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Various realizations of Kitaev’s surface code perform surprisingly well for biased Pauli noise. Attracted
by these potential gains, we study the performance of Clifford-deformed surface codes (CDSCs) obtained
from the surface code by the application of single-qubit Clifford operators. We first analyze CDSCs on
the 3 × 3 square lattice and find that, depending on the noise bias, their logical error rates can differ
by orders of magnitude. To explain the observed behavior, we introduce the effective distance d′, which
reduces to the standard distance for unbiased noise. To study CDSC performance in the thermodynamic
limit, we focus on random CDSCs. Using the statistical mechanical mapping for quantum codes, we
uncover a phase diagram that describes random CDSC families with 50% threshold at infinite bias. In
the high-threshold region, we further demonstrate that typical code realizations outperform the thresholds
and subthreshold logical error rates, at finite bias, of the best-known translationally invariant codes. We
demonstrate the practical relevance of these random CDSC families by constructing a translation-invariant
CDSC belonging to a high-performance random CDSC family. We also show that our translation-invariant
CDSC outperforms well-known translation-invariant CDSCs, such as the XZZX and XY codes.
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I. INTRODUCTION

Optimization of quantum error-correcting (QEC) codes
for realistic noise models is one of the essential steps
towards reducing overhead in fault-tolerant quantum com-
puting. Among QEC codes, Kitaev’s surface code [1–3]
and a multitude of its variants [4–8] are perhaps the most
experimentally feasible as they can be implemented in
two-dimensional architectures with only nearest-neighbor
interactions and offer reasonably high circuit noise thresh-
olds. Realistic noise, however, is likely to exhibit bias
toward one type of error. For example, biased noise can
be found or engineered in the architectures based on
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superconducting qubits [9], trapped ions [10], and spin
qubits [11,12]. Furthermore, noise bias can be preserved
through careful engineering of fault-tolerant protocols or
quantum gates [13–15].

Bias in realistic noise can be beneficial from the per-
spective of QEC. Two prominent examples are the XY
and XZZX surface codes [6,8]. While both are Clifford
equivalent to the CSS surface code, they both significantly
outperform the latter in terms of the threshold and sub-
threshold scaling of the logical error rate for noise biased
towards Pauli-Z errors [6–8,16,17].

Inspired by these significant improvements, we provide
a thorough study of the performance of surface codes
against biased noise. For concreteness, we focus on L × L
square lattices, where L is odd, with open boundary con-
ditions; see Fig. 1. We consider stabilizer codes that are
obtained from the surface code by the application of single-
qubit Clifford operators. We collectively refer to such
codes as Clifford-deformed surface codes (CDSCs).

We assume that every qubit is affected by independent
and identically distributed (IID) biased Pauli noise with
physical error rate p = pX + pY + pZ and bias η ≥ 0.5,
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FIG. 1. A Clifford-deformed surface code on the 5 × 5 square
lattice with open boundary conditions. Qubits are on vertices and,
in the absence of Clifford deformations, X and Z stabilizer gen-
erators are associated with gray and white faces, respectively. To
modify the stabilizer group, we apply single-qubit Clifford oper-
ations H and H

√
ZH to blue and red qubits, respectively. We

depict two stabilizer generators.

where pX = pY = pZ/(2η) are the Pauli error rates. Then,
for a given error rate and bias, we seek CDSCs with opti-
mal performance in terms of either the logical error rate or
the code-capacity threshold.

For infinite bias, we explore the threshold phase dia-
gram for random CDSCs and conjecture the existence of
a connected region, where the corresponding codes have
a threshold of 50%. For a moderate noise bias η ∼ 100,
we numerically find that typical random CDSCs in the
high-threshold region can outperform the thresholds and
subthreshold logical error rates of the best known transla-
tionally invariant codes, such as the XY and XZZX surface
codes. We use the statistical-mechanical description of
error-correction thresholds [3,18] to optimize the QEC
performance while also uncovering novel types of corre-
lated percolation problems [19–21] and phase transitions in
disordered realizations of the eight-vertex model [22,23].
More generally, one can consider time-dependent constant-
depth Clifford circuits to improve the QEC performance,
which shares similarities with other dynamically generated
QEC codes [24–27] arising in the context of random cir-
cuits, measurement-induced phase transitions, and Floquet
dynamics.

II. CLIFFORD DEFORMATIONS

Given any stabilizer code [28], we can modify its sta-
bilizer group by applying arbitrary single-qubit Clifford
operators or other low-depth circuits [29]. Although the
resulting code is topologically equivalent to the original
code, the QEC performance can be improved, especially
for biased Pauli noise. This is exemplified by the XZZX
surface code [8] that is obtained from the CSS surface code
by applying the Hadamard gate H to every other qubit.

We are interested in the QEC performance of the CDSCs
against Pauli noise biased towards Pauli Z errors. Since
we assume a symmetry between Pauli X and Y errors, i.e.,
pX = pY, it is sufficient to consider Clifford deformations

whose action (by conjugation) on the single-qubit Pauli
operators is either trivial, or X ↔ Z, or Y ↔ Z. Such
Clifford deformations are tensor products of the identity
operator I , H , and HYZ = H

√
ZH .

