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By tightening the conventional Lieb-Robinson bounds to better handle systems that lack translation
invariance, we determine the extent to which “weak links” suppress operator growth in disordered one-
dimensional spin chains. In particular, we prove that ballistic growth is impossible when the distribution
of coupling strengths pt(J) has a sufficiently heavy tail at small J and we identify the correct dynamical
exponent to use instead. Furthermore, through a detailed analysis of the special case in which the couplings
are genuinely random and independent, we find that the standard formulation of Lieb-Robinson bounds is
insufficient to capture the complexity of the dynamics—we must distinguish between bounds that hold for
all sites of the chain and bounds that hold for a subsequence of sites and we show by explicit example that
these two can have dramatically different behaviors. All the same, our result for the dynamical exponent is
tight, in that we prove by counterexample that there cannot exist any Lieb-Robinson bound with a smaller
exponent. We close by discussing the implications of our results, both major and minor, for numerous
applications ranging from quench dynamics to the structure of ground states.
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I. INTRODUCTION

Lieb-Robinson (LR) bounds, named after Ref. [1], have
proven to be a valuable mathematical tool for many-body
physics and quantum information theory [2—14]. Con-
ceptually, they provide hard constraints on the extent to
which correlations of any type can spread through a many-
body lattice system (broadly termed “operator spreading™).
Numerous applications, from rigorous results on many-
body ground states to lower bounds on the run time of
quantum protocols, can be found in the above references.

Given their utility, LR bounds have been both gener-
alized and specialized in multiple ways: leveraging the
commutativity and graph structure of interactions [15—
17], extending to bosonic systems [18-21], allowing for
long-range interactions [22—26], and considering open sys-
tems [27-30], to name a few. However, one ingredient
that has been noticeably absent is disorder or, more gen-
erally, a lack of translation invariance. To be fair, the
conventional bounds do allow for non-translation-invariant
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interactions, but there have been no studies assessing the
tightness of the resulting bounds (and we find that they
are far from tight). Certain works have considered related
topics—Refs. [31,32] study the effects of disordered local
terms, albeit with uniform interactions, and Ref. [33]
derives bounds for random Hamiltonians with statistical
translation invariance (although see Ref. [34]). Others
have calculated bounds for specific (often free-fermion-
integrable) systems [35-38]. While interesting on their
own merits, none of these quite address the question with
which we concern ourselves here—to what extent is oper-
ator spreading, as constrained by LR bounds, necessarily
suppressed by non-translation-invariant interactions?
Non-translation-invariant systems are known to exhibit
a variety of phenomena not found in their translation-
invariant counterparts. Examples include spin glass phases
(both static and dynamic) [39,40], localization [41,42],
and Griffiths effects [43]. Disordered fermionic models
have been used to help understand quantum dots and
strongly correlated metals as well [44-46]. Of particular
(and somewhat controversial) interest is the phenomenon
of many-body localization (MBL) [47-50], the existence
of which remains under debate [S1-55]. Given the chal-
lenges inherent in studying not only MBL but disordered
quantum many-body systems in general, it is all the
more important to identify rigorous constraints such as
those that LR bounds supply (although to be clear, our
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results and LR bounds in general are not strong enough
to resolve the questions surrounding MBL, as we explain
in Sec. II).

In the present work, we initiate the study of non-
translation-invariant LR bounds by considering arguably
the simplest (but still quite rich) situation: one-dimensional
(1D) chains with nearest-neighbor interactions. An essen-
tial feature of such systems is the importance of “weak
links,” i.e., atypically weak interactions. We develop the
machinery for analyzing these systems, prove that the LR
bounds thus obtained are in a certain sense optimal, and
use the results to place constraints on various physical
properties and processes.

Section I summarizes our results in conceptual terms.
We aim for it to be sufficiently self-contained so that read-
ers primarily interested in our conclusions and willing to
forgo the derivations should be able to read Sec. Il on its
own. Section [II then gives precise definitions of all quanti-
ties involved in our analysis. Section IV derives LR bounds
for general non-translation-invariant systems and Sec. V
specializes to the case of random couplings. Lastly, Sec.
VI discusses some implications of our results, related in
particular to quench dynamics, topological order, heating
rates, ground-state correlations, and machine learning of
local observables.

II. SUMMARY OF RESULTS

We determine the extent to which operator spreading in
1D nearest-neighbor chains is suppressed by weak links.
To be precise, we consider arbitrary d-state degrees of free-
dom (“qudits”) interacting via any Hamiltonian of the form
H(t) = ), H)(f), where the sum is over links of the chain
and H(f) acts on the two sites connected by link / (although
our analysis in fact allows for arbitrary local terms as well
[56]) See Fig. 1. Unlike previous works, we assume that
IH (O] < Ji, where Jyvaries from link to link (|| - || denotes
the operator norm throughout). The “weak” links are those
on which J; is much smaller than the typical value.

For arbitrary local operators 4y and B, supported on sites
0 and r, respectively, and with A{, denoting the evolution of
Ay over time ¢, our goal is to bound the quantity ||[4}, B, ]|l
as tightly as possible, making use of the weak links in the

Hy(®)  Hy(t) H,_,(t) H(t)

i=0 1 2 r—=2 r-—1 r

FIG. 1. The geometry of the systems studied in the present
work, i.e., 1D chains with nearest-neighbor interactions. Sites are
indicated by black squares, labeled by i. Terms of the Hamilto-
nian are indicated by solid lines, with H;(f) acting on the two
sites connected by that link. Given a set {J;}, we require that

I1H®l < Ji.

set {J1}. We focus in particular on the asymptotic behavior
at large r and ¢. The commutator [4{, B,] is a standard and
useful measure of operator spreading (as we describe in
Sec. [I1 B) but it is by no means the only such measure. In
fact, most of our calculations involve a different quantity,
from which bounds on the commutator easily follow.

LR bounds are best viewed as applying to families of
Hamiltonians. For each set of couplings {J;}, we use H to
denote the set of all Hamiltonians as described above con-
sistent with {J;} (i.e., |H;(f)|| < J; for all links [ at all times
f). Our bounds are uniform among H € Hj, in the sense
that they make no reference to any property of the Hamil-
tonian beyond the couplings {J;}. Thus, while the results
are extremely general, they may not be very tight for one
specific system. The “tightness” of LR bounds referred to
in this paper is instead the existence of some H € H; that
saturates the bound.

As a consequence of their generality, LR bounds have
little to say regarding, e.g., the existence of MBL—the
complete lack of operator spreading in strongly disordered

1
. Asymptotically attainable on all sites

: Asymptotically unattainable on any site

-: Asymptotically attainable on some but not all sites

FIG. 2. The possibility of a Hamiltonian causing operator
spreading at dynamical exponent z, i.e., in a time growing asymp-
totically as #(r) o 7* to reach a large distance r. The horizontal
axis is the exponent « characterizing the number of weak links
in the couplings {J;}—the fraction of links between sites 0 and
r having J; < J is assumed to go as J* at small J and large r.
The vertical axis is z. The blue region is where no Hamiltonian
with such & can reach any large-distance site at such z. The red
region is where a Hamiltonian exists with such o« that reaches
every large-distance site at (or faster than) such z. The boundary
between the two is given by z.(@) = max[1/a, 1]. In the spe-
cial case of independent random couplings, the ¢ > 1 portion of
the boundary is included in the red region, while the @ < 1 por-
tion (shown in purple) is where a Hamiltonian exists that reaches
a subsequence of sites faster than z but where no Hamiltonian
can reach every site at such z. Lastly, at point («,z) = (1,1), no
Hamiltonian can reach every site ballistically but it is unknown
whether any Hamiltonian can reach some sites ballistically.
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time-independent systems [47-50]. The same applies to
other phenomena involving slow dynamics under a fixed
Hamiltonian, such as activated processes in spin glasses
[57-59]. Those H € H; that saturate our bounds will
instead tend to be highly time-dependent Hamiltonians,
specifically designed to transmit information and bet-
ter viewed as quantum circuits. These are the types of
systems for which LR bounds give a reasonably full
picture.

Our first result, which holds for any possible set of cou-
plings {J;}, is an improvement on the conventional LR
bound (see also Ref. [60]). Whereas the standard analysis
leads to the result

- r
<clalle] ([Jv) 5 o
=1 .

we show that one further has

. i
<clalla s () 5] @

5]

|[46.8.]

|[46.8.]

where the minimization is over all subsets A of the links
between sites 0 and r, with |A| denoting the size of the sub-
set. Even though much of what follows is concerned with
the asymptotic behavior, Eq. (2) holds for all » and £. In
these equations and throughout the entire paper, we use C
to denote any constant that does not depend on r or £ and
for which the precise value is irrelevant to our conclusions.
Its value often changes between expressions (and primes
and subscripts differentiate such constants within the same
expression).

As an explicit example of the improvement that Eq. (2)
can provide over Eq. (1), consider a four-site chain having
Jy=J; =1/4 and J; = 1/4000. For operator spreading
from site 0 to site 3, Eq. (1) gives the bound 13/6000,
while Eq. (2) gives additional bounds such as #/1000 (cor-
responding to A = {3}). Note that the former reaches 1 at
t= 1076 ~ 18, whereas the latter does not reach 1 until
t = 1000, later by multiple orders of magnitude.

After establishing Eq. (2), we next derive more explicit
bounds by considering the “empirical distribution” p,.(J),
defined (for a given set {J;}) as the fraction of links
between sites 0 and r having J; < J:

l F
w) == 8z, 3)
=1

where 85,<; = 1ifJ; < J and 0 otherwise. We assume that
wr(J) converges as r — 00 (in a sense defined in Sec.
IV C) to a function w(J) and that the latter behaves as a
power law at small J: w(J) ~ poJ® witha > 0. The expo-
nent o characterizes the prevalence of weak links, with
smaller & implying more weak links. Our analysis in fact

applies for more general forms of w(J) (as we discuss
in Sec. IV C) but the power-law behavior is particularly
convenient and representative. Note that the convergence
of w,(J) to u(J) does not assume anything regarding the
arrangement of weak links in space—many of our results
hold regardless of where the weak links are located.

An essential feature of an LR bound is the shape of the
“front,” i.e., the space-time curve #(r) that separates the
region in which the bound is small from that in which the
bound is large (and thus vacuous). The dynamical expo-
nent z and generalized LR velocity v are defined by the
asymptotic behavior v#(r) ~ #* at large r. Keep in mind
that v has units of velocity only when z = 1—we stick to
the term “generalized velocity” for z # 1 (see also Ref.
[61]). Whereas the conventional LR bound, Eq. (1), has
a ballistic front (z = 1) for all @ > 0, we show that the
improved bound, Eq. (2), instead has dynamical exponent

z.(a) = max [a_l, 1]. 4)

The curve z.(«) is sketched in Fig. 2.

