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Crystalline Quantum Circuits
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Random quantum circuits continue to inspire a wide range of applications in quantum information
science and many-body quantum physics, while remaining analytically tractable through probabilistic
methods. Motivated by an interest in deterministic circuits with similar applications, we construct classes
of nonrandom unitary Clifford circuits by imposing translation invariance in both time and space. Fur-
ther imposing dual unitarity, our circuits effectively become crystalline spacetime lattices whose vertices
are SWAP or iISWAP two-qubit gates and whose edges may contain one-qubit gates. One can then require
invariance under (subgroups of) the crystal’s point group. Working on the square and kagome lattices,
we use the formalism of Clifford quantum cellular automata to describe operator spreading, entanglement
generation, and recurrence times of these circuits. A full classification on the square lattice reveals, of par-
ticular interest, a “nonfractal good scrambling class” with dense operator spreading that generates codes
with linear contiguous code distance and high performance under erasure errors at the end of the circuit.
We also break unitarity by adding spacetime translation-invariant measurements and find a class of such

circuits with fractal dynamics.
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I. INTRODUCTION

Random quantum circuits are a model system of many-
body quantum physics, in which the degrees of freedom
are qubits or qudits and the evolution under a local Hamil-
tonian is modeled by local unitary gates. Random unitary
circuits thus provide a platform for analytic computation
of, for example, out-of-time-order correlators and entan-
glement growth [1-4]. They also have numerous appli-
cations to quantum complexity theory [1,5-9], tomogra-
phy [10,11], benchmarking [12,13], and circuit complexity
bounds [14,15]. A particular motivation for this work
comes from the field of quantum error correction, where
random circuits have also played an important role [16,17].
For example, random finite-rate stabilizer codes have lin-
ear code distance and reach channel capacity, and their
performance under erasure errors can be modeled by ran-
dom matrix theory [18]. Randomness has also proven
useful for improving the error threshold and logical error
rates of surface codes under biased noise, through random
Clifford-gate deformations [19].
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While randomness is a valuable theoretical tool for
studying quantum circuit dynamics, ultimately, there is a
need for deterministic circuits with similar applications.
For example, the behavior of practically relevant algo-
rithms may not be well captured by random circuits.
Indeed, in the case of the variational quantum eigen-
solver (VQE), initializing the solver with random circuits
leads to barren plateaus in the gradient [20,21]. Non-
random circuits are likely to be more natural for many
applications and avoid these barren plateaus. In the con-
text of quantum simulation algorithms, one may question
whether generic Hamiltonian evolution displays the same
phenomena as random circuits. The growth of quantum
circuit complexity with evolution time is not understood
outside of random circuits [22]. In addition, specific cir-
cuit families with more identifiable structure have been
necessary to boost the performance of gate-set tomogra-
phy in practical use cases [23], and are likely to play a
crucial role in the efficient verification of quantum advan-
tage on near-term devices [24]. Even addressing these
questions from a conceptual point of view or provid-
ing a route towards future progress can be useful. From
a theoretical computer-science perspective, this research
avenue has echoes of “derandomization.” In classical com-
plexity theory, this term refers to the process of turning
probabilistic algorithms into deterministic ones as part of
the quest to prove that the latter are just as powerful (i.e.,
BPP = P)[25]. Similarly, in the theory of expander graphs
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and error-correcting codes, derandomization refers to the
art of finding explicit constructions for objects only known
to exist from probabilistic arguments [26].

Here we take a less formal, more physical view of
the problem by analyzing a class of deterministic circuits
with “translational” invariance in both time and space.
These spacetime translation-invariant (STTI) circuits are
endowed with two special features that enable an analytic
treatment while still allowing for ergodic dynamics. First,
all the gates are dual unitary, namely, unitary when viewed
in the spatial direction as well as the usual time direc-
tion. As a nontrivial model of quantum chaos with certain
exactly solvable correlation functions, dual unitary circuits
are the subject of a rich, rapidly developing literature on
which we build [27-38]. Second, the gates in our circuits
are Clifford. Clifford circuits hold appeal because they can
be classically simulated in polynomial time [39,40], yet are
physically relevant in the sense that the n-qudit uniform
Clifford ensemble is a unitary 2-design for the n-qudit Haar
ensemble [41] if the qudit dimension is a prime power [42]
(and in fact a 3-design if the qudit dimension is a power
of 2 [42,43]). Analytically, Clifford circuits with space-
time randomness obey effective hydrodynamic equations
[2,3,44], while spatially random Floquet Clifford circuits
can exhibit strong localization in 1+1D [4547]. In the
present work, with spacetime translation invariance, our
circuits can be interpreted as quantum cellular automata
(QCA) [48,49], and restricting to Clifford gates allows us
to complement the exact methods for treating dual uni-
tary circuits with the tools of symplectic cellular automata
[50-52].

Clifford quantum cellular automata (CQCA) on prime-
dimensional qudits with spatial period @ = 1 have received
a thorough treatment in earlier work, but to our knowl-
edge there is no systematic classification of automata with
a > 1 and beyond. Our primary focus in this work is
on brickwork dual unitary Clifford circuits, which natu-
rally are expressed as qubit CQCA with @ = 2 and exhibit
richer behavior than @ = 1. We highlight several physical
properties of these circuits that can be gleaned from the
symplectic automaton representation, including fractality
in operator spreading and recurrence times. In addition to
classifying and situating these circuits within the broader
context of CQCA, we extend the concept of “self-dual
unitary” gates—gates such as the SWAP gate whose space-
time rotation is not only unitary, but in fact invariant
[28,53]—to all the point-group symmetries of the lattice,
associated with dual unitarity, time reversal, and reflection.
We further generalize to (self-)triunitary [54] automata
using the kagome lattice, for which @ =4 and we can
define three axes of time with unitary evolution.

On the quantum information side, we focus in this
work on the applications to quantum error correction.
We highlight a class of CQCA on the square lattice in
which initially local operators scramble and spread densely

within the lightcone, which can serve as encoding circuits
for finite-rate codes with high performance under era-
sure errors and whose quasicyclic structure [55,56] could
provide a path toward efficient decoding under more gen-
eral noise [57-61]. More broadly, our results on these
specific classes of quantum dynamics have potential appli-
cations in the same areas as random circuits, including
benchmarking, quantum chaos, and complexity theory.

A. Outline

The paper proceeds as follows. Section Il provides a
high-level overview of our results. As a case study in the
most novel class of circuits discovered in our work, Sec. 111
details the behavior of the “dense good scrambling class”
on the square lattice Sec. 1II. Taking a step back, in Sec.
IV, we define the general models in detail and demonstrate
how the symmetry transformations are enacted at the level
of the one- and two-qubit gates. To gain greater insight
into these symmetries, we introduce the CQCA formalism
and show how the corresponding matrices transform under
rotations and reflections of the lattice, in Sec. V. Section VI
specializes to the square lattice, classifying the SWAP-core
and iSWAP-core @ = 2 automata including the nonfractal
good scrambling class. In Sec. VII, we turn to the kagome
lattice, where the circuits are described by a = 4 CQCA.
Returning to the square lattice, in Sec. VIII we describe
the fractal structure that arises when we introduce projec-
tive measurements. Finally, we conclude in Sec. IX with a
discussion of future research avenues.

II. OVERVIEW

Before presenting our methods and results in detail,
we begin with an overview of our findings. The two
common features of the STTI circuits considered in this
work—dual unitarity and Cliffordness—provide comple-
mentary avenues for study.

A. Symmetries, dual unitarity, and triunitarity

The circuits we consider are all crystalline lattices, in
which vertices correspond to gates and edges correspond to
qubits, possibly dressed with single-qubit gates. Focusing
our attention on two-qubit gates, we choose lattices with
coordination number z = 4. In addition to spacetime trans-
lation invariance, the bare lattices are invariant under the
rotations and reflections that comprise their point group
[62]. In the circuit perspective, however, vertices are no
longer pointlike objects, and edges have a directionality
imposed by the single-qubit gates. We can therefore ask
which of the symmetries of the lattice are also symmetries
of the circuit.

One main thrust of this work is organizing and classi-
fying these symmetries for two such lattices, square and
kagome. Implicit in this analysis is that the transformed
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FIG. 1. The convention for the dual gate used in this paper

[31,34]: given a unitary gate U£:£§ (left), we rotate the space-
time axes by /2 (center) to obtain the dual f]g‘:zf (right). If U is
dual unitary, then U is unitary (as is the spacetime rotation in the
opposite direction).

gates are unitary. For two-qubit gates, this imposes dual
unitarity: rotating the gate by m/2 in spacetime yields
another unitary gate (Fig. 1). From the parameterization
of dual unitary gates in Ref. [28], restricting to the Clif-
ford group, the dual unitary operator U implemented by the
gate can be written as either a SWAP core (nonentangling)
or iSWAP core (maximally entangling), with single-qubit
Clifford gates on each of the four legs.

Our main model is the brickwork circuit shown in Fig. 2,
a square lattice of SWAP or iSWAP cores, with single-qubit
gates on each edge. The bare SWAP and iSWAP cores are
“self-octa-unitary” since they are invariant under all eight
point-group transformations of the square. With the inclu-
sion of single-qubit gates, the resulting STTI circuit can
have some, all, or none of these symmetries. This is the
focus of Sec. IV.

On the kagome lattice, whose point group is Ds instead
of D4, we can define three axes (six arrows) of time,
making these circuits (self)-triunitary. In Ref. [54], where
triunitarity is first introduced, triunitary gafes are defined
on three qubits and tiled on a triangular lattice. However,

M =iswar
OT SWAP

0,0 €(

FIG. 2. STTI dual unitary brickwork circuit represented as a
rotated square lattice. Black squares are (i)SWAP cores. Edges
are decorated with single-qubit Clifford gates, represented as red
and blue circles. One time step is defined as two layers of the
brickwork circuit.

as the authors note, the family of triunitary gates consid-
ered in that paper can be decomposed into three two-qubit
gates, and the resulting circuit can then be expressed on
the kagome lattice. The three axes of time restrict the
two-point correlations between traceless one-site operators
averaged over all states to vanish except at x; —x; =0
and at [x; — x2| = v|f; — f2| where v is the velocity of the
lightcone.

B. Classification of CQCA

Because our circuits are both STTI and Clifford, we can
represent them as CQCA, which is the primary analytic
technique used in this work. For a more detailed introduc-
tion to the CQCA formalism, the reader is referred to Sec.
V and to Refs. [50-52].

The circuit in Fig. 2 is translation invariant with a unit
cell of T = 1/2, a = 2, composed with a shift by one site,
so it can be treated as an “a = 2 automaton.” In Sec. VI, we
classify all iSWAP -core automata on the square lattice into
six classes, where members of each class are related by a
reflection about the center of the gate, and/or a change of
basis. The point-group transformations exchange members
of the same class. A similar classification scheme can be
applied on the kagome lattice, where a = 4, but in Sec.
VII we focus our attention on those with a high amount of
symmetry, the “self-triunitary” circuits.

Since the Clifford group normalizes the Pauli group, the
dynamics under a Clifford circuit with spatial period a is
fully encoded (modulo phases) by the image of X; and Z;
on each site i = 1,...,a of the unit cell. Leveraging this
translation invariance, a CQCA with a unit cell containing
a qudits is described by a 2a x 2a matrix M, whose entries
are Laurent polynomials in the variable u, which labels the
unit cell [63].

We adapt and extend to @ > 1 the techniques presented
in foundational works [50-52], which focus on prime g,
a = 1 automata [64]. a = 1 CQCA have determinant 1*¢
where d € Z. Factoring out a shift of u?1 makes a centered
symplectic cellular automaton (CSCA) with determinant 1,
whose characteristic polynomial is uniquely determined by
Tr(M) [51,52]:

() =y* + Tr(M)y + 1. (1)

While this simple relationship between Tr(M) and xar(y)
no longer holds for @ > 1, the characteristic polynomial
remains inextricably linked to three related properties of
the automaton: entanglement generation, operator spread-
ing, and the recurrence time in a finite system.

The recurrence time of the unitary, up to a phase, on
a system of L qubits, or m = L/a unit cells (with peri-
odic boundary conditions) is denoted 7 (m), the minimum
power such that M™ = 1 mod (™ — 1) up to global shifts.
Under the evolution of the automaton, any stabilizer group,
mixed or pure, repeats modulo signs and shifts after an
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interval that divides 7(m). The scaling of 7(m) divides
the six square lattice classes into two groups: three for
which t(m) < 3m for all m, and three for which t(m) is
linear in m for m = 2¥, but grows much faster for generic
m. We also demonstrate a sharp distinction between these
two groups with respect to the entanglement generation
for a random initial product state. The first group con-
sists of “poor scramblers,” for which the resulting Page
curve [65] has a slope less than 1, i.e., the total entropy
of a subsystem of length [4| < L/2 is f|A|, where 0 <
f < 1. This submaximal entanglement generation can be
attributed, at least in part, to the presence of conserved Z
charges, or “gliders.” In particular, we find a close connec-
tion between the “bare iSWAP class” (all single-qubit gates
are the identity) and the standard glider automaton with
a=1[52].

C. Fractality, dense operator spreading, and quantum
error correction

The second group of iISWAP -core automata on the square
lattice is comprised of “good scramblers,” which, when
acting on random initial product states, generate Page
curves of slope 1 at times away from the recurrences.
The three classes within this group exhibit different frac-
tal behavior. The fractal in question is the footprint of
an initially local Pauli operator, which spreads within
the lightcone. We define the fractal dimension through
the scaling of the cumulative number of nonidentity sites
within this footprint versus the depth of the circuit, so that
dr < 2 for CQCA defined in 1+1D. In the limit of infinite
time, the fractal structure of the footprint depends only on
the minimal polynomial pys of the automaton M [66]. The
minimal polynomial is the lowest-degree monic polyno-
mial gy for which (M) = 0, thus encoding a recursion
relation for M.