A. Small CDSCs and effective distances

We now study a small surface code and demonstrate that
there is a wide range of possible Clifford deformations and
associated code performances. For the representative val-
ues of the physical error rate p = 10−2 and bias η = 500
we compare the performance (measured in terms of the
logical error rate) of CDSCs on the 3 × 3 square lattice;
Fig. 2(a). There are 39 = 19 683 CDSCs to consider [30].
Also, for a selection of codes we study their performance
as a function of bias η for fixed error rate p = 10−2;
Fig. 2(b). For the depolarizing noise, that is a special case
of Pauli biased noise with η = 0.5, all the CDSCs have
the same performance, whereas in the regime of the large
noise bias, i.e., η � 106, the XY surface code provides a
clear advantage over other CDSCs, including the CSS and
XZZX surface codes. To find the logical error rate we use
the maximum-likelihood decoder.

Although all CDSCs on the 3 × 3 square lattice have
distance three, their logical error rates can be vastly differ-
ent. Moreover, the relative performance of codes changes
with the noise bias; see Fig. 2(b). To explain this, we intro-
duce notions of the effective distance d′ and half-distance
t′ of a QEC code for the IID Pauli noise with error rate p

XZZX
CSS

C1

C2
XY

CSS
XZZX

C1

C2

XY

3;1 3;1
3;1 3;1
5;2.65 5;2

4.65;2 6.66;3

4.65;2 6.66;4

(a)

(b)

FIG. 2. (a) Comparison of the logical error rate plogical for all
possible CDSCs on the 3 × 3 square lattice against biased Pauli
noise with p = 0.01 and η = 500. (b) Logical error rate plogical
as a function of the noise bias η for selected CDSCs and fixed
p = 0.01. Effective distance d′ and half-distance t′ (up to three
leading digits) are shown in the table. For a given η, codes with
the highest values d′; t′ (colored in blue) perform best.
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and bias η as follows:

d′ = N−1 log(plog(1 − p)−n), (1)

t′ = N−1 log(pcor(1 − p)−n). (2)

Here N = log(pη(1 + η)−1(1 − p)−1) is a normalization
factor, n is the number of qubits, plog and pcor are the prob-
abilities of the most likely Pauli operator that, respectively,
implements a nontrivial logical operator and is noncor-
rectable. By definition, t′ ≥ d′/2. Also, for the depolar-
izing noise, we have plog = (p/3)d(1 − p)n−d and pcor =
(p/3)t(1 − p)n−t, where d is the code distance and t =
�(d − 1)/2�, resulting in d′ = d and t′ = t.

The quantities d′ and t′, roughly speaking, capture log
probabilities of the most likely nontrivial logical opera-
tor and noncorrectable error, respectively. Since d′ and t′
depend on the noise bias η, they constitute a better proxy
to the logical error rate than standard code distance d. Note
that this proxy is valid whenever p is low and one can
ignore entropic factors. Knowing d′ and t′ allows us to
predict which CDSCs on the 3 × 3 square lattice perform
best for given p and η; see Fig. 2(b). Note that we use d′
and t′ as alternative measures of code performance for our
analysis of small codes. However, they are not efficiently
calculable for large system sizes that we consider in the
next section.

III. RANDOM CDSCS

We now consider the Clifford-deformed surface codes
in the thermodynamic limit. In the thermodynamic limit,
it is inefficient to study all possible Clifford deformations,
even when the deformations are limited to single-qubit
operations I , H , and HYZ . Instead, we construct random
realizations of the CDSC by selecting, independently for
every qubit, I , H , or HYZ with probabilities 1 − �XZ −
�YZ , �XZ , and �YZ , respectively. As discussed in Sec. II,
we consider symmetric Z bias (pX = pY) and in this case,
it is sufficient to consider these single-qubit Clifford oper-
ations to find inequivalent code performances of CDSCs.
Given �XZ and �YZ , we refer to the resulting family of
CDSCs as the (�XZ , �YZ) random CDSC. Our goal is to
understand the performance of a typical realization of the
(�XZ , �YZ) random CDSC [31].

To perform a systematic study of CDSC performance in
the thermodynamic limit, we now explore the phase space
(�XZ , �YZ) of all random CDSCs, where, by definition,
�XZ , �YZ ≥ 0 and �XZ + �YZ ≤ 1; see Fig. 3(a). The
(0, 0) and (0, 1) random CDSCs correspond to the CSS
and XY surface codes, respectively. Due to the code
and noise symmetries, the (�XZ , 0) and (1 − �XZ , 0) ran-
dom CDSCs are equivalent. We choose the (0, 0) random
CDSC to be the reference code to which we apply Clifford
deformations. Note that the XZZX code is a realization of
the (0.5, 0) random CDSC.