One consequence of the above is that there cannot exist
any H € H; for which the operator-spreading front grows
with a dynamical exponent z < z.(«). In particular, it is
impossible to have a ballistic front if @ < 1. We shade
this region blue in Fig. 2 and label it as “asymptotically
unattainable on any site”™—it is impossible to construct
a Hamiltonian having that value of a which, at large
distances, reaches any site at that value of z.

On the other hand, we also identify an H € H; for
which the front grows faster than any z > z.(«), again
requiring only that u,(J) — p(J) in a suitably strong
sense. The Hamiltonian is rather straightforward, consist-
ing simply of a sequential series of SWAP gates as shown
in Fig. 3. Once all gates have been applied, 4 is supported
on site r and thus will generically fail to commute (by
an r-independent amount) with B,. In order to satisfy
[|Hi(®)]] < Ji, the total run time of the circuit is proportional
to Y,_, 1/J—analysis of this sum gives the behavior of
the front.

We shade the region z > z.(c) red in Fig. 2 and label
it as “asymptotically attainable on all sites™—it is possi-
ble (and we do so) to construct a Hamiltonian having that
value of @ which reaches every large-distance site at that
value of z. In this sense, Eq. (4) is the dynamical exponent
fora given a, i.e., Eq. (4) is tight.

It is rather striking that our result for z. («r) agrees exactly
with the value predicted on physical grounds in Ref. [62].
The results of Ref. [62] are based on a coarse-grained
description of 1D disordered systems, in which it is pos-
tulated that a region / can be characterized by an effective
“growth rate” I'j, setting the rate at which operators spread
across the region. The authors assume that I'; is power-
law distributed with exponent « (although they work with
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FIG. 3. The circuit diagram of a simple protocol that transfers
the state on site 0 to site r (here, the sites are arranged verti-
cally and the solid lines indicate the absence of any unitary). The
definition of the SWAP gate acting on sites i and i 4 1 is given at
the bottom of the figure—a and b label basis states of the local
Hilbert space (each taking values in {1,...,d}).

the probability density having exponent o — 1) and ulti-
mately deduce precisely Eq. (4). One important difference
is that we consider microscopic weak links rather than
effective weak links emerging at long wavelengths, but this
nonetheless provides a rigorous foundation for many of the
concepts at work in Ref. [62]. It would be of great interest
to investigate whether the other phenomena discussed in
Ref. [62], such as entanglement growth and transport, can
be placed on similar rigorous grounds.

Returning to Fig. 2, the situation becomes much more
complicated on the boundary z = z.(«), i.e., when con-
sidering dynamics on the scale set by z.(a), both for our
LR bounds and for our example Hamiltonians. We demon-
strate this by a detailed analysis of the special case in which
the couplings are drawn independently from a literal proba-
bility distribution w(J). After proving that u,(J) — (/)
in the required sense with probability 1 and thus that the
portion of Fig. 2 away from z.(«) does indeed hold, we
find that the generic behavior on the boundary cannot be
described by a single bound—we must introduce (at least)
two types of LR bounds:

(a) “Almost-always” (a.a.) bounds are those that hold
for all sites r, excepting at most a finite number of
sites. In other words, there exists a distance R such
that the bound holds for all » > R.

(b) “Infinitely-often” (i.0.) bounds are those that hold
for an infinite subsequence of sites {ry} but need
not hold outside of those sites. In other words, for
any distance R, there exists some site r > R that is
subject to the bound.

One can imagine situations in which either of the above
two bounds is more relevant. For example, suppose that
Alice is manipulating one site of a spin chain and wants to
be confident that her actions do not disturb distant regions

in a certain amount of time. In this case, a.a. bounds
provide the desired guarantee. On the other hand, suppose
that Bob intends to transmit a signal along the spin chain. If
it is important that his signal reach every site faster than a
certain rate, then i.0. bounds place the heaviest restrictions
on what can be achieved.

In our case (still at z = z.(«) and still assuming inde-
pendent random couplings), we find different behaviors
depending on how « compares to 1. If @ > 1, the results
are straightforward: our example Hamiltonian has a ballis-
tic front that spreads to every site with finite velocity (note
that z.(a) = 1 for @ > 1). We include this portion of the
boundary with the red region in Fig. 2 to indicate that it is
also “asymptotically attainable on all sites” (albeit with a
maximum allowed velocity).

However, we show that if @ < 1, then an i.0. bound hav-
ing z = z.(a) and arbitrarily small (generalized) velocity
holds, while concurrently, our example Hamiltonian does
reach a subsequence {r¢} asymptotically faster than z.(«)
(hence no such a.a. bound can hold). Both statements hold
with probability 1. Thus it is impossible to have a front
that reaches every site at dynamical exponent z.(«) but it
is possible (and we do so) to construct a Hamiltonian that
reaches a subsequence of sites at z.(«). We draw this por-
tion of the boundary purple in Fig. 2 and accordingly label
it “asymptotically attainable on some but not all sites.”
Keep in mind that we prove this final statement only for the
special case of independent random couplings. Nonethe-
less, it is a highly nontrivial example that makes clear the
importance of distinguishing between a.a. and i.0. bounds.

Interestingly, the lone point (a,z) = (1,1) is the only
portion of Fig. 2 in which we are unable to give a def-
inite answer. An i.0. bound with vanishing velocity still
holds but the front in our example Hamiltonian is now sub-
ballistic for every site. It may be that a more complicated
Hamiltonian exists that does reach a subsequence {r¢} at
finite velocity, yet it may instead be that a more sophisti-
cated mathematical technique can produce an a.a. bound
with vanishing velocity. Further investigation is clearly
warranted.

Lastly, we discuss the implications of our results for
various applications. The LR bounds themselves have
physical content—the statement derived here that ballis-
tic spreading is impossible for @ < 1 can be considered
an application in and of itself. That said, our results have
broader consequences as well. Applications can roughly be
grouped into two classes: those that follow from the exis-
tence of the front and those that follow from the “tail” (i.e.,
the rapid decay of the LR bound at large distances outside
the front). Since we obtain a significantly altered front for
« < 1, our results have a qualitative impact on the former
class. However, while we do find a more complicated tail
than in the conventional bound, the behavior at the largest
distances turns out to be unmodified and thus our results
have only a minor impact on the latter class.
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In the remainder of the paper, we make precise
and prove the above statements. Section III establishes
notation and the formalism within which we work. Section
IV, after reviewing the conventional LR bound, derives Eq.
(2) for generic non-translation-invariant systems and then
makes use of the empirical distribution w,(J) to derive
Fig. 2. Section V considers the case of independent ran-
dom couplings {J;} in more detail, first proving that the
requirements of the preceding section are met and then
examining behavior on the boundary z.(«), with a particu-
lar focus on the distinction between a.a. and i.0. behavior.
Lastly, Section VI discusses the consequences of the above
for various applications.

III. DEFINITIONS AND NOTATION
A. Geometry

In this work, we consider an N-site lattice in 1D, where
each site hosts a d-state degree of freedom. In other
words, the Hilbert space is a tensor product of N local d-
dimensional Hilbert spaces. Let 2 denote the set of all N
sites and A denote the set of all N — 1 links. Here, we con-
sider only nearest-neighbor Hamiltonians on this lattice,
i.e., Hamiltonians of the form H(f) = ), , H/(f), where
Hj(#) is supported only on the sites connected by link /
(although, as noted above, our results hold for Hamiltoni-
ans with arbitrary local terms as well [56]). These features
are illustrated in Fig. 1.

Given a set of couplings {Ji}/ea, let Hy be the family of
all nearest-neighbor Hamiltonians for which

|E®| < 1. )

We even allow for a nonvanishing fraction of {J;} to be
infinite, meaning that there is no restriction on the corre-
sponding terms. Pick an operator of interest 4g supported
only on site 0 and similarly B, on site » (although it is clear
from the proof that 4y can be supported anywhere to the
left of 0 and B, anywhere to the right of r as well). For
any H € Hy, let Af} be the time evolution of A4y, i.e., the
solution to

QA = i[H (1), 4], Ad = 49 (6)

(see also Ref. [63]). Even though A4 is supported on site 0,
Ajy will (barring trivial cases) be supported throughout the
entire chain for any ¢ > 0. The purpose of LR bounds is to
place a bound on the quantity

D(r.1) = H [45,B,]

) (M

which holds uniformly for all H € H;. Since only the “por-
tion” of 4 that acts nontrivially on site r can possibly fail
to commute with B, (see Eq. (13) below), LR bounds con-
sidered as functions of r and 7 constrain the extent to which
local operators “spread” throughout the system.

It is important to note that the Hamiltonians in H;
can have arbitrary time dependence, as long as Eq. (5) is
obeyed at all times. Thus it is perhaps more informative
to refer to any individual H € H; as a “protocol,” since
it can be a quantum circuit designed to perform a specific
task. As discussed in Sec. 11, this distinction sheds light on
the limitations of LR bounds.

The choice to use the operator norm in Eq. (7) has
long been standard, as it enters naturally in many appli-
cations [1,4,5,7]. There are situations in which alterna-
tive norms—in particular, the Frobenius norm, defined as
IOl2 = [d~¥TrOt 01"/ 2—may be more relevant and might
behave quite differently [64]. However, the operator norm
is itself an upper bound on a wide family of norms includ-
ing Frobenius (see Appendix A). Furthermore, the transfer
protocol shown in Fig. 3 leads to a commutator [4], B,]
that is O(1) using any of these norms. Thus, we exclu-
sively consider the operator norm in this work and the
bounds obtained are automatically tight (at least regarding
the dynamical exponent) for the other norms as well.

B. Basis strings

The set of Hermitian operators acting on the Hilbert
space is itself a real vector space and thus we can express
any operator as a linear combination of certain basis oper-
ators. First, consider a single site i and pick a Hermitian
basis {X "} (v; € {0,1,...,d* — 1}). For the entire chain,
we use the tensor-product basis {X }:

N

X(UJ = ®X}(Uﬂ, (8}

i=1

where v = (vq,..., vx). We assume (without loss of gener-
ality) that {)[}(“"J } is chosen to be orthonormal with respect
to the trace product, meaning that the tensor-product basis
is orthonormal as well:

N
aNTX X ) = [Ta ' Tex ™ x,™

i=1

N
= nav,—v;f = 8y )
i=1

We also take Xi(o) to be the identity I;. Beyond this, any
choice of basis works equally well.

