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Self-testing of a single quantum system from theory to
experiment
Xiao-Min Hu1,2,3,16, Yi Xie4,5,16, Atul Singh Arora6,7,16, Ming-Zhong Ai1,2,3,16, Kishor Bharti8,9,10,16, Jie Zhang4,5, Wei Wu4,5,11,
Ping-Xing Chen 4,5,11✉, Jin-Ming Cui 1,2,3, Bi-Heng Liu 1,2,3✉, Yun-Feng Huang 1,2,3✉, Chuan-Feng Li 1,2,3, Guang-Can Guo1,2,3,
Jérémie Roland 6, Adán Cabello 12,13✉ and Leong-Chuan Kwek 8,14,15✉

Self-testing allows one to characterise quantum systems under minimal assumptions. However, existing schemes rely on quantum
nonlocality and cannot be applied to systems that are not entangled. Here, we introduce a robust method that achieves self-testing
of individual systems by taking advantage of contextuality. The scheme is based on the simplest contextuality witness for the
simplest contextual quantum system—the Klyachko-Can-Binicioğlu-Shumovsky inequality for the qutrit. We establish a lower
bound on the fidelity of the state and the measurements as a function of the value of the witness under a pragmatic assumption on
the measurements. We apply the method in an experiment on a single trapped 40Ca+ using randomly chosen measurements and
perfect detection efficiency. Using the observed statistics, we obtain an experimental demonstration of self-testing of a single
quantum system.
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INTRODUCTION
There is strong reason to believe that quantum devices can
outperform their classical counterparts on various fronts1. Yet,
certifying that a quantum device is functioning as intended (or
claimed) becomes challenging as the device becomes increasingly
complex2. More concretely, consider the two traditional methods
for characterising a quantum system—tomography and classical
simulation. Both methods fail for large systems. Tomography
requires resources which scale exponentially (in the size of the
quantum system being characterised)3. Similarly, since we have
strong evidence showing that quantum computations are
intractable for classical computers, characterisation by classical
simulation also fails for large systems4. Thus, methods for
characterising quantum systems are crucial for building useful
large-scale quantum devices. Many such methods are known with
varying strengths and weaknesses. Restricting to efficient
methods, one can classify them according to several parameters,
such as the assumptions they make about the system (the weaker
the better) and the knowledge they provide about the system (the
more the better). In this work, we focus on self-testing and related
methods, which solely aim to minimise the assumptions needed.
Self-testing is a property of a configuration—a state and a set of

measurements—which requires that every other configuration
which produces the same measurement statistics is, in fact,
identical to it up to (local) isometries. (Self-testing initially was
defined to be a property of a quantum state alone (and not the

measurements)). Clearly, without some assumption about the
underlying system, no configuration can be self-tested (this is
simply because the device could classically store and reproduce
whatever statistics the self-test is required to satisfy. One of these
assumptions is that the system is bipartite, and the two parts of
the system cannot communicate). Indeed, the term “self-testing”
was coined in 2004 by Mayers and Yao5, who showed that (in the
bipartite no-communication setting) this property holds for a pair
of maximally entangled qubits. The underlying ideas, however,
were already present in earlier works6–10. Self-testing has since
been an area of active investigation11 and the notion has been
extended to various settings, such as bipartite (all pure states can
be self-tested12–14), multi-partite (various families can be self-
tested15–18), Bell state measurement19,20, prepare-and-
measure21,22, steering23–25, among others.
Returning to device characterisation, a central technological

challenge of our times is the construction of a large-scale
quantum computer—a single complex quantum system, where
the aforementioned results do not hold. Thus, it is natural to ask if
one can extend self-testing to the single system setting.

RESULTS
Here, we tackle this question by approaching self-testing via non-
contextuality inequalities—linear inequalities26,27, similar to Bell
inequalities, the experimental violation of which28,29 can be used
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to witness non-classicality. Their advantage is precisely that they
can be tested in a single system. Unlike the aforementioned self-
testing schemes based on Bell nonlocality, which assume no
communication (between parts of the device), we make a mild
assumption on the measurements that we call KCBS orthogonality.
Similar self-testing schemes, based on non-contextuality inequal-
ities, have recently been proposed30–33. However, these works can
only be applied when the experimental statistics exactlymatch the
ideal statistics. (While some of the works prove that their self-test
is “robust” in principle, they fail to show how to apply their result
for any experiment which even mildly deviates from the ideal
case). We remedy this stifling shortcoming by providing the first
contextuality self-testing robustness curve, which enables one to
self-test single quantum systems in the laboratory—the curve
quantifies the fidelity of the system’s configuration (to the ideal
configuration) as a function of the deviation of the observed
statistics (from the ideal statistics). We then perform an experi-
ment on a single 40Ca+ ion and apply this self-test scheme to
characterise the system. We find that our characterisation is
consistent with that obtained by conventional tomography. We
emphasise that even though our self-test scheme was designed to
minimise the assumptions one needs to make, it is nevertheless
crucial to ensure that these are satisfied by the experiment. In
addition to the KCBS orthogonality condition, one must ensure
that the detection efficiency is nearly perfect and that the
measurement settings are chosen randomly (to assure that non-
contextual models are not simulating contextual correlations34). In
our experimental setup, we quantify the deviation from these
requirements and find that they are, indeed, negligible (see
Supplementary Note 1).

Overview and organisation
We first outline our theoretical contributions (“Results: The self-test
scheme”). We informally introduced self-testing but did not
explain the KCBS orthogonality condition (Assumption 1).
Informally, for any odd number n of measurements, the condition
requires that the measurements are projective and satisfy the
relations of orthogonality corresponding to an n-cycle graph
(vertices represent measurements and edges relations of ortho-
gonality). For simplicity, we henceforth implicitly take n= 5 (It
turns out that, in this setup, n= 5 is the smallest cyclic graph
which separates quantum behaviour from its classical counter-
part). We denote our self-test by I (Equation 1), which is a linear
expression in the input/output probabilities associated with the
device. I can be made 0 by a quantum device, but every classical
device must yield I � Q� C > 0, where Q and C are constants,
independent of the device once n is fixed. It is known30 that the
configuration (the states and measurements associated with
the device) are unique for any device which yields I ¼ 0; the
uniqueness is up to a global isometry. Such a configuration is
termed the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) configura-
tion. Note that, using a global isometry, one can trivially change
any state ϕj i to any other state ξj i. This might prompt one to
think that showing equivalence up to global isometries is
meaningless. This is not true. If there are two configurations that
attain I ¼ 0, we require the same global isometry to map the
state as well as the measurement settings from one configuration
to another (see Fig. 2). (For readers familiar with Bell nonlocality-
based self-testing: for a single system, the notion of local isometry
anyway does not make sense).
Consider a configuration for which I is close to zero. To