0.5 1.00

0.5

1.0

(a) (b)

FIG. 3. (a) Phase diagram for random CDSCs at infinite bias.
Typical realizations of random CDSCs in the blue region of the
(�XZ , �YZ) phase space have a 50% threshold. The black and
orange boundaries enclose regions where the sX and sZ sub-
lattices order; in the region enclosed by purple boundaries we
expect the system to order due to the JY constraints. (b) Random-
bond Ising model associated with a CDSC; the Hamiltonian is
obtained by applying the deformations that define the CDSC to
the Hamiltonian in Eq. (3). We highlight the clusters (c = 0, 1, 2)
used in the approximate analytical method to estimate thresholds
for the XY code [33]. Spins circled in green are summed over
while others are fixed.

A. Infinite bias phase diagram for random CDSCs

To evaluate the performance of random CDSCs, we first
study their behavior at infinite bias. In particular, using the
principles of statistical mechanics, we conjecture the exis-
tence of a region in the (�XZ , �YZ) phase space where
the corresponding random CDSCs have a 50% thresh-
old; see Fig. 3(a). We support this conjecture via tensor
network simulations for random CDSCs by applying a
straightforward adaptation of the tensor network decoder
by Bravyi et al. [32], which efficiently approximates the
maximum-likelihood decoder [33].

To understand the (�XZ , �YZ) phase space, we invoke
the connection between thresholds of QEC codes and
phase transitions in statistical-mechanical classical spin
models [3,18,34–38]. The key idea behind this statistical-
mechanical mapping is that a certain partition function
of the disordered statistical-mechanical model gives the
probability of a logical class of errors. Due to this, the
mapping relates the optimal error-correction threshold of
CDSCs to a critical point along the Nishimori line [39],
which is a symmetric submanifold in the parameter space,
for a two-dimensional random-bond Ising model (RBIM)
[40]. For the CSS surface code, which corresponds to the
point (0, 0), this RBIM is given by the eight-vertex model
[22,23] whose disordered Hamiltonian (neglecting bound-
ary terms), contains the following two- and four-body
terms, i.e.,

HE = −
∑

τXJX +τY JY +τZJZ ,

(3)
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where sX
∗ , sZ

∗ = ±1 are Ising spins associated with every
X and Z stabilizer generator of the surface code, and the
summation is over locations of qubits, i.e., all and
crossings; see Fig. 3(b). E is a Pauli error for the CSS code
that determines the quenched disorder τP = ±1 via EP =
τPPE for every single-qubit Pauli P = X , Y, Z. Moreover,

JP = 1
4β

log p2
P(1−p)

pX pYpZ
, where β is the inverse temperature,

is the coupling strength along the Nishimori line. For
the CDSC, depending on the deformation H or HYZ , the
relevant Hamiltonian is obtained from Eq. (3) by permut-
ing the corresponding coupling constants τX JX ↔ τZJZ or
τYJY ↔ τZJZ , respectively.

Since for η = ∞ there are only Pauli Z errors, the dis-
order for the coupling constant JZ in Eq. (3) is fixed, i.e.,
τZ = 1 and JZ = ∞. Thus, the product of any spins that are
coupled by JZ has to be 1. Moreover, since pX = pY = 0,
JX = JY. The constraints are specified, according to the
Clifford deformation, as follows:

I : = 1, H : = 1, HY Z : = 1,
(4)

which we call JZ , JX , and JY constraints, respectively. Note
that, in the statistical-mechanical mapping, the stabilizers
that are violated due to a Z error on a qubit correspond
to the spins involved in the constraint associated with that
qubit.

We first focus on the point (0.5, 0), which is an extreme
point of the 50% threshold region. To understand it, we
start from the (0, 0) point and move toward (0.5, 0) along
the �XZ axis by applying H deformations. Since H per-
mutes the coupling constants τX JX ↔ τZJZ , we get a
correlated bond percolation problem for the JX and JZ con-
straints on the sZ and sX sublattices, respectively. In this
description, the occupation of a bond on a sublattice cor-
responds to satisfying one of the first two constraints in
Eq. (1) on the spins connecting the bond. To explain this
concretely, we first state the regular bond percolation prob-
lem on the square lattice. Each bond on the square lattice
is assigned a probability of occupancy. If this probability
of occupying a bond is less than the critical value of 0.5,
the probability of finding a macroscopic connected clus-
ter of occupied bonds is zero in the thermodynamic limit
of infinite system size. In our case, we have two square
sublattices that are dual to each other [see Fig. 3(b)] and
we are interested in the probability of a macroscopic con-
nected cluster of occupied bonds on both of these square
sublattices. The Hadamard H gate turns an occupied bond
on one lattice to an occupied bond on the dual lattice asso-
ciated with the same qubit. Hence, the bond percolation
problem on the two dual square sublattices is correlated.

For �XZ < 0.5, i.e., below the critical point for the bond
percolation problem, the JX constraints do not percolate.
However for �XZ = 0.5, both the JZ and JX constraints

exhibit critical fluctuations. This is indicative of a second-
order phase transition. Generally speaking, as we approach
a second-order phase transition, the correlations transition
from exponential to power-law decays and right at the crit-
ical point, we get scale-invariant fluctuations extending
over the full system. For our case, these critical fluctu-
ations manifest in the probability of finding a connected
cluster of weight A of JX and JZ constraints on the sZ

and sX sublattices, respectively. This probability scales as
O(1/Aτ ), where τ = 187/91 is the Fisher exponent, while
the weight of the largest cluster in the system scales as La

for a = 2/(τ − 1) [19]. There is also an important relation
between the perimeter of the critical clusters P and their
area A ≈ P4a/7 [41].

