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Abstract—Dynamic quantum resource theories study the
manipulation of quantum channels by means of a restricted
set of free superoperations. In this paper, we formulate general
dynamic resource theories using a “top-down” framework, and
we provide systematic characterizations for closed and convex
resource theories from both information-theoretic and operational
perspectives. Our results are summarized as follows. First, we
propose and investigate a branch of resource-induced measures
of uncertainty, called the free conditional min-entropy (FCME),
generalizing the conditional min-entropy and its dynamic extension
to scenarios where information processing is subject to variable
operational restriction. We provide a complete set of entropic
conditions in terms of the FCME for characterizing channel
convertibility via free superoperations in any closed and convex
resource theory. We also find that the resource global robustness
of channels can be equivalently cast as a mutual-information-like
quantity derived from the FCME, thereby offering the resource
global robustness an information-theoretic interpretation. Apart
from the entropic approach, we also study closed and convex
resource theories in the contexts of various operational tasks.
These tasks are formulated such that each of them induces a
complete set of operationally meaningful resource monotones, and
therefore they can be used to faithfully test free convertibility
between channels. We also systematically study the quantitative
relations between the operational advantage of channels in these
tasks and the resource robustness measures of channels. In
particular, we prove that every well-defined robustness-based
measure can be operationally interpreted as some kind of
advantage in a task called semiquantum partial preprocessing.
Ultimately, our results provide both entropic and operational
characterizations for general dynamic quantum resources with a
closed and convex structure.

I. INTRODUCTION

A quantum resource theory (QRT) is a framework to
systematically study one or more feature of quantum mechanics
[1], [2], [3]. For example, quantum entanglement is a powerful
property of multi-party quantum systems whose operational
utility can be formally captured within a resource theory [4],
[5]. A QRT takes the perspective of an experimenter who
wishes to perform some protocol or task in an operationally-
restricted environment. While there are “free” operations that
the experimenter can perform, their limitations prohibit the
experimenter from preparing certain objects. Such objects are
said to possess resource, whereas the objects prepared by the
allowed operations are similarly called “free”. In the example
of entanglement, the free operations are local operations

and classical communication (LOCC), and whatever quantum
objects cannot be generated by LOCC possesses entanglement.

A variety of other QRTs have been studied in the past few
years that characterize a wide range of quantum phenomena
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. Despite their physical differences, these phenomena have
a remarkably similar structure when viewed through the lens
of a resource theory. Resource measures can be defined in
analogous ways, and the allowed resource manipulations can
have a similar form across the different theories. This has
motivated researchers to study the general structure of QRTs,
independent of any specific physically-constrained scenario [1],
[19], [2], [20], [21], [22], [23], [24], [3], [25], [26], [27], [28],
[29], [30], [31], [32]. Through an axiomatic approach, one
can identify common structural features of different QRTs that
emerge after assuming a minimal set of physical properties.

One of the central questions in any resource theory is when
one object can be converted to another using the free operations
of the theory. In static resource theories, the underlying objects
are states (i.e. density operators), and the free operations are
certain completely positive trace-preserving (CPTP) maps (i.e.
channels) that transform density operators to density operators.
In dynamic resource theories [33], [34], [35], [36], [37], the
objects embodying resource are quantum channels themselves,
and the free operations consist of superchannels [38], [39],
which are devices that transform channels to channels. In fact,
every static QRT is a special case of a dynamic QRT since
every density matrix can be seen as a quantum channel with
a one-dimensional input. When one state or channel can be
transformed to another using the free operations, the former
is no less resourceful than the latter. This relationship can be
quantified using resource monotones, which are real-valued
functions that monotonically decrease under the free operations
of the theory. A complete set of resource monotones provide
both necessary and sufficient convertibility conditions: one
object can be freely converted to another if and only if the
first has a value no less than the second for all monotones
in the family. Recently, such complete monotones have been
obtained in general (closed and convex) resource theories of
states and measurements in GPTs [27] and in general (closed
and convex) dynamic QRTs [32]. However, in the dynamic
setting, the physical significance of the monotones in Ref. [32]
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was left unclear.