quantify the closeness of it to the KCBS configuration, we define
the total fidelity, F (Equation 5). F= 6 for the KCBS configuration.
(In general, F= n+ 1 as it sums the fidelity to n measurements
and one state. For the (simplest) KCBS configuration, n= 5). We
give a lower bound on F as a function of I . The idea is to define
an isometry in terms of the measurement operators of the

device itself, which maps a device’s configuration to the KCBS
configuration when I ¼ 0. The expression for F when I > 0
becomes an optimisation problem which can be relaxed to a
hierarchy of semidefinite programs (SDPs). This, in turn, can be
solved numerically to obtain lower bounds on F. The details of
the proof appear in “Methods: Lower bound using an SDP
relaxation” and those of the numerical solution in “Methods:
Numerics to evaluate fidelity lower bounds”. Obtaining the
numerical solution was challenging. This is primarily because the
description of the SDP we obtained is implicit. Therefore, we first
find this explicit description by performing symbolic computa-
tion and, subsequently, solve the resulting SDP (with over
15,000 constraints).
We now outline the experiment. We apply this self-test to an

experimental setup based on a single trapped 40Ca+ion. The KCBS
configuration can be realised using a qutrit and projective
measurements (see Fig. 2). In the experiment, the three levels of
the qutrit are formed by the ground state and the first excited
state, which is further split by the presence of a magnetic field.
The measurements are executed by rotating between the ground
state and the excited state using 729 nm lasers, performing a
photon number measurement (via fluorescence detection),
followed by an inverse of the rotation (see Fig. 1 and “Results:
Experimental Setup”). The initial state and the rotation angles can
be chosen such that they correspond directly to the KCBS
configuration (“Results: Realising the KCBS configuration”). The
actual experimental setup, of course, requires numerous details to
be first addressed (“Results: Experimental Setup”) for this
correspondence to work. Using this setup, we perform two types
of experiments (“Results: Experiments that are self-tested”), both
of which are deviations from the KCBS configuration, constructed
to ensure the KCBS orthogonality condition (Assumption 1) still
holds. First, we leave the measurements unchanged but
progressively depolarise the initial state. Second, we change the
measurement settings, parameterised by an angle θ and tilt
the initial state. In effect, these experiments determine I , and the
robustness curve immediately lower-bounds the total fidelity of
the underlying configuration to the KCBS configuration. By
performing conventional tomography, we determine the actual
fidelity to the KCBS configuration and find that the lower bound is
indeed satisfied, as expected (Fig. 1, Table 2).

Relation to prior work
Before delving into the details, we give a brief comparison to prior
works.

Comparison to another single-system self-testing scheme. Self-
testing in a single system has recently been studied under
cryptographic assumptions35; however, such proposals require
over a thousand qubits and thus remain elusive in practice (see
Supplementary Note 6 for details).

Comparison to other contextuality experiments. In our experiment,
we simultaneously quantify and minimise divergence from the
basic assumptions—perfect detection, random selection of
measurements, compatibility and sharpness—which, to the best
of our knowledge, makes it the most comprehensive contextuality
experiment to be reported (see Table 1). Compared to other
contextuality experiments, the terminology used here is slightly
different since our approach here is more pragmatic—our KCBS
orthogonality condition may be seen as the analogue of
compatibility and sharpness of measurements (see Supplementary
Note 6).

Swap isometry. One of our theoretical constructions (the swap
isometry, explained in “Methods: Lower bound using an SDP
relaxation”) is motivated by the corresponding construction in
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ref. 36. While the construction in ref. 36 works for Bell scenarios, our
construction applies to the single-party setting.

The self-test scheme
Suppose we have a set of (independent) identical devices, each of
which takes a string as input and produces a string as output. Let
pi denote the probability of event i, where an event is an instance
of an input-output. Let I :¼Piqipi denote a linear combination
of these probabilities, where qi 2 R. We say that ðI ; cÞ, for some
c 2 R, self-tests the device if the following holds—if the device
satisfies I ¼ c, then the device is uniquely described as containing
a specific quantum state, the inputs corresponding to selecting
specific measurements, the outputs correspond to the action of
the measurement on the aforementioned quantum state, up to a
global isometry. (Later, we use “self-tests the device” to succinctly
say “self-tests the configuration in the device”).
As stated earlier, no self-test can exist without additional

assumptions. We make the following assumption about the device
we wish to self-test. To describe it, we set up some notation. We
denote the ith binary measurement by Mi≔ (Π0∣i, Π1∣i), where Π0∣i
denotes the measurement operator corresponding to the zeroth

output and Π1∣i denotes that corresponding to the first output.
Being measurement operators, they satisfy the probability
conservation condition Πy

0jiΠ0ji þ Πy
1jiΠ1ji ¼ I. We say the binary

measurement is repeatable and Hermitian if Π2
bji ¼ Πbji for b ∈ 0, 1

and Πy
bji ¼ Πbji , respectively.

Assumption 1
For an odd n, the quantum state in the device is ρ and the
measurements M1,M2,…,Mn are repeatable and Hermitian binary
measurements (as described above) satisfying Π1∣i ⋅ Π1∣j= 0 for
{i, j}∈ {{1, 2}, {2, 3},…, {n− 1, n}, {n, 1}}= : E.
At first, one might think that restricting to projective measure-

ments, instead of POVMs, is without loss of generality due to
Naimark’s theorem (according to which the statistics of any
quantum measurement can also be obtained using a projective
measurement since any positive-operator-valued measure can be
seen as a projective-valued measure in a larger Hilbert space).
However, this conclusion no longer holds for sequential measure-
ments where post-measurement states become relevant. (To
properly address this issue, one must consider quantum instru-
ments instead and define the notion of orthogonality accordingly.
In the present work, we do not pursue this direction). In any case,

Table 1. A comparison of our experiment to previous experimental results on contextuality.