We present a heuristic argument that these criti-
cal clusters of constraints (that correspond to infinite
strength couplings) are sufficient to order the entire sys-
tem. Assume we are in the ordered phase and take a
droplet, i.e., a simply connected region of perimeter �

and area A� ≥ �. Fixing ε ∈ (0, 0.75), the probability ��

that this droplet has an overlap with at least one crit-
ical cluster of perimeter P ≥ O(�1+ε) scales as �� ≈
A�/�

(1+ε)4a(τ−2)/7 ≥ O(�1−(1+ε)5/84). Thus, �� converges
to one with increasing �. Due to the spin constraints,
reversing the spins in such a droplet also requires flipping
all the spins in the overlapping critical clusters, thereby,
leading to an energetic cost, β�HE ≥ O(�1+ε) for typical
disorder realizations along the Nishimori line; since this
is a 2D RBIM, the energy cost scales with the perime-
ter and for the overlapping clusters, it is dominated by
their combined perimeter instead of the droplet perime-
ter �. Applying Peierls’ argument [42], the energetic cost
of flipping the spins in these droplets will typically dom-
inate the entropic contributions to the free energy arising
from the number of droplets N� < 4� with perimeter �. As a
result, at any finite temperature, droplets with large perime-
ters will be prevented from fluctuating (flipping the spins),
because of the critical clusters of spin constraints. Thus,
the ordered phase along the Nishimori line is stable against
the proliferation of macroscopic droplets of area O(L2) for
any finite temperature as L → ∞. Based on these argu-
ments, we conjecture that typical (0.5, 0) code realizations
remain ordered at any finite temperature along the Nishi-
mori line, which implies that the (0.5, 0) random CDSC
threshold is 50%. Numerical simulations confirm our
predictions [33].

We note that connected clusters of constraints that span
the lattice imply the existence of a logical operator made
of Pauli Z’s supported on the same qubits as the cluster
constraints. In other words, the connected critical clusters
identify nonlocal operators that commute with all local
stabilizer terms. In particular, the critical percolation clus-
ters on one of the two (dual) sublattices corresponds to
the Z-logical operator. In two dimensions, numerical esti-
mates of the typical length of the minimum spanning path
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indicate the scaling O(L1.1) [19]. This implies that the Z
distance (defined as the weight of the minimum-weight
logical operator comprising Pauli Z’s) for the (0.5, 0)

CDSC scales as O(L1.1).
To explain the region �YZ ≥ 0.5, we recall that the (0, 1)

CDSC is the XY code which has a 50% threshold [7]
and its associated RBIM has JY constraints on all qubit
locations. Thus, for the XY code, the free energy cost of
insertion of a disorder domain wall corresponding to a log-
ical operator comprising Pauli Z’s in the RBIM diverges
with L for any finite temperature. The XY code is the limit-
ing case of �YZ = 1 in which the cluster of JY constraints
spans the entire lattice. More generally, we expect that a
macroscopic cluster of JY constraints is sufficient to order
the entire system. Again, using the result of square lattice
bond percolation having a critical point of 0.5, we expect
macroscopic clusters of JY constraints to occur for �YZ ≥
0.5. Furthermore, we argue that the macroscopic connected
cluster of JY constraints in the phase space region defined
by �YZ ≥ 0.5 is sufficient to order the system.

In the region defined by boundaries �XZ + �YZ > 0.5
and �XZ , �YZ < 0.5, we cannot focus on the JY constraints
or JX /JZ constraints alone. In fact, in this region, the JY
constraints combine with the JX and JZ constraints to form
a macroscopic cluster of constraints on the sZ and sX sub-
lattices, respectively. We conjecture that such a “mixed”
cluster can also stabilize the ordered phase, i.e., order-
ing via these mixed macroscopic clusters could explain
the interior of the phase diagram. An ordering arising
from such a mixed cluster has not been studied in the
field of percolation theory and arises especially for our
problem of CDSCs under biased noise. We leave detailed
investigations of this phenomenon to future work.

B. Finite-bias performance of random CDSCs

Moving away from infinite bias, we want to find
(�XZ , �YZ) random CDSCs that perform best for a given
error rate p and bias η. As a proxy to the logical
error rate, we use the effective distance d′ and half-
distance t′. For instance, for the XY surface code d′(L) =
L − N−1 log(2η) in the regime of low p and moderate
η [43]. Since we do not know efficient methods of cal-
culating d′ and t′ for an arbitrary CDSC, we consider
small linear system sizes L and study the effective distance
increment �d′(L) = d′(L + 2) − d′(L) to evaluate code
performance. We expect �d′(L) to be indicative of random
CDSCs with good subthreshold scaling; see Fig. 4(a).