A. Summary of Results

Our main contribution to the problem in this paper is
two-fold. First, in Section V, we simplify the conditions of
free channel convertibility given in Ref. [32] and establish
information-theoretic interpretations for these conditions. We
arrive at these results by proposing a generalized entropic
quantity called the free conditional min-entropy (FCME), which
we develop in Section IV. The FCME can be viewed as
quantifying the uncertainty about a physical system from the
perspective of an experimenter whose operational capacity is
limited by a resource theory. Based on the free min-entropy, we
further provide an information-theoretic interpretation of the
resource global robustness of channels as a mutual-information-
like quantity in this generalized entropic sense. These results
reveals a new angle underpinning the inseparable relationship
between quantum resources and quantum information theory.

Second, we characterize general convex quantum resources
through new designs of operational tasks. We show in Sec-
tion VI that the maximum expected score the performer can
achieve constitutes a complete set of monotones with respect
to the channel Λ held by the performer. We investigate the
operational advantage the channel Λ brings, over when such
channel is absent, and show that such advantage is intimately
related to various resource robustness measures of Λ. These
results provide intuitive operational interpretations of the
resource monotones, and thus endow an abstract QRT with a
physical bearing.

II. PRELIMINARIES

We use subscripted Latin capitals, such as 𝐴0, 𝐴1, 𝐵0, etc.,
to label static quantum systems. Each static system represents
a quantum information carrier at a certain spot in spacetime.
Given a system 𝐴0, we use H𝐴0 to denote its associated space
of Hermitian operators, and H

𝐴0
+ ⊂ H𝐴0 the cone of positive-

semidefinite (in short, positive) operators therein. We use the
symbol # to denote the trivial static system, meaning the unique
system whose dimensionality equals 1. We write R ≔ H# and
R+ ≔ H#

+ to denote the sets of real and non-negative real
numbers respectively.

A quantum state in 𝐴0 is a positive operator 𝜌 ∈ H
𝐴0
+ with

a unit trace. We denote the set of states in 𝐴0 by D𝐴0 ⊂ H
𝐴0
+ ,

and the set of states in an arbitrary system by D ≔
⋃

𝐴0 D𝐴0 .
Given any two static systems 𝐴0 and 𝐴1, the tuple 𝐴0 → 𝐴1

is referred to as the dynamic quantum system which starts with
𝐴0 and ends with 𝐴1 (in short, from 𝐴0 to 𝐴1). For compactness,
we use the shorthand 𝐴 ≔ 𝐴0 → 𝐴1 whenever convenient.
The trivial dynamic system is denoted by # ≔ # → #. We use
L𝐴 ≔ L𝐴0→𝐴1 to denote the space of Hermiticity-preserving
(HP) linear maps from H𝐴0 to H𝐴1 . Given a map Λ ∈ L𝐴, its
Choi operator 𝐽Λ ∈ H𝐴0𝐴1 is defined as

𝐽
𝐴0𝐴1
Λ

≔

(
id𝐴0 ⊗ Λ𝐴̃0→𝐴1

) [
𝜙
𝐴0 𝐴̃0
+

]
, (1)

where id𝐴0 ∈ L𝐴0→𝐴0 is an identity map, 𝐴̃0 is a replica of 𝐴0,
and 𝜙

𝐴0 𝐴̃0
+ ≔

∑
𝑖, 𝑗 |𝑖⟩⟨ 𝑗 |𝐴0 ⊗ |𝑖⟩⟨ 𝑗 | 𝐴̃0 ∈ H

𝐴0 𝐴̃0
+ is a maximally

entangled operator.
A quantum channel from 𝐴0 to 𝐴1 is a linear map Λ ∈ L𝐴

being both completely positive (CP) and trace preserving (TP).
In other words, quantum channels are maps that preserve the
set of quantum states even when in tensor product with any
identity map. We denote the set of channels from 𝐴0 to 𝐴1
by C𝐴 ≔ C𝐴0→𝐴1 ⊂ L𝐴, and the set of channels between
arbitrary systems by C ≔ ∪𝐴0 ,𝐴1C