Year System Self-test Compatibility Sharp measurement Random basis selection Detection loophole

2011 Photon29 × quantified not checked × not addressed

2013 Yb+ ion46 × quantified not checked × closed

2016 Superconducting47 × quantified not checked × closed

2017 Photon48 × quantified not checked × not addressed

2018 Ca+ ion49 × quantified not checked × closed

2019 Photon50 × quantified not checked × not addressed

2020 Ba+ ion51 × quantified not checked × closed

2022 Ca+ ion [this work] ✓ quantified quantified ✓ closed

Fig. 1 Experimental results. a–c represents the 40Ca+ ion experimental setup, while d illustrates the agreement of the observations with the
theory. a The energy level diagram of the 40Ca+ ion. b A schematic of the experimental setup. c The sequence of operations used in our
experiment to measure pi via Pr(10∣ij), i.e., the probability of obtaining (a, b)= (1, 0) when Mi and Mj are measured. We choose (i, j)∈ E (edges of
a five-cycle graph) at random using a quantum random number generator. Each measurement Mi is implemented by performing a rotation Ui,
a fluorescence measurement (performed using a photo-multiplier tube), and undoing the rotation. For each measurement, the experiment is
repeated over 10,000 times. d The x-axis represents ∑kpk (which we call the KCBS value), while the y-axis represents the total fidelity, F, to the
ideal KCBS configuration. Recall that I ¼ Qn �

P
kpk . The bottom curve (blue), obtained by solving a semidefinite program, lower bounds F as

a function of ∑kpk. The top curve (orange) is similarly obtained by assuming, in addition, that p1= p2=⋯= p5. The points represent various
experiments which (nearly) satisfy Assumption 1. The x coordinates of these points represent ∑kpk, while the y coordinate is evaluated by
performing tomography and computing the fidelity to the ideal KCBS configuration. We note that ∑kpk exceeds

ffiffiffi
5

p
(the maximum quantum

value for projective measurements). This is warranted because our experiments are nearly perfect, and even small deviations from the
underlying assumptions cause the KCBS value to deviate from the ideal one. It is worth noting that the left end of the error bar (±1.96σ, where
σ denotes standard deviation), however, is well within the

ffiffiffi
5

p
limit.
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the aforementioned is a mild requirement and our experimental
setup almost perfectly satisfies it (see Supplementary Note 1).
For a device satisfying Assumption 1, we consider the self-test I

I :¼ Qn �
Xn
i¼1

pi ; (1)

where pi :¼ trðΠiρÞ ¼ Πih i and Qn :¼ n cosðπ=nÞ
1þcosðπ=nÞ is the “quantum

value”. This particular form is of interest because, informally, any
classical (i.e., non-contextual) model satisfying Assumption 1
cannot result in

Pn
i¼1 pi > Cn, where Cn≔ (n− 1)/2 while quan-

tumly, for the KCBS configuration (see Definition 3) one obtainsPn
i¼1 pi ¼ Qn, the highest possible37. The self-test measures how

close one is to the maximum quantum value, Qn. The maximum
value of ∑ipi that is classically achievable (i.e., when all measure-
ments commute) is (n− 1)/2. The quantum value Qn is achieved
by
P

i Πih i for the KCBS configuration (ρKCBS; fΠKCBS
i g), where ρKCBS

is a qutrit in a pure state and ΠKCBS
i are projectors (see Definition 3

below), yielding I ¼ 0.

Definition 2. (An ideal KCBS configuration) Consider a three-
dimensional Hilbert space spanned by the basis f 0j i; 1j i; 2j ig. Let
ulj i :¼ cos θ 0j i þ sin θ sinϕl 1j i þ sin θ cosϕl 2j i; (2)

where ϕl≔ lπ(n− 1)/n for 1 ≤ l ≤ n and cos2θ ¼ cosðπ=nÞ
1þcosðπ=nÞ. Define

ψKCBS
�� �

:¼ 0j i; (3)

ΠKCBS
i :¼ uij i uih j: (4)

It was shown in ref. 30 that any quantum realisation (ρ, {Πi})
which satisfies Assumption 1 and yields I ¼ 0, must be the same
as the KCBS configuration, up to a global isometry. (In fact, they
also showed that if I ¼ ϵ is close to zero, then the quantum
realisation must be close to the KCBS configuration. However,
their analysis did not yield the exact function corresponding to
Equation (5)—they only had an asymptotic bound (on the fidelity
to the KCBS configuration) of the form Oð ffiffiffi

ϵ
p Þ).

Recall that for clarity, we restricted to n= 5 but the arguments
readily generalise. Suppose the device corresponds to a quantum
realisation (ρ, {Πi}) for which I ¼ ϵ is small but not exactly zero. In
this case, we derive a lower bound on the fidelity of (ρ, {Πi}) to
ðρKCBS; fΠKCBS

i gÞ (up to a global isometry). More precisely, we lower
bound the value of the following function

F :¼ min
ρ;fΠig

max
V

X5
i¼1

FðtrH½VΠiρΠiV
y�;ΠKCBS

i ρKCBSΠKCBS
i Þ þ FðtrH½VρVy�; ρKCBSÞ

" #
;

(5)

where ðρ; fΠig5i¼1Þ is a quantum realisation of fpig5i¼1 satisfying
I ¼ ϵ, V is an isometry from H to H�HKCBS, i.e., from the space
on which ρ; fΠig5i¼1 are defined, to itself tensored with the

3-dimensional space where ρKCBS; fΠKCBS
i g5i¼1 are defined, and

Fðσ; τÞ :¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1=2τ1=2j j

p
is the fidelity of ρ ≥ 0 to σ ≥ 0. This lower

bound can be approximated by a sequence of semidefinite
programs and can be evaluated for any I ¼ ϵ, yielding the
robustness curve (see Fig. 1). We defer the detailed analysis to
“Methods: Lower bound using an SDP relaxation”. (Instead of the
sum ∑ipi, one could impose constraints on the values of pi
individually. In fact, this is what we do in our analysis as it yields a
better bound).

Experimental setup
We describe our experimental setup, which is designed to realise
the ideal KCBS configuration. We use a 40Ca+ ion trapped in a

blade-shaped Paul trap. The qutrit basis states are encoded into
three Zeeman sub-levels of the 40Ca+ ion, with

0j i ¼ S1=2;mJ ¼ �1=2
�� �

; (6)

1j i ¼ D5=2;mJ ¼ �3=2
�� �

; (7)

2j i ¼ D5=2;mJ ¼ �1=2
�� �

; (8)

as shown in Fig. 1a. Unitary operations on these qutrits are
performed by shining a linear polarised narrow-linewidth 729 nm
laser beam, propagating along the trap axis at an angle of 45° with
respect to the quantisation axis. For k∈ {1, 2}, the laser can be
frequency modulated to be in resonance with the specific
transition between the states 0j i and kj i by an acousto-optic
modulator (AOM). The coupling strength Ωk, duration t and phase
ϕk of this laser pulse then can be controlled by the AOM to
perform a rotation, Rk(θk, ϕk) between the states 0j i and kj i, where
θk=Ωkt and ϕk represent the polar angle and the azimuthal angle
respectively, i.e.,

R1ðθ1;ϕ1Þ ¼
cos θ12 �i sin θ1

2 e
�iϕ1 0

�i sin θ1
2 e

iϕ1 cos θ1
2 0

0 0 1

0
B@

1
CA; (9)

R2ðθ2;ϕ2Þ ¼
cos θ22 0 �i sin θ2

2 e
�iϕ2

0 1 0

�i sin θ2
2 e

iϕ2 0 cos θ22

0
B@

1
CA: (10)

The parameters of the rotation are controlled by varying the
duration and phase of the corresponding laser pulse under
constant intensity via the acoustic-optic modulator with high
fidelity. Using R1 and R2, one can perform an arbitrary rotation in
the qutrit space. Measurements in our setup are performed by
fluorescence detection, i.e., counting photons.