Using tensor-network simulations, we find that the
(0.25, 0.5) random CDSC, which is one of the best per-
forming code families according to �d′(3), outperforms
the XY and XZZX surface codes in terms of subthreshold
scaling of the logical error rate; see Fig. 4(b) and the Sup-
plemental Material [33]. Moreover, its threshold exceeds
the hashing bound and the thresholds of the XZZX and XY
codes at a moderate bias of η = 100; see Fig. 4(c).

(a)

(b)

(c)

XZZX 0.16(3) 3.7(3)
XY* 0.0095 0.0003

(0.25,0.5) 1.53(4) 3.77(5)
(0.5,0) 5.2(3) 3.2(2)

th- HB

HB

(%)

*via cluster method [Fig. 3(b)]

FIG. 4. (a) Effective distance increment �d′(L = 3) for ran-
dom CDSCs and p = 0.02, where we averaged over 2000 real-
izations for each point. (Left) For η = 100, the highest value is
obtained for the (0.25, 0.5) random CDSC. (Right) �d′(3) as a
function of η. For large η, �d′(3) for the XY surface code starts
to increase with η (which is consistent with the Z distance of the
XY surface code being L2 for infinite bias [7]) and exceeds �d′(3)

for the (0.25, 0.5) random CDSC. (b) Subthreshold logical error
rates plogical of random CDSCs on the L × L square lattice for
p = 0.2 and η = 100. (c) Thresholds pth for the (0.25, 0.5) and
(0.5, 0) random CDSCs and hashing bound pHB as functions of
η. The difference pth − pHB is tabulated in percentage for some
codes and biases.

We remark that the statistical-mechanical mapping for
the XY surface code without disorder is self-dual when-
ever pX = pY. Hence, one can use the cluster methods
[44,45] with the clusters in Fig. 3(b) to estimate thresh-
olds at any noise bias η. We describe the method in the
Supplemental Material [30] and show the results for two
biases in Fig. 4(c). Extending these methods to the non-
self-dual regimes at a finite bias (which would apply to
other CDSCs) remains an outstanding challenge.

IV. TRANSLATION-INVARIANT CODES FROM
RANDOM CDSC FAMILIES

Random CDSC families, investigated in the previous
section provide guidance on designing high-performance
translation-invariant CDSC. In particular, they suggest
ratios of Hadamard H and H

√
ZH that could be applied

in the unit cell associated with a translation-invariant Clif-
ford deformation. In Sec. III, we found that the (0.25, 0.5)

random CDSC family performs the best among the ran-
dom CDSC families in terms of subthreshold failure rates.
Hence, as an example, we consider a translation-invariant

010347-5
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FIG. 5. A translation-invariant CDSC belonging to the
(2/9,4/9) CDSC family. The unit cell of the deformation is high-
lighted using a square patch. Within the unit cell, the number
of Hs applied (qubits highlighted in blue) is half the number of
H

√
ZH ’s (qubits highlighted in red).

realization of random CDSC family (2/9, 4/9), which is
close in the (�XZ , �YZ) phase space to the (0.25, 0.5) fam-
ily. We choose this family (2/9, 4/9) instead of (0.25, 0.5)

since we consider surface codes on L × L square lattices,
where L is odd.

We investigate the performance of a particular
translation-invariant code in this family that is illustrated in
Fig. 5 for size L = 9. The subthreshold logical error rates,
using the BSV decoder, at physical error rate p = 0.2 and
bias η = 100 are shown in Fig. 6 (top). The logical error
rates for the XZZX code, XY code, and the random CDSC
family (0.25, 0.5) (average) are shown for comparison. It
is interesting to note that this translation-invariant code not
only beats the performance of XZZX and XY codes but
also beats the average performance of the optimal random
CDSC family (0.25, 0.5). Thus, this translation-invariant
code does not yield the typical performance of the (2/9,4/9)
random CDSC family, which typically underperforms the
(0.25,0.5) random CDSC family. In general, it is possi-
ble to design codes in a family that are atypical in code
performance.

We find the BSV decoder thresholds of this code to be
close to those of the (0.25, 0.5) CDSC family and track the
Hashing bounds as shown in Fig. 6 (bottom). The detailed
plots of logical error rate plogical versus physical error rate
p and finite-size scaling at different biases η are shown in
Fig. 14 in the Appendix.

V. DISCUSSION

In this work, we introduced the concept of (ran-
dom) Clifford deformations of QEC codes and used
it to construct CDSCs. We observed that for Pauli
noise with finite bias η, random CDSCs over a broad
range of parameters outperform carefully constructed

HB

FIG. 6. Top: subthreshold logical error rates plogical of the
translation-invariant (TI) code in the (2/9,4/9) CDSC family (see
Fig. 5) on the L × L square lattice for p = 0.2 and η = 100. The
subthreshold logical error rates for the XZZX code and the XY
code are shown for comparison. Bottom: thresholds pth for the
TI code and the hashing bound pHB as functions of bias η.

translationally invariant codes, such as the XY and XZZX
surface codes. Thus, the choice of Clifford deformation
is an important optimization parameter in QEC that goes
beyond the choice of the lattice and its boundaries. We
expect that exploring spatially nonuniform Clifford defor-
mations, quasiperiodic, or translation invariant ones with
bigger unit cells will lead to high-performing QEC codes
under biased noise. As an example, we provided an explicit
derandomized version of one of our high-performance ran-
dom CDSC family and showed that the high performance
is preserved.