We refer to one class as the self-dual kicked Ising
(SDKI) class, a representative of which maps to the SDKI
model via a “boundary” circuit [28]. Without invoking
this direct mapping at the level of gates, the connection
to SDKI is clear from the automata, which both have
the minimal polynomial u(y) = y? 4+ u=! + 1 + u)y + 1.
Initially local operators spread in this class of circuits with
a fractal dimension dy = log,[(3 + +/17)/2] = 1.8325 ..
[66]. A second good scrambling class has fractal dimen-
siondy = 1.9, a pattern not seen in @ = 1 automata [67].

Special attention is paid to the third “good scrambling”
class, the subject of a case study in Sec. 1II. We describe its
operator spreading as “nonfractal” or “dense,” because the
number of X, ¥, and Z sites within a spreading operator
are all a finite fraction of the lightcone volume (dr = 2).
On one hand, as with all of these dual unitary CQCA, this
nonfractal class has large amounts of structure not seen in
random Clifford circuits. In fact, a representative of this

class, which has /2 X rotations on each leg, is self-octa-
unitary. On the other hand, it shares important features
with random circuits, including dense operator spreading.
It also has promise for error correction. Namely, when a
random initial product state with nonzero entropy density
is fed into this circuit, the logical operators spread lin-
early in time, so that at late times the contiguous length
of the shortest logical operator—the contiguous code dis-
tance [68]—is linear in m. Since operators also spread
densely, we expect their weight to scale proportionally to
their length, which then implies a linear code distance.
Indeed, quasicyclic codes generated from initial periodic
product states perform well under erasure errors applied
at the end of the circuit. Under more general noise, the
crystalline symmetries of the encoding circuit could be
beneficial for finding efficient optimal decoders. Note that
we do not address the overhead needed to make these codes
or the circuits fault tolerant, which we leave as a problem
for future work.

D. Adding measurements

Finally, in Sec. VIII we break unitarity by adding mea-
surements in a STTI fashion. With one measurement per
doubled spacetime unit cell of the square lattice, in most
cases an initial fully mixed state reaches a steady state
(mixed or pure) after O(1) time steps, but for the dr =
1.9 good scrambling class in the appropriate measurement
basis, a fully mixed initial state purifies in m time steps
for m = 2*. During the initial transient, the state acquires
volume-law entanglement, but loses it before reaching the
steady state, which has zero entanglement. A perturbation
to this product steady state spreads as a Sierpinski gasket,
a pattern not seen on the square-lattice dual unitary circuits
without measurements. We present this as just one exam-
ple of the rich menagerie of hybrid STTI circuits, deferring
an extended discussion of the hierarchical classification
of such circuits, including those whose steady state is a
high-performing finite-rate code, to a future paper [69].

III. CASE STUDY OF THE DENSE GOOD
SCRAMBLING CLASS

As motivation for the broader classification program
undertaken in the rest of this paper, consider a realization
of Fig. 2 in which all of the two-qubit gates (black squares)
are the iISWAP gate:

1 0 0 0
i o 0 0 —i 0 :
— o i (XX+YY) _
ISWAP = ¢~ '7 =10 —i o0 o (2)
0 0 0 1
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and all of the single-qubit gates (red and blue circles) are
rotations by 7/2 about the X axis on the Bloch sphere:

Ry[r/2] = e %X, (3)

This circuit is a CQCA with unit cell a = 2 composed
solely of dual unitary gates, thus lending it a high degree
of structure. In fact, in addition to being STTI, the class
to which this (Ry[m /2], Rx[mr/2]) circuit belongs is the
only one, besides the “bare iSWAP class” (in which all the
single-qubit gates are the identity), that contains circuits
left invariant under the eight rotations and reflections of the
unit cell of the square lattice. We call this property “strong
self-octa-unitarity” and define it formally in Sec. V.

On the other hand, the dynamics under this circuit is in
many ways reminiscent of random Clifford circuits, with
local operators spreading densely rather than as fractals,
and with initial product states evolving to volume-law-
entangled states whose Page curve has slope 1. In this
section, we explore this dichotomy between structure and
scrambling and discuss the application of these circuits
to developing codes with linear distance. We revisit these
concepts in more general settings throughout the paper.

A. Recurrence times

An immediate difference from random circuits is the
presence of recurrences: since the dynamics are Floquet,
Clifford, and unitary, any initial state on a finite system
must eventually repeat under the action of the circuit. To
wit, there are ]_[té @41y = O(Zd‘z) unique stabilizer
groups (modulo signs) on L qubits [40], which places an
upper bound on the recurrence time.

In fact, for all m, where m = L/a is the number of unit
cells with periodic boundary conditions, the recurrence
time 7(m) is well below this bound. Of special note are
system sizes m = 2X, for which 7(m) grows linearly. This
linear trend in t(m) for STTI circuits has been proven for
m = 2F in a = 1 CQCA over qubits [4,70] as well as for
m = ¢* in a class of dual unitary circuits known as perfect
permutation maps, where the odd prime g is the dimension
of the qudits [34].

What distinguishes this circuit and the other good
scrambling classes from the “poor scrambling” classes dis-
cussed in Sec. VI C is the trend in m # 2F. As the example
of Ref. [34] indicates, the sensitivity in our good scram-
bling circuits to the power of 2 is related to the onsite
Hilbert-space dimension g = 2. As shown in Fig. 3,7(m)
is strongly nonmonotonic in m. A curious trend, left for
the interested reader to ponder, is that if we write m = j 2%,
then t(m)/2¥ is either 27 + 2 or 27 — 2 for some p, where
p is a function of j alone. If this trend holds for all m, then
7(29) > 22* — 2 (indicated as the lower bound on an error
bar in Fig. 3). Speculatively, the upper envelope of 7 (m)
grows exponentially in m but no faster than O(2™) (gray

FIG. 3. Recurrence time t(m) of the unitary, modulo signs,
and shifts, for a brickwork circuit of iSWAP cores and 7 /2 X
rotations [Egs. (2) and (3)], acting on m = L/2 unit cells with
periodic boundary conditions. The gray line is T = 2"+!, which
appears to be an upper bound on 7 (m).

line), which is still exponentially smaller than the generic
upper bound of O(2°m2).

B. Entanglement generation for pure product states

The second defining feature of this class, along with
the other good scrambling classes, is in the generation of
entanglement for initial pure product states. In this aspect
it behaves like a random circuit: starting from a random
product state, the subsystem entropy averaged over all con-
tiguous regions of the same length increases linearly in
time before saturating at a near-Page curve with slope 1
(Fig. 4) [2]. However, the initial product state does even-
tually recur. Since t(m) is linear in m form = 2%, on those
system sizes, the system spends a finite fraction of its evo-
lution in a state of suppressed entanglement. For the time
evolution on m = 64 unit cells shown in Fig. 4, the ini-
tial product state recurs (modulo signs) with a period of
T(m) = 128, but the state returns to area-law entanglement
twice per period. For generic large m, the recurrence time
generally satisfies 7(m) > m, so the state spends most of
its time near-maximally entangled.

C. Operator content

The two above properties—superlinear recurrence times
for generic m and generation of slope-1 Page curves
starting from a pure product state—are also seen in two
other classes of good scrambling automata, discussed in
Sec. VI. What makes this class unique among all those
studied in this work is that, whereas Pauli strings spread
as fractals in the other classes, in this class all initial
local operators spread densely, i.e., with fractal dimen-
sion 2 [Fig. 5(a)]. Dense operator spreading sets this
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FIG. 4. Entanglement generation on a random pure product
state on L = 128 qubits, or m = 64 unit cells, for a brickwork
circuit of iSWAP cores and /2 X rotations [Egs. (2) and (3)].
For t < 20, the subsystem entropy increases at a near-maximal
rate before reaching a Page curve with slope 1 (left). The state
remains near-maximally entangled until ¢ = 45, before the sub-
system entropy starts to decrease until reaching an area-law state
at t = 64 (right). In both panels, the entropy (S(|4], fp + A?)) is
averaged over all contiguous regions of length |4| with periodic
boundary conditions, with darker (lighter) curves corresponding
to later (earlier) times At with respect to #,.

class of circuits outside the range of possible behavior
of a=1 CQCA [52], where fractal operator spreading
(as diagnosed by the out-of-time-order commutator) has
been interpreted as evidence of quantum scarring, i.e. weak
ergodicity breaking [71]. Thus, the absence of fractals in
this class suggests a stronger form of ergodicity than that
found in other CQCA.

As quantitative evidence for dy =2, the cumulative
number of appearances of the Pauli o within the light cone
for times ¥ = 0,...,t is shown for the initial string Z; in
Fig. 5(b). The cumulative count of each Pauli scales as £,
albeit with a larger prefactor for the pair / and Z, com-
pared to the pair X and Y. This asymmetry in the frequency
of the two pairs of Paulis, which depends on the initial
string, is one indication that in spite of the dense spread-
ing, the substructure of the operator content in the bulk is
still distinguishable from that of a random circuit. It is also
in contrast to the “Pauli mixing” behavior—proximity to
a uniform distribution on the Paulis—of operator spread-
ing in random Floquet Clifford circuits, proven to hold
within the lightcone for large-dimensional qudits, and also
observed in the interior of localized operators in qubit
circuits [46].

D. Code length and code distance

Viewing the CQCA as an encoding circuit for a
stabilizer code, the nonfractal spreading of Pauli strings
gives this class strong potential for quantum error
correction.

One figure of merit in describing quantum codes is the
code distance d, the number of nonidentity Paulis in the
support of the lowest-weight logical operator [72]. This
property relates to the operator spreading in the encod-
ing circuit in the following way. Consider a stabilizer code

(a) 250 F
200

150

100

50

250
200
150
100

50 Y ¥4

g =400 =200 0 200 400 =400 -200 Q 200 400

FIG. 5. (a) Image of the initial string Z; up to time ¢t = 256
under the action of the circuit defined by Egs. (2) and (3),
separated into identity (black), X (blue), ¥ (green), and Z
(orange) sites within the lightcone. (b) Cumulative number of
appearances, Z:,:D N, (t), of o =1, X, Y, Z within the lightcone
|x| <t for Z\(f) up to t = 1024. The gray dashed line shows
S N() x 2.

generated by running the circuit for O(m) layers on an ini-
tial mixed product state with a finite entropy density s. The
stabilizer group S is generated by (1 — s)L stabilizer gen-
erators, which can initially be chosen to live on single sites,
while sL logical pairs live on the unstabilized sites. Under
the action of a dense good scrambling circuit, both the
stabilizer generators and the logicals spread nonfractally
within the lightcone, eventually saturating at O(m) weight.

Because the code distance is the minimum weight across
all logical representatives—elements of the normalizer
of & that act nontrivially on the codespace, which can
potentially lower their weight through multiplication by
elements of S—the growth of a single operator in isola-
tion provides only an upper bound on the code distance.
Since minimizing the weight overall all logical represen-
tatives has exponential complexity, we use the contiguous
code distance, defined as the length d; of the shortest con-
tiguous region (with periodic boundary conditions) that
contains a logical operator [68], as an efficiently com-
putable proxy for d. d; is only an upper bound on d, but
in circuits with dense operator spreading where the weight
of an operator is proportional to its contiguous length, it is
a reasonable stand in for determining the scaling of d with
system size, and has been used previously to characterize
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FIG. 6. Code length versus time averaged over 100 random
samples for system sizes m = L/2 = 16, 32, 39, 48, 58, 64, 97,
128, for the circuit defined by Egs. (2) and (3). The gray dashed
line shows the quantum Singleton bound dpyax/L = 0.375.

codes produced by geometrically local, random monitored
circuits [73-76].

For concreteness we choose s = 1/4 and take an ini-
tial state with randomly placed single-site stabilizers on
[3L/4] sites. As shown in Fig. 6, starting from d; =1 in
the product state, the contiguous code distance increases
linearly before reaching a maximum slightly below the
quantum Singleton bound of dpax =1+ (1 —5)L/2 —
3L/8 [77,78]. As with the half-cut entanglement entropy,
for m = 2%, d; returns to O(1) twice per period, whereas
for other m the extensive-code-length plateau in d) persists
long past the duration of the run owing to the superlinear
recurrence time.

One potential benefit of codes generated by crystalline
circuits, as opposed to random encoding circuits, is that
their added structure could aid in finding efficient decod-
ing algorithms. To take full advantage of this symmetry,
in Sec. VIE we study codes generated by good scram-
bling circuits acting on translation-invariant initial states.
To assess their performance beyond the heuristics provided
by the contiguous code distance, we subject these codes to
erasures, for which an efficient optimal decoder is known
[18,79], and obtain recovery probabilities comparable to
random codes for a range of system sizes.

IV. MODEL AND SYMMETRIES

The circuit described in the previous section is just
one of many that can be constructed by tiling a crys-
talline lattice with unitary gates. The building blocks of
our spacetime translation-invariant circuits are dual unitary
two-qubit gates, which admit the parameterization [28]:

(1 @ u2) VIJ1(v1 ® v2), 4)

where

VIJ] = expl—i(m/4(XX + YY) + JZZ)] )

and uy, ua, vy, v2 are single-qubit gates.