We often refer to the basis elements as “strings” and
define the support of a string to be the set of sites on which
it does not have the identity:

suppX ™ = {i:v#0}. (10)

An important superoperator acting on the space of Her-

mitian operators is that which projects onto basis strings
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for which the support contains site i, i.e., strings that act
nontrivially on site i. We denote this superoperator by P;:
PX® = (1 — au,.g)x(“). (11)
Similarly, for any subset of sites @ C Q, we define P, to
project onto basis strings that act nontrivially somewhere

(not necessarily everywhere) within w. A useful inequality
(see Appendix A) is that for any @ and any operator O,

IP.0] =2|0]. (12)

Also note that [4}, B,] = [P,4}, B,], and so for D(r,{) in
Eq. (7), we have the trivial bound

D(r,t) < 2| PAg ||| B-]- (13)

In what follows, we focus on bounding ||P,4pll, with a
bound on D(r, f) following automatically by Eq. (13).

The next important superoperator is the generator of
time evolution under H (1),

L0 = i[H(t),0], (14)

and so [Eq. (6)]

9,4y = L(BA}. (15)

We also need the generator corresponding to a subset of
terms in the Hamiltonian. For any subset of links A € A,
define

Ly(0=i)  [Hi®),0]

5]

Clearly, L(t) = )", , Li(1).

Denote the evolution superoperator itself by U(?), i.e.,
Ay =U(HAo (and define U, (f) analogously). We can
express the action of U(f) (and U, ()) in terms of a
time-ordered exponential:

(16)

U Ay = (Tefé MW)A@

- (Te‘fcfM(S))Ao(feffﬁdff*’(sJ)T, (17)
where 7 denotes time-ordering (note the ordering in the
bottom line of Eq. (17)—earlier times appear inside later
times). Note that |14 (£)4o| = || 4oll.

Lastly, suppose that A € A contains every link that con-
nects a subset of sites @ to its complement 2/w (see
Fig. 4). It is intuitively clear that evolution under L, (f)
alone cannot transform a basis operator that acts trivially
on @ into one that acts nontrivially, or vice versa. Put
precisely,

PolAnjp(t) = Un s () Po. (18)

We give a proof of Eq. (18) in Appendix B.

=M, Qo=M0, A==, Ali=—

FIG. 4. The visual interpretation of Eq. (18). @ consists of the
sites in red and Q /o the sites in blue. A consists of the dashed
links and A /A the solid links. Evolution under only Hy, can-
not transform a string having the identity on @ into one with a
nonidentity element, nor vice versa.

C. Types of Lieb-Robinson bounds

To reiterate, the purpose of LR bounds is to place an
upper limit on ||P,4gll (and thus D(r,f)) that applies to
every H € H; simultaneously. The bounds we construct
are of the form

IPAs) < ol (1- %) |.

where y > 0 and the function f(x) decays to zero as
x — 00 and remains finite (or even diverges) asx — —00.
A simple and common example is f(x) = exp [—«x] for
some k > 0. Although we do not indicate so explicitly,
note that all quantities here are functions of the couplings
{Ji} defining H,;.

In the large-r and large-£ limit, one identifies two impor-
tant features from Eq. (19):

(19)

(a) There is a “front” defined by vt = #*. For vt > 7#,
the right-hand side of Eq. (19) is large (and thus the
bound is vacuous), while for vt < 7, || P,Ap|| must
be small. Thus, the space-time curve vf = ¥* consti-
tutes an envelope that constrains the expansion of
Ajy. We refer to z as the “dynamical exponent” and
v as the “generalized velocity” of the bound (only
when z = 1 do we speak simply of the “velocity”).
Of particular interest are the largest value of z and
smallest value of v for which a bound as in Eq. (19)
holds.

(b) At fixed ¢, there is the “tail” behavior as r — 00,
characterized by the exponent y and the large-x
behavior of f(x) (e.g., exponential or power-law).
Even though ||P,4{ | need never be identically zero,
the tail describes how rapidly it must decay at large
distances.

As mentioned in Sec. 11, we find it necessary to distinguish
between different types of LR bounds, based on whether a
statement such as Eq. (19) holds for all sites or merely a
subsequence of sites:

(a) We call Eq. (19) an “almost-always” (a.a.) bound
if there exists an R such that it holds for all » > R.
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I[Ag, B,

> |

FIG. 5. A sketch of a possible spatial profile [|[4},B,]| as a
function of r, indicated by dots (the black line merely connects
the points). The red dashed line shows an a.a. bound consistent
with the profile—the red and blue dots indicate points contained
within the bound. There are implied to be only a finite number of
black dots. The blue dashed line shows an i.0. bound—the blue
dots indicate the subsequence {r;} to which the bound applies.

This is the sense in which all past works of which
we are aware have derived and discussed LR bounds
(although see Ref. [65]).

(b) We call Eq. (19) an “infinitely-often” (i.0.) bound if
for every R, it holds for some r > R. This is equiva-
lent to saying that there exists a subsequence {ry}2,
on which the bound holds.

Figure 5 illustrates the distinction between the two, show-
ing a hypothetical curve ||[4},B,]|| versus r alongside
consistent a.a. and i.0. bounds. Note that a.a. bounds are
automatically i.0. bounds but not vice versa. The distinc-
tion is likely unimportant for translation-invariant systems
(although we are not aware of any works that compare the
two to begin with) but it turns out to be essential in non-
translation-invariant systems—as mentioned in Sec. II,
there will be situations in which we can derive i.0. bounds
while simultaneously proving that no corresponding a.a.
bound can exist.

IV. GENERAL BOUND FOR
NON-TRANSLATION-INVARIANT SYSTEMS

A. Review of the conventional bound

We first review the standard Lieb-Robinson bound. Start
with a Hamiltonian H € H:

H() =) Hb),

leA

o] <5 Qo)

For any link /, pass to the interaction picture with respect
to all other terms in the Hamiltonian by defining

Al = Unj(t) 45, 21)

The equation of motion for Af; [see Egs. (15) and (17)] is

dAY = —Un O Lo p0AY + Uy (0 L(1)A4)

= Unut) L1 4}, (22)
from which it follows that
f
by = Ao+ f dslpu) L)y (23)
0

Since we are considering a 1D chain, / is the only link
that connects the sites on its right (denoted > /) to the sites
on its left (denoted < /). Thus, using Eq. (18),

t
P14y = Px14o + £ dsUnp(s) P iLi(s)4f.  (24)

Furthermore, P4}, = Uy ;(1)' P, 4. Taking the norm
then gives

f
IP-idb]| < [Posdo] + ] ds| P LA (25)

Recall that £;(s)A4y = i[H(s), Ay). Since Hi(s) is supported
only on link /,

Li()Ay = Li(s)P>1-14p. (26)
Together with Eq. (12), we thus have
[ P=1L1(5)Poi1 43| < 2|| L1(s)Ps i1 43|
< 4| P 27

and Eq. (25) becomes
f
[Posti < [Posto] +40 [ as|Porsi].  29)

Taking r > 0 for concreteness and supposing that / lies
between sites 0 and r, || P~ ;4p]l = 0 and we are left with

t
[Pyl <4 [ aslporagil. @)

To obtain a closed-form bound on ||P,4p], first note
that [|PAgll = 1P PxrApll < 21P5r4pll [Eq. (12)], and
then use Eq. (29) iteratively: bound ||P5,4;|l in terms of
[P>r—143]l, then bound the latter in terms of || Pzr_gAf; Il
and so on until reaching the origin (at which point do not
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introduce P g—simply use that [|4j]| = [|4o|l). The result
is

r tr
(Pl <2lol (1) 5 o
=1 ’

From here, one usually takes all J; to equal a common
value J. This gives (using that r! > (r/e)")

4elt
1P.45|| < 2] 40] exp [rlog 7]

4elt
< 2|| 40| exp [—r (1 - T)] 31)

Equation (31) is of the form in Eq. (19), withz =1,y =1,
and v = 4eJ: we have a ballistic (a.a.) LR bound with an
exponential tail and a velocity of order J.

One can certainly use Eq. (30) for non-translation-
invariant {J;} as well. Yet it is easy to see that the result
might be rather weak. Suppose that at large r, the empirical
distribution of couplings [Eq. (3)] approaches a func-
tion p(J) (in some sufficiently strong sense—we are only
reasoning schematically for the moment). Then,

l_[4J; = exp |:Z log4J;j| ~ exp [rfd,u(J) log-’-U].
I=1 I=1

32)

As long as logJ is integrable with respect to w(J) (which,
note, is true if w(J) ~ J* for any a > 0), we still obtain a
ballistic LR bound:

Jt

4el
Pl <2hnl e[ (1-21)]. )

where log4J = [du(J)log4J. Clearly, this is a much
weaker claim than Fig. 2. As we show in the following,
taking the small-J links more seriously proves that the
actual dynamics must be sub-ballistic for any o < 1.

B. Improvements via integrating out links

We improve on the conventional bound by passing to a
further interaction picture with respect to all “large” terms
in the Hamiltonian, namely, all H;(f) for which the norm
exceeds some threshold € (see Refs. [66,67]). On the one
hand, the remaining terms have a larger support in this
interaction picture and we do not try to describe their struc-
ture within that support. Yet in return, every remaining
term has norm less than € and so no dynamics can occur
on any scale faster than €~!. The latter effect, which sup-
presses operator spreading, turns out to be the dominant
one when there is a sufficient number of weak links. We
sketch the situation in Fig. 6.

0L, L L ILr

FIG. 6. The transformation from the original picture (top line)
to the interaction picture with respect to “large” terms (bottom
line). The dashed links (labeled [, through ly) are those on which
|Hi()|| < € and the solid links those on which ||H(7)| > e.
The squares on the top line represent individual sites but the
rectangles on the bottom line represent the collection of all
correspondigg sites connected by solid links—the transformed
interaction ,‘l is supported on the entire neighboring rectangles
[but no further by virtue of Eq. (18)].