To leverage the benefits of CDSCs into practical univer-
sal computation, bias-preserving syndrome measurement
circuits, and fault-tolerant logical gates need to be found.
The statistical mechanics approach to QEC code opti-
mization pursued here should yield similar benefits in the
fault-tolerant setting. Using equivalence relations under
global Pauli permutations, our results establish that the
(0.5, �YZ) random CDSCs have a 50% threshold for noise
infinitely biased towards any of Pauli X , Y, or Z errors
(similar to the XZZX surface code). We expect such ran-
dom CDSCs to have favorable performance when the
bias direction is nonuniform in space while keeping the
bias magnitude large, i.e., different qubits can be either X
biased, Y biased, or Z biased. This is more clear if we work
in the Heisenberg picture, in which we can consider the
Clifford deformation on the noise instead of the stabilizers.

010347-6



CLIFFORD-DEFORMED SURFACE. . . PRX QUANTUM 5, 010347 (2024)

Our phase diagram then illustrates spatially nonuniform
configurations of noise that yield high performance from
the CSS surface code. Now, consider a random CDSC fam-
ily, let us say (0.25,0.5), and a noise model with large
bias and spatially nonuniform bias directions, instead of
the uniform Z-biased noise. In the Heisenberg picture, this
effectively yields a spatially nonuniform noise model act-
ing on the CSS code, that is different from the one given by
the parameters (0.25,0.5); in other words, this leads to new
effective parameters (�eff

XZ , �eff
YZ). For a wide class of spa-

tially nonuniform configurations of bias directions, these
new effective parameters (�eff

XZ , �eff
YZ) are expected to lie

in our high-threshold phase and yield high performance.
Overall, CDSCs may provide an attractive approach to
building scalable quantum computers.
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APPENDIX A: ADAPTATION OF THE BSV
DECODER AND SIMULATIONS

The Bravyi-Suchara-Vargo (BSV) decoder [32] is
an efficient approximation of the optimal maximum-
likelihood (ML) decoder [3]. The ML decoder achieves the
same error threshold as that obtained from the critical point
of the statistical-mechanical mapping of error correction.
The BSV decoder achieves a value close to it. Given a par-
ticular syndrome configuration, the goal is to calculate the
probabilities of logical error classes and provide a correc-
tion operator based on the logical class with the maximum
probability. Exact evaluation of the logical error class
probabilities is, in general, inefficient. The BSV decoder
uses an algorithm that efficiently approximates the logical
error-class probabilities through tensor-network contrac-
tions. The size of the tensors being contracted is reduced
through Schmidt decomposition and retaining only the χ

largest Schmidt values, i.e., χ is the bond dimension of the
tensors. For a modest value of χ , the method converges

X

Y X X
X Z

FIG. 7. Example to describe the modification in the evaluation
of logical error class probability due to Clifford deformations.
Pauli error is shown in green letters. The goal is to evaluate the
probability of the product of the error times the marked stabi-
lizer; this product appears as a term in the logical error class
probability evaluated via tensor network contraction. Without
the Clifford deformations, error times the marked stabilizer gives
two X operators and one Z operator resulting in a probability
p2

X pZ(1 − p)L2−3 where p is the total error rate and L2 is the num-
ber of qubits. Because of Hadamard H (blue) and HYZ = H

√
ZH

(red) Clifford deformations acting on two qubits of the marked
stabilizer, we instead get three X operators resulting in proba-
bility pX p2

Z(1 − p)L2−3. Equivalently, we can modify the local
noise model on the qubits, according to the Clifford deformations
while keeping the stabilizers the same as the CSS surface code
to get the same logical error class probability as with deformed
stabilizers and a spatially uniform Z bias model.

for a range of noise models and boundary conditions of the
surface code.

Our numerical implementation uses a few minor modi-
fications to the BSV decoder for the standard form of the
surface code with a uniform noise model. To make these
modifications, we keep the Heisenberg picture in mind,
i.e., we keep the standard form of the stabilizers but have
a spatially varying noise model depending on the Clifford
deformations that are applied to the qubits. In the Heisen-
berg picture, the tensor redefinitions can be understood as
having a different local noise model on each qubit leading
to the redefinition of the associated tensor. For the random
code with a given ratio of Clifford deformations �XZ and
�YZ , we modify the noise model on each tensor associated
with a qubit according to the Pauli permutation acting on
it. For example, a local noise model given by (pX , pY, pZ)

maps to (pZ , pY, pX ) under the Hadamard deformation H
acting on the qubit. We illustrate this for a particular code
realization in Fig. 7.