Realising the KCBS configuration
The preceding operations can be combined to perform various
experiments that (nearly) satisfy Assumption 1. Here, we describe,
at a high level, the procedure for realising the KCBS configuration
(see Definition 3). Detailed experimental steps are deferred to
“Methods: Experimental setup”.
Using the notation introduced in Assumption 1, we denote the

binary measurements of interest by Mi≔ (Π0∣i, Π1∣i) and the
quantum state of our system by ρ. To realise the KCBS
configuration, we require Π1ji ¼ uij i uih j and ρ ¼ 0j i 0h j. To
implement the measurement Π1∣i, as a composition of the
operations our setup permits, we first compute a qutrit rotation
Ui which maps uij i to 0j i. This, in turn, is used to compute the
parameters θ1,i, θ2,i and ϕ1,i, ϕ2,i such that Ui= R2(θ2,i, ϕ2,i) ⋅
R1(θ1,i, ϕ1,i). Observe that defining Π1ji :¼ Ui 0j i 0h jUy

i and Π0ji :¼
UiðI� 0j i 0h jÞUy

i results in the KCBS configuration.
Neglecting experimental imperfections (which are indeed

negligible in our experiment; see Supplementary Note 1), it is
evident that Assumption 1 is satisfied, i.e., Π1∣i ⋅ Π1∣j= 0 for (i, j)∈ E
and Π2

1ji ¼ Π1ji . Further, it is clear that

pi ¼ Prð1jiÞ ¼ Prð10jijÞ ¼ trðΠ0jj � Π1jiρΠ
y
1ji � Πy

0jiÞ; (11)

where Pr(ab∣ij) denotes the probability of obtaining outcomes
(a, b) when measurements (Mi,Mj) are performed and Pr(a∣i)
denotes the probability of obtaining outcome a given Mi was
measured. Finally, we note that Pr(10∣ij)= Pr(01∣ji).
As illustrated in Fig. 1, ∑kpk is estimated randomly (using a

quantum random number generator; see Supplementary Note 1)
by choosing (i, j)∈ E, measuring Mi followed by Mj and counting
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N(10∣ij), the number of times the output was (1, 0), i.e.,

pi �
Nð10jijÞP

a;b2f0;1gNðabjijÞ
: (12)

Experiments that are self-tested
To study the self-testing property of a device, we perform
experiments which deviate from the standard KCBS configuration
in two qualitatively different ways.

(a) p-configuration. Consider the realisation ðρ0ðpÞ; fMigÞ para-
metrised by 0 ≤ p ≤ 1. Here, Mi correspond to projectors
along uij i as before, but instead of initialising the state of
the device to ρ ¼ 0j i 0h j, we initialise it to a mixture of ρ and
the maximally mixed state, i.e.,

ρ0ðpÞ :¼ ð1� pÞ 0j i 0h j þ p
9
I: (13)

For p= 0, we recover the ideal KCBS configuration for which
I ¼ 0. However, for p > 0, Assumption 1 still holds (neglecting the
imperfections in the measurements) but I ¼ ϵ> 0. The experi-
ment was performed for p= 0, 0.1, and 0.2.
(b) θ-configuration. Consider the realisation ð u00

�� �
u00
� ��; fM0

iðθÞgÞ
parametrised by the vector u00

�� �
and the angle θ. Here,

unlike the previous case, the state is pure. Further, the
measurements M0

i ¼ ðΠ0
1ji ;Π

0
0jiÞ now correspond to projec-

tions on u0i
�� � for i∈ {1, 2…5}. (The projections are defined

exactly as Mi was defined using uij i; Π0
1ji ¼ U0

i 0j i 0h jU0y
i and

Π0
0ji ¼ UiðI� 0j i 0h jÞU0y

i with U0
i encoding a rotation from

u0i
�� � to 0j i). These vectors u0i

�� � are chosen to be

u01
�� � ¼ ð1; 0; 0ÞT ; (14)

u02
�� � ¼ ð0; 0; 1ÞT ; (15)

u03
�� � ¼ ð� cosðθÞ; sinðθÞ; 0ÞT ; (16)

u04
�� � ¼ ðsinðθÞ; cosðθÞ; sinðθÞÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin2ðθÞ
p ; (17)

u05
�� � ¼ ð0; sinðθÞ;� cosðθÞÞT ; (18)

which ensures that Assumption 1 holds for all angles θ. We take
u00
�� �

to be the eigenvector of
P

kΠ
0
k with the largest eigenvalue.

We performed the experiment for θ= 22.041 and 150.612.

Table 2 summarises our findings for experiments implementing
both p and θ-configurations, which are in agreement with our
theoretical results. Here, we briefly explain how the data was
obtained and analysed, deferring the details to “Methods:
Analysing the data”.
For a given configuration, we performed 10,000 sequential

measurements and used Equation (12) to estimate the mean μ(pi)
and standard deviation σ(pi) for each pi. Note, for instance, to
measure p2, one could measure in normal order: M2 followed by
M3, or in reverse order: M2 followed by M1. We used a quantum
random number generator to choose the measurement and
its order.
To apply our self-test, we have two options: impose the

constraint corresponding to either (1) ∑kpk or (2) pk for each k
individually. Option (2) would be unequivocally better than
option (1) if σ was 0 (illustrated by the orange curve in Fig. 1,
Right). As σ > 0, we use both methods and pick the best-
performing among them. When σ > 0 for a random variable, we
evaluate μ− 1.96σ to get an estimate for the random variable,
which lower bounds its value with over 95% confidence
(assuming the data is normally distributed). When such an
estimate is used, sometimes option (1) can give a better bound
than option (2).