We now make this argument precise. Pick any subset
of links A = {/1,...,[;} lying between 0 and r. Pass to the
interaction picture with respect to Hpy:

Ay =Unp (04, Hi() =Usp@OHID).  (34)
As in Eq. (22), the equation of motion for Zf} is

3l = Un /(0 Lo (U (0D
= L, (04", (35)

where £, (04} = i[H, (1), ) and H, (1) = Y0, H, (1),

The transformed operator Hj.(f) is supported on (poten-
tially) all sites between /;_; and /;41, yet it has the same
norm as Hj (#), namely, bounded by J;.. Thus, we can apply
the same procedure as in Sec. [V A to the operator Zf},
with A in place of A and with H, (#) as the Hamiltonian.
Following an identical derivation to that of Eq. (29), we
obtain

t
[Pl <, [ @l sl o)
We use that [P} < 2[Psr,dbll = 21 P54 5]l to start
the iteration and [[4{ | = [[4o]| to terminate it. Thus,
t - t" s
IPagl <2laol ([T4) 5 @7
i=1 )

Since A is arbitrary, we are free to use the subset that gives
the tightest bound:

|4l Al
. f! .
mﬁhwmw{@y@mﬂ,am

where the minimum is over all subsets of links between 0
and r. Equation (38) is our improved LR bound.
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Although the minimization in Eq. (38) may seem com-
putationally expensive due to the 2" possible A, it can be
performed efficiently. For a fixed size of A, the optimal
choice is clearly those links having the |A| smallest values
of J;. Thus one need only sort {/;};_, beforehand and the
minimization amounts to simply checking the r possible
values of |A|.

C. An explicit bound in terms of the distribution of
couplings

We now make use of Eq. (38) to prove general results
in terms of the “distribution” of couplings u,(J), by which
we mean the fraction of links between 0 and r for which
Ji < J. Reproducing Eq. (3) (recall that 8,<y = 1 if J; < J
and 0 otherwise),

l r
) =~ > b (39)
=1

From this definition, for any € > 0 such that u,(e) # 0,
choosing A to be the subset of links with J; < € yields
(4€t)rﬂr(€J

[rir(e)]!

< 2| o] exp [—m,(e) (1 _ et )] (40)
rise(€)

Now suppose that w,(J) converges as r — 00 to a func-
tion w(J) defined on [0,00), with the small-J (“tail”)
behavior

[P0 = 2[4o]

n(J) ~ poJ, (41)

for some py > 0 (see Refs. [68—70]). The parameter a >
0 plays an essential role in what follows. We do need to
specify the precise sense in which pu,(J) converges. It is
not sufficient to require merely that lim,_, o p£,(J) = (J)
at any fixed J but also that u,(J) behave as p(J) on scales
that decrease with increasing r. This is expressed by the
following conditions, which we assume to be met:

(a) Forany B € [0,1/a) and J > 0,

A(JrF
) (42)
F—00 ,(_L(Jr—ﬂ)
(b) Forany 8 > 1/a,
o
lim =1 o 43)
reo0 pB

As an example of why Eqs. (42) and (43) are necessary,
rather than simply the condition lim,_ o p,(J) = w(J)

(which is contained in Eq. (42) as the case g = 0), sup-
pose that there is a single link on which J; = 0. Clearly,
there cannot be any operator spreading past link / [note that
this is captured by the general bound in Eq. (38)]. On the
other hand, the value of a single coupling does not affect
the fraction that are less than any value in the large- limit.
Thus, lim,_, o ,(J) at any fixed value of J does not iden-
tify individual anomalously weak links, whereas Eq. (43)
does. In other words, Eqs. (42) and (43) are a precise way
of stating that the weakest links between sites 0 and r are
also distributed in a manner behaving as @ (J) at large r.

Strictly speaking, we only need (and prove) Eqgs. (42)
and (43) to hold for a dense subset of f—say, all ratio-
nal B. The exponent 1/« appears because ru(r ey =
O(1)—one expects to find couplings with < 1/« but not
with 8 > 1/a between sites 0 and r.

We feel that these conditions are reasonable to expect
in practice. We show in Sec. V that if each J; is chosen
independently from a literal probability distribution w(J)
obeying Eq. (41), then Eqgs. (42) and (43) are satisfied with
probability 1—in this sense, any sufficiently disordered set
of couplings meets our requirements. Whether Eqs. (42)
and (43) hold in any specific situation obviously depends
on the system under consideration but in any case (and per-
haps more importantly), one can always return to Eq. (38)
if needed.

Let us first consider & = 1. From Eq. (41) and the fact
that lim,_, o, t,(J) = n(J), there exists R and € > 0 such
that for all ¥ > R, u,(¢) > Ce” (recall our convention that
C is any r- and f-independent constant for which the value
may change from line to line). Thus, Eq. (40) becomes (for
r>R)

4e
|Po4b|| < 2] 4o exp [—Ce“r (1 - &Tflr)] (44)

This is simply a conventional LR bound with ballistic front
and exponential tail (a.a. because it holds for all r > R),
having velocity 4e/Ce®~!.

Now consider & < 1. Pick any B € (0, 1 /). From Egs.
(41) and (42), there exists R such that for all » > R,
w,(r 8y > Crpe. Taking € = P in Eq. (40), we thus
have that for all » > R,

4et
[P < 2ol exo [~ 5 (1 - )|

(45)

This is an a.a. LR bound having exponents
z=1+4+ 8 — Ba, (46)
y =1-pa. (47)

Note that the front is sub-ballistic precisely for a < 1
(whereas it is no tighter than Eq. (44) fora > 1).
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By taking B 7 1/«a, we can make the dynamical expo-
nent z arbitrarily close to 1/a. This actually implies that
for any z < 1/a, we have an a.a. LR bound with arbitrar-
ily small generalized velocity. Fixing z and for any v > 0,
setting B € (z, 1 /a) and taking r sufficiently large (so that
der—f < Cor'=P*=7) gives

— Ba det
(Pt < 2] oxp[~cr (1 - o) |

= 2||Ao || exp [—Crl_ﬁ“ (1 — g)]

Interestingly, the tightest tail corresponds to the opposite
limit of B. Setting B = 0 gives the standard exponential
tail (albeit only at distances r > vt for some v), whereas
increasing B gives an increasingly stretched-exponential
tail. The optimal choice of B depends on the specific appli-
cation: one should take 8 7 1/« if constraining the shape
of the front is most important but one should set 8 = 0 if
constraining the tail is most important.

We can combine these results (Eq. (44) for @ = 1 and
Eq. (48) fora < 1) simply by saying that Eq. (48) holds for
any z < z.(a) = max[1/a, 1]. This accounts for the blue
region in Fig. 2, with the upper boundary being given by
z.(a).

Note that this analysis can straightforwardly be extended
to limiting distributions @ (J) that are not simple power
laws, with the expected results. First, if pu(J) decays to
0 at small J faster than any power law (e.g., u(J) ~
exp[—1/J]), then a conventional LR bound as in Eq. (44)
still holds. If 1¢(J) decays slower than any power law (e.g.,
wJ) ~1/ logJ_l}, and if Eq. (42) is obeyed forall 8 > 0,
then z = o0 in that an LR bound with infinitesimal v holds
for any finite z. Lastly, our main result still applies if @ (J)
scales not solely as J® but as J*p(J) for some sub-power-
law function p(J)—an LR bound with arbitrarily small
generalized velocity holds forany z < z.(a), asin Eq. (48).

(48)

D. Tightness of the bound

As discussed in Sec. I, LR bounds should be comple-
mented by an understanding of their tightness, ideally by
constructing an explicit protocol H € ‘H; that saturates
the bound. To that end, we consider the simple transfer
protocol shown in Fig. 3. Denoting the total run time of
the circuit by 7,, clearly P,.Ag" = Ay and so any valid
LR bound must have a front that encompasses the space-
time point (r, 7,). We focus on the dynamical exponent—if
T, = O(¥*), then no LR bound can have a dynamical
exponent larger than z.

Effecting a SWAP gate for arbitrary d-dimensional local
Hilbert spaces is not entirely trivial but a construction is
given in Ref. [71] (see also Ref. [72]). For completeness,
we give the relevant details in Appendix C. The only inter-
actions needed (per SWAP gate) are a finite number of

controlled-Z (CZ) gates. In our case, since Eq. (5) must be
respected, the time per CZ gate across link / is O(1/J)).
Thus the total run time is

"1
T,=CY —.
2.7

We again assume that the distribution of couplings pu,(J)
satisfies Eqs. (42) and (43). As we demonstrate below, it
then follows that for any z > max[1/a, 1],

(49)

T,
lim — =0.
r—o0 p<

(50)

Let us first note that it is the same threshold exponent
z.(a) = max[1l/a, 1] that enters into both Eq. (50) and
(48). We can thus say that the dynamical exponent is z.(a)
in the following sense:

(a) Foranyz < z.(«), there is no H € H; that can gen-
erate correlations at any sufficiently large distance r
in a time of order #°.

(b) For any z > z.(«), we know of an explicit proto-
col H € H; that can generate correlations at every
sufficiently large distance r in a time that vanishes
compared to ¥*.

However, the behavior precisely at z = z.(«) is far more
complicated and system dependent. In particular, the dis-
tinction between a.a. and i.0. bounds becomes essential, as
we demonstrate explicitly in Sec. V.

We now turn to the proof of Eq. (50). It is convenient to
define ¥; = 1/J;, sothat T, = Y}_, Y;. Note that u,.(J), the
fraction of links with J; < J, is equivalently the fraction
with ¥; > 1/J. Fix y > 0 and define qp = 0, g3 = &7
for k = 1 (writing a;, instead of a;(r) for conciseness). Also
define pi to be the fraction of links with ¥; € [ag, axy1),
equivalently

Pr = .u‘r(ak_]) - Julfr(ak_ll . (51)

By definition, we have the bound

oo
T, <7 Piaiyl. (52)

k=0

For pg and p;, we simply use that pp < 1, p; < 1. For pi
with k > 2, first note that the second term in Eq. (51) can
be neglected relative to the first at large . Thus, it follows
from Eqgs. (41) and (42) that for any n > 0, there exists Ri
such that for all » > Ry,

pe € (A =mCr &P a4 pC @) (s3)

Furthermore, Eq. (43) implies that if we take K to be
the smallest integer greater than 1/ay, then there exists
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R such that for all ¥ > Ry, minj_, J; > P agil and

therefore py = 0 for all £ > K 4 1. All together, we have

that for » > max[Ry,...,Rg, Ry],
1, k<1
pr<{(+mCr&Der 2<k<K. (59
0, K+1<k

Eq. (52) becomes

K
T, <r+r'% 4 (14 pCriter Y K-y - (55)
k=2

First, consider @ > 1. The sum in Eq. (55) is then O(1)
with respect to r. Since y is arbitrary, Eq. (50) follows for
any z > | (namely, choose y < (z — 1)/a). Note that this
conclusion also applies when w(J) decays faster than a
power law—in such a case, pi (for k = 2) is even smaller
than for any finite o and thus Eq. (55) remains a valid
bound.

