. This variational principle for |Lt〉 is of the form

M(|X t t〉) = 〈X t t |A |X t t〉 − 〈X t t |qt〉 − 〈qt |X t t〉 , (B.1)

where A will be the shifted non-negative operator, |X t〉 is the trial Lagrange multiplier |Lt t〉,
|qt〉= A |X t〉 a known function and we write |X t t〉= |X t〉+|δX t〉. By using this last equivalence,
eq B.1 becomes

M(|X t〉+ |δX t〉) = M(|X t〉) + 〈δX t |A |δX t〉 , (B.2)

where the quadratic term on the far right is strictly convex since A is positive definite. This
expression has a minimum for |X t t〉= |X t〉, i.e. |Lt t〉= |Lt〉.
Setting |qt〉 = A |X t〉 = (Hmod,i − Ei,t) |Lt〉 = [(




φi,t

�

�W
�

�φi,t

�

) − Ei,t ci,t]
�

�φi,t

�

− W
�

�φi,t

�

, the
variational principle for |Lt〉 becomes

M(Lt t) = 〈Lt t | (Hmod,i − Ei,t) |Lt t〉 − 〈Lt t |qt〉 − 〈qt |Lt t〉 , (B.3)

and with |Lt t〉= |Lt〉+ |δLt〉,

M(|Lt〉+ |δLt〉) = M11(|Lt〉) + 〈δLt | (Hmod,i − Ei,t) |δLt〉 , (B.4)

which has its minimum at |Lt t〉= |Lt〉.
For the real case, eq B.3 becomes:

M(Li/ j) =



Li/ j

�

� (Hmod,i/ j − Ei/ j)
�

�Li/ j

�

+



φ j/i

�

�W
�

�Li/ j

�

, (B.5)

while for the imaginary one, it is

M(Li,b/ j,b) =



Li,b/ j,b

�

� (Hmod,i/ j − Ei/ j)
�

�Li,b/ j,b

�

. (B.6)

C Variational principle for non normalized states

The variational principle for non-normalized wave functions requires the introduction of the
following additional constraints




φi/ j

�

�φi/ j

�

− 1= 0 , (C.1)
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and the respective Lagrange multipliers λi/ j . The variational principle then becomes

Fv =



φi,t

�

�W
�

�φ j,t

�

+



Li,a,t

�

� (H − Ei)
�

�φi,t

�

+



φi,t

�

� (H − Ei)
†
�

�Li,b,t

�

+



L j,a,t

�

� (H − E j)
�

�φ j,t

�

+



φ j,t

�

� (H − E j)
†
�

�L j,b,t

�

+λi(



φi,t

�

�φi,t

�

− 1) +λ j(



φ j,t

�

�φ j,t

�

− 1)

+λ
�


φi,t

�

�W
�

�φ j,t

�

∓



φ j,t

�

�W
�

�φi,t

��

,

(C.2)

and we get the following equations for the real case

〈δφi| : (H − Ei)
�

�Li,b

�

= −λi |φi〉 − (λ+ 1)W
�

�φ j

�

, (C.3)



δφ j

�

� : (H − E j)
�

�L j,b

�

= −λ j

�

�φ j

�

+λW |φi〉 , (C.4)

|δφi〉 :



Li,a

�

� (H − Ei) = −λi 〈φi|+λ



φ j

�

�W , (C.5)

and
�

�δφ j

�

:



L j,a

�

� (H − E j) = −λ j




φ j

�

�− (λ+ 1) 〈φi|W , (C.6)

which give λ= −1/2 and λi = λ j = −(〈φi|W
�

�φ j

�

)/2. For the iterative approach, the function
to optimize is

M(Li/ j) =



Li/ j

�

� (Hmod,i/ j − Ei/ j)
�

�Li/ j

�

+ 2λi/ j




φi/ j

�

�Li/ j

�

+



φ j/i

�

�W
�

�Li/ j

�

. (C.7)

For imaginary elements, we get

〈δφi| : (H − Ei)
�

�Li,b

�

= −λi |φi〉 − (λ+ 1)W
�

�φ j

�

, (C.8)



δφ j

�

� : (H − E j)
�

�L j,b

�

= −λ j

�

�φ j

�

−λW |φi〉 , (C.9)

|δφi〉 :



Li,a

�

� (H − Ei) = −λi 〈φi| −λ



φ j

�

�W , (C.10)

and
�

�δφ j

�

:



L j,a

�

� (H − E j) = −λ j




φ j

�

�− (λ+ 1) 〈φi|W , (C.11)

with λ= −1/2 and λi = λ j = −(〈φi|W
�

�φ j

�

)/2.
For the iterative approach for the imaginary elements, one needs to optimize

M(Li,b/ j,b) =



Li,b/ j,b

�

� (Hmod,i/ j − Ei/ j)
�

�Li,b/ j,b

�

+ 2Re(λi/ j)



φi/ j

�

�Li,b/ j,b

�

. (C.12)

D Algorithm for one-qubit normalized states

We here describe in more detail the steps of the algorithm used for normalized states and
a single qubit. In this example the Lagrange multipliers are computed iteratively. Given an
Hamiltonian H =

∑

i γi Pi with eigenbasis |φi〉 and an Hermitian matrix W =
∑

iωi Pi that are
linear combinations of Pauli strings, we want to find good, normalized, approximations φi,t

and φ j,t to the eigenstates of H, such that



φi,t

�

�W
�

�φ j,t

�

is an element of W, through iterative
calculation of Lagrange multipliers |Li〉 and

�

�L j

�

.
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Algorithm 1: Algorithm for one-qubit with normalized states, iterative evaluation of
Lagrangian, and real wave functions.

Initialize parameters θi ,θ j , ci ,di ,c j ,d j ;
Compute the relevant overlaps;

Consider WR/I =
W±W T

2 ;
while Fv not converged do

1. Compute Ei =



φi,t

�

�H
�

�φi,t

�

, Hmod,i = H − H|φi〉〈φi |H
〈φi |H|φi〉

and set λ= −1
2

2. Derive the Lagrange multipliers from
M(|Li,ν〉) = 〈Li,ν|

�

Hmod,i − Ei

�

|Li,ν〉+ 〈φ j|WR|Li,ν〉 for real elements and from
M(|Li,ν〉) = 〈Li,ν|

�

Hmod,i − 〈φi|H|φi〉
�

|Li,ν〉 for imaginary ones, by solving
the systems of derivatives with respect to ci/c j and di/d j from Eq. 13

3. Find the partial derivatives of
Fv =




φi,t

�

�W
�

�φ j,t

�

+



Li,a

�

� (H − Ei)
�

�φi,t

�

+



φi,t

�

� (H − Ei)
†
�

�Li,b

�

+



L j,a

�

� (H − E j)
�

�φ j,t

�

+



φ j,t

�

� (H − E j)
†
�

�L j,b

�

+λ
�


φi,t

�

�W
�

�φ j,t

�

∓



φ j,t

�

�W
�

�φi,t

��

with respect to θi and
θ j and solve the corresponding system of nonlinear equations to find the new
parameters.

end
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