DISCUSSION
Quantifying deviations from assumptions
In all self-testing experiments, deviations from the assumptions
must be quantitatively accounted for in the robustness curve. All
reported self-test schemes, to the best of our knowledge, have
neglected this aspect in their analysis.
In more detail, for our setting, the lower bounds on total fidelity

obtained using semidefinite programming only hold when
Assumption 1 is satisfied. Relaxing this assumption (see Supple-
mentary Note 1) to allow for measurements with errors ϵ in
repeatability (i.e., quantifying jΠ2

aji � Πaji j) and δ in orthogonality
(i.e., quantifying ∣Π1∣i ⋅ Π1∣i+1∣) is left as an open question. A full
analysis should yield a lower bound on the total fidelity as a
function of the KCBS value, δ and ϵ.
Note that the experimental points in Fig. 1 lie above our

robustness curve. The robustness curve obtained via the full
analysis cannot be above the present curve and thus will still
lower bound the total fidelity for the experimental data points.
Similarly, the existing robustness curves in the Bell setting also
only consider fidelity lower bound as a function of quantum value.
Their analogous full analysis ought to include errors emanating
from detection and locality loopholes.

Table 2. Summary of our experimental and numerical results (see “Methods: Analysing the data”).

Configuration ∑pk Fidelity (tomography) Fidelity (lower bound) using

μ σ μ− 1.96σ μ σ μ− 1.96σ ðP pkÞðμ�1:96σÞ ððpkÞðμ�1:96σÞÞk
p= 0 2.249 0.009 2.233 5.965 0.016 5.933 5.296 4.170

p= 0 2.255 0.011 2.236 5.965 0.016 5.933 5.892 4.026

p= 0.1 2.207 0.011 2.186 5.901 0.016 5.870 2.934 3.002

p= 0.1 2.203 0.011 2.182 5.901 0.016 5.870 2.842 2.933

p= 0.2 2.140 0.011 2.118 5.812 0.019 5.775 1.654 2.343

p= 0.2 2.145 0.011 2.124 5.812 0.019 5.775 1.753 2.386

θ= 22.021 2.078 0.010 2.058 3.989 0.017 3.956 0.740 2.561

θ= 22.041 2.077 0.010 2.057 3.989 0.017 3.956 0.726 2.579

θ= 150.612 2.062 0.010 2.043 4.050 0.017 4.017 0.533 2.222

θ= 150.612 2.068 0.010 2.048 4.050 0.017 4.017 0.601 2.579
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A naïve application of current techniques fails because
Algorithm 4 no longer yields a valid isometry. Complementary
to this, improving the sharpness (i.e., projectiveness) and
exclusivity of measurements in the experiment is also an obvious
yet important goal, which, if properly achieved, may render the
aforesaid irrelevant.

Future directions
Extending the analysis to n > 5 (by making the algorithm more
efficient), adapting it to more involved settings (possibly to anti-
cycles), dropping the IID assumption (perhaps by using martingale
analysis), obtaining analytic bounds (possibly via techniques from
convex optimisation), we believe, are interesting avenues for
further exploration.

METHODS
Lower bound using an SDP relaxation
We briefly describe our algorithm for estimating F and outline an
argument which shows that this algorithm always yields a lower
bound (on F). First, we drop the maximisation over V in Equation 5
and replace it with a particular isometry V which is expressed in
terms of ρ; fΠig5i¼1. Then, as we shall see, the expression for fidelity
appears as a sum of terms of the following form. Let w be a word
created from the lettersfI;Π1;Π2; ¼ ;Π5; P̂g, with P̂

y
P̂ ¼ I,

Π2
i ¼ Πi , and ΠiΠj= 0 if (i, j)∈ E, i.e., when i, j are exclusive. (We

introduced P̂ for completeness; its role is explained later). The
fidelity is a linear combination of these words, i.e.,
F ¼ min wh if g

P
wαw wh i, where tr½wρ� ¼: wh i, subject to the

constraint that f wh igw corresponds to a quantum realisation.
The advantage of casting the problem in this form is that one can
now relax the problem to a sequence of semidefinite programs.
i.e., construct an NPA-like hierarchy38.
The idea is simple to state. Treat wh if gw as a vector. Denote by

Q the set of all such vectors which correspond to a quantum
realisation (of pif g5i¼1). It turns out that one can impose constraints
on words with k letters, for instance. Under these constraints,
denote by Qk the set that is obtained. Note that Qk⊇Q for it may
contain vectors which do not correspond to the quantum
realisation. In fact, Qk can be characterised using semidefinite
programming constraints (which, in turn, means they are
efficiently computable). Intuitively, one expects that
limk!1 Qk ¼ Q. Further, it is clear that F ¼
minf wh igw2Q

P
wαw wh i � min wh if gw2Qk

P
wαw wh i as we are mini-

mising over a larger set on the right-hand side.
We now proceed formally. We begin with defining the ideal

KCBS configuration referred to above.

Definition 3. (An ideal KCBS configuration). Consider a three-
dimensional Hilbert space spanned by the basis f 0j i; 1j i; 2j ig. Let
ulj i :¼ cos θ 0j i þ sin θ sinϕl 1j i þ sin θ cosϕl 2j i; (19)

where ϕl≔ lπ(n− 1)/n for 1 ≤ l ≤ n and cos2θ ¼ cosðπ=nÞ
1þcosðπ=nÞ. Define

ψKCBS
�� �

:¼ 0j i; (20)

ΠKCBS
i :¼ uij i uih j: (21)

For concreteness, we first consider a unitary USWAP instead of an
isometry, which acts on two spaces A and A0, i.e.,
USWAP : A�A0 ! A�A0. The space A0 is three-dimensional
and A is an arbitrary Hilbert space. Informally, we want to
construct the unitary USWAP to be such that it takes a realisation in
A and maps it to a realisation in A0 which has a large overlap with
the KCBS configuration. To this end, we first assume that A is
three-dimensional. In particular, suppose that the A register is in
the state

σ 2 f ψKCBS
�� �

ψKCBS
� ��g∪ fΠKCBS

i ψKCBS
�� �

ψKCBS
� ��ΠKCBS

i g5i¼1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼SKCBS

:
(22)

Then, at the very least, we want USWAP to map σA � 0j i 0h jA0 to
0j i 0h jA � σA0 (see Fig. 2). Our strategy is to construct USWAP in this
seemingly trivial case and then express it in terms of the state and
measurement operators on A. The rationale is that by construc-
tion, USWAP will work for the ideal case and therefore should also
work for cases close to the ideal. This should become clear
momentarily. Note that any circuit that swaps two qutrits should
let us achieve our simplified goal (because all elements of SKCBS are
defined on a three-dimensional Hilbert space). One possible qutrit
swapping unitary/circuit (a special case of the general qudit
swapping unitary/circuit defined in ref. 36) may be defined as
S00SWAP :¼ TUVU, where