Restricting to Clifford unitaries, which map elements of
the Pauli group to elements of the Pauli group [39], our
only choices for V[J] are the SWAP gate (J = 7 /4, up to an
overall phase) and the iSWAP gate (J = 0). The latter gate,
per standard convention, selects Z as a special axis, as in
Eq. (2). A consequence of this convention is that while
a generic separable state of two qubits becomes entan-
gled under the action of the iSWAP , product states in the
computational (Z£) basis remain product states.

A two-qubit gate can naturally be represented as a four-
leg tensor, with two incoming and two outgoing legs, as
in Fig. 1. Viewed as a four-qubit state via the operator-
state correspondence, a two-qubit unitary gate corresponds
to a state with maximal entanglement of the bipartition
into “incoming” and “outgoing” legs, while dual unitar-
ity also imposes maximal entanglement between the “left”
and “right” bipartitions [34]. We can also interpret this ten-
sor as a geometric object, which has Dy symmetry: the
four-legged square is invariant under fourfold rotations, as
well as reflections about the horizontal, vertical, and two
diagonal axes passing through the center of the square.
The corresponding gate need not have these symmetries;
thus, our objective is to determine which circuits possess
the symmetries of their underlying lattice.

A. Symmetry of SWAP and iSWAP cores

One motivation for focusing on circuits where the two-
site gates on the vertices of the lattice are all dual unitary
is that under any point-group transformation, the circuit
remains unitary. In fact, these dual unitary “cores™ —SWAP
and iISWAP—are more than just dual unitary: they possess
the full Dy symmetry of the square. Thus, we can treat
the black vertices in the lattice representation (Figs. 2 and
7) as “just squares” and focus on the effect of the point-
group transformations on the edges, which are dressed by
single-qubit gates.

As depicted in Fig. 1, the spacetime dual of a two-qubit
unitary gate is the operator resulting from the 7 /2 rotation
of its legs. In matrix form,

s = s ©)
Therefore, the SWAP gate is self-dual (as was previously
noted in Ref. [28]), as is the iSWAP gate, which can be
explicitly verified from Eq. (2).

The D4 point group can be generated by composing
7 /2 rotations with any reflection. Again this just amounts
to a reshuffling of matrix indices. Reflection about the
horizontal corresponds to time reversal, which is imple-
mented by the taking the transpose [80].
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FIG. 7. Triunitary circuit on a kagome lattice. Black squares
are iISWAP cores. The six colors of circles correspond to the six
single-qubit gates that populate one unit cell. Three sets of space-
time axes are shown; each axis could also be reversed to give a
total of six possible time directions.

SWAP and iSWAP are both symmetric matrices, and hence
are invariant under time reversal. Combined with invari-
ance under /2 rotations, both gates can be said to be
Dy-symmetric, or self-octa-unitary.

Note that a generic two-site Clifford gate can be writ-
ten in terms of one-site gates dressing a SWAP, iSWAP,
identity, or CNOT core. The latter two gates act as (nonuni-
tary) projectors when rotated by m /2. Translation-invariant
CNOT-core circuits do exhibit nontrivial scrambling behav-
ior, which we fully classify on the square lattice (see Sec.
VIF), but the range of behavior is actually a subset of what
we find in dual unitary and triunitary circuits.

B. Symmetries on the square lattice

What becomes of the Dy symmetry when we include
single-qubit gates? In the brickwork geometry of Fig. 2,
each single-qubit gate is represented as a red or blue cir-
cle on the edges between the black (i)SWAP cores. Each
unit cell contains one core, one blue gate, and one red gate,
but to make the symmetry explicit, we can consider the
enlarged “vertex” comprised of one core + one-site gates
on all four legs. Then, since the core is invariant under
these operations, it is sufficient to impose the point-group
symmetry at the level of the four legs [81].

Since the transpose operation implements time rever-
sal, reversing the direction of a leg corresponds to taking
the transpose of the single-qubit gate on that leg. Label-
ing each vertex by the single-qubit gates on the incoming
legs, the “standard vertex” is denoted (b,r) [upper left of
Fig. 8(a)]. By comparing the label of the standard ver-
tex to that of the transformed vertex, we can read off the

(a)
m/2
—>
(b.) (r,5")
—m/2
(r',b) o7, rT)
(b) \
(r,b) (b,rT)
(r",07) (o7, r)
FIG. 8. Point-group operations on a SWAP or iSWAP vertex.

Starting from the diagram in the upper left, the rest are produced
by (a) rotations by the indicated angle and (b) reflections about
the dashed axis.

symmetries of each class of circuits. For example, since
time reversal [bottom left of Fig. &(b)] sends (b,7) —
b, b=rTisa necessary and sufficient condition for
time-reversal symmetry.

We return to this in more detail in Sec. VI, where the
formalism of symplectic cellular automata described in
the next section provides a complementary framework for
interpreting these symmetries.

C. Symmetries on the kagome lattice

Triunitarity was introduced in Ref. [54] as an extension
of dual unitarity in which gates are unitary under three dis-
tinct arrows of time. In that work, triunitarity is imposed
at the level of individual three-qubit gates, with K = 6,
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FIG. 9. Point-group operations on a unit cell of the kagome
lattice. (a) The unit cell consists of a hexagon and two adjacent
triangles. The black edges labeled 1-6 are treated as “belonging”
to the unit cell, while the gray edges belong to adjacent cells.
(b) Rotations by 7 /3, 27 /3, and = (—mx /3, —27 /3 not shown).
(c) Reflections about the three axes connecting opposite vertices,
indicated with dashed lines. (d) Reflections about the three axes
(dashed) connecting opposite edges.

which can then be tiled on the triangular lattice to pro-
duce a triunitary STTI circuit. Our construction instead
uses the kagome lattice, which has the same point group
as the triangular lattice but, since its coordination number
is 4 instead of 6, corresponds to a circuit with two-qubit
gates [82]. For the circuit to be triunitary, the two-qubit
gates must be dual unitary, so restricting to Clifford gates
yields a lattice of (i)SWAP cores with single-qubit Cliffords
on each edge (Fig. 7), similarly to the square lattice. We
focus on the case where each core is an iSWAP, since that
allows for interacting dynamics.

In our analysis, the symmetry imposed is that of the lat-
tice, requiring that the full circuit be invariant under (a
subgroup of) its corresponding lattice’s point group. In this
sense, our approach differs from Ref. [83], in which the full
symmetry is imposed on the individual gates, which have
K > 4 legs. These spatially symmetric gates are included
under the umbrella of “multidirectional unitary operators,”
which encompasses families of gates including dual uni-
tary (K = 4), triunitary (K = 6), and ternary unitary (K =
8) [84].

The kagome lattice has the unit cell shown in Fig. 9(a).
The space group of the lattice factors into symmetry under
translation by a unit cell and the point group Dg, which
consists of the transformations shown in Figs. 9(b)-9(d).
Since the iISWAP core is invariant under these rotations and
reflections, it suffices to consider the effect of the transfor-
mations on the single-qubit gates decorating the edges, as
with the square lattice. This can be determined by assign-
ing each edge a direction and label; as above, reversing the
direction of the edge corresponds to taking the transpose
of the gate.

Demanding the full symmetry of the kagome lattice
yields the condition 1 =2 =...=6 from invariance
under /3 rotations [left panel of Fig. 9(b)], and 1 = 17
from invariance under any of the reflections. An immediate
example is the bare iSWAP circuit, in which all single-qubit
gates are identities. This is one of the circuits analyzed in
Sec. VIL

The group of sixfold rotations, Cg, contains C; and C3 as
subgroups. The symmetry group Cj is of particular interest
since rotation by 2w /3 corresponds to changing from one
arrow of time to another. Thus, a circuit left invariant under
this rotation, which imposes ] =3 =5and2 =4 = 6, can
be called “self-triunitary.” Time-reversal symmetry along
each of these arrows of time would further impose the
symmetries in Fig. 9(d).

D. Strong and weak self-duality of correlations

In the previous subsections we define a strong form of
self-duality: applying the given point-group transformation
leaves the circuit strictly invariant. In the ensuing analy-
sis, we also see examples of a weaker form of invariance,
wherein the transformed circuit is related to the original
circuit by a change of basis.

What distinguishes strong and weak self-duality? One
difference is in the symmetries of the two-point correla-
tions of one-site Pauli operators at infinite temperature, at
a spacetime displacement of (x,#). In a dual unitary cir-
cuit, these correlations are nonvanishing only on the edges
of the lightcone, x = +vf, where v is the lightcone veloc-
ity. Hence, any correlation function can be decomposed
in terms of left- and right-moving quantum channels M
[28]. In a triunitary circuit, owing to the existence of three
axes of time (Fig. 7), correlations can also be nonzero
along the “static wordline,” x = 0, with the associated
quantum channel M [54]. Thus, in both cases the analytic
tractability of two-point correlations provides a simple way
to probe circuit symmetries. Loosely speaking, invariance
under a given point-group transformation manifests as an
equality between correlations at displacements related by
that transformation. If the correlations are only equal after
a change of basis, then the circuit possesses only a weak
form of the symmetry. We leave a more detailed treatment
of this topic to Appendix A.
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V. CLIFFORD QUANTUM CELLULAR
AUTOMATA

Now we introduce the main analytical tool used in the
rest of the paper: CQCA. After presenting the formalism,
we write down the general form for the automaton on the
square lattice and show how it is transformed under the
point-group operations described in the previous section.

A. Matrix representation

By definition, Clifford gates transform single Paulis into
single Paulis, rather than superpositions of many Paulis.
As a result, the action of a Clifford unitary is defined by
the images of X and Z. This property forms the bedrock
of the stabilizer tableau representation, by which Clifford
circuits can be simulated classically with quadratic com-
plexity in the number of qubits. The uninitiated reader is
referred to Refs. [39,40] for a detailed discussion of this
approach. The essence of the tableau representation is a
shift in perspective: to understand how a (mixed or pure)
stabilizer state evolves, it suffices to track the evolution (in
the Schrodinger picture) of the generators of the stabilizer
group, comprised of the operators with expectation value
+1 in the state. The stabilizer tableau gives an efficient
means of tracking phases on these operators [40], but these
will not be relevant to our study of how operators scramble
and spread. We, therefore, represent X and Z as the binary
vectors £(X) = (1 0)7 and £(Z) = (0 1)7, which implies
()= (0 0)Tand £(¥Y) = (1 1)T. A single-qubit gate can
then be expressed as

Cig = (EUXUY)  E(UZUY)). (7)

As written, C is a matrix over the binary field ;. To handle
Pauli strings that spread beyond one unit cell, let

Ex) = (Ex(®) &) )

£(x) is a function of the lattice position x, whose value at x
is the two-component binary vector representing the Pauli
operator on that site.

When the circuit in question is translation invariant with
unit cell a, it is useful to express it as a CQCA. Here we
describe the straightforward generalization of the formal-
ism in Refs. [50-52], which is written for a = 1, to general
a. Exploiting translation invariance, we transform &(x) to
a 2a-component vector over the Laurent polynomial ring
Fo[u, u~'] via the algebraic Fourier transform. Explicitly,
letting x = an +j denote the coordinates of the j th site in
the nth unit cell, we define

Ew) =EVw,6%®),...,£9W),
where £V (u) = Zu"é(na +7). ©)

new

The argument u of the Fourier-transformed vector is
defined implicitly through Eq. (9), where for ease of nota-
tion, we use the same variable, &, to denote the original
vector-valued function & (x) and its algebraic Fourier trans-
form &(u), distinguishing them by their arguments. A
CQCA with unit cell @ can then be expressed as a 2a x 2a
matrix M over Fa[u,u™'], i.e., M € Maa(Fa[u,u']).

The form of M is constrained by the fact that CQCA
preserve the Pauli commutation relations. In the Fourier-
transformed representation, these commutation relations
are encapsulated in the symplectic form [50]:

sEm =Y G nd —E 1), (10)
j=1

wheref(u) = f (u — u~'). Then M is a valid CQCA [also
referred to as a symplectic cellular automaton (SCA)] if
and only if [50]

6 (M& Mny) =6(&,m). (1)

Taking the algebraic Fourier transform allows us to com-
pactly represent the action of the CQCA on an infinite
system, but sometimes it is useful to consider the behav-
ior on finite chains with periodic boundary conditions. For
a system of m unit cells, a shift by «™ is equivalent to
the identity, so we take the entries of M to belong to the
residue ring IF, [u, u~11/(u™ — 1). We define the recurrence
time of the unitary whose CQCA is given by M, denoted
T(m), as the minimum power such that M* = #¢1 mod-
ulo ¥ — 1, for some d € Z. Allowing d # 0 accounts for
the case where U repeats up to an overall shift by an integer
number of unit cells. Under the evolution of the automaton,
any stabilizer group on m unit cells, mixed or pure, repeats
modulo signs and shifts after an interval that divides 7 (m).

B. Review of ¢ = 1 automata

Before turning to the square and kagome lattice, whose
automata have @ = 2 and a = 4, respectively, it will be
useful to recall some facts about a = 1 CQCA over qudits
with prime dimension q. For a more thorough treatment
complete with proofs, the reader is referred to Refs. [50—
52].

For a =1, an automaton with local Hilbert-space
dimension ¢ is an element M € M, (IF,[u, u~1]). From the
symplectic condition one can prove that M is an SCA if
and only if [50]

(1) Each element f (u) of M is reflection-invariant with
respect to the same lattice point d € Z, that is,
w¥f () = f ().

(2) detM = u*,
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A third condition, which is often stated separately [51,52]
but actually follows from the above two, is that the images
of X and Z, i.e., the column vectors of M, are coprime.