APPENDIX B: CLUSTER METHOD FOR
MAXIMUM-LIKELIHOOD THRESHOLDS

In this Appendix, we describe the approximate
analytical method for calculating the critical points of
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d

FIG. 8. Top: cluster-based approximations to the finite-bias
threshold track the Hashing bound. c = 0 approximation is
exactly the same as the hashing bound, i.e., pth,c=0 = pHB and
hence, not shown separately. c = 1, 2 approximations are shown
using green and red markers with legends c1, c2, respectively.
Bottom: the difference between the threshold values from c =
1, 2 cluster approximations and the hashing bound, i.e., pth − pHB
is shown.

random-bond Ising models (RBIMs) that are self-dual in
the absence of disorder [44,45]. We use this approach
to estimate the optimal thresholds for the XY code. The

partition function of the RBIM is given by

Z =
∑

{si}

∏

{i}
LBF({si}, {τPJP}) (B1)

where LBF({si}, {τPJP}) is the local Boltzmann factor
(LBF) involving spins {si} at positions {i} in a local neigh-
borhood, interacting with coupling coefficients JP that
have sign disorder τP. The statistical mechanical model
in Eq. (3) of the main text is the so-called eight-vertex
model. The Hamiltonian (neglecting boundary terms) can
be written more explicitly as

H =−
∑

τXJX + τY JY + τZJZ

−
∑

τXJX + τY JY + τZJZ ,

(B2)

where sX
∗ and sZ

∗ are Ising spins associated with every X
and Z stabilizer generator of the surface code, and the sum-
mation is over all qubit locations, i.e., and crossings;
see Fig. 3(b) in the main text.

For the eight-vertex model, the LBF({si}, {τPJP}) at
inverse temperature β for the spins {si} on a is given by

LBF({si}, {τPJP}) =

exp

(
τXJX + τY JY + τZJZ

)
.

(B3)
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FIG. 9. Subthreshold logical error rates of various CDSCs on the L × L square lattice for p = 0.2 and η = 10, 100, 1000. The
performance of the XZZX code on a L × (L + 1) torus [8] using the MWPM decoder is included for comparison.
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The LBF associated with neighboring qubit of the under-
lying surface code is similar but with the colors switched,
i.e., . To average over the sign disorders τP in coupling
coefficients JP, we consider a replicated system with n
replicas, whose partition function we can write as follows:

Zn =
〈⎡

⎣
∑

{si}

∏

{i}
LBF({si}, {τPJP})

⎤

⎦
n〉

. (B4)

Here, 〈· · · 〉 denotes an average over configurations with
different disorder realizations. The LBF of the replicated
system can be written as follows,

LBF(n)({si}{JP}) =
〈⎡

⎣
∏

{i}
LBF({si}, {τPJP})

⎤

⎦
n〉

. (B5)

We now consider an n-binary Fourier transform Z
 of the
partition function of the replicated system as follows:

p l
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FIG. 10. Logical error rate plogical versus physical error rate p and finite size scaling for the (0.25,0.5) random CDSC at different
biases η and using bond dimension χ for the BSV decoder as indicated. Each data point for logical error rate plogical is averaged over
120 000 Monte Carlo runs.
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Z

n =

∑

{si}

∏

{i}
DBF(n)({si}, {JP}), (B6)

where si indicates the spins in a dual lattice and
DBF(n)({si}, n, {JP}) refers to the dual Boltzmann factor,
which is given by the n-binary Fourier transformation of
the LBF. When the coupling constants JP are such that
the model without quenched disorder is self-dual, then we

can equate the partition function and its n-binary Fourier
transformation to get a good approximation to the critical
point of the disordered statistical-mechanical model. This
critical point is an approximation of the ML threshold of
the error-correcting code. The product in the definition of
Zn and Z


n is hard to evaluate over the full lattice and can
be approximated by taking it over a cluster of spins. The
required cluster size increases for a better approximation
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FIG. 11. Logical error rate plogical versus physical error rate p and finite-size scaling for the (0.5,0) random CDSC at different biases
η and using bond dimension χ for the BSV decoder as indicated. Each data point for logical error rate plogical is averaged over 120 000
Monte Carlo runs.
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to the threshold. We show the clusters we used to get the
thresholds in Fig. 3(b) of the main text.

We consider the limit n → 1 to get a good approxi-
mation to the critical point of the disordered statistical-
mechanical model. In this limit, Zn = Z


n reduces to the

following equation:

〈
log

∑

{sf }

∏

cluster

LBF

〉
=

〈
log

∑

{sf }

∏

cluster

DBF

〉
, (B7)
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FIG. 12. (a) 50% threshold phase diagram. The random CDSCs whose code performance was studied numerically are marked (green
circles). (b) Performance of random CDSCs outside the blue region (50% thresholds) of the phase diagram. Logical error rate plogical
versus physical error rate p for the (�XZ , �YZ) random CDSCs at bias η = 108. Each data point is averaged over 60 000 Monte Carlo
runs of the BSV decoder with a bond dimension, χ = 56.
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FIG. 13. Performance of random CDSCs inside the blue region (50% thresholds) of the phase diagram. Logical error rate plogical
versus physical error rate p for the (�XZ , �YZ) random CDSCs at bias η = 108. Each data point is averaged over 60 000 Monte Carlo
runs of the BSV decoder with a bond dimension, χ = 56.
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where 〈· · · 〉 denotes the disorder average. The eight-vertex
model is self-dual when the coupling coefficients JX = JZ .
The LBF expressed in Eq. (B3) can be written as