Next, suppose that @ < 1. The sum now grows no faster
than O(#X1~*)7) and thus

T, < Cplter+k-ay < cpaty, (56)

The latter inequality follows because, by definition,
l/ay < K <1+ 1/ay. Again, since y is arbitrary, Eq.
(50) follows.

Incidentally, this line of reasoning puts our discussion
regarding the failure of the conventional LR bound [Eq.
(32) in particular] on firmer ground. As noted above, the
couplings enter into the conventional bound via the sum
> 1—1 logJi. We have that

er;clogakJrl < ZlogJ; f-erk logak . (57
k=0 =1

The sums over k again terminate at K but now the sum-
mands go as ¥**” log r—* and are dominated by small k
regardless of a. More precisely, use of Eq. (54) and the
analogous lower bound on py gives

Crlogr™ < ZlogJ; <Cr (58)
=1

Since y can be arbitrarily small, inserting into Eq.
(30) gives an LR bound for which the front, while not

necessarily quite ballistic, cannot have a dynamical expo-
nent larger than 1. As we have now established, that bound
is far from tight.

V. DISORDERED LIEB-ROBINSON BOUNDS

As anontrivial example of a situation in which the above
results apply, here we suppose that each J; is drawn inde-
pendently and identically distributed (IID) from a proba-
bility distribution w(J) for which the small-J behavior is
given by Eq. (41). We first prove Egs. (42) and (43), not
merely in some average sense but with probability 1, using
standard techniques. The results in Secs. IVC and IVD
then follow.

We next consider the threshold case z = max[1/a, 1] in
more detail. For & > 1, it follows immediately from the
strong law of large numbers (see Refs. [73,74] for an intro-
duction) that the transfer protocol in Sec. IV D reaches all
sites ballistically. For @ < 1, on the other hand, the distinc-
tion between a.a. and i.0. bounds becomes important—we
derive an i.0o. bound with arbitrarily small generalized
velocity, implying that no protocol can reach every site in
time T, = O(r'/%), but we also show that the above trans-
fer protocol does reach an infinite subsequence of sites in
time T, = O(r'/*) (again with probability 1). Interestingly,
a = 1 is the only point at which we cannot give a definite
answer. Our i.0. bound still applies but the transfer proto-
col now fails to reach any site in time T, = O(r). It could
be that an a.a. bound with arbitrarily small velocity holds
for @ = 1 but we have not succeeded in proving so.

Finally, we discuss some straightforward extensions of
the above results.

A. Convergence of the distribution

First, we prove Eq. (42). This requires some tools from
probability theory which can be found in textbooks on
the subject [73,74] but are likely not common knowledge
among physicists. Here, we apply these tools without fur-
ther comment for ease of presentation but we include a
description of them in Appendix D for completeness.

To prove Eq. (42), pick any € > 0 and B € [0, 1/a).
Define the event E, to be

_ {M(Jr b

o ¢(1—e,1+e)}. (59)

Abbreviating w(Jr#) by w for conciseness, Eq. (59) is
equivalently the event that the number of couplings less
than Jr—# is not between (1 — €)ruw and (1 4 €)rp. We can
evaluate the latter directly:
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PE]= Y

ng((1—e)rp,(1+€)rp)

>

ng((1—e)ru,(14+€)rp)

< rexp [—(1 +e)rplog(l +¢€) — (l —

where the final inequality follows because the summand
is maximized at n = (1 4 €)ru. One can confirm that the
right-hand side goes as rexp [—Cr! =] at large r, with C
positive. Since 1 — Ba > 0, Pr[E,] is therefore summable
and the probability of E, occurring infinitely often is zero
(see Appendix D). The probability that this occurs for
any rational € or B, i.e., that w1y (Jr )/ (Jr—#) does not
converge to 1 for any 8 < 1/a, is likewise zero.

R—0no

(") R
n

exp [n IogE + (r —n) log
n r—n

r(1 —u)]

K e) (1 —u)rlog(l —
l—p

e e)] (60)
1—u '

We now prove Eq. (43). Pickany M > 0and 8 > 1/a,
and consider the event

E = {r}filnjf < Mr—ﬂ}. 61)

We have (see Appendix D for the definition of “E, 1.0.”)

Pr[E, i.0.] = lim Pr [Hr >R :minJ; < Mr—ﬂ] =1— lim Pr [Vr >R :minJ; > Mr—ﬁ] : (62)
= — 00 —
Clearly, if J; > Mr—#_ then J; > Ms for all s > r. Thus the following events are equivalent:
o 8| _ -8 —B -8
{Vr:-R.rIn:lln‘.ﬁ:er }_{J1>M(R+1) }ﬂ{Jg>M(R+l) }ﬂ ﬂ{JR+1>M(R+1) }

N {JR+2 > MR + 2)—8} N {JM > MR + 3)—3} N (63)

Since the couplings {J;} are independent, the probability of the right-hand side is straightforward to evaluate:

Pr [Vr >R: rfn_rian,r > Mr‘ﬁ] = (1 — ,UJ(M(R + 1)—8))R+

RF
1
lim (1= n(rF))
R -0 r:l;g-z

~ (1 - CRR+ 1)_30)3"'1 exp i log (1 - Cr‘ﬂ“)j|, (64)

where the sum in the lower line is convergent because
Ba > 1. Therefore,

lim Pr [Vr > R : minJ; > Mr—ﬁ] =1 (65)
R—no =1

and Pr[min]_, J; < Mr~* i.0.] = 0. The probability for any
M e Norrational B, i.e., the probability that min]_, J;/r—?
does not diverge, is likewise zero. This completes the proof
of Eq. (43).

)

B. Fluctuations at the threshold exponent

We now take the dynamical exponent z to be the thresh-
old value max[1/a, 1], still for the model in which all
couplings {J;} are chosen IID from w(J). We determine
whether an LR bound with arbitrarily small v holds, both in
the a.a. and i.0. sense. In the situations where we can pro-
vide a decisive answer (which is all @ # 1), this completes
the diagram in Fig. 2.

First, suppose that o > 1. Then, fd,LL(J)J_l is finite
(note that du(J) ~ CJ*~'dJ at small J) and recall that
we identified a specific protocol for which the run time is
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T, = CY",_, 1/J;. Since the couplings are IID, the strong
law of large numbers (SLLN) [73,74] gives that with
probability 1,

lim 22 — fd,u(J)J" < 00. (66)

r—o0

Thus the above transfer protocol reaches every suffi-
ciently large-distance site with a nonzero velocity (namely,
[ di())J='17).

Now, suppose that @ < 1. Return to Eq. (38) and take
the subset A to be solely the link connecting » — 1 and #:

P45 < 8]\ 4ot (67)

Although a rather loose bound, the probability that even
the right-hand side of Eq. (67) exceeds vtr—'/ for all large
r vanishes, for any v > 0. In other words, we have an
1.0. bound with arbitrarily small generalized velocity: with
probability 1, there exists a subsequence {r;} for which

t
[Pty < o] 7 (©8)

To prove Eq. (68), simply compute the probability that for
allr > R, J, > vrl/e:

Pr[Vr >R:J, > Ur_”“]

R
= lim (1 ,u(vr_”“))
R—oo pi1
R
~ lim (1 - Cr—l) —0. (69)
R =0
—R+1

This establishes an i.0. bound with arbitrarily small v but
let us consider again the previous transfer protocol. One
can show that with probability 1,

T,
liminf — = 0,
r—oo p o

(70)

meaning that this protocol does reach a subsequence of
sites {r;} in time of order (and, in fact, asymptotically
smaller than) r:‘(“. The proof of Eq. (70), which we adapt
from Ref. [75], begins by noting that T,7~'/ converges in
distribution to a non-negative random variable S for which
the support includes 0 (a fact that is well established but
by no means trivial; see, e.g., Ref. [74]). Thus, pick any
€ > 0. We have that Pr[§ > €] < 1 and, at the same time,
we can always choose a sequence of numbers {Cy} such
that Pr[S > C;] < 1/k*> — 0.

The convergence in distribution of T,#—/ to § implies
that we can construct a subsequence {r} with the following
properties:

/e

(a) Fry1 — 1y — 00 as k — 0o0.
(b) For sufficiently large k,

(71)

1

Pe[ T 2 G - s 2 i

(c) ex > €, where we define (for later convenience)
2er® — Cur®
Gh=—""7—. (72)
(i1 —ri)l/e
From Eq. (71), it follows that Pr[T, r¢ ' > Ci] < 2/K2
and thus, with probability 1, there is some K such that
T, 1" < Cforallk > K.
Consider, for k > K, the event

Ee={VK = k: T, > 2en/*}. (73)

Since T’y < Cyrg“ with probability 1, we have that

Pr [Vk’ >k:T,, > 2er}j“]
=Pr[VK 2 k: Ty, 2 2er/* (T, < Cerf?]

<PV 2 ki Ty, — T,y > 2erf5) - Cerfl"]

B T, - T,

=Pr VK >k: —2 _®_ o o
| T (rep—re)Ve

B T, - T,
<Pr|VK>k: — " ® o |,
I N G IR O

using Eq. (72). Note that the differences T,,, , —T,, are
mutually independent and thus the probability on the right-
hand side factors:

(74)

£ Tw 1 Try
Pr[E;] < lim Pr [+—1 > e] . (7%
(rrrs1 — rp)/e
Furthermore, since ryy; — Fy — 00, the random variable
(T, — )/ (Fegn — )l itself converges in distribu-

k+1
ti0n+t0 S and so, for sufficiently large £,
L., — T, 1 +Pr[S >
(e —r)'/® 2

The right-hand side is strictly less than one, meaning

the infinite product in Eq. (75) evaluates to zero. Thus,
Pr[E;] = 0 and therefore

(77)

k—00

Pr[T;, < 2er)/*i0.] =1 lim Pr[E] =1.

In other words, Eq. (70) holds with probability 1.
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It remains only to consider @ = 1. The calculation in
Eq. (69) still holds and thus an i.0. bound with arbitrarily
small velocity exists with probability 1. Yet for the transfer
protocol, we now have

. - r
liminf — = oo,
r—00  F

(78)

i.e., no site is reached ballistically. Compare with Eq. (70).
It may be that a more sophisticated protocol is able to
reach a subsequence ballistically or it may be that no such
protocol exists. We are unable to rule out either possibility.