𝐴.
Linear transformations between linear maps are called

supermaps. Given any two dynamic systems 𝐴 and 𝐵 ≔

𝐵0 → 𝐵1, we use S𝐴↠𝐵 to denote the space of HP-preserving
supermaps from L𝐴 to L𝐵. Given a supermap Θ ∈ S𝐴↠𝐵, its
Choi operator 𝐽Θ ∈ H𝐴0𝐴1𝐵0𝐵1 is defined [39] as

𝐽
𝐴0𝐴1𝐵0𝐵1
Θ

≔ 𝐽
𝐴0𝐴1𝐵0𝐵1
ΔΘ

, (2)

where

Δ𝐴𝐵
Θ ≔

(
Id𝐴 ⊗ Θ𝐴̃↠𝐵

) {
Φ𝐴𝐴̃

+

}
, (3)

where Id𝐴 ∈ S𝐴↠𝐴 is an identity supermap, 𝐴̃ ≔ 𝐴̃0 → 𝐴̃1 is
a replica of 𝐴, and Φ𝐴𝐴̃

+ [·] ≔ tr[𝜙𝐴0 𝐴̃0
+ [·]]𝜙𝐴1 𝐴̃1

+ ∈ L𝐴𝐴̃ is a
maximally entangled map.

A quantum superchannel from 𝐴 to 𝐵 is a supermap Θ ∈
S𝐴↠𝐵 that is both completely CP-preserving (CCPP) and TP
preserving (TPP). We denote the set of superchannels from 𝐴

to 𝐵 by S𝐴↠𝐵 ⊂ S𝐴↠𝐵, and the set of superchannels between
arbitrary systems by S ≔ ∪𝐴0 ,𝐴1 ,𝐵0 ,𝐵1S

𝐴↠𝐵.

III. A “TOP-DOWN” FRAMEWORK FOR QUANTUM
RESOURCE THEORIES (QRTS)

In this section, we reformulate the framework of quantum
resource theories (QRTs) by adopting a “top-down” viewpoint.
Our formulation unifies both static and dynamic QRTs.

Definition 1. Let S ⊆ S be a subset of superchannels. For any
two dynamic systems 𝐴 and 𝐵, define the following components:
(1) a set of superchannels S𝐴↠𝐵 ≔ S ∩ S𝐴↠𝐵;
(2) a set of channels C𝐵 ≔ S#↠𝐵 ⊆ C𝐵.
Define C ≔

⋃
𝐵0 ,𝐵1 C𝐵 ⊆ C. Then the tuple (S, C) is called

a dynamic quantum resource theory whenever the following
conditions hold:
(1) for any dynamic system 𝐵, it holds that Id𝐵 ∈ S𝐵↠𝐵;
(2) for any three dynamic systems 𝐴, 𝐵, and 𝐶, if Θ ∈ S𝐴↠𝐵

and Θ′ ∈ S𝐵↠𝐶 , then Θ′ ◦ Θ ∈ S𝐴↠𝐶 .
In this case, superchannels in S are called free superoperations,
and channels in C are called free channels. We say that (S, C)
is closed and convex whenever S𝐴↠𝐵 is a closed and convex
set for all 𝐴 and 𝐵.

Following the top-down approach, every static QRT is
reduced from a dynamic QRT, being the “sub-theory” that
only includes dynamic systems with a trivial input.