LBF = exp
[
τX JX sZ

1 sZ
2 + τZJZsX

1 sX
2 + τX τZJYsX

1 sX
2 sZ

1 sZ
2

]
,

where sX denote spins corresponding to the X stabilizers
[at the ends of the black bond in Eq. (B3)] and sZ denote
spins corresponding to the Z stabilizers [at the ends of the
orange bond in Eq. (B3)]. Taking the Fourier transform,

we get the dual Boltzmann factor DBF as follows:

DBF = 1
2

exp
[
τX JX + τZJZ + τX τZJY

]

+ exp
[
τX JX − τZJZ − τX τZJY

]
sX

1 sX
2

+ exp
[

− τX JX + τZJZ − τX τZJY

]
sZ

1 sZ
2

+ exp
[

− τX JX − τZJZ + τX τZJY

]
sX

1 sX
2 sZ

1 sZ
2 .

FIG. 14. Logical error rate plogical versus physical error rate p and finite-size scaling for the translation-invariant (TI) code in the
CDSC family (2/9,4/9) at different biases η and using bond dimension χ = 56 for the BSV decoder as indicated. Each data point for
logical error rate plogical is averaged over 100 000 Monte Carlo runs.
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The c = 0 result is the same as the hashing bound pHB
curve in Fig. 8. We obtained the thresholds pth,c=1 and
pth,c=2 for the XY code using the larger clusters c = 1 and
c = 2 at different values of Z biases η. The difference of the
thresholds pth from the hashing bound pHB is also shown in
Fig. 8.

APPENDIX C: SUBTHRESHOLD SCALING PLOTS

In Fig. 9 below, we show the plots depicting subthresh-
old performance of the random CDSCs, the XY code
and the XZZX code at different biases η = 10, 100, 1000,
and physical error rate p = 0.2. We calculated the logi-
cal error rate from 200 000 Monte Carlo runs for code
distances L = 9, 13, 17, 21. Each Monte Carlo run for sim-
ulating error correction on the random CDSC is done
on a different realization consistent with the probabilities
(�XZ , �YZ). Error bars were calculated through jackknife
resampling. We also include the XZZX on a torus with
coprime dimensions L × (L + 1) using a minimum-weight
perfect-matching (MWPM) decoder for comparison since
it has been shown to have extraordinary subthreshold
performance as well. However, since the decoder, the num-
ber of qubits [L(L + 1) as opposed to L2 for the square
lattice codes] and the boundary conditions are all dif-
ferent, the comparison’s goal is only to justify that the
random CDSCs can beat the best known subthreshold
performance.

APPENDIX D: PERFORMANCE OF RANDOM
CDSCS AND TRANSLATION-INVARIANT CODE

REALIZATION

In Figs. 10 and 11 below, we plot the logical error rates
of the random CDSCs (0.25, 0.5) and (0.5, 0.0) at different
biases η = 10, 30, 100, 1000. The logical error rate for a
particular random CDSC is calculated using 120 000 such
runs using the BSV decoder for a set of physical error
rates near the threshold pc for code distances L ∈ {9, 13,
17, 21}. For these simulations, we used a large value of
the bond dimension, χ = 56. We observe that the decoder
converges close to the threshold for this bond dimension
at lower biases such as 0.5 and 10. However, close to the
threshold at biases of 100 and 1000, we do not observe
complete convergence. Hence, we confirm our threshold
values by checking the exponential decay of the logical
error rate at rates below the threshold.

In Fig. 14, we show the logical error rates of the
translation-invariant code from the random CDSC family
(2/9, 4/9) at moderate biases η = 10, 30, 100, 1000. We
observe that the thresholds track those of the random fam-
ilies discussed above; the threshold numbers are plotted in
Fig. 5(bottom) in the main text.

We also show the finite-size scaling plots where we
used the critical exponent method [34], i.e., the values of
thresholds were obtained from the logical error rate data

by doing finite-size scaling analysis, i.e., fitting the fail-
ure rate curves to the logical error rate plogical = A + Bx +
Cx2, where A, B, C, pth, and ν are fitting coefficients,
x = (p − pth)L1/ν and p is the error rate. Note that pth
and ν correspond to the threshold and critical exponent,
respectively.

APPENDIX E: RANDOM CDSCS AT LARGE BIAS
η = 108

We tested our conjectured phase diagram of 50% thresh-
olds for random CDSCs, shown in Fig. 3(a) of the main
text, via tensor-network numerics on a subset of random
CDSCs, marked using green circles in Fig. 12(a) below.

In Figs. 12(b) and 13, we show the logical error rates
versus physical error rates, obtained using the adaptation of
the BSV decoder, for some representative random CDSCs
characterized by (�XZ , �YZ) at a bias of η = 108. The
numerical results are consistent with the infinite-bias phase
diagram for random CDSCs.
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