To prove Eq. (78), following Ref. [74], pick any M >
0 and define truncated random variables ¥; = min[Y}, M]
(recall that ¥; = 1/J;). The expectation value of ¥}, denoted
Y(M), is finite and therefore the SLLN applies. Thus, with
probability 1,

r—>00 F r—o00 F

T 1 R —
liminf — = liminf — ; Y, > llgéglf; ; Y, =Y(M).
(79)
Since Y(M) — 0o as M — o0, Eq. (78) follows.

C. Extensions

Lastly, we discuss some straightforward extensions of
the above results. These are not meant to be exhaustive;
nor do we expect them to be particularly tight bounds—we
only wish to point out some generalizations that can be
obtained with little additional work.

1. Couplings with finite-range correlations

As a first example, suppose that the couplings {J;} are
correlated but that correlations exist only within a finite
range £. By the latter, we mean that joint distributions p™
factor only if all couplings involved are separated by at
least £ sites, e.g.,

1" (s - i)

= PP Une) - nOUime).  (80)
Such correlations present no difficulties—simply first pass
to the interaction picture with respect to all but every &’th
link and then the previous analysis applies. All lengths
are reduced by a factor of £ and thus the generalized LR
velocity is increased by a factor of £7 (which we again do
not claim to be a particularly accurate estimate) but the
diagram in Fig. 2 remains unmodified.

2. Bounds for multiple energy scales

Suppose that J; can only take the values J and €J, where
0 < € « 1. The couplings are still chosen independently

FIG. 7. An example of a “ladder,” with M =3 sites per
rung. To apply our analysis, simply treat all M sites connected
vertically as a single “site,” indicated by the red shading.

and the probability of J; = €J is €”. This is a discrete ana-
logue to the situation from the previous subsections, for
which J; could take any value greater than zero. Here, any
LR bound clearly has a ballistic front but one can still ask
how the LR velocity v compares to the two scales J and
eJ. By taking A in Eq. (38) to be those links with J; = €J
(the fraction of which approaches € at large r with proba-
bility 1) and comparing to the conventional LR bound, we
find that

v = dee™ -0l (81)

Analogous to the previous results, v < J for a < 1. Fur-
thermore, the dependence of v on € in Eq. (81) is tight—the
average of 1/J; is finite for all @, namely, given by (1 —
€ 4+ €%~ 1/J, and so the SLLN again applies, as in Eq.
(66). Taking € « 1, the velocity of the transfer protocol is
therefore Eq. (81) up to prefactors.

We can easily generalize to there being an arbitrary
(finite) number of widely separated energy scales. Sup-
pose that J; = e¥*J with probability €* for k € {1,...,K}
and J; = J otherwise. Assume that 0 < y; < --- < yx and
0 < a1 < -+ < ag. The optimal LR velocity is now

v =4ectJ, _

(82)

¢ =max[yx —ag,...,y1 —ap,0]. '

The dependence on € is again tight. While simple, this

result does highlight that in general, neither the largest

nor the smallest energy scale necessarily determines the
relevant velocity for operator growth on its own.

3. Bounds for ladders

Consider a system such as in Fig. 7, in which sites
are labeled by (i,j) withie {---,—1,0,1,...} and j €
{1,...,M}. The Hamiltonian is still given by a sum of
terms for each link of the lattice. Interactions along vertical
links are arbitrary and interactions along horizontal links
(denoted Hj; () for the link between (i — 1,j) and (7,7))
obey [|Hj; (f)]| <J;;. EachJj; is again drawn independently
from w(J).

Since our analysis does not make any assump-
tions regarding the nature of the local Hilbert space,
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we can simply identify each set of sites connected
vertically—{(i,j)};f:] for fixed i—as comprising a single
“local” Hilbert space. However, the interaction between
neighboring i is then Zj H;; (), meaning that the coeffi-
cient J; entering into bounds such as Eq. (38) should be
> Jij- The probability of 3, J; <J is bounded by

p@/My <pe| gy <a | <u@) (83
J

Thus the correct exponent to use in our analysis is now
Ma and, in particular, z.(a) = max[l/Ma, 1]. Obtaining
an improvement over the conventional LR bound now
requires @ < 1/M but, nonetheless, we still have thatz, —
occasa — 0.

In fact, we can adapt the construction of Ref. [76] to
show that this result for z.(«) is tight. We discuss this
assuming two states per site (d = 2) labeled by |0) and
|1}—the same protocol extends to arbitrary d simply by
acting as the identity in the subspace orthogonal to |0) and
|1}, and it still produces an O(1) commutator for generic
operators Ag and B, that act nontrivially on |0) and |1).

Taking cues from Ref. [76], consider starting in the
product state with a|0) 4 b|1) on site (i — 1,j) and |0) on
all other sites of rungs i — 1 and i. Since arbitrary vertical
interactions are allowed, we can construct a unitary that
takes this state to (a[0);—1 + 5|1)i—1) ® (|0); + [1);)/+/2 in
arbitrarily short time, where |0); and |1); denote the states
on rung i with all sites in |0) and |1), respectively. Defining
Hy= Y J511) (11 ® [1)(1 ), we have

PN .
IT)J |6)r |T)r

Iﬁ)x‘ + —
al0),_, ® NG +b[1),_, ® N (84)
The states (]0); + [1);)/+/2 and (|0); — |1);)/+/2 can then
be converted into |0); and [I);, respectively, again in
arbitrarily short time, using interactions solely on rung
i. This procedure thus transforms the product state hav-
ing a|0) + b|1) on site (i — 1,j) and |0) otherwise into
the generalized Greenberger-Horne-Zeilinger (GHZ) state
al0);—1 ® 10); + b|1);_1 ® |1);. Subsequently applying the
procedure in reverse, albeit with the roles of rungs i — 1
and i exchanged, then takes this generalized GHZ state into
the product state having a|0) + b|1) on site (i,j) and |0)
otherwise. The net effect is that the state on site (i — 1,5)
has been transferred to site (i,j ) in a time 2/ Zj Jij [com-
ing from Eq. (84)]. Repeating the transfer sequentially
from rung 0 to r, we have a protocol analogous to Fig. 3
with run time 7, = 37, 270/ 3, Jj;.
Thus not only does our LR bound apply to the lad-
der of Fig. 7, with Zj Jii in place of J;, but so does our

analysis of the 1D transfer protocol, again using ) ; J; as
an effective horizontal coupling. The result derived above
that z.(a) = max[1/Ma, 1] is therefore tight. Note that if
we restrict ourselves to bounded-strength vertical interac-
tions but with bounds that are spatially uniform, then the
dynamical exponent remains unaffected even once the time
required to effect all single-rung transformations is incor-
porated. We leave the more complicated situation in which
the vertical interactions themselves have weak links as a
direction for future work.

The fact that z.(¢) — 1 as M — oo for any & > 0 sug-
gests that our conclusions may not extrapolate to higher
dimensions (and analogously to longer-range interactions).
There are far more paths connecting any two sites in higher
dimensions and it may be that transport remains ballistic
for any power-law distribution of weak links. Of course,
the analysis of the ladder presented here only accounts for
weak links in one direction and so the behavior of truly
multidimensional disordered systems remains an important
open question.

VI. APPLICATIONS

In Sec. IV, we derived a modified LR bound for non-
translation-invariant systems—Eq. (45)—requiring only
that the empirical distribution w,(J) converge to a func-
tion u(J) ~ CJ* [as formalized by Eqs. (42) and (43)].
Fora < 1, the modified bound gives a significant improve-
ment over the conventional bound and even guarantees
that operator spreading is sub-ballistic. Here, we consider
the consequences of this result for various applications
(assume that @ < 1 throughout).

On the one hand, the manner in which LR bounds are
used in the following is quite similar from case to case. Yet
we see that different contexts come with different caveats,
some more than others, and we discuss the many open
directions for future work.

Note as well that we are working with the general
bound of Sec. IV rather than the more detailed results of
Sec. V. In particular, the implications of the “a.a.”-“1.0.”
distinction for the following applications warrant further
investigation.

A. Growth of correlations

LR bounds directly place limitations on the extent to
which correlations can develop following a quench. Con-
sider the correlation function

G(t) = (4'B') — (4")(B'). (85)

where the expectation value is in a product state |¥), time
evolution is under a Hamiltonian H (f) € H;, and the oper-
ators A% and B? are supported on sites to the left of 0 and
to the right of r, respectively (note that our analysis in Sec.
IV applies equally well to such operators even if they are
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not strictly local). Thus G(0) = 0 and one would like to
understand how G(f) grows in time.

The authors of Ref. [5] show that one can bound (assum-
ing [|4]l = ||B|| = 1 for simplicity)

GO < 4| Perp '] +4[P<pB|- 86)

Supposing that r is sufficiently large, we can immediately
apply Eq. (45):

|G| < exp [—Cr]_ﬂa + %], (87)

where B can take any value in (0, 1/&). The fact that one
can choose an optimal B depending on f makes Eq. (87)
slightly more interesting than the conventional bound.
However, care must be taken in varying B. We have
shown that for any B € (0, 1/«), there exists R(B) such
that the bound holds for r > R(8), but we have not shown
that the convergence is uniform in B (i.e., that R(B)
can be made independent of B). Rather than impose an
additional requirement on the convergence of u,(J) and
attempt to verify it in nontrivial situations, here we sim-
ply choose a finite set {8;}]_, with 0 =gy < --- < B, <
l/a (note that B = 0 simply recovers the conventional
LR bound). The precise statement of Eq. (87) is that for

r/2 > max[R(Bo). . .. R(Bn)],
|G(®)] < exp [rrgg [—Cr‘—ﬂf“ + %] ] (88)

The behavior of Eq. (88) is shown in the dashed red
line of Fig. 8. At large r, it is given by exp [—Cr + C'1]
until # = O(r), then by exp [-Cr'=#1% + C't/r#1] until t =
O(r'+P10-9)) and, in general,

IG(t)l < exp I:—Cr]_ﬁ"“ + %t],

plHBi-1(1—e) Lt K pltBil—a) (89)

Of course, we are free to choose as large a set {B;} as we
like (although this may increase the distance required for
the bound to hold). One should heuristically think of Eq.
(88) as minimizing over all 8 € (0, 1/«) for any value of
r, shown as the solid red line in Fig. 8.