Definition 2. Let (S, C) be a dynamic QRT. For any two static
systems 𝐴1 and 𝐵1, define the following components:
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S𝐴↠𝐵

(free superoperations)

C𝐵

(free channels)

S𝐴↠𝐵

(quantum superchannels)

O𝐴1→𝐵1

(free operations)

C𝐵

(quantum channels)

D𝐵1

(free states)

C𝐴1→𝐵1

(quantum channels)

D𝐵1

(quantum states)

⊆𝐵0=# 𝐴1=#

𝐴0=𝐴1=# 𝐴0=𝐵0=#
𝐵0=#

𝐴0=𝐴1=#

𝐴1=#

𝐴0=𝐵0=#

⊆ ⊆

⊆

Fig. 1. Relationships between different components of a dynamic QRT (S, C) ,
its reduced static QRT (O, D) , and the standard quantum theory (S, C, D) .

(1) a set of channels O𝐴1→𝐵1 ≔ S (#→𝐴1 )↠(#→𝐵1 ) ⊆ C𝐴1→𝐵1 ;
(2) a set of states D𝐵1 ≔ O#→𝐵1 ⊆ D𝐵1 .
Define O ≔

⋃
𝐴1 ,𝐵1 O𝐴1→𝐵1 ⊆ C and D ≔

⋃
𝐵1 D𝐵1 ⊆ D.

Then the tuple (O,D) is called the static quantum resource
theory reduced from (S, C). In this case, channels in O are
called free operations, and states in D are called free states.
We say that (O,D) is closed and convex whenever O𝐴1→𝐵1

is a closed and convex set for all 𝐴1 and 𝐵1.

We denote the set of Choi operators of free superoperations
from 𝐴 to 𝐵 by S𝐴↠𝐵

J ≔ {𝐽Θ : Θ ∈ S𝐴↠𝐵} ⊂ H
𝐴0𝐴1𝐵0𝐵1
+ ,

and the set of Choi operators of free operations from 𝐴1 to
𝐵1 by O𝐴1→𝐵1

J ≔ S (#→𝐴1 )↠(#→𝐵1 )
J ⊂ H

𝐴1𝐵1
+ . We summarize

in Fig. 1 the relationships between different components of
a dynamic QRT, its reduced static QRT, and the standard
quantum theory. The dynamic-to-static reduction implies that
any property possessed by a dynamic QRT is conveniently
inherited by the static QRT reduced from it.

IV. FREE CONDITIONAL MIN-ENTROPY (FCME)

In this section, we generalize two important entropic mea-
sures in quantum information theory, the quantum min-entropy
and the quantum conditional min-entropy, to scenarios where
variable operational restriction may apply. These generalized
entropies can be viewed as measures of quantum uncertainty
in operationally restricted scenarios, i.e., resource theories.

The basic idea of entropy generalization in this paper is that,
we relax the default assumption that the observer is able to
use arbitrary quantum operations for information processing.
Instead, the observer’s usable operations are restricted to the
free (super-)operations of a dynamic QRT (S, C), whose
reduced static QRT is (O,D).

In the rest of this paper, we always assume that the set
of free superoperations is topologically closed and convex,
and is closed under complex conjugation with respect to a
pre-specified computational basis.

𝐻S
min (𝐵|𝐴)Λ
(EFCME)

𝐻C
min (𝐵)Λ
(EFME)

𝐻min (𝐵|𝐴)Λ
(Ext. Cond. Min-Ent.)

𝐻O
min(𝐵1 |𝐴1)𝜌

(FCME)

𝐻min (𝐵)Λ
(Ext. Min-Ent.)

𝐻D
min (𝐵1)𝜌
(FME)

𝐻min(𝐵1 |𝐴1)𝜌
(Cond. Min-Ent.)

𝐻min (𝐵1)𝜌
(Min-Ent.)

op.dyn. cond.

cond. dyn.

dyn.

cond.

cond.

dyn.

op. op.

op.

Fig. 2. Relationships between members of the free conditional min-entropy
(FCME) branch and the (conventional) conditional min-entropy branch. Green
arrows represent generalization through conditioning.