T :¼ IA � P2
k¼0

�kj i kh jA0 ;

U :¼ P2
k¼0

PkA � kj i kh jA0 ;

V :¼ P2
k¼0

k
�� � k
� ��

A � P�k
A0 ;

(23)

where P :¼P2
i¼0 k þ 1
�� �

k
� �� is a translation operator, the arith-

metic operations are modulo 3 and f 0
�� �; 1

�� �; 2
�� �g is a basis for the

qutrit space A. We omit the proof that S00SWAP indeed performs a
swap operation (for a proof see ref. 36). To generalise this idea and
to construct an isometry, we relax the assumption that A is a
three-dimensional Hilbert space. We re-express/replace the
operations in T, U, V, which act on the A space by linear
combinations of monomials in fΠig5i¼1. We obtain the coefficients

Fig. 2 Swap isometry. In this illustration, A and A0 are three-dimensional Hilbert spaces. The KCBS configuration is denoted by ψ0j i and f n0i
�� �g

which represent the state and measurements (projectors along the vectors), respectively. The transformation illustrates how USWAP acts on an
arbitrary configuration (in A) and produces the KCBS configuration (in A0). In general, USWAP is expressed in terms of the measurement
operators specifying the arbitrary configuration to begin with. It serves as a key ingredient in obtaining a bound on the total fidelity.
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used in these linear combinations by assuming the space A0 is
three-dimensional. The idea is simply that this map reduces to a
swap operation when we re-impose the assumptions, and for
cases close to it, we expect it to behave appropriately. We describe
this procedure more precisely below.

Algorithm 4. (Constructing an isometry). Let

● A0 be a three-dimensional Hilbert space spanned by an
orthonormal basis 0j iA0 ; 1j iA0 ; 2j iA0

� �
,

● ρKCBS; fΠKCBS
i g5i¼1 be an ideal KCBS configuration (see Definition

3) on A0,
● A be a Hilbert space with dimension at least 3 containing

orthonormal vectors 0
�� �

A; 1
�� �

A; 2
�� �

A
n o

,
● ρ; fΠig5i¼1 be an arbitrary quantum realisation defined on A.

Define T, U, V as in Equation 23 and let S0SWAP :¼ TUVU with the
following changes. Let

WKCBS :¼ ffΠKCBS
i g5i¼1; fΠKCBS

i ΠKCBS
j g5

i;j¼1
; ¼ g (24)

and

W :¼ ffΠig5i¼1; fΠiΠjg5i;j¼1; ¼ g (25)

be the set of “words” formed by the KCBS projectors and those of
the arbitrary quantum realisation, respectively.

● Translation operator:

Express PA0 as a linear combination of elements in W, i.e.,
PA0 ¼PlKCBS2WKCBSαl l

KCBS.
Define PA :¼Pl2Wαl l.

● Basis projectors: Formally replace, in V, the operators

(a) 0
�� � 0
� ��

A by Π1,
(b) 1

�� � 1
� ��

A by Π2, and
(c) 2

�� � 2
� ��

A by ðI� Π1ÞðI� Π2Þ.
Thus, V now becomes Π1 � IA0 þ Π2 � P�1

A0 þ ðI� Π1Þ
ðI� Π2Þ � P�2

A0 .

We found an explicit linear combination for step 1 (a) of
Algorithm 4. (Using prior results, we expect one can prove the
existence of such a linear combination, but we do not pursue this
here). Thus, the algorithm always succeeds at constructing S0SWAP. We
must show that S0SWAP is in fact an isometry. This is important
because of the following reason. Recall that our objective was to
lower bound the fidelity given in Equation (II.2) of the main text. To
this end, we said we drop the maximisation over all possible Vs (for a
given quantum realisation ðρ; Πif g5i¼1Þ) and instead insert a specific
isometry S0SWAP (which is a function of ðρ; fΠig5i¼1Þ). Note that this
argument for lower bounding fidelity breaks if S0SWAP is not an
isometry. In fact, PA as produced by the algorithm is not necessarily
unitary (viz. PyAPA ¼ IA may not hold). To address this, we use the
localising matrix technique introduced in ref. 39. Let P̂A be unitary
matrix satisfying P̂P � 0, where we dropped the subscript for clarity.
Consider the case where P is not unitary. In that case, one can use
polar decomposition to write P ¼ Pj jU (not to be confused with the
U above; where Pj j � 0 and UyU ¼ I) so choosing P̂ ¼ Uy satisfies
P̂P � 0. Thus for each P, the constraint can be satisfied. Consider the
other case, i.e., where P= U is unitary. Then (explained below),
P̂ ¼ Uy. Thus, in the ideal case, we recover the same unitary and for
the case close to ideal, we are guaranteed that there is some
solution (which we expect should also work reasonably). Combining
these, we can construct SSWAP, which is an isometry.
(To see why P̂ ¼ Uy, write the polar decomposition of P̂ ¼ P̂

�� ��E
(where P̂

�� �� � 0 and EyE ¼ I). Then, P̂U ¼ P̂
�� ��EU, which is a polar

decomposition of P̂U. The polar decomposition of a positive
semidefinite matrix M always has the form M � I. Using M ¼ P̂U,
and identifying EU with I, we have E= U†).

Lemma 5. (SSWAP is indeed an isometry). Let S0SWAP be the map
produced by Algorithm 4 and define SSWAP to be S0SWAP with PA
replaced by P̂A . Then SSWAP is an isometry if the following
conditions hold

P̂
y
AP̂A ¼ IA; (26)

P̂APA � 0: (27)

Proof. It suffices to show that ψh jA0AS
y
SWAPSSWAP ψj iA0A ¼ 1 for all

normalised ψj iA0A . We express SSWAP= TUVU, where T is as in

Equation 23, U :¼P2
k¼0 P̂

k
A � k

�� � k
� ��

A0 and V :¼ Π1 � IA0þ
Π2 � P�1

A0 þ ðI� Π1ÞðI� Π2Þ � P�2
A0 . Observe that T yT ¼ IAA0 ¼

UyU since P̂
y
AP̂A ¼ IA. Further, we have that

VyV ¼ Π1 � IA0 þ Π2 � IA0 þ ðI� Π1ÞðI� Π2Þ � IA0

∵ Π1Π2 ¼ 0; PyA0PA0 ¼ IA0
(28)

¼ IAA0 : (29)

Hence, SySWAPSSWAP ¼ IAA0 establishing that SSWAP is, in fact, unitary
and thus also an isometry.□

We can now combine all the pieces to write the final
optimisation problem we solve. We use GðfaigÞ to denote the
set of all letters

Algorithm 6. (The SDP for lower bounding the fidelity of a given
realisation with the ideal KCBS realisation) The algorithm proceeds
in two parts.
Notation: Let

● A represent an arbitrary Hilbert space and A0 represent a
three-dimensional Hilbert space,

● W be the set of “words” constructed using fΠig5i¼1, P̂ and P̂
y
,

i.e., W ¼ GðfΠig5i¼1; P̂; P̂
yÞ, and

● define wh i :¼ trAðρwÞ and assume (Without loss of generality,
one can purify a state by increasing the dimension and have
the operators leave that space unaffected (for any given
quantum realisation)). ρ ¼ ψj i ψh j so that wh i ¼ ψh jw ψj i for all
w 2 W .