B. Creation of topological order

A related application is lower bounds on the time needed
to create topological order. Again following Ref. [5], we
say that two states |W¥;) and |W¥;) in a 1D system of size N
are “topologically ordered” (relative to each other) if there
exist constants ¢; € (0,1) and ¢z > 0 such that, for every

G(t)

—151

—204

—25 T T T T T T
0 20 40 60 80 100 120
L

FIG. 8. The plot of Eq. (88), using @ = 2/3 for concreteness.
The dashed red line corresponds to n = 2 with 8; € {0,3/4,3/2}
(each of the individual curves being minimized among in Eq.
(88) is shown as a dotted black line). The solid red line corre-
sponds to n = 30 and §; equally spaced by 1/20, which closely
approximates the curve at large n. The blue line is the conven-

tional LR bound for comparison. To reproduce the exact numbers
in the plot,setr =25and C = C' = 1.

observable O supported on a set with diameter ¢| N or less,

[(w1[0 1) - (w0} ws)] < 2e7", (90)
|(ll'1|0|‘1’2)| Py _

In words, no “local” operator (even one supported on
a nonvanishing fraction of the system) can distinguish
between or couple such states.

Suppose that |¥;) and |W;) are topologically ordered
and have been prepared from states |®;) and |®3) via time
evolution under a Hamiltonian H () € H;:

W) = Te  hdHO)| @), 1)

Reference [5] shows that, for any operator O with diameter
less than ¢ N /2,

[(®1]0]81) — (®3[0]2)| < 2672 + 2] Py
(92)

and analogously for the off-diagonal matrix elements. We
again use that

n c
|Pse,nO|| < exp [rp:ig [_CN‘—&“ + N—ﬁf] ] (93)

Note that for t < N, Eq. (93) is exponentially small in
N. Returning to Eq. (92), |®;) and |®;) then satisfy the
definition of topological order. In other words, for times
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less than O(N), it is impossible to prepare topologically
ordered states (|W1) and |W¥2)) from any states that are not
themselves topologically ordered (|®;) and |®2)).

The above conclusion is identical to that of the conven-
tional case but note that Eq. (93) in fact remains small
for much longer times, until # = O(N'/®). The bound is
no longer exponential (rather stretched-exponential) and
so the definition in Eq. (90) is not strictly met but |®;)
and |®;) exhibit a slightly looser sense of topological order
nonetheless. In this sense, we have that for non-translation-
invariant systems with a < 1, it is impossible to prepare
ordered states from unordered in times less than O(N V/%).

C. Heating in periodically driven systems

The authors of Ref. [7] consider energy absorption in
weakly driven systems, for which the Hamiltonian is of
the form

H(t) = ZH, — gcoswt Z‘ 0. (94)

IeA i

We limit ourselves to 1D, although Ref. [7] treats a gen-
eral dimension. Within linear response theory [77], i.e.,
to leading order at small g, the energy absorption rate is
proportional to o(w) = Zy o0 (w), where

oy (@) = % f_ ” d:e"w’([og, oj,?]). (95)

oo

The expectation value denoted by (-} is taken in the initial
(potentially mixed) state of the system. Strictly speaking,
0 (w) is a distribution and should be integrated against test
functions to obtain meaningful results.

The authors first derive a bound

0y (w)| < Ce™l, (96)
i

assuming a ftranslation-invariant constraint |[H|| <J.
There is already the potential for tightening Eq. (96) in
non-translation-invariant systems, since the constants C
and « involve sums over connected paths with factors of
Ji, much as in Sec. [V A. However, we suspect that a more
careful analysis of the path sum would not yield a signif-
icant improvement [see Eq. (32)], and so we continue to
use Eq. (96).

LR bounds enter into the analysis of Ref. [7] as a
means of bounding |o(w)| by O(N) (N being the num-
ber of sites in the system—mnote that naively bounding
lo(w)] < Zy |oij (w)| would give a bound O(Nz)). In par-
ticular, consider two sites i and j separated by a distance
r > r*, with #* to be chosen later. Assuming a conventional
LR bound with velocity v, Eq. (95) can be bounded by two

contributions:

oo

o2 2
oy (@)| < C f dte 3% ~0—v0 4 f dte 2
0 rfv

2
< Ce™™ 4 Ce W2 (97)
(for details, including the appearance of the Gaussian
factor, see Ref. [7]). Since the terms of Eq. (97) decay
exponentially with » or faster, the sum over all i and j
with |i — j| > r* is indeed O(N) and scales as exp [—ar*].
For summing over |i — j| < r*, simply use Eq. (96). Thus,
by setting #* = O(|w|), both contributions decay exponen-
tially with |@|, and therefore

o (@)| < CNe™1l. (98)

The exponential decay with |w| is the main result of
Ref. [7].

Let us consider whether this conclusion is altered in non-
translation-invariant systems by the use of our modified
LR bound. As in the preceding subsections, we choose a
set {B;}!_, and minimize Eq. (45) over B;. The integral over
t in Eq. (95) splits into multiple terms [compare with Eq.
(ON)]:

rfug 2
oy (@)] < Co f dte” 57 g~0(r—r01)
0

A+pr0-a)

+C f
rfvg

r1+162“_°')fv2

+ G f
AP (=) 1y,

0 2
+---+C,,f dte 52 .
r|+ﬂn(1—ﬂ]{v”

2
dte_ﬁze—al(r'_‘ﬁ'“—vlﬂ'_‘ﬁu
_2 1—foa —p
dte % e—az(r 25—y tr F2)

(99)

Although the latter terms are indeed much smaller than
in the translation-invariant case, note that the first term is
unaffected. Thus |oj; (@)] still scales as exp [—ar] at large
r, we are still led to take r* = O(|w|), and the final result
in Eq. (98) is unchanged.

The lack of any significant reduction in the heating rate
can be traced back to the fact that it is the fail of the
LR bound that constrains |o(w)| and the tail of the non-
translation-invariant LR bound is no tighter than that of
the translation-invariant case. Of course, this is only a
statement about the bounds—the physics involved in any
specific system very well may imply a dramatically slower
heating rate.

Strictly speaking, the above comments only apply
within linear response theory. To go beyond linear
response, one could perform a Magnus-like expansion
along the lines of Refs. [23,78,79] to derive an effective
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Floquet Hamiltonian governing the dynamics. Since the
terms of the Magnus expansion have norms given by prod-
ucts of couplings along paths [78] and we have established
that disorder has a relatively modest effect on such expres-
sions, the naive expectation is that the ultimate heating rate
would not be significantly reduced according to Floquet-
Magnus theory either. All the same, it would be quite inter-
esting to investigate the effect of non-translation-invariant
interactions on dynamics under the Floquet Hamiltonian
(as distinct from the question of the time scale over which
the Floquet Hamiltonian remains valid). Since the Floquet
Hamiltonian involves higher-body interactions (i.e., terms
supported on more than two sites), the results of this paper
do not immediately apply and so we leave this for future
work.

D. Ground-state correlations

One of the most well-known applications of LR bounds
is for the proof that gapped ground states have exponen-
tially decaying correlations. Considering a 1D nearest-
neighbor Hamiltonian H for concreteness (although this
result holds much more generally), the statement is that
if there is a nonvanishing gap AE between the ground-
state and first-excited-state energies, then for any local
observables Ay and B,,

G(r) = (AGB,) - (Ag)(B,) < Ce™, (100)
where the expectation values are in the ground state of H
(for full details of the proof, see Refs. [2,4]). Here, we only
discuss the steps at which LR bounds enter.

The authors of Refs. [2,4] show that one can bound G(r)
by (assuming || 4o|| = ||B;|| = 1 for simplicity)

+2¢73,

[46. 8]

001 Aag?

|G| gf dt—e 4 (101)
—oo |l

with g to be chosen later. Much as we describe in the pre-
vious subsection, assuming a conventional LR bound with
velocity v, split the integral into one over |f| < r/2v and
one over |f| > r/2v. Using the LR bound in the former and
the trivial bound ||[4}, B,]|| < 2 in the latter, we find [80]

o _2ag?
|G| < Ce% +Ce % +2¢73. (102)
Thus, if AE > 0, taking g = O(r) gives Eq. (100).

For non-translation-invariant systems, using our modi-
fied LR bound, we split the integral over ¢ into additional
terms as in the previous subsection [see Eq. (99)]. Yet we
again do not obtain any significant improvement over Eq.
(102), since we still have a term scaling as exp [—ar/2].

In fact, it is unclear whether Eq. (102) itself applies to
the systems considered here—Ref. [81] proves that ensem-
bles of Hamiltonians are generically gapless if the norms

of the interactions have continuous distributions extending
to zero. However, the lack of a gap in this case is due to
the existence with high probability of nearly disconnected
local regions hosting low-energy excitations [81]. Since
those excitations are decoupled from the larger system, one
does not expect them to give rise to long-range correla-
tions on physical grounds. To our knowledge, it remains
a significant open question whether (and under what con-
ditions) the ground states of such disordered systems have
rapidly decaying correlations.

E. Predicting properties of gapped ground states

An interesting recent application in which LR bounds
enter is classical machine-learning algorithms for predict-
ing properties of quantum many-body ground states. The
authors of Ref. [82] consider a family of time-independent
Hamiltonians H (x) parametrized by a continuous (poten-
tially multidimensional) variable x, with corresponding
ground states p(x). They obtain rigorous results on the
ability to predict Trp(x)O for a certain x from knowledge
of {Trp(x;)O}._, for other parameter values {x;}i_;, where
O is any observable that can be written as a sum of local
terms.

A central ingredient is the result that if H(x) has a
nonzero spectral gap uniformly in x, then one can bound
the size of the gradient V,Trp(x)O. Specializing to 1D
chains with H(x) = ), Hi(x) and O = ), O; (although
Ref. [82] treats more general systems), the authors show
that

£l

|V Tro@)0| < f dtW(t)Z”[O,-,ﬁ-Vfo(x)H
- il
(103)

where @ is an arbitrary unit vector in the parameter space
and W(?) is a filter function that decays faster than any
polynomial as |f] — 00.

Much as before, the conventional LR bound enters by
dividing the terms on the right-hand side into two groups,
one in which i and / are separated by a distance less than vt
and the other in which they are separated by greater than
vt. Use the trivial bound on the commutator for the former
and the LR bound for the latter. Since there are O(|f|) terms
in the former and the sum over the latter is O(1), Eq. (103)
reduces to

o0
[V:Trp(x)0O| < C f datw(o)i|. (104)
—00

The remaining integral is finite (since W(f) decays sufli-
ciently fast) and thus the gradient is bounded. This prop-
erty is then used in Ref. [82] to establish the efficiency of
algorithms capable of predicting Trp (x)O.