Due to condition 2, we can always “center” the automa-
ton by factoring out 1. This simply expresses that the shift
automaton u¢1, which acts by shifting all operators to the
right by d units, commutes with all other automata. Then, it
suffices to consider centered symplectic cellular automata
(CSCA) whose entries are symmetric Laurent polynomials
[50-52].

Centered symplectic cellular automata with a = 1 can
be classified into three groups based on their trace [51,52]:
those with Tr(M) = constant belong to the periodic class,
those with Tr(M) = u" + u" for some n € N belong to
the glider class, and all others belong to the fractal class.
This simple classification stems from the fact that the char-
acteristic polynomial of a 2 x 2 matrix is determined by
its trace and determinant, the latter being 1 for CSCA [Eq.

(DI:
xu () =y* + Tr(M)y + det(M). (12)

By the Cayley-Hamilton theorem, M satisfies its charac-
teristic equation, so fora = 1 CSCA,

M? = —Tr(M)M — 1. (13)

This recursion relation for M underlies several related
properties. First, the asymptotic generation rate of bipar-
tite entanglement on a translation-invariant pure state is
deg(Tr(M)); that is, the bipartite entanglement across a
cut of the infinite system grows linearly for glider and
fractal automata but oscillates about a constant for peri-
odic automata [51,52]. The behavior of periodic automata
is particularly simple for ¢ = 2 (qubits): straightforward
application of Eq. (13) implies that a nonidentity CSCA
with Tr(M) = c € F, repeats with period ¢+ 2, thus
explaining its designation as periodic. Of the three classes,
only the periodic automata admit (1) pure stationary
translation-invariant stabilizer states on an infinite chain
and (2) stationary product states, of any entropy density
below 1 [52].

Members of the glider class earn their name because
they have eigenvectors &, with eigenvalues u™" [85].
These so-called “gliders” are operators that shift but do
not spread under the action of the automaton, correspond-
ing to conserved charges and resulting in a recurrence time
T(m) < m on a system with periodic boundary conditions
[70]. In contrast, the recurrence time for fractal CSCA is
exponentially large for generic m, but from the recursion
relation Eq. (13), one can prove that for all CSCA, includ-
ing those in the fractal class, t(m) <3m/2 for m = 2k
[70,86]. A linear bound on 7 (m) for m = 2% also holds for
a>1.

For a > 1, the characteristic polynomial remains impor-
tant for characterizing M, although it is no longer solely

determined by the trace. More precisely, of interest is the
minimal polynomial—the monic polynomial ps of least
degree for which (M) = 0—which always divides x;,.
In Ref. [66], it is demonstrated that for any linear cel-
lular automaton over an abelian group, a broad class of
automata that includes CQCA with generic a, one can con-
struct a sequence of “colored spacetime diagrams,” which
depict the evolution of an initial string (in our case a
Pauli operator) under the action of the automaton, as time
t — 00. For a given initial string, the spacetime diagram
converges in the limit of infinite time, and in particular
automata with the same minimal polynomial produce evo-
lutions with similar fractal structure. This link between the
minimal polynomial and operator spreading is not unique
to a = 1, and rests on the fact that py, implies a recursion
relation for M.

The discerning reader may question why we do not
recast our @ > 1 qubit CQCA as a =1 quantum cellu-
lar automata acting on 2%-dimensional qudits. However,
representation as an element of My (Fye[u, u~']) does
not readily follow; see note [64] for more details. Our
a > 1 qubit CQCA should also be contrasted with the
a=1 CQCA studied in Ref. [71] with local Hilbert-
space dimension N (not necessarily prime) endowed with
a generalized Clifford algebra, which are described by ele-
ments of My(Zy[u,u']) and for which N — oo is the
semiclassical limit.

C. Decomposition of dual unitary CQCA

Expressing our STTI Clifford circuits as SCA, we now
compute the matrix form for the time evolution of one unit
cell of the circuit. In full generality, the evolution con-
sists of three fundamental elements: the two-qubit cores,
single-qubit gates, and optionally, a spatial shift between
successive time steps.

1. Shift

Concretely, let us consider the circuit on the square lat-
tice. Although the brickwork repeats only after two layers
of the circuit, we can use a smaller unitcell, T=1/2,a =
2, by also including a spatial shift of d =1 between
time steps. This simply expresses that the square lattice is
translation invariant under translations by t = 1/2,d = 1.

A generic CQCA on unit cell @ = 2 takes the form:

My, x, Mz _x, Mx,_x, Mz _.x
M= My, .z, Mgz_.77 Mx,_.7z;, Mz,_.z 14
ol B M. M M > (14)
X1—-Xz VAR ¢) X=Xy H—Xo
My, .z, Mz,_.z, Mx,.z, Mz, .z,

i.e., the columns are the images of X, Z;, X2, 2.
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This means that a shift by one site to the right, Mgz,
takes the block-off-diagonal form:

0 1
Mgin = (]l uo). (15)

This equation can be straightforwardly generalized to
shiftsbyj = 1,2,...,a — 1 in a unit cell of size a.

Note that M2z = ul, i.e., a shift by one full unit cell,
which can be factored out to center the automaton as in the
a = 1 case. Formally, we could account for this by writing

- 0 /A
M = (u‘”z]l 0 ) (16)

1/2 is not an element of the Laurent

although of course u
polynomial ring.

It is sometimes useful to consider the automaton with
a larger unit cell, T = 1,a = 2, since after two layers the
brickwork circuit repeats without a shift. The centered

automaton is
M= MZAM? = u='M?. (17)

2. (i))SWAP cores

The two-qubit gates naturally act on a unit cell of a = 2.
If the circuit is translation invariant with a larger unit cell,
as on the kagome lattice, we can just take a tensor product
with the matrices corresponding to the other gates in that
layer.

For the SWAP gate, the automaton is

0 1
MSWAP:(]l 0), (18)

while for the iSWAP:

Miswap = (la) ::) (19)

3. Single-qubit gates

where

The final ingredient in our circuits is the single-qubit
gates. Out of the 24 elements of the single-qubit Clifford
group, we consider two gates to be equivalent if they differ
by only a Pauli operator, since that affects only the signs
on the stabilizers.

The six remaining unique elements fall into three groups
[87]. As in Eq. (7), these gates can be expressed as 2 x 2
matrices over [, which if promoted to matrices over

IFy[u, u~"] (i.e., we imagine applying the same gate to each
qubit) would be @ = 1 CQCA in the periodic class: single-
qubit gates alone cannot generate any entanglement. Yet,
when incorporated into circuits with iSWAP cores, these
different groups of gates produce qualitatively different
classes of behavior as described in Sec. VI. This is a man-
ifestation of the broader point that although circuits with
the same core are locally unitarily equivalent, the mixing
properties are sensitive to the local (one-site) gates [32].
The three groups are as follows.

(1) Identity, which trivially has period 1.

(2) /2 rotation about X, ¥, or Z, which preserves the
Pauli along the axis of rotation and exchanges the
other two. As 2 x 2 matrices,

11 _
Mgy [x/21 = (0 1)= (21a)
0 1 _
MRy[x/21 = (1 0) ) (21b)
10 _
Mgtz = (1 1)- (2lc)

As CQCA, these are all period-2 automata. This
reflects the fact that up to a Pauli, a counterclock-
wise rotation by m/2 is equivalent to a clockwise
rotation about the same axis. Explicitly,

(Ro[7/2])* = Ry[n] = —io =1,  (22)

where 0 = X, Y, Z, and ~ is used to denote “equal
up to a Pauli.”

(3) £2m/3 rotation about the axis (1, 1, 1) on the Bloch
sphere, which implements a cyclic permutation of
X, Y, and Z modulo signs. Explicitly, the clockwise
rotation sends X — Z — Y — X, while the coun-
terclockwise rotation sends X — ¥ — Z — X:

1 1
MRu,l,n[?Hﬂ] = (1 0) >

0 1
MR(l,l,n[—hﬂ] = (1 1) >

which are period-3 automata. From the matrix form
we can also immediately see that

(23a)

(23b)

2 _ —1
Mgy niz2n31 = Mry, , pi20/3]

= MR 11 [521/3]- (24)

4. Decomposition on the square lattice

In a brickwork circuit, we can simplify matters by noting
that while a generic dual unitary gate has the parameteri-
zation Eq. (4), with single-qubit gates before and after the
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(a) (b)

M 0 M. 0
MCOT'G ( 0‘”-{- M‘U_) ( 5'_ M‘U_‘_) MCOT'G

() (d)

M, 0 M,, 0\ (1 0 1 0
("6 2 e ("5 2) (0 a0 ) e (0 ai)

FIG. 10. Four conventions for the CQCA on the square lattice.
Each is followed by a shift by one site, M. We use the top-left
convention, which places both single-qubit Cliffords before the
core.

core, in the context of a full circuit the gates on the out-
going legs can be absorbed into the incoming legs of the
next layer. We choose to cut the links in such a way that
the single-qubit gates come before the core:

U= "7 ®v_). (25)

With this convention, the automaton for one time step
decomposes as

— . M,, 0
M = MshlﬂMcore ( 0 Mu_) (26}

where M_ . is the matrix for the SWAP [Eq. (18)] or iSWAP
[Eq. (19)] core.

Three alternative conventions are shown in Fig. 10. It is
straightforward to prove that all four conventions have the
same characteristic and minimal polynomials, consistent

with the fact that they represent the same physical circuit
[88].

D. Symmetries and similarity transformations

Now we can analyze the point-group symmetries by
asking how the automata transform under rotations and
reflections of the lattice.

An important caveat is that since the unit cell contains
only two one-site gates, i.e., in each of the four conventions
shown in Fig. 10 only two of the four legs are decorated
with gates, none of these conventions have the full Dy
symmetry (unless both gates are identities). This is in con-
trast with Fig. 8 and the surrounding discussion, where the
“expanded vertex” contains a gate on each leg. Thus, when
asking if a QCA has a given symmetry, we must compare
the transformed automaton to the version of M in the con-
vention « € {a, b, c,d} with the appropriate placement of
one-site gates relative to the core. All four conventions
yield automata with the same characteristic polynomial, so
a necessary (but not sufficient) condition for symmetry is
that the characteristic polynomial be left invariant under
the transformation.

The eight point-group transformations of the square can
be expressed as the composition of left-right reflection
and the spacetime dual (rotation by m/2) [83]. We dis-
cuss these, along with time reversal (reflection about the
horizontal), in turn.

1. Left-right reflections

For a unit cell of size a, reflection about the center of the
unit cell is expressed as

0 1 0 1

%Ha+l—j = M H] (2?}
1 0 1 0

where each 1 is a 2 x 2 matrix. Explicitly, for @ = 2 this
simplifies to

0 I1\+5(0 1
Mo = (]l O)M (]l 0). (28)
The resulting transformation of the characteristic polyno-
mial is

() = xmiu— uh). (29)

Mo 1s manifestly invariant under Eq. (28), while My, —
u'Mgg, an overall shift that can be removed by “cen-
tering” Muin as in Eq. (16). Thus, the net result of
the transformation is just to exchange M,, and M,_, as
expected:

MY vy v0) = u" My(v_,vy) (30)

where we introduce the notation M, (v, v_) to denote the
automaton with convention o = a, b, ¢, d and single-qubit
gates vy, v_. Note, though, that in imposing this sym-
metry we do not actually require vy = v_ as implied at
the level of the unitary in Fig. 8. Since the symplectic
cellular automaton does not include signs on the stabiliz-
ers, M' = M (up to a global shift) just imposes that the
corresponding unitaries are equal up to a Pauli.
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2. Time reversal

The time-reversed automaton is M’ = M~!, with char-
acteristic polynomial

2a
Yy 2a
- = — 1 = 1 31
xXm-1(¥) det (M) xm(1/y) =y“xu(1/y), (1)
where the second equality holds for CSCA, for which
det(M) = 1. The automaton transforms as

M

-1 0
M (v v) = ( Y

-1
Mu—') Meore Mgy

=M sEi]ﬂMb(Uf ’ ”i )Msii]ﬂ
~ u_lMg,(Uf,vi . (32)

In the last line, ~ denotes that while the two automata are
not equal, they represent the same circuit, since the half-
unit-cell shifts can be absorbed into the subsequent layers
at the expense of an overall shift by one unit cell.

Up to multiplication by Paulis, we draw the same con-
clusion as in Fig. 8: a square lattice CQCA is time-reversal
symmetric if v, ~ v and v_ ~ v{.

3. Spacetime dual

The transformation of the CQCA M under a coun-
terclockwise m/2 rotation can in general be written by
looking at the action on a complete basis of stabilizers and
solving a set of linear equations, but by decomposing M as
Eq. (26), we can straightforwardly read off

M vy vo) > My!vy) (33)
up to an overall shift.

4. Circuit classes

Two automata are considered to belong to the same
class if they are related by a point-group transformation
or change of basis. Equivalently, we define a class as all
those related by just one point-group transformation—left-
right reflection—or by the transformation X; <> ¥;, and/or
Xy <> Y3, i.e., the similarity transformation M (X; — Y;) =
S;MS;" where

Meoinss O _
S = ( i ]1) =57, (34a)
1 0 »
S, = =S 34b
2 (0 Mﬂztum) 2 (340)

This change of basis preserves the iSWAP and SWAP cores
while exchanging Ry[m /2] < Ry[m/2] and R(1,1,1y[27/3]

< Rai,n[—2m/3]. The SWAP core is also preserved
under transformations like X' <> Z and their compositions,
implemented by replacing Ry with Ry or Ry in the above
expression.