Definition 3. Given a state 𝜌 ∈ D𝐵1 , the free min-entropy
(FME) of the system 𝐵1 is defined as

𝐻D
min (𝐵1)𝜌 ≔ − log min{

𝑟 ∈ R

𝑟 𝐼𝐵1 − 𝜌𝐵1 ∈ cone∗ (D𝐵1 )

} 𝑟. (4)

Given a bipartite state 𝜌 ∈ D𝐴1𝐵1 , the free conditional min-
entropy (FCME) of the system 𝐵1 conditioned on 𝐴1 is defined
as

𝐻O
min (𝐵1 |𝐴1)𝜌 ≔ − log min{

𝛾 ∈ H𝐴1

𝛾𝐴1 ⊗ 𝐼𝐵1 − 𝜌𝐴1𝐵1 ∈ cone∗ (O𝐴1→𝐵1
J )

} tr[𝛾] .

(5)

Given a channel Λ ∈ C𝐵, the extended free min-entropy
(EFME) of the dynamic system 𝐵 is defined by

𝐻C
min (𝐵)Λ ≔ 𝐻C

min(𝐵1 |𝐵0) 1
𝑑𝐵0

𝐽Λ
, (6)

Given a bipartite channel Λ ∈ C𝐴𝐵, the extended free
conditional min-entropy (EFCME) of the dynamic system
𝐵 conditioned on 𝐴 is defined as

𝐻S
min (𝐵|𝐴)Λ ≔ log

(
𝑑𝐴0𝑑𝐵0

)
− log min

𝛾 ∈ H𝐴0𝐴1𝐵0

𝛾𝐴0𝐴1𝐵0 ⊗ 𝐼𝐵1 − 𝐽
𝐴0𝐴1𝐵0𝐵1
Λ

∈ cone∗ (S𝐴↠𝐵
J )

𝛾𝐴0𝐵0 = 𝜋̂𝐴0 ⊗ 𝛾𝐵0


tr[𝛾] .

(7)

The FME, FCME, EFME, and EFCME are all defined by
convex conic programs. They reduce to the (conventional) min-
entropy measures [39] in the special case where the underlying
QRT is the standard quantum theory. We summarize in Fig. 2
the relationships between all entropic functions introduced so
far.
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V. RESOURCE CHARACTERIZATION WITH THE FCME

In this section, we make use of the free conditional min-
entropy branch to provide information-theoretic characterization
for general closed and convex quantum resources.

A. Deterministic free convertibility

It is of fundamental concern in any resource theory to develop
a systematic approach for deciding whether a given object
is convertible to another via free transformations. Recently,
complete sets of monotones have been obtained in general
convex resource theories of states and measurements [27] and
of channels [32] (i.e., dynamic QRTs). However, in the dynamic
setting, the monotones in Ref. [32] lacks a clear physical
interpretation. We close this gap by framing these monotones
as entropic conditions in terms of the FCME branch, and in
addition provide simpler alternatives for them.

Theorem 1. Let Λ ∈ C𝐴 and Ψ ∈ C𝐵 be two channels. Let
N ≔ {𝑁𝑛}𝑛∈N be an arbitrary informationally complete POVM
on 𝐵0. Then the following statements are equivalent.
(1) There exists a free superoperation Θ ∈ S𝐴↠𝐵 such that

Θ{Λ} = Ψ.
(2) For every channel Ω ∈ C𝐵,

𝐻S
min (𝐵̃|𝐴)Λ𝐴⊗Ω𝐵̃ ≤ 𝐻S

min (𝐵̃|𝐵)Ψ𝐵⊗Ω𝐵̃ . (8)

(3) Equation (8) holds for every measure-and-prepare channel
Ω ∈ C𝐵 of the form Ω[·] = ∑

𝑛 tr[𝑁𝑛 [·]]𝜔𝑛, where 𝜔𝑛 ∈
D𝐵1 is a variable state for all 𝑛.

The entropic conditions in Theorem 1 (2) are mathematically
equivalent to the complete set of resource monotones provided
in Ref. [32, Theorem 4]. And yet, their information-theoretic
interpretation is disclosed only after being recast in terms
of the EFCME. Furthermore, Theorem 1 (3) simplifies their
conditions and reduces the size of the set of convertibility
conditions is significantly.