In a certain sense, our modified LR bound for non-
translation-invariant systems provides an improvement,
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since it allows us to replace the factor of |f| in Eq. (104)
by |#|*. However, the important feature is merely that the
resulting integral over £ is finite. Thus, while our modified
bound does tighten the numerical value of the gradient, it
does not seem to give any dramatic changes. Furthermore,
since the analysis of Ref. [82] requires that the Hamilto-
nians H(x) be gapped, the caveats from our discussion of
ground-state correlations apply here as well. The more sub-
stantive question is therefore whether the conclusions of
Ref. [82] apply to disordered systems in the first place.
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APPENDIX A: SOME PROPERTIES OF MATRIX
NORMS

In this paper, we use || - || to denote the operator norm,
i.e., the largest eigenvalue of the operator in question
(technically the largest singular value but we only apply
the norm to Hermitian operators). It is equivalently the

p — o0 limit of the Schatten p-norm, defined for a generic
M x M matrix O as

M

X 1
1 g 1 :
lol, = (sriof ) = () -

i=1

The Frobenius (p = 2) norm is often of independent inter-
est (see, e.g., Ref. [64]). Let us first note that || O], is a
nondecreasing function of p and thus the bounds on ||O]|
obtained in this work are automatically bounds on [|O||,, for
all p € (0,00). This follows from the fact that for p < g,

the function f(x) = x?/? is convex on [0, 00). Thus,

1 ¥ oM
EL REE SIS

i=1 i=1

and exponentiating both sides by 1/q gives [|O|l, < [|Oll,.

Now restrict ourselves to the operator norm and to
tensor-product Hilbert spaces, i.e., M =d". A useful
inequality is Eq. (12): for any Hermitian operator O and
any subset w of the sites, ||P,O0| < 2||O|, where P,
projects onto basis strings that act nontrivially somewhere
in w.

To prove this, define Q, = I — P, to be the projector
onto strings that do act trivially throughout @. We have
that

7.0 < o] + |2.0l. (*3)
Note that Q,,0 is a tensor product between w and its com-
plement: Q,0 = I, ® Oq/, for a certain operator Og/,
acting on Q/w. Furthermore, ||Q,0| = ||Ogq/s|l. Pick a
state [{r) such that [{({¥|Og/.|¥)| = [|Og/. |l and define the
normalized density matrix

p=d I, ®v)vl|

so that |Trp@Q,0| = || Q,0||. Also note that TrpP,0 =0
(since P,0O by definition consists only of basis strings
orthogonal to the identity on w); thus || Q,0| = |TrpO)|.
Lastly, by the variational principle for density matrices,
[TrpO| < ||O||. Returning to Eq. (A3), we have Eq. (12).

(A4)

APPENDIX B: PROOF THAT PROJECTION
COMMUTES WITH DECOUPLED EVOLUTION

Recall the notation of Eq. (18): @ denotes any subset of
sites and A denotes a subset of links such that @ and Q/w
are disconnected under A/A. In words, removing A from
the lattice disconnects @ from everything else. Equation
(18), reproduced here,

Poldn /() = Up 3.(8) P, (BI)
is the statement that interactions on A /A alone cannot con-
vert an operator supported outside @ into one for which the
support intersects @ or vice versa. While obvious on phys-
ical grounds, it is worth confirming that this follows from
the formal definitions in Sec. III B.

We need only make the following observations, all of
which are clear from the explicit expression for Uy ; (f)
given by Eq. (17):

(a) Up . (0) factors into U, () ® Uq,(t), where the first
factor involves only the interactions within @ and
the second only those outside w.
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FIG. 9. The implementation of a SWAP gate between sites i and j. The f,;,— gate is given in Eq. (C1), the FT; gate is given in Eq. (C3),

and the Cz;; gate is given in Eq. (C4).

(b) For any product operator O = O, ® Ogq/w,

Upp (D0 =U, (10, @ Ug,()0q).  (B2)

(c) The action of U (f) takes the identity string to itself
and does not take any other basis string onto the
identity (this statement is always true for any sys-
tem).

Consider an arbitrary operator O, which can always be
decomposed as

0=y x{ ®og),

Ve

(B3)

where v, denotes a set of basis indices on @ and Og}'ﬁ,

denotes the partial projection of O onto basis string X ("),
As a result of the above, we have that

Poldajp (00 =Py Y Us (XS @ Ua (04

Ve

=) U,0X ® Ugs(H)0g7)
Vw70

=Up;(0) Y X @ 0G5
Vw70

= u,\;l(t)Pa,O. (B4)

APPENDIX C: AN EXPLICIT STATE TRANSFER
PROTOCOL

The transfer protocol H(f) € H; illustrated in Fig. 3,
which we use to assess the tightness of our LR bounds
in the main text, is given there in terms of SWAP gates.
While perfectly sufficient on its own (see Ref. [72]), it is
satisfying to see that H(f) can be represented entirely in
terms of “standard” interactions, even for arbitrary d-state
degrees of freedom. This has been demonstrated in Ref.
[71] and we summarize their construction here for the sake
of completeness.

The circuit diagram for a single SWAP gate is shown in
Fig. 9. The central element is the add-invert gate Xy (the

subscripts indicating the two sites involved), defined as

Xilan ;) = |a —q; — a1), (C1)
where ¢gi,q; € {0,1,...,d — 1} label single-site basis
states. All arithmetic here is to be interpreted mod d. Then,
SWAP; = ‘Xg‘gﬁ‘Xg:
|9i-4;) —> —ai) = lg5,—4 — a)) = |97, 1)

(C2)

\q;-, —qj

The construction of the add-invert gate involves the single-
site Fourier transform (FT) gate,

F1ylg;) = Zez’"“f"ﬂp} (C3)
f =
and the CZ gate,
Cz;|gi.q;) = €497 q;. q5). (C4)

One can directly confirm that Zj = FT;CZ; FT; [71].

We need to express this procedure in terms of a Hamil-
tonian H(f) € H;. The only interaction required is for
implementation of the CZ gate. Defining the local operator
Z; = diag(0,1,...,d — 1), it is simply a Z;Z; interaction.
In order to respect the constraint on link / that ||H)|| < J;
(note that ||Z; || =d — 1), we set

Ji

7 I)ZZI 1Z;.

(©5)

—

The CZz gate on link / then amounts to applying interac-
tion H; for time 2w (d — 1)2/dJ; (and three such gates are
needed per SWAP gate). As for the FT gates, since arbitrary
local terms are allowed in the family H; (see Ref. [56]),
each amounts to applying a local field for some fixed time.
The total run time required to effect state transfer from site
0 to r is therefore (not including the O(#) run time from all
FT gates)

I — 6m(d —1)? 1
d — J,

(Co)
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APPENDIX D: SOME PROBABILISTIC TOOLS

Here, we summarize some of the mathematical tools
from probability theory needed in Sec. V. Far more detail
can be found in textbooks on the subject, such as Refs.
[73,74] (including derivations of the following, which we
do not present here).

To begin, keep in mind that the fundamental objects in
probability theory are subsets of the set of all possible out-
comes, called “events,” together with a function Pr that
maps such subsets to the interval [0, 1]. Oftentimes, not
all subsets can be included in the domain of Pr, and Pr
must obey certain natural properties, but we do not dwell
on these here. The important thing to note is simply that
we can perform all of the usual set-theoretic operations on
events, such as the union or intersection, and many of the
basic tools in probability theory involve relating the values
of Pr with respect to those operations.

Our first tool is “countable subadditivity” (also known
as the “union bound”): for any countable (potentially
infinite) collection of events {E,},

(D1)

Pr [U Ei| < Z‘ Pr{E,].

We primarily use Eq. (D1) after establishing that Pr[£,] =
0 for all —it then follows that Pr[U,E,] = 0. In words,
if each event E, separately has probability zero, then the
probability that any of them occur (even if there are a
countably infinite number) is also zero.

The next tool is the “continuity” of probabilities. Sup-
pose that {4,} is an “increasing” set of events, in that
Ay € 4; € -+, and similarly that {B,} is a “decreasing”
set of events, in that By © B3 D - - .. We then have that

Pr I:UA{| = lim Pr[4,], Pr [ﬂ B,] = lim Pr[B,].
(D2)

For our purposes, we have events either of the form 4, =

“the event that E,- occurs for all ¥ > r,” or B, = “the event

that E,» occurs for some ¥ > r.” In terms of set-theoretic
operations, these are given by

4,=(\E. B = UE,:.

r=r H=r

(D3)

Note that {4,} is an increasing set of events and {B,} is
a decreasing set. We specifically want to determine the
probability that some A, occurs and the probability that
all B, occur. The former event is denoted “E, a.a.,” with
a.a. as an abbreviation for “almost always,” and the latter
event is denoted “E, i.0.,” with i.0. as an abbreviation for

“infinitely often.” These events are given by

E,aa. = U ﬂE,:, Eyio. = ﬂ UE,:.

roP=r roper

(D4)

Note that E,» a.a. and E i.0. can be described in words as
“there exists an r past which all E+ occur” and “past every
r there is some E, that occurs,” i.e., “E, occurs almost
always” and “E, occurs infinitely often,” respectively, in
exactly the same manner as we have used in discussing LR
bounds. Continuity—Eq. (D2)—allows us to express the
probabilities of these events as

Pr[E;aa.] = lim Pr

F—00

0

Pr[E, i.o.] = lim Pr LU E,.»j| : (D5)

>r

Lastly, we need the “first Borel-Cantelli lemma,” which
says that if a collection of events {E,} has probabilities
such that ) ° Pr[E,] is finite, then the probability is 1 that
only a finite number of the events occur:

Y P[E] <00 — Pi[Eio]=0. (D6

In particular, suppose that we have a sequence of random
variables {X,} and we want to prove that it converges to
zero with probability 1. The definition of {X,} not con-
verging to zero is that there exist some € > 0 such that for
every R, |X,| > € for some r > R. In other words, |X,| > €
1.0. for some € > 0. It suffices to consider only rational
€ > 0 and thus, by countable subadditivity, we only need
to prove that Pr[|X,| > € i.0.] = 0 for each individual e.
By the Borel-Cantelli lemma, it further suffices (but need
not be necessary) to prove that ) " Pr[|X;| > €] is finite. If
each individual term Pr[|X,| > €] can be calculated or at
least bounded directly, this is a very useful line of attack.
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Strictly speaking, past works have derived bounds that hold
for every single site (i.e., R = 0). Here, we do not differen-
tiate between “almost-always” and such “always” bounds
(although one arguably could), since our focus is on asymp-
totic behavior. Given an a.a. bound with R > 0, one simple
way to extend it to all sites is to use the trivial bound
1046, B/l < 2l 4ol l|B/|| for r < R. If the couplings {J;} are
bounded by some Jmax, another way is to use the conven-
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