To see that similarity transformations composed with
left-right reflections generate all the automata [expressed
in convention (a)] related by a point-group transformation,
note that taking the transpose of any single-qubit gate, fol-
lowed optionally by a similarity transformation, yields the
original gate up to a Pauli, i.e.,

SM,S-! v =R [£27/3]

My =M= .
M, otherwise

35)

This means that a square-lattice circuit is weakly self-dual
under any point-group transformation as long as it has
(weak) invariance under left and right reflection. From the
two cases in Eq. (35), we also see that one-site gates cor-
responding to automata of period 1 or 2 satisfy u ~ u’,

whereas the period-3 automata have u 2 u’.

VI. CLASSES ON THE SQUARE LATTICE

We now apply the formalism in the previous section
to classify the dual unitary CQCA on the square lattice.
The SWAP-core automata can be viewed as generalizations
of the periodic class of @ = 1 automata. The iSWAP-core
automata form six classes, which split into two groups:
one group of “poor scramblers” is related to the a =1
glider class, while the “good scramblers” are related to the
a = 1 fractal class. The CQCA formalism also provides
another perspective on the trends in correlation functions,
conserved quantities, and entanglement growth common
to dual unitary circuits, which we touch on throughout this
section and further discuss in Sec. VIF.

A. SWAP core

Since the SWAP gate does not generate any entangle-
ment, we already know that the STTI circuits with a SWAP
core are nonentangling, with a dynamics that is in some
sense “trivial.” Nevertheless, writing out the 4 x 4 matri-
ces that describe these circuits can elucidate their structure
and situate them within the framework of a = 1 CQCA.

Inserting Eq. (18) for My, Eq. (26) simplifies to

M(vy,v.) = (‘”‘3 v ) (36)

M is block diagonal, where the 2 x 2 blocks on the diag-
onal describe the independent time evolution along the +
and — diagonals of the lattice, determined by the single-
qubit gates vy and v_, respectively. Thus, the dynamics
decompose into two @ = 1 automata in the periodic class,
consistent with the fact that SWAP gates do not gener-
ate entanglement [51,52]. Independently, the two automata
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have period 1, 2, or 3 depending on their trace (measured
in units of £ = 1/2). But in any fixed frame, t(m) is lin-
ear in m. This is because the top left block is symmetric
with respect to the lattice point d = 1, whereas the bottom
right block is symmetric with respect to d =0 (i.e., is a
centered SCA). The full automaton only appears periodic
if we choose a “staggered frame” where in each time step,
the odd sites are translated by one unit cell with respect to
the even sites.

As written, M contains an explicit dependence on the
single-qubit gates v, and v_, but we can always push the
single-qubit gates through the SWAP core up to the top layer
or boundary of the circuit. In this sense, all SWAP-core
automata are equivalent to the bare SWAP circuit, which is
self-octa-unitary. (Point-group transformations would just
change the boundary layers.) For this circuit, the recur-
rence time in units of f = 1/2 on a system of m unit cells
is m. Any translation-invariant stabilizer state is invariant
under the action of the circuit, so there is a large set of
stationary states on a system of any size.

Although the dynamics are fairly boring viewed through
this lens, the SWAP class is actually “maximally entan-
gling” from the perspective of Ref. [89]. Explicitly, starting
from two pure subsystems 4 and B, with some initial entan-
glement between the odd and even sites on each half, when
a gate is introduced between A and B, the SWAP model
saturates the minimal cut bound on entropy production
between 4 and B. In fact, in generic dual unitary circuits
starting from a product state of m nearest-neighbor Bell
pairs on 2m sites, the entanglement entropy of a contiguous
subregion A saturates this bound [29], which for a system
of length L with periodic boundary conditions, reads [90]

lim 5,(f) = min(41,]4)). 37)

For the SWAP circuit, the presence of initial entanglement
already in the system is crucial, because the SWAP gate has
zero entangling power [32].

B. iSWAP core
Substituting M;swap [Eq. (19)] into Eq. (26) yields:
ubM,,

uaM,_
M(U+,B_):(3Mu+ bMv_).

A key difference from the SWAP-core automata is that the
“period-2” single-qubit gates are not all equivalent. Since
the iSWAP gate has Z as a special axis, a Z rotation can be
propagated through the core as in the case of a SWAP gate:

(38)

iSWAP (Rz[7/2]1 ® 1) = (1 ® Rz[7/2])iswaP,  (39)

which tells us that after two layers, up to signs on Pauli
operators, performing a Z rotation is equivalent to acting

with the identity [91]. On the other hand, X and Y rota-
tions, when propagated through the iSWAP, change the core
itself, as do the cyclic permutations [92]. This can be seen
from Eqgs. (19) and (20): the only single-qubit CQCA that
commute with both a and b are 1 and Mg, [x/2].

Thus, when considering the action of the automaton
at integer times f, there are three distinct choices for
each of vy and v_: (1) 1 and Rz[n /2], (2) Rx[m/2] and
Ry[7 /2], (3) R11,1)[£27/3]. This implies that there are
3C; = 6 classes of iISWAP automata. Unlike with the SWAP
core, these classes cannot be further combined by pushing
single-qubit gates through to the boundary.

All six classes of automata generate volume-law entan-
glement, but they divide into two groups based on how
much entanglement is generated for a random initial prod-
uct state. There is also a sharp distinction between the
two groups with respect to the recurrence times on a finite
system: “poor scramblers” have linear in m recurrence
times for all m, reminiscent of the a = 1 glider class [70],
whereas t(m) grows superlinearly for m # 2 in the “good
scrambling” classes.

C. “Poor scramblers”

In three classes, the “poor scramblers,” the steady-state
Page curve for a system starting in a random pure prod-
uct state has a slope less than 1, i.e., the total entropy of a
subsystem of length [4| < L/2 is f |4], where 0 < f < 1.
We emphasize that random product states do not belong
to the class of solvable translation-invariant initial states
defined in Ref. [29], hence the nonmaximal entanglement
generation despite the dual unitarity of the circuit. All
three classes have an identity (or Rz[7r/2]) on one or both
legs. Choosing the identity gate to be vy without loss of
generality, this yields

: g uaM,_
M) = o (40)
1 o) DPM.

Regardless of v_, this automaton has a glider observable,
§(Z1), with eigenvalue u. In the “centered” frame (replac-
ing Mgz with Mg;s [Eq. (16)]), the glider formally has

eigenvalue u'/2, so after two layers (one full time step) Zf”)

shifts to Z§"+l), where 0}.(” denotes the Pauli operator o on
the j th site of the nth unit cell.

The presence of gliders provides some explanation for
why the entanglement generated by these circuits is sub-
maximal. Recall from Sec. IV D that in any dual unitary
circuit, the two-point correlations at infinite temperature,
which are nonvanishing only on the boundary of the light
cone x = *+vf, can be decomposed in terms of left and
right quantum channels M+ [28]. All conserved charges
are gliders, with eigenvalue 1 for one of the channels, and
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since the product of gliders moving in the same direc-
tion is also a glider, the presence of one glider implies
infinitely many [34]. Thus, a circuit for which some but
not all of the eigenvalues are equal to 1 is generally inter-
acting but nonergodic, with some dynamical correlations
remaining constant [28]; see Appendix A for more details.
In fact, Ref. [93] proves that the only square-lattice cir-
cuits supporting moving one-site gliders (referred to as
“moving ultralocal solitons”) are dual unitary. Our poor
scramblers are Clifford examples of the explicit formulas
for glider-supporting gates in that work.

In the present context, any Z operator initialized on
only odd sites gets shifted, but does not spread, under
the action of the circuit. In particular, any initial product
state with Z stabilizers on all odd sites remains a product
state at all times. On the other hand, if the initial prod-
uct state is generated by only X and Y stabilizers, then it
can become maximally entangled, but immediately starts
to lose entanglement to return to a product state before the
next recurrence.

The full details on the poor scramblers are provided in
Appendix C. Here we just introduce the simplest of the
classes, the bare iSWAP:

(v, v ) = (1,1). (41)

The centered automaton after two layers is

u 0 0 0

- _ 0 u l14u 0

M=uwM=[ o o 1 o @
1+ 0 0 u'!

Since the iISWAP gate preserves the symmetry between X
and Y, the changes of basis in Eq. (34) exactly preserve the
matrix, or in other words, there is only one unique circuit
in this class. This is just a manifestation of the self-octa-
unitarity of the bare iSWAP automaton.

Owing to this self-octa-unitarity, since the automaton is
reflection symmetric, not only is Z; a glider with eigen-
value u, but Z; is a glider with eigenvalue u~!. Moreover,
this matrix can be made block diagonal, with (Xi,Z;)
forming one block and (Z;, X2) forming another block:

(1 —I—uu_l ugl) 0
0 (u 1 —I—u)

0 u!

(43)

Neither block is a symplectic matrix, so we cannot use the
machinery for a = 1 CQCA. However, it is worth noting
that each block has the same trace, u + u~!, and deter-
minant, 1, as the class of one-step gliders with a =1,
which can all be mapped to the “standard glider,” g =

((1} " +1u_1) [52]. Thus, the characteristic polynomial of
Mis

X0 =0+ @+u )y + 1) = x5 (44)

and the two automata share the same minimal polyno-
mial, ;L = ftg = Xg. Thus, M satisfies the same recursion
relation as the standard glider automaton. This leads to
similarities in the operator spreading of initially local Pauli
strings: some operators are gliders, while others fill the
lightcone in a periodic pattern [51,66].

Another perspective on the iSWAP circuit is as imple-
menting a free fermion Floquet operator, the massless
Dirac QCA [94], via Jordan-Wigner transformation [95].
Thus, the iSWAP automaton is in fact noninteracting and
integrable. Free fermion QCA are discussed in more depth
in Appendix B.

D. “Good scramblers”

The three remaining classes exhibit a nonlinear structure
in T(m), and generate Page curves with slope 1 on ran-
dom initial product states in between the recurrences. Since
neither v, nor v_ is the identity gate, automata in these
classes have no single-site gliders [93]. Instead, they have
more in common with the fractal class of a = 1 automata.
A notable exception, however, is the dense good scram-
bling class introduced in Sec. II1, which we revisit before
discussing the two classes with fractal structure.

1. Nenfractal good scrambling class

In Sec. IlI, we highlight the entanglement and error-
correction properties of the circuit with single-qubit gates:

(v4,v-) = (Rx[7/2), Rx [ /2]). (45)

Referring to Fig. 8 confirms that this circuit is self-octa-
unitary. The corresponding matrix is, after two layers,

0 u u u
_ u+1 u+1 0 1 .
M = u_] H_] O u—l (46)
0 1 w41 wl41

Reflection and time-reversal symmetry manifest in the
characteristic polynomial [cf. Equations (29) and (31)]:

xir0) =y + @+ u )y + @ + 1+ u)y?
+w+uy+1. (47)

Other members of this class, generated by the transforma-
tions Eq. (34), have Ry[m /2] instead of Ry [7 /2] on the left
and/or right leg.
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2. Fractal dy = 1.9 class

A second good scrambling class contains the circuit with
single-qubit gates:

(v4,v-) = (Ry[7/2], Raap[—27/3]).  (48)
After two layers,
0 u 0 u
L S P (49)
0 1 0 1+u!

Owing to left-right asymmetry, members of this class
generate asymmetric fractal patterns. The similarity trans-
formations amount to changing out Ry [m /2] with Ry[m /2]
and/or reversing the direction of the second-qubit cyclic
permutation.

The characteristic polynomial, which is also the minimal
polynomial, is

Xir ) :y4 + uy3 + (M2 + 14+ z.f_z)y2 + u_ly + 1.
(50)

Since y; () is not invariant under either time reversal or
left-right reflection, the automaton itself is not symmetric
under these transformations. While the characteristic poly-
nomial is invariant under their composition (inversion),
inversion is only a weak self-duality of the automaton itself
(or the corresponding unitary), as is reflection through
the + diagonal, since M, = SMUTS_I [Eq. (35)]. The
only strong self-duality is under reflection through the
downward-sloping (—) diagonal, which maps (v, v_) —
(UI, v_).

The fractal pattern of this class is not present in the a =
1 automata; the inherent asymmetry of odd and even sites
makes it fundamentally @ = 2. For example, the image of
Z\Z, [Fig. 11(a)] is asymmetric even though the initial
operator is reflection invariant with respect to the center
of the unit cell. The cumulative number of X, ¥, and Z
Paulis within the footprint of Z;Z,(f) all scale with the
same fractal dimension.

To determine the fractal dimension more precisely, we
leverage one useful commonality with @ = 1, which is that
much of this fractal structure can be seen just by studying
the evolution of the trace. In Ref. [63], the fractal struc-
ture of the CNOT automaton (which also has a = 2, but is
not dual unitary) is deduced from the pattern of nonzero
coefficients of powers of u in the expansion of Tr(M").
Applying the same technique here, we find that the foot-
print of Tr(M") appears as a “black-and-white” version of
the colored spacetime diagram (Fig. 11). Then, the fractal
dimension dy can be inferred numerically from the scaling

(a) >
200
150
100

50

=400 =200 200 400

(b) 2000
1500
+ 1000

500

o
=2000

FIG. 11. (a) Image of Z,Z; at integer time steps up to t = 256
under the automaton Eq. (49). Blue, green, and orange pixels
cannot be individually distinguished but correspond to X, ¥, and
Z, which follow similar fractal patterns. (b) Visual depiction of
Tr(M*) up to t = 2048. A black pixel at (n, ) indicates that the
coefficient of " in Tr(M") is 1. Inset: power-law fit to Y e N
yields dr = 1.90(1).

of the number of nonzero coefficients N (f):

D ON() ot (51)
<t

A fitup to t = 2! yields
dr =1.90 +0.01. (52)

3. SDKI class
The third good scrambling class has the deepest con-
nections to a = 1 CQCA, as well as to a minimal model of
maximal quantum chaos, the self-dual kicked Ising (SDKI)
model [27,96-98]. The kicked Ising model is described by
the Floquet unitary

Ukr = e—fb‘Z;)G'e—ijJ(%Zj+1+"f%f)_ (53)

It is dual unitary along the self-dual line |J| = |b| = 7 /4,
and ergodic for any nonzero longitudinal field h; [97].
Along the entire self-dual line, the entanglement velocity
is maximal, implying a flat line tension in the membrane
picture [99].