Corollary 1 ([26, Corollary 11]). Let 𝜌 ∈ D𝐴1 and 𝜏 ∈ D𝐵1

be two states. Then there exists a free operation Ψ ∈ O𝐴1→𝐵1

such that Ψ[𝜌] = 𝜏 if and only if

𝐻O
min (𝐵̃1 |𝐴1)𝜌𝐴1⊗𝜔𝐵̃1 ≤ 𝐻O

min (𝐵̃1 |𝐵1)𝜏𝐵1⊗𝜔𝐵̃1 (9)

for every state 𝜔 ∈ D𝐵1 .

B. Resource global robustness

Resource robustness measures are effective and meaningful
functions that reflect the proximity of an object to the set of
free objects in the object space. One representative of such
measures is the resource global robustness [40], [19], which
quantifies the amount of “global” noise (within the object
set) that an object can tolerate before losing its identify of
being resourceful. The resource global robustness of a channel
Λ ∈ C𝐴 in a dynamic QRT (S, C) is defined as

𝑅C
glob (Λ) = min

𝑟 ∈ R+
Ψ ∈ C𝐴

Λ+𝑟Ψ
1+𝑟 ∈ C𝐴


𝑟. (10)

In what follows, we show that the resource global robustness
of a channel, albeit as a geometrically motivated function, has
an entropic formulation in terms of the FCME branch.

Let (S, C) be a closed and convex static QRT. Likewise,
given a bipartite channel Λ ∈ C𝐴𝐵, we define the extended free
min-mutual information between the two dynamic systems 𝐴

and 𝐵 as

𝐼Smin (𝐴; 𝐵)Λ ≔ 𝐻C
min (𝐵)Λ − 𝐻S

min(𝐵|𝐴)Λ, (11)

where 𝐻C
min(𝐵)Λ is defined on the marginal channel Λ𝐵 [·] ≔

tr𝐴1 ◦ Λ𝐴𝐵 [𝜋̂𝐴0 ⊗ [·]𝐵0 ].

Theorem 2. Let Λ ∈ C𝐴 be a channel. Then

log
(
1 + 𝑅C

glob (Λ)
)
= sup

Ω∈C
𝐼Smin (𝐴; 𝐵)Λ𝐴⊗Ω𝐵 . (12)

The right-hand side of Eq. (12) represents the supremum
amount information that Λ could potentially provide about
any system 𝐵 independent of it, and this quantity may as well
be termed the “independent free-informativeness” of Λ.

Corollary 2. Let 𝜌 ∈ D𝐴1 be a state. Then

log
(
1 + 𝑅D

glob (𝜌)
)
= max

𝜔∈D𝐴1
𝐼Omin (𝐴1; 𝐴̃1)𝜌𝐴1⊗𝜔 𝐴̃1 . (13)

VI. RESOURCE CHARACTERIZATION WITH OPERATIONAL
TASKS

In this section, we characterize general closed and convex
quantum resources through new designs of operational tasks.

A. Operational tasks as free convertibility tests

We first introduce the operational tasks and show how they
give rise to complete sets of resource monotones.

1) One-shot classical communication:

Task 1. A one-shot classical communication task for Alice is
specified by a state ensemble 𝜐 ≔ {𝜈𝑛}𝑛∈N in a system 𝐵0 and
a POVM N ≔ {𝑁𝑛̂}𝑛̂∈N on a system 𝐵1. It has the following
steps.
1) An index 𝑛 ∈ N is generated with a probability tr[𝜈𝑛]. The

state 𝜈𝑛/tr[𝜈𝑛] ∈ D𝐵0 is given to Alice without letting her
know 𝑛.

2) Alice submits a state in 𝐵1.
3) The system 𝐵1 is measured with the POVM N, producing

an outcome 𝑛̂. Alice succeeds whenever 𝑛̂ = 𝑛.