Input:

● (Implicit) Πi .Πj= 0 for all i, j∈ E(G), where G is a five-cycle
graph and E are its edges, indexed [1, 2,…, 5].

● Observed statistics: (To obtain a better bound, one can add
more fine-grained statistics as well, such as the values of pi
individually for each i).

Evaluation ∣ Part 1.
● Evaluate SSWAP as described in Lemma 5 using Algorithm 4.
● Define the objective function f as

f ρ; Πif g5i¼1

	 
 ¼X5
i¼1

F trA SSWAP ΠiρAΠi � 0j i 0h jA0
	 


SySWAP

h i
;

�
ΠKCBS
i ρKCBSA0 ΠKCBS

i



(30)

þF trA SSWAP ρA � 0j i 0h jA0
	 


SySWAP

h i
; ρKCBSA0

� �
(31)

and evaluate the coefficients fw so that (This was done using
symbolic computation).

f ¼
X
w2W

f w wh i: (32)

● Again, from Algorithm 4, evaluate PA as a linear combination
of wh i.
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Evaluation ∣ Part 2. Solve the following SDP:

Fnoiseless ¼ min
f wh igw2W

P
w2W

fw wh i

s:t: ΓðkÞðIÞ � 0 ∵ all grammatrices are � 0

ΓðkÞðIÞv;w ¼ ΓðkÞðIÞv0;w0 if vyw ¼ v0yw0

ΓðkÞðP̂APAÞ � 0 ðlocalisingmatrixÞ
ΓðkÞðP̂APAÞv;w ¼ ΓðkÞðP̂APAÞv0;w0 if vyP̂APAw ¼ v0yP̂APAw0

P5
i¼1

Πih i ¼ c ðobserved statisticÞ

where Γ(k)(X) is a matrix which is

● indexed by letters w,
● whose matrix elements are given by ΓðkÞðXÞv;w ¼ ψh jvyXw ψj i,
● where k defines the maximum number of letters that appear

in the words w which index the matrix Γ(k), and,

where in the first two equality constraints, we use the following
relations:

● Πi .Πj= 0 for all i, j∈ E(G) and

● P̂
y
AP̂A ¼ P̂AP̂

y
A ¼ IA.

Output: Fnoiseless(c).

Remark 1. Note that P̂P � 0 ) ΓðkÞðP̂PÞ � 0. This follows readily
by letting AyA ¼ P̂P for some A (which must exist for any positive
semidefinite matrix; one can use spectral decomposition). Then
Γ(k)(A†A) is a Gram matrix and thus ≥0.

Remark 2. We solved this SDP with wh i restricted to being real, but
it has been shown that this is without loss of generality (see, e.g.,
§V.A in ref. 36).

We thus have an algorithm which can calculate the required
lower bound on fidelity, given the observed value of the KCBS
operator.

Experimental setup
The calcium ions, in which two dark states and one bright state are
chosen to encode the states { 1j i, 2j i} and 0j i, respectively. Every
experimental sequence starts with 1 ms Doppler cooling using a
397 nm laser and a resonant 866 nm laser. The 397 nm laser is red
detuned approximately half a natural linewidth from resonating
with the cycling transition between S1/2 and P1/2 manifolds. This is
followed by a 300 μs electromagnetically induced transparency
(EIT) cooling sequence, which cools the ion down to near the
motional ground state. After that, a 10 μs optical pumping laser is
applied to initialise the qutrit to the 0j i state with 99.5% fidelity.
When needed, a 729 nm pulse sequence is applied to prepare a
certain initial state. Measurements of the observables {Ai} are
performed through coherent rotations R2(θ2, ϕ2)R1(θ1, ϕ1), a
fluorescence detection followed by the operation
Ry1ðθ1;ϕ1ÞRy2ðθ2;ϕ2Þ which undoes the previous rotation. The first
fluorescence detection lasts for 220 μs and uses laser settings
close to those of Doppler cooling to minimise the motional
heating due to photon recoil (in case of a bright state). However,
this brings the temperature of the bright state close to the
Doppler limit. Therefore, a 150 μs EIT cooling sequence followed
by 10 μs optical pumping pulses is applied to cool the bright state
ion. The detection and cooling time are greatly suppressed to
minimise the random phase accumulation between the sequential
measurement. Neither fluorescence detection nor the EIT cooling
process affects the temperature of a dark state ion, which is
slightly heated at a rate of 140 quanta per second due to
electronic noise. The second fluorescence detection uses a

resonant laser pulse and 300 μs integrating time, which lowers
detection error. The result is acquired by counting the number of
photons collected from the photo-multiplier tube (PMT) within the
detection time. The statistical probability is calculated by
repeating the same measurement 10,000 times.
In our experiments, the 2π pulse time for both transitions is

adjusted to around 142 μs; that is, the Rabi frequency is as low as
Ω1/2= (2π)7 KHz, making the AC-Stark shift below 100 Hz. The
separation between 1j i and 2j i is ω2−ω1= (2π)8.69 MHz with
corresponding magnetic field B= 5.18 G. The maximum prob-
ability of off-resonant excitation Ω2=ðω2 � ω1Þ2 is about
6.5 × 10−7, small enough to ensure the independence of each
Rabi oscillation40,41.