030313-17



SOMMERS, HUSE, and GULLANS

PRX QUANTUM 4, 030313 (2023)

Focusing on the Clifford point h; = h = 7 /4, the SDKI
model maps via a boundary circuit [28] to a representative
automaton of this class, which has

(vy,v2) = (R [—27/3L, Ry [—27/3]) . (54)

Since Rq1,n[—2m/3] # R(l,l,l)[—Zn/S]T, this circuit is
weakly self-dual under all point-group transformations but
is strongly invariant under only one, left-right reflection.
Indeed, all automata in this class—obtained from the rep-
resentative Eq. (54) through the similarity transformations
Eq. (34)—are strongly symmetric under at most one kind
of reflection, horizontal or vertical [100].

It should be noted that there is a different way of decom-
posing the Floquet unitary from Eq. (53) into a brickwork
circuit [27,99]:

Ui = e VO =il Z1+hy2) /2 ,—ib(X1+X2)
e—ib2|22—l'(ﬁ|Z| +fl222)f2. (55}

This representation is strongly self-octa-unitary at the self-
dual point with homogeneous A, as pointed out in Ref. [83].
However, this choice of gate is not Clifford [101].

As a 4 x 4 matrix, our chosen representative [Eq. (54)]
is

(36)

ocorR O
-_o o=
-0 O O
o =8 O

Once again, it is useful to consider the evolution of the
centered automaton after two layers:

u 0 0 u

- 0 u+1 1 0

M = 0 w!' ! 0 (37)
1 0 0 14u!

As with the bare iSWAP class, permuting rows and columns
brings M into block-diagonal form. Explicitly, Z; and X,
form one block, and X; and Z; form another block, so an
operator that starts with Z’s supported only on odd sites,
for example, can only spread to a product of Z’s on odd
sites and X ’s on even sites. This is shown in Fig. 12 for the
initial Pauli string Z;. The block-diagonal matrix is

(llt 1+uu—]) 0
0 (0

Again, neither block is a valid CSCA, since they connect
X’s and Z’s on opposite parity sites. However, writing M

(38)

250 F
200 -
150

00}
sol /=1

°~360 100 o0 100 200
n

FIG. 12. Time evolution from the initial operator Z; under Eq.
(57), split into odd (left) and even (right) sites. Owing to the
block diagonal form of Eq. (58), the image on odd sites is only
Z’s (orange), while the image on even sites is only X ’s (blue).

in this form elucidates the connection to the SDKI model
at the Clifford point, which as an @ = 1 automaton is [4]

ul +u 1
ul+14u 1) (59)

Mspxi = (
This has the same characteristic polynomial as each block
of Eq. (58), and indeed

X)) =02 + @+ 1+u" )y + 1?2 = xspa()?, (60)

with M and Mgp; sharing the same minimal polynomial,
iy = mspk1 = xspki- Since SCA with the same mini-
mal polynomial share a common fractal structure in their
colored spacetime diagrams, i.e., the footprints of time
evolved initially local operators, the systems described by
Eq. (57) and Eq. (59) both have fractal dimension dr =
log,[(3 + +/17)/2] = 1.8325-- -, analytically determined
in Ref. [66] for another automaton with the same minimal
polynomial.

Therefore, just as the bare iSWAP class can be thought of
as the natural @ = 2 descendant of the standard glider class,
the SDKI class acts as the @ = 2 descendant of the simplest
a =1 fractal class. One remarkable feature of the stan-
dard fractal a = 1 automaton examined in [66] is that, if
the Floquet operator for one step of the automaton is writ-
ten as the exponential of a (nonunique) time-independent
Hamiltonian H, then any choice of H is nonlocal in a
strict sense, i.e., the interactions do not decay with dis-
tance [102]. Consequently, conserved operators are also
nonlocal. In contrast, unitary evolution of the bare iSWAP
class, which maps onto free fermions, is generated by
a time-independent Hamiltonian with algebraic decay of
interactions [102]; see Appendix B.

On the other hand, the @ =2 SDKI class provides a
case study for the ways in which @ = 2 automata can
depart from the @ = 1 automata studied previously. Recall
that for @ = 1 the only class that has either stationary
translation-invariant stabilizer states or stationary product
states (other than the fully mixed state) is the periodic
class [52]. In contrast, while a random pure product state
becomes entangled when fed into the a = 2 “SDKI-class”
circuits, this class also has translation-invariant product
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stabilizer eigenstates. In particular, the state stabilized by
Z1,X3 and all their translates, as well as its mirror image
stabilized by X", Z{", is stationary under two layers of
the circuit.

To see this in the CQCA formalism, represent the
translation-invariant stabilizer group S as a 4 x 2 matrix
S over Fy[u, u'], where the ith column is the vector of
polynomials corresponding to the ith generator. Under one
step of the CQCA M, the generators evolve to MS. Individ-
ual generators can scramble while leaving the total group
invariant, so to check for the invariance of the group, we
perform row reduction on (MS)”. For M given by Eq. (57)
and the initial group S = (X,™, Z{"), this yields
u u 1
0 0 0
o o |T|o
1 1+u! 0

M

0 0
0 0
o] = 0 (61)
| I

1
0
0
0

E. Good quasicyclic codes

Two of the three good scrambling classes—the nonfrac-
tal class and the dr = 1.9 class—are especially promising
for quantum error correction. As demonstrated in Fig. 6
and the surrounding discussion, the dense good scram-
bling class generates finite-rate codes with linear-in-m
code length d; for random initial product states. In fact, this
property is enjoyed by all three good scrambling classes.

We now make two further demands. First, rather than
starting from a random product state of some entropy
density, consider the action of the circuit on translation-
invariant product states of code rate 1/2. The spatial
periodicity of the automaton guarantees that such states
remain translation invariant at all times; for spatial period
a > 1, the resulting codes are known as quasicyclic codes
[55,56]. Existing decoding techniques for cyclic quantum
codes [57] and (quasi)cyclic classical codes [58—61] could
prove useful for finding a decoder for our codes.

Restricting to translation-invariant product states gives
six choices for the initial state, generated by 0}(") forj =
1,2, 0 =X,Y,Z. When any of these initial states is fed
into a circuit in the SDKI class, the code length remains
O(1) to late time. On the other hand, members of the dy =
1.9 class and nonfractal class are able to generate linear-
in-m code length, albeit with more frequent recurrences of
short code length than for random initial states.

Second, for assessing the performance of the resulting
codes under realistic noise models, the relevant metric is
the code distance d, for which d; is only an upper bound.
For a given circuit and initial state, consider the code
defined by a snapshot of the system at the time when d;
is maximized. While the distance d of the resulting code is
exponentially hard to compute, we can get a sense for its
performance compared to random codes by subjecting it to
erasures. For this simple error model, an optimal decoder

1.00
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=
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&
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0.00

0.15
e (e—e)L
FIG. 13. Failure probabilities for quasicyclic codes generated

by a dense good scrambling circuit starting from the product
state (Z. {"}} with code rate 1/2, as a function of erasure rate,
for L = 20,40, 80, 160, 320 qubits. Right: scaling collapse versus
(e — e.)L. Black dashed line is the random matrix theory predic-
tion for L = 320. At least 1000 samples are taken at each erasure
rate.

of cubic complexity is known [79,103], and the failure
probability P of the decoder can be efficiently computed
[18]. Let Pr(e,s,L) denote the failure probability for a
code of rate s on L qubits, where the erasures are applied
at random locations on a fixed fraction e of the sites. For
random codes, this quantity is well modeled by random
matrix theory, and decays exponentially in L for error rates
far below threshold:

Pr(e,s,L) o 27201 o <« e, (62)
where the error threshold e, = (1 — 5)/2 [18].

To evaluate the quasicyclic codes generated by good
scrambling circuits, we first ask whether they achieve the
optimal threshold. Figure 13, which shows the failure prob-
abilities for quasicyclic codes produced by a dense good
scrambling circuit for the initial Z product state at code rate
1/2, subject to randomly placed erasures, answers in the
positive for the sequence of system sizes L = 10 x 2%, Not
only does the threshold saturate the bound e, = 1/4, but a
scaling collapse of the form Pr(e,s,L) = f ((e — e.)L) is
consistent with random matrix theory (right panel). Simi-
lar results are obtained for other initial periodic states and
for circuits in the dr = 1.9 class.

Backing away from the threshold, we collect > 107
samples at each system size to get a more precise esti-
mate of the subthreshold failure probability at a fixed
erasure rate of e = 0.75e.. As shown in Fig. 14, the codes
produced by the dr = 1.9 class and nonfractal class are
competitive with random codes for a wide range of L,
but exhibit sharp peaks in Pr for certain system sizes.
Spikes in the failure probability are associated with system
sizes for which the chosen snapshot of the system, despite
having large code length, has poor code distance—an
exception to the general trend that higher code length is
correlated with lower failure rates. This poor performance
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FIG. 14. Failure probabilities at e ~ 0.75¢. = 0.1875, for qua-
sicyclic codes produced by a representative of the d = 1.9 class
(blue) and dense good scrambling class (orange) compared to
random codes (modeled by random matrix theory, black). Wig-
gles in the black curve come from rounding the number of
erasures to the nearest integer.

can be avoided by restricting to certain system sizes (odd m
tend to fare better, and have fewer recurrences) or by mon-
itoring the performance under erasures for the sequence
of codes generated in time rather than just choosing the
snapshot with maximum code length.

The astute reader may question our earlier emphasis
on the nonfractal operator spreading in the dense good
scrambling class, given that the dr = 1.9 class appears to
perform just as well, and in fact has less dramatic spikes
in the failure probability. Thus, some clarifying points
are in order. First, while we define the fractal dimension
through the cumulative weight of Pauli operators spread-
ing in spacetime, the code distance is concerned with the
lowest weight of a logical operator at a specific time slice.
If the fractal dimension is dr, there must exist a sequence
of time slices for which the Pauli weight grows at least as
fast as £ ~!. For the dy = 1.9 class, there is no sequence
of times where the scaling is linear, but it is close enough
that with the presently accessible system sizes we cannot
distinguish the subthreshold scaling from that of a linear
distance code. Moreover, the code distance for codes gen-
erated from a specific set of initial states is not necessarily
monotonic in either the spacetime fractal dimension or the
operator scaling along particular time slices. Even if dy is
well above 1, the code distance may fail to grow at all, as
is the case for circuits in the SDKI class when fed initial
states with period a = 2.

F. Dual unitarity and beyond

In the preceding subsections, we have noted several
features of our automata that are general to dual unitary

circuits. Here we summarize these features and compare
the iISWAP-core automata to those without dual unitarity.

One key feature of dual unitary circuits is their ability
to saturate the minimal cut bound [Eq. (37)] on entan-
glement, and the existence of certain initial states for
which this saturation is known to be exact in the limit
of infinite system size at all times [29,98]. Numerically,
we observe that the entanglement in our good scrambling
circuits increases at a near-maximal rate starting from ran-
dom pure product states. The significant suppression of
entanglement growth in poor scrambling circuits acting
on random product states, as well their complete failure
to generate entanglement on certain translation-invariant
Floquet eigenstates, does not violate any proven analytical
results, since these initial states do not belong to the class
of solvable initial states for which the bound is saturated.

Historically, the SDKI chain has served as a prototypi-
cal model within the broader realm of dual unitary circuits,
and the first for which the entanglement growth (among
other quantities) was computed exactly [98]. It is therefore
striking that our @ = 2 CQCA include the closely related
SDKI class. For the SDKI model, the class of initial states
(“separating states”) for which Eq. (37) is exactly saturated
includes product states in the computational basis. Again,
the fact that our SDKI automaton admits Floquet product
eigenstates is consistent with this result, since these eigen-
states, when evolved under the boundary layer relating our
automaton to the standard SDKI model [Eq. (53)], do not
evolve into separating states.

Another special feature of dual unitary circuits is the
restriction of two-point correlations of one-site observ-
ables to the edges of the lightcone (Sec. IV D). As detailed
in Appendix A, the good scrambling classes of iSWAP-
core CQCA enjoy an even stronger restriction: two-point
correlations of nontrivial one-site operators vanish for all
t = 1 (two layers of gates). This is as close as we can get
with two-qubit gates to the “maximally chaotic” behav-
ior of quantum Bernoulli circuits, for which correlations
of one- and even two-site operators vanish for all ¢ > 0.
Such circuits arise when U is a perfect tensor, which is
possible for qudit dimension ¢ > 3, and their ergodicity is
robust to one-site gates dressing the legs [32]. Clearly, the
ISWAP gate and its dressings lack this robustness, since the
scrambling properties depend on vy and v_. To wit, as
already noted, in the poor scrambling classes (for which
v, and/or v_ is an identity gate), the presence of gliders
results in some correlations that are constant in time.