We assume that Alice is operationally restricted by a closed
and convex dynamic QRT (S, C) and can access a one-shot
oracle to a channel Λ ∈ C𝐴. Then her most general strategy for

Fig. 3. One-shot classical communication over an encoding ensemble 𝜐 ≔

{𝜈𝑛 }𝑛 and a decoding POVM N ≔ {𝑁𝑛̂ }𝑛̂. Solid arrows stand for quantum
systems, and hollow arrows for classical systems.
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Fig. 4. Semiquantum partial preprocessing of two state ensembles 𝜍 ≔

{𝜎 𝑗 } 𝑗 and 𝜘 ≔ {𝜅𝑘 }𝑘 before a POVM L ≔ {𝐿𝑙 }𝑙 under a score function
{𝑠 𝑗,𝑘,𝑙 } 𝑗,𝑘,𝑙 . Solid arrows stand for quantum systems, and hollow arrows for
classical systems.

Task 1 is transforming Λ with a free superoperation Θ ∈ S𝐴↠𝐵

and using Θ{Λ} to conduct data transmission between Steps 1
and 2 of Task 1. We show in Fig. 3 an illustration of the
task and Alice’s strategy. Her maximum correct transmission
probability is thus given by

𝑃S
OCC(Λ; 𝜐,N) ≔ max

Θ∈S𝐴↠𝐵

∑︁
𝑛

tr[𝑁𝑛Θ{Λ}[𝜈𝑛]] . (14)

The following theorem indicates that if the POVM N is
informationally complete, then 𝑃S

OCC (Λ; 𝜐,N) forms a complete
set of resource monotones with respect to Λ.

Theorem 3. Let Λ ∈ C𝐴 and Ψ ∈ C𝐵 be two channels. Let
N ≔ {𝑁𝑛̂}𝑛̂∈N be an arbitrary informationally complete POVM
on 𝐵1. Then there exists a free superoperation Θ ∈ S𝐴↠𝐵 such
that Θ{Λ} = Ψ if and only if 𝑃S

OCC (Λ; 𝜐,N) ≥ 𝑃S
OCC(Ψ; 𝜐,N)

for every state ensemble 𝜐 ≔ {𝜈𝑛}𝑛∈N in 𝐵0.

2) Semiquantum partial preprocessing:

Task 2. A semiquantum partial preprocessing task for Alice
is specified by two state ensembles 𝜍 ≔ {𝜎𝑗 } 𝑗∈J and 𝜘 ≔

{𝜅𝑘}𝑘∈K, respectively on systems 𝐵0 and 𝐵1, a distributed
POVM L ≔ {𝐿𝑙}𝑙∈L on 𝐵1𝐵̃1, and a score function 𝑠 : J× K×
L → [−1, 1]. It has the following steps.
1) Bob generates an index 𝑗 ∈ J with a probability tr[𝜎𝑗 ],

prepares the state 𝜎𝑗/tr[𝜎𝑗 ] ∈ D𝐵0 , and sends the state to
Alice without letting her know 𝑗 .

2) Alice submits a state in 𝐵̃1 to Bob.
3) Bob generates another index 𝑘 ∈ K with a probability tr[𝜅𝑘]

and prepares an independent state 𝜅𝑘/tr[𝜅𝑘] ∈ D𝐵1 . He
measures 𝐵1𝐵̃1 with L and obtains an outcome 𝑙. Alice’s
score equals 𝑠 𝑗 ,𝑘,𝑙 .

We still assume that Alice is operationally restricted by a closed
and convex QRT (S, C) and that she can access a one-shot
oracle to a channel Λ ∈ C𝐴. We show in Fig. 4 an illustration
of the task and Alice’s strategy. Her maximum expected score
is thus given by

𝑆SSPP (Λ; 𝑠, 𝜍, 𝜘,L) ≔ max
Θ∈S𝐴↠𝐵

∑︁
𝑗 ,𝑘,𝑙

𝑠 𝑗 ,𝑘,𝑙tr
[
𝐿𝑙

(
𝜅𝑘 ⊗ Θ{Λ}

[
𝜎𝑗

] ) ]
.