Analysing the data
The data. The complete data set can be accessed on GitHub42.
Table 2 shows a summary of our experimental and numerical
results. In the table, configuration refers to the p and θ
configurations discussed in “Results: Experiments that are self-
tested”. Each row represents the statistics obtained after running
10,000 experiments. White (grey) rows represent normal (reverse)
order (again, see “Results: Experiments that are self-tested”). The
values in the last two columns show lower bounds on the total
fidelity obtained using our self-test scheme (i.e., solving the
semidefinite programme in Algorithm 6), evaluated in two slightly
different ways. These arise as we consider μ− 1.96σ (where μ is
the mean and σ is the standard deviation) to estimate the smallest
possible value of our observed variables, with 95% confidence.
Note the lower bounds on fidelity (last two columns) are satisfied
by the value obtained using conventional tomography. For the
normal (reverse) ordered case, the results are plotted in Fig. 1
(Supplementary Fig. 1).

Why two curves?. As noted earlier, there are two robustness
curves in the aforementioned figures. We now detail why. Notice
that the observed statistic constraint in the SDP corresponding to
Algorithm 6 can be tightened by specifying the value of each Πih i
term. Obviously, if one specifies the value of Πih i, the value for
their sum automatically gets fixed. Based on the experimental
data, we have access to the value of each of the Πih i and thus we
can always obtain a tighter bound compared with the bound
obtained via the sum constraint in the SDP for Algorithm 6. We
illustrate this by plotting the robustness curve obtained in the
special case p1= p2= p3= p4= p5 (pi and 〈Πi〉 are interchange-
able). One could have just as easily taken a different choice for the
values of pi such that their sum remains equal to the appropriate
KCBS value and obtain a different robustness curve. All such
curves, obtained by providing the value for pis, will be lower
bound by the curve obtained via the sum constraint (the blue
curve). For our experimental data point with mean μ and standard
deviation σ, we base our analysis on μ− 1.96σ, which is the
smallest possible value with 95% confidence for normally
distributed data.

Analysing the p-configuration. As mentioned above, we base our
analysis on μ− 1.96σ for the appropriate values of μ and σ. This,
however, has consequences on the constraint that we impose via
the observed statistics. For our experimental data, we observe thatP

iðμ pið Þ � 1:96σ pið ÞÞ is upper bounded by μ
P

ipi
	 
� 1:96σP

ipi
	 


. Since our robustness curves are very sensitive to minor
changes near the region of maximum KCBS value

P
ipi

	 

, the

lower bound on the fidelity provided by the sum constraint can be
better than the (nearly) equal statistic constraint (p1 ≈ p2 ≈ p3 ≈
p4 ≈ p5). Since our goal is to provide tight lower bounds, we take
the largest value, which is the one obtained from the sum
constraint close to the region of the maximum KCBS value. Away
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from the maximum KCBS value region, (nearly) equal statistic
constraint provides a better estimate (as is evident from the plots
in Fig. 1). We also computed the fidelity of these quantum
realisations to the ideal KCBS configuration by performing state
and measurement tomography. We found that the self-testing
lower bounds are satisfied.

Results for p-configuration. For p= 0, 0.1, and 0.2, we obtained
∑kpk to be 2.233, 2.186, and 2.118, respectively, for the normal
ordered case. By solving the SDP outputted by Algorithm 6 with
these values as inputs, the self-testing lower bounds on the total
fidelity of these realisations to the KCBS configuration are 5.296,
3.002, and 2.343, respectively. For the reverse-ordered experi-
ments the corresponding values for ∑kpk are 2.236, 2.182, and
2.124, respectively. The self-testing lower bound on the total
fidelity for these cases were 5.892, 2.933, and 2.386, respectively.
On the other hand, conventional tomography yielded 5.965, 5.901,
and 5.812, respectively. The values are the same for normal and
reverse-ordered experiments (because an experiment being
normal or reverse is determined by a quantum random number
generator and has no explicit difference otherwise at the level of
measurements and the state involved). As expected, the total
fidelity obtained from conventional tomography is indeed above
the lower bound on it obtained using our self-test.

Analysing the θ-configuration. To obtain the self-test lower
bounds, we proceeded as before. However, finding a lower
bound on the fidelity using conventional tomography is slightly
more involved in this case. The idea is to first find the fidelity
between the experimental setup and the θ configuration and then
between θ configuration and the KCBS configuration (up to an
isometry). Using a form of triangle inequality, one can lower
bound the total fidelity.
In more detail, our goal is to find the total fidelity of the

experimentally realised configuration with a configuration which
is related to the KCBS configuration via an isometry. In the
previous case, this isometry was an identity matrix (a trivial
isometry). Since the optimal configuration is unique up to an
isometry, any configuration which is related to the KCBS
configuration via an isometry can be considered an optimal
configuration. Our goal is to calculate the total fidelity of the
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as FE;Oi . Here, FE;Oi denotes the fidelity of the ith component of
the experimental realisation to that of the ideal configuration.
Similarly, other fidelities are denoted by FE;θi and Fθ;Oi . We know
that fidelity is not a valid metric, and hence, we will not be able to
apply triangle inequality directly. However, we can use trace
distance as a proxy to relate the aforementioned three config-
urations. After some simple calculations, we obtain the following

expression for the lower bound on the total fidelity
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can be evaluated using numerical

optimisation.

Results for the θ-configuration. We obtained ∑kpk to be 2.058 and
2.043, respectively, for the normal ordered case. For the reverse-
ordered experiments, the corresponding values were 2.057 and
2.048, respectively. The self-testing lower bound on the total
fidelity for the normal ordered case was 2.561 and 2.222, and the
corresponding values for the reverse ordered case were 2.579 and
2.579, respectively. Conventional tomography, on the other hand,
yielded 3.956 and 4.050, respectively (for both normal normal and
reverse order). Again, the self-testing lower bounds are satisfied,
as expected.

Numerics to evaluate fidelity lower bounds
As previously stated, obtaining the numerical solution was quite
involved, owing to the fact that the description of the semidefinite
program we obtain is implicit. Consequently, one first needs to
find this explicit description through symbolic computation and
then solve the resulting semidefinite program. After performing
the symbolic computation to find the objective and constraints,
we solve an SDP over a 192 × 192 matrix with 16,859 constraints.
The terms in the objective function must appear in the SDP matrix
in order for us to impose appropriate constraints. This is because
the optimisation program would otherwise be undefined. The
unusually large size of the SDP matrices (compared to similar self-
test schemes) reflects the complexity of the objective function in
our case, which would have been difficult to obtain without
symbolic computation. To capture all the terms that appear in the
objective, we needed words with three letters (the matrices
involved scale exponentially in the number of letters). Further, we
require 769 localising matrix constraints.
We used Jupyter notebooks (based on Python) as our

programming environment. We used sympy43 for symbolic
computations and cvxpy44,45 for translating the resulting SDP into
an instance that MOSEK (an SDP solver) could solve. Our
implementation is available on GitHub42.

DATA AVAILABILITY
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