Lifting the constraint of dual unitarity, the only other
Clifford gates that produce interacting dynamics are those
with a CNOT core. Dividing all CNOT-core automata into
classes as we did for the iSWAP-core automata, most
classes are minor variations on those we have already
encountered: an SDKI-like class and several glider classes,
where now the gliders can have velocity other than =1
owing to the lack of dual unitarity (see Appendix B).
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Another class contains the bare CNOT automaton, a brick-
work circuit of CNOT gates also known as the Clifford
East model [104]. This circuit preserves Calderbank-Shor-
Steane (CSS) codes [105,106]—namely, it maps X ’s to
X’s and Z’s to Z’s—and thus its 4 x 4 matrix is block
diagonal in the basis of (X}, X5, Z), Z,) [63]:

(') 0
(ul_] u—11+ 1)

Mcwot = 0

Whereas the bare iSWAP class is a poor scrambler with glid-
ers, under the action of a circuit in the bare CNOT class, an
initially local Pauli string spreads fractally as a Sierpinski
gasket, with fractal dimension dr =log,;(3) = 1.5824 ...
[104]. A closely related CNOT-core class with the same
minimal polynomial (and hence the same fractal dimen-
sion) as the Clifford East model generates quasicyclic
codes with the optimal threshold under erasures, despite
dr being lower than the @ = 2 SDKI class for which the
code distance remains 1 at all times. This fractal behav-
ior is not present in our dual unitary square-lattice circuits,
but it remarkably appears in the triunitary kagome-lattice
CQCA, to which we now turn.

(63)

VII. KAGOME-LATTICE AUTOMATA

Turning to the kagome lattice, we consider three repre-
sentative examples of the dynamics that occur when there
are three (six including time-reversal) choices for the arrow
of time.

Recall from Fig. 9 and the surrounding discussion
that symmetry under threefold rotations (“self-triunitary™),
imposes | =3 = 5 and 2 = 4 = 6 on the six unique edges
within the unit cell. We focus on a subset of self-triunitary
circuits with an iSWAP core where, like on the square lat-
tice, the single-qubit gates on the same diagonals with
respect to the core are identical. This corresponds to
assigning identical gates to the edges of a common ori-
entation on the kagome lattice, i.e., 37T =6, 1T =4, and
2 =57, When this is combined with C3 symmetry, the
resulting circuits are also invariant under the three reflec-
tions in Fig. 9(c). The circuits fall into three classes: those
with 1 or Rz[m/2] on each leg, those with Ry[m /2], or
Ry[m /2] on each leg, and those with cyclic permutation
gates on each leg.

Expressing the kagome lattice as a rectangular circuit
(Fig. 15), now a = 4 and the corresponding SCA are 8 x 8
matrices. As on the square lattice, we could use a smaller
unit cell by incorporating a shift, (T = 1,a =4,d = 2),
but the evolution is somewhat clearer if we just use (T =
2,a =4,d = 0). The three classes exhibit some notable
similarities to automata with smaller a, indicating a latent
connection to circuits with simpler geometries.

. ()
| |
FIG. 15. Kagome lattice expressed as a rectangular circuit.
With time oriented in the vertical direction, the circuit is com-
posed of (T = 1,a = 4) “bricks” (dashed) with a shift by d = 2
in between time steps. In constructing the automata, we instead
use the enlarged unit cell (shaded gray) with (T =2,a =4,
d =0).

A. Bare iSWAP class

The simplest example has identity gates on all the
edges, and thus has the full Dg symmetry. To elucidate the
time evolution, we permute the rows to be the image of
X1, X2, X3, X4, 21, 2>, 73, Z4, respectively:

n=( o) ©
where
u 0 0 O
tzz = g (1} ? g (65)
0 0 0 u'!
and
0 u u u+1
tzx = } g g } (66)
l+u! u' u! 0

From the form of tzz, we see that all Z strings are (products
of) gliders, just like in the iSWAP class on the square lat-
tice. Indeed, this could have been anticipated by recalling
that the iSWAP does not produce entanglement on Z eigen-
states. But owing to the modified geometry, instead of just
left and right movers [£(Z;) and &(Z4) have eigenvalues u
and u~!, respectively], there are also “stationary gliders”
[£(Z>) and &(Z3) both have eigenvalue 1]. This reflects the
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different spacetime structure of two-point correlations at
infinite temperature in triunitary circuits vis a vis dual uni-
tary brickwork circuits as discussed in Sec. IV D, namely,
the existence of nonvanishing correlations along the static
worldline x = 0. Conserved charges of Z strings, corre-
sponding to nontrivial eigenvectors of the channels M4
and M, with eigenvalue 1, thus place this bare iSWAP
circuit in the nonergodic class of triunitary circuits [54].

Despite the different geometry, this class is similar in
spirit to the bare iSWAP class on the square lattice in three
regards. First, as with all of the poor scrambling classes
on the square lattice, random product states do not become
maximally entangled. The entanglement generation on a
system of m = 64 unit cells (L = 256) is shown in Fig. 16,
where the maximum slope of the Page curve is well below
1. Second, the recurrence time is linear in m for all m:
t(m) = 2m. Finally, similarly to how the characteristic
polynomial of the bare iSWAP class on the square lattice
is the perfect square of that of the @ = 1 glider [Eq. (44)],
the characteristic polynomial of the bare iSWAP class on the
kagome lattice is also a perfect square:

xn ) =0+ @+ u Yy + @+ u )y + D2 (67)

which means that although this matrix is 8 x 8, its minimal
polynomial pr, (v) =y* + @+ u")y* + @ +u)y? +
1 is only degree 4. Note, however, that none of the a =
2 automata considered in this paper have this as their
characteristic polynomial.

B. CNOT-like class

A second class, which is symmetric under threefold rota-
tions and the three reflections in Fig. 9(c) but none of the
other transformations, contains the representative

1 =3=5=Rq,1,yl—2n/3],

(68)
2=4=6= R(l,_],l)[z.'fr/:;].
The corresponding automaton is
tn t2 ti3 ty
n=|2 @ 3 | (69)

s 0 T T
tiy ti3 tip tyg

ol to/T=0 "toT=16

(S(IAl, to + At))

50 100 150 200 250 0 50 100 150 200 250

o

T T T T T T T 15
so |to/T =32 || to/T=48
=
a 40 10
+
P
< 20} 11 1 5
51
- 10 } 4t ;’ ‘\ 4
f Y 0
0H . , . . M -.I . . . . .\- AT
0 50 100 150 200 250 0 50 100 150 200 250

Al Al

FIG. 16. Subsystem entropy (S(|4|,fy + Af)) averaged over
contiguous regions of length |4| starting from a random pure
product state on L = 256 qubits, time evolved under the bare
1ISWAP kagome circuit [Eq. (64)]. Each panel shows 16 time steps,
where each time step consists of four layers (7' = 2), and darker
(lighter) curves correspond to later (earlier) times Af with respect
to fy.

where [107]

u 0 u u
ti = (0 u+1)’ tlz:(l 0)
u 0 0 u .
t”:(u—}—l u+1)’ t”:(u+l O) (70b)

0 1 — 1 0 — .
ty = (1 1) =ty, tn= (1 0) =1tn (70c)

0 0 —
tz4:(0 I)Ztu-

The symmetry of this circuit under left-right reflection
manifests in its automaton as invariance under Eq. (27),
which for a = 4 reads

(70a)

(70d)

Micapes =

=H o oo
oE OO
oo FEO
(= =NN=_
<]
= o oo
o EH OO
o oFEO
oo o=

(71)

While the fractals are different, the behavior of this kagome
class is reminiscent of the class on the square lattice with
cyclic permutations on each edge. Recall that on the square
lattice, the resulting @ =2 SDKI class can roughly be
thought of as decomposing into two copies of the a =1
SDKI automaton, in the sense that y;(y) = XS[)K_[(]/)Z.
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XXXXO©OXXxx

=400 =200
X X

FIG. 17. Time evolution under the automaton T, [Eq. (69)] for
the initial operator P = XXXX (left) and PO P = YXXXXXXX
(right), for 128 time steps in units of T = 2. Blue, orange, and
green pixels correspond to X, ¥, and Z, respectively.

Pauli strings spread with the same fractal dimension as the
a = 1 SDKI automaton, but these fractals are invisible in
the footprint of Tr(M™), used to infer the fractal dimen-
sion in Ref. [63]. Similarly, for this CNOT kagome class,
the trace is nonfractal—Tr(7;) = u" + u~" for all n—but
the characteristic polynomial tells a more interesting tale:

xr,») = nr,»)? = penoT()?, (72)

where

nenot®) =y + @+u )y +y* + @+ u )y + 1
=0 +uw+ DO +uly +1) (73)

is the minimal polynomial for the bare CNOT automaton,
also known as the Clifford East model [Eq. (63)].

Pauli strings in the @ = 4 kagome CNOT class exhibit a
fractal structure with the familiar Sierpinski motif, as pre-
saged by the fact that its minimal polynomial is wenoT (V).
For a string initially localized to one unit cell, the non-
identity part of the image is much less sparse than the
standard Sierpinski gasket, with a fractal dimension near
2. This can be seen in the left panel of Fig. 17 for the ini-
tial string XXXX, which remains reflection invariant at all
times owing to the left-right symmetry of the automaton.
To recover the classic Sierpinski pattern, we note that each
dense patch of XXXX () contains a clear periodic struc-
ture. Thus, in the image of the product XXXX @ xxxx @,
where the superscript indexes the unit cell, the interior of
each dense patch cancels out, and a fractal dimension of
log,(3) is recovered (right panel of Fig. 17).

We leave the details of the origin of this relation to the
CNOT automaton to future work but note that some insights
can be gained by examining the footprint on every ath site.
The time evolution of certain initial one-site operators par-
ticularly simple. For example, examining the footprint of
ZfﬂJZfl)(t) on every fourth site reveals four monochrome
Sierpinski gaskets: Z’s only live on for x = na + 1 and
x=na+3, whilex=na+2isall Ysandx =na+4is
all X’s (Fig. 18).

The connection between this kagome class and the Clif-
ford East model has interesting implications for the entan-
glement growth and ergodicity, which have been analyzed

120
100
80
60 -

40 j=1

HyT

20 -

120 F
100 -
80
60 [
40F =3
20—Jl

T

FIG. 18. Time evolution under the automaton 7> from the
initial operator ZfO)Z E”, for 128 time steps in units of T = 2. Sep-
arate panels show the footprint on the four sites of the unit cell,
ie,x =na+j forj = 1,2,3,4 respectively. Blue, orange, and
green pixels correspond to X, Y, and Z respectively.

for the latter model in several recent works. Reference
[104] finds that despite the absence of integrability, the
half-chain entropy of typical many-body eigenstates grows
only logarithmically with L for L = 2F. A related “mem-
ory effect” is described in Ref. [108] where for t = 2k,
the single-qubit density matrix for an initial product state
converges only to the fully mixed state polynomially in .

C. Dg-symmetric good scrambling class

Finally, we decorate the kagome lattice with the one-
site gates that on the square lattice produce the dense
good scrambling class. As on the square lattice, plac-
ing Rx[n/2] = Ry[7/2]7 on each edge maintains the full
point-group symmetry, which in this case is Dg. Unlike
on the square lattice, however, this class exhibits a frac-
tal structure, which is in fact quite similar to the CNOT-like
class above.

The automaton for this circuit is

S11 S12 S13 Si4

= |52 sz os»osu (74)
S S s; osu |’
Sia S3 Sz Sh,
where
u u 0 0
Si1 = (u+ 1 0), S;2 = (u+ 1 u) (75a)
u 0 u 0
S;3 = (u u) . S = (1 "t 1) (75b)
1 1 _ 0 1 _
S = (0 1) =%, sp= (0 0) =% (75¢)
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FIG. 19. Visual depiction of Tr(M’) up to t = 64. A black
point at (n,f) indicates that the coefficient of #" in the expan-
sion of Tr(M") is 1, for both M = Mot [Eq. (63)]and M = T
[Eq. (74)]. Red points, which occur for fmod 3 = 0, mark the
location of nonzero coefficients in Tr(M{y ), whereas Tr(T})
vanishes in every third time step.

0 0 — 0 0 —
523:(1 1)2523, 524:(1 0)2524- (75d)

Again, Eq. (74) is explicitly invariant under the reflection
implemented by Eq. (71).

For this class, the characteristic polynomial does not fac-
torize, but remarkably, the footprint of Tr(T%) is closely
related to Tr(M{yor)- As shown in Fig. 19,

0 tmod 3 =0

t . (76)
Tr(Minor)  otherwise.

Te(T) = H

Of course, the physical observable is not the trace
(which can hide the true fractal structure of the operator
spreading, as in the case of the CNOT-like class above), but
the image of a spreading Pauli string. For strings initially
localized on one unit cell, the operator spreading has far
less white space than Fig. 19, and with a more intricate
pattern of X, ¥, Z than in the CNOT-like class. But taking
the product of two unit-cell-supported Paulis translated by
n = 2 with respect to each other, i.e., PO P yields the
classic Sierpinski gasket with dr = log;(3). For example,
Fig. 20 shows the time evolution for P = XXXX . Since P
is symmetric about the center of the unit cell, the image
of XXXX @ XxXXX @ (f) on sites x = an + 1 is the mirror
image of that on sites x =an + 4, and x = an + 2 is the
mirror image of x = an + 3.

In addition to both producing Sierpinski triangles in the
operator spreading and generating Page curve with slope 1
on random initial product states, this class and the CNOT-
like class above also have the same recurrence times t (m)
when applied to finite systems with periodic boundary
conditions. As with the good scrambling classes on the
square lattice, T(m) is linear in m for m = 2% but grows
superlinearly for generic m. But unlike on the square lat-
tice, both the fractal dimension and the recurrence times

FIG. 20. Time evolution under the automaton 73 [Eq. (74)]
from the initial operator XXXX QO XXXX @ je., XXXXTIIIXXXX ,
up to 128 time steps in units of T = 2. Separate panels show the
footprint on the four sites of the unit cell, i.e., x = na+j for
j=1,2,3,4. X, 7Y, and Z are shown in blue, green, and orange,
respectively.

are indifferent to whether the single-qubit gates are all
cyclic permutations (as in the CNOT-like class) or X or ¥
rotations.

VIIL. HYBRID CIRCUITS

Returning to the square lattice, we now break unitar-
ity by adding projective measurements in a STTI fashion.
While the measurement outcomes are random, for stabi-
lizer circuits different quantum trajectories just differ with
respect to signs on the stabilizers, so when considering the
dynamics of stabilizer groups’ modulo signs, the spacetime
translation invariance is preserved.

The realm of possibilities for crystalline hybrid circuits
is vast, and a more thorough treatment of the purifica-
tion dynamics, steady-state properties, and implications for
quantum error correction is left to a forthcoming paper
[69]. Here, we focus upon a minimal modification of the
brickwork circuits studied in this paper (Fig. 2) in which
one single-site measurement in the o basis is performed
per doubled unit cell (T = 1,a = 2) (Fig. 21). In addition
to enlarging the unit cell of the lattice, the added mea-
surements reduce the point-group symmetry. If the one-site
gates along the diagonal containing the measurements
(taken to be the + diagonal in Fig. 21) are identity gates,
then reflections about both diagonals (and thus inversion as
well) preserve the relative positions of the gates and mea-
surements. If the blue one-site gates are nonidentities, then
of the original point-group transformations (Fig. 8), only
reflection about the diagonal containing the measurements
is a possible symmetry.

Starting from a fully mixed initial state, the first layer
of m measurements performed on the j th site of each unit
cell purifies the state by m bits, to entropy S(t=0) =
m(a — 1), since the measured operators are commuting
and independent. Immediately after the measurements, the
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FIG. 21. Square-lattice (brickwork) circuit with measurements
(c.f. Fig. 2). White x’ed circles represent measurements in a fixed
Pauli basis.

stabilizer group is generated by the measured operators:

S(t=0)=(c(ma+j) = (0" =t (77)
The stabilizer generators then spread under two layers of
unitary gates. Subsequent measurement layers may or may
not purify the state further; a given measurement causes
a purification by 1 bit if and only if the measured opera-
tor commutes with all of S, but does not already belong
to S, i.e., anticommutes with a logical operator. Once the
state stops purifying, the stabilizer group (mixed or pure)
is static, that is, invariant under one time step of the circuit;
we call this the “plateau group.”

We examine the dynamics for all choices of dual uni-
tary gates, measurement locations, and measurement bases
with the geometry of Fig. 21. In most cases the plateau
group is reached after O(1) time steps, which we refer
to as “gapped purification” because the purification time
does not scale with system size. But for circuits in the
dr = 1.9 class in the appropriate measurement basis, a
fully mixed initial state purifies “gaplessly” in m time steps
to a pure product state for m = 2. This extensive purifi-
cation time gives rise to nontrivial entanglement behavior
and the appearance of Sierpinski fractals when the steady
state is perturbed. To give the reader a small taste of the
rich dynamics that can arise in hybrid circuits, we now
discuss this class of circuits in detail.

A. Purification dynamics

Consider the representative circuit of the dr = 1.9 class
[Eq. (48)], now with measurements in the X basis at space-
time locations (,x) = (k,2n + 1) with integer k. Each
measurement immediately precedes v, = Ry[n/2] on the
left incoming leg to the iSWAP core. The unitary circuit
only has one strong point-group symmetry—invariance

under reflection through the downward-sloping diago-
nal—which is not present in the hybrid circuit.

At t = 0, the first round of measurements adds an X sta-
bilizer on the first site of each unit cell, i.e., Xl("). From Eq.
(49), we can read off the time-evolved stabilizer generators
after the subsequent two layers:

X" - x"Vz"zm D (78)
In the next round of measurements, we again measure
XI{HJ, for n=1,2,...,m. Since the measurements com-
mute with each other, we can perform them in any order.
The first m — 1 measurements anticommute with a pair of
stabilizer generators. But each measurement modifies S
such that the final measurement commutes with the entire
group, causing the state to purify by exactly one bit. To see
why this is the case, note that once we measure X](") for

all n, the operator [ [, X, I(HJ, which is a logical operator of
the premeasurement state, has also been measured.

After the full round of measurements, the stabilizer
group has m + 1 generators:

Sit=1)= <{Xl(“)}f:1,l_[X2{”J> :

n=1

(79)

This can be proven by noting that ]_[Xz(“) is the only
element of the premeasurement stabilizer group that com-
mutes with all the measurements.

Comparing Eq. (79) to Eq. (77), we see that S(t = 0)
is a subgroup of S(f = 1). Indeed, this is an example of
a more general property of the purification dynamics in
any Floquet Clifford circuit, with or without spatial transla-
tion invariance: for the fully mixed initial condition, or any
state in the sequence of stabilizer groups from fully mixed
to the steady-state group, S(¢ — 1) is a subgroup of S(f).
A corollary is that the entropy S(f) decreases at a nonin-
creasing rate. This gives us a nice way to partially fix the
generators of the instantaneous stabilizer group: the “time-
ordered” stabilizer tableau at time # is defined so that for
all ¥ < t, the first L — S(¢') stabilizers generate the group
at time ¢’ [69].

In the present example, for m = 2%, each subsequent
time step induces exactly one purification event, until the
state purifies completely at t* = m. The final steady state
is a product group:

S* = (XY Z12m=1,.m- (80)

Remarkably, although the plateau group has zero entangle-
ment, since the time to reach this state scales linearly with
m for generic initial states (including the fully mixed state,
as well as random product states of any entropy density),
it is possible for the circuit to generate a volume-law tran-
sient despite the presence of measurements. This can be
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FIG. 22. Mutual information I(4 : 4,y + At), averaged over
all contiguous subregions 4 of a given length < L/2, starting
from a fully mixed state on L = 256 qubits, under the cir-
cuit evolution depicted in Fig. 21 with U = iSWAP (Ry[7/2] ®
Ra,1.h[—2m/3]) and measurements in the X basis. Left panel
shows mutual information increasing up to t = 64 (darkest blue),
while the right panel shows mutual information decreasing to
t=128 =m.

seen from the growth of the mutual information from the
fully mixed initial state (Fig. 22), defined as

I(4 : 4,1) = S(p4(1)) + S(0z(1)) — S(p(0)) (81)
for contiguous regions A, where 4 is the complement of
A and p(f) is the state of the full system of L qubits at
time £. Averaging over all contiguous regions (with peri-

odic boundary conditions) of the same length |4| < L/2,
at early times (/(4 : 4)) has a piecewise linear form:

|41/4 14| <2t

. (82)
/2 |A] > 2t

(I(4:4,0)) = {

Thus, the half-cut mutual information increases linearly
until £ = m/2 (left panel of Fig. 22). It then decreases lin-
early until = £*, at which point the steady state with zero
entanglement is reached (right panel). An analogous trend
is present in entanglement entropy starting from random
pure product states.

When m is not a power of 2, the fully mixed initial state
still purifies by one bit per time step, but does not purify
completely, a phenomenon tied to an underlying fractality
in the purification dynamics. Explicitly, for m = p2F where
p is odd,

=2k, Sty=m—t"=@p-12F (83
so the entropy density of the plateau group is (p — 1)/2p,
asymptoting toward 1/2 for large p. Thus, reminiscent of
how the recurrence time of fractal or good scrambling
CQCA is sensitive to the power of 2, when measurements
are introduced, the purification time can also be sensitive
to powers of 2. All gapless circuits surveyed, across a wide
range of unit-cell dimensions and even when we popu-
late each unit cell with random Clifford gates rather than

dual unitary gates, exhibit this sensitivity, indicating that
gaplessness and fractality are intimately linked.

The fractal structure in our current example is a Sier-
pinski gasket, which can be seen from the time-ordered
stabilizer tableau. The first m generators in the tableau
are the measured operators Xl(”). Thereafter, we extend
the time-ordered tableau by one generator in each time
step, and can further fix this generator such that its cycle
length—the number of unit cells by which it must be trans-
lated before returning to itself—is minimized. At £ =1,
we obtain a fully translation-invariant generator [ [, Xz("),
with cycle length 1. As time increases, the minimum
cycle length increases, and a particular choice of translates
of each generator produces a spacetime Sierpinski gas-
ket in the nonidentity entries of the tableau matrix. More
closely related to the topic of operator spreading addressed
throughout this paper, we also identify this Sierpinski
gasket in the spreading of local perturbations, described
next.

B. Dark perturbations

The pure group defined by Eq. (80) can be viewed as
an absorbing, or “dark,” state of the purification dynamics:
for m = 2, any initial stabilizer group will evolve to this
product group within m time steps. Moreover, while the
steady-state group for m # 2% is mixed, Eq. (80) defines
a stationary group within this mixed plateau, i.e., it has
period 1 under the action of the circuit. We can then per-
turb this dark state in various ways and observe the fractal
spreading of the perturbation. At time ¢, we mark the nth
unit cell as dark if Xz(") is contained in the group: other-
wise, it is marked light. One choice of perturbation is a
local perturbation where the entire state is dark, except for
a contiguous region of O(1) cells.

As an example, consider a perturbation on the rightmost
site, Xz('") — Zém). This produces another product stabi-
lizer group, with a single light cell. In the subsequent time
evolution, shown in Fig. 23, the familiar Sierpinski gasket
appears in the spacetime structure of the spreading “light”
cells. Immediately after spreading through the entire sys-
tem, the light is annihilated at £ = m, upon return to the
absorbing state.

It should be emphasized that while the spacetime
spreading from an initially local perturbation is fractal,
this is a different fractal from that observed in the unitary
circuits belonging to this class. Namely, while operator
spreading in the unitary circuits is characterized by fractal
dimension dr = 1.9, the hybrid circuit produces Sierpin-
ski gaskets, with dr = log,(3) = 1.5849 ..., and a much
starker asymmetry, as the light sites only spread left from
the initial perturbation. The strong asymmetry is tied to the
fact that placing a measurement on odd sites only breaks
the left and right symmetry more strongly than does the
choice of different one-site gates.
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FIG. 23. Pattern of light (orange) and dark (black) unit cells,

for m = 128 and a perturbation on the rightmost cell from
X - Z

IX. DISCUSSION

This work is the beginning of an investigation into the
crystallography of quantum circuits, that is, the descrip-
tion of STTI quantum circuits defined on lattices with
varying amounts of symmetries. Just as randomness in cer-
tain limits imbues models of quantum many-body physics
with analytic tractability, at the other end of the spectrum
crystalline quantum circuits are also amenable to precise
statements about operator spreading, entanglement growth,
and purification dynamics. The analysis becomes particu-
larly friendly when we restrict to Clifford gates, as we have
done in this work, thus allowing our STTI circuits to be
represented as CQCA with unit cell a. Leveraging this for-
malism, we classify all dual unitary Clifford circuits with
one gate per unit cell on the square lattice (a = 2), which
roughly separate into periodic, glider, and fractal classes
like the a = 1 CQCA studied previously. Strikingly, we
also find a class of circuits, a representative of which
is composed by applying the gate iISWAP (Ry[7/2]®
Ry[m/2]) in a brickwork fashion, which possesses the
full symmetry of the square lattice while also acting as a
“good scrambler” with nonfractal operator spreading. We
moreover examine the effect of translation-invariant mea-
surements on square-lattice CQCA, as well as analyzing a
subset of triunitary Clifford circuits on the kagome lattice.

The two main features of the “dense good scram-
bling class”™—symmetry under point-group transforma-
tions and nonfractal operator spreading—serve as over-
arching themes of this work. The latter theme points
to our aim to bring the tools of crystallography well
known to condensed-matter physicists to bear on the
study of quantum circuits, while building on the current

understanding of dual unitary [28], triunitary [54], and,
broadly, multidirectional-unitary [83,84] gates. When the
constituent gates remain unitary under all point-group
transformations, we can then ask how that transformed
unitary circuit relates to the original circuit. A circuit
left invariant under a given transformation is said to be
strongly “self-dual,” and on the square lattice, the dense
good scrambling circuit is self-octa-unitary—invariant
under all elements of the Dy point group. A broad ques-
tion is how the presence or absence of certain point-group
symmetries manifests in the circuit dynamics, and whether
imposing these symmetries bears any relation to desirable
coding features. Left-right reflection invariance clearly
manifests in whether initially reflection-symmetric oper-
ators remain so under time evolution, but the interpreta-
tion of invariance under other point-group transformations,
such as rotations of the spacetime axes, is less clear. One
observable, which is sensitive to all point-group transfor-
mations, is the two-point function of one-site operators,
discussed in Appendix A, but for good scrambling cir-
cuits these correlations are nonvanishing only at very early
times. Thus, follow-up work is needed to identify probes
of symmetry in the late-time dynamics of both unitary and
hybrid circuits.

Meanwhile, fractality in operator spreading provides
an important point of contrast between random quan-
tum circuits, in which the operators become scrambled
and spread densely within the lightcone, and most good
scrambling CQCA, which generate state entanglement
but where operators spread only on a spacetime region
of fractal dimension df < 2. In this work, we identi-
fied