(15)

We say that a state ensemble is informationally complete
whenever it is proportional to some informationally complete
POVM.

Theorem 4. Let Λ ∈ C𝐴 and Ψ ∈ C𝐵 be two channels.
Let 𝜍 ≔ {𝜎𝑗 } 𝑗∈J and 𝜘 ≔ {𝜅𝑘}𝑘∈K be two arbitrary
informationally complete state ensembles in 𝐵0 and 𝐵1 re-
spectively, and L ≔ {𝐿𝑙}𝑙∈L be an arbitrary POVM on
𝐵1𝐵̃1 satisfying 𝐿0 = 𝜓̂+. Then there exists a free super-
operation Θ ∈ S𝐴↠𝐵 such that Θ{Λ} = Ψ if and only
if 𝑆SOPP(Λ; 𝑠, 𝜍, 𝜘,L) ≥ 𝑆SOPP (Ψ; 𝑠, 𝜍, 𝜘,L) for every score
function 𝑠 : J × K × L → [0, 1].
B. Relation to resource robustness measures

Apart from testing free convertibility between different
channels, we can also use these operational tasks to characterize
the resourcefulness of a single channel Λ. This is done by
investigating the extent to which the channel oracle Λ can
boost Alice’s performance in these tasks.

We show that every well-defined resource robustness measure
𝑅V ,C (Λ) of a channel Λ can be interpreted as an operational
advantage of Λ for certain type of semiquantum processing
task. Here 𝑅V ,C (Λ) is the resource robustness of Λ ∈ C𝐴

against a subset of channels V ⊆ C (thereby V𝐴 ≔ V ∩ C𝐴)
[3], defined as

𝑅V ,C (Λ) ≔ min
𝑟 ∈ R+
Ψ ∈ V𝐴

Λ+𝑟Ψ
1+𝑟 ∈ C𝐴


𝑟. (16)

For now, we consider a different scenario where Alice’s
freedom of manipulating her channel oracle Λ using free
superoperations is deprived when performing Task 2. Her
expected score in this case is given by

𝑆
{Id}
SPP (Λ; 𝑠, 𝜍, 𝜘,L) ≔

∑︁
𝑗 ,𝑘,𝑙∈J×K×L

𝑠 𝑗 ,𝑘,𝑙tr
[
𝐿𝑙

(
𝜅𝑘 ⊗ Λ

[
𝜎𝑗

] ) ]
.

(17)

We also define

𝑆VSPP (𝑠, 𝜍, 𝜘,L) ≔ max
Ψ∈V

𝑆
{Id}
SPP (Ψ; 𝑠, 𝜍, 𝜘,L) (18)

for any subset of channels V ⊆ C.

Theorem 5. Let V ⊆ C be a subset of channels satisfying the
following conditions:
(1) the set V𝐴 is closed and convex;
(2) the value of 𝑅V ,C (Ψ) is bounded for all Ψ ∈ C𝐴.
Let Λ ∈ C𝐴 be a channel. Let 𝜍 ≔ {𝜎𝑗 } 𝑗∈J and 𝜘 ≔ {𝜅𝑘}𝑘∈K
be two arbitrary informationally complete state ensembles in
𝐴0 and 𝐴1 respectively, and L ≔ {𝐿𝑙}𝑙∈L be an arbitrary
POVM on 𝐴1 𝐴̃1 satisfying 𝐿0 = 𝜓̂+. Then

1 + 𝑅V ,C (Λ) = max{
𝑠 : J × K × L → [−1, 1]
𝑆V

SPP (𝑠, 𝜍 , 𝜘, L) ≥ 0

} 𝑆{Id}SPP (Λ; 𝑠, 𝜍, 𝜘,L)
𝑆C

SPP (𝑠, 𝜍, 𝜘,L)
.

(19)
As a corollary of Theorem 5, both the resource free robustness
[41] and resource random robustness [41] can be characterized
with Task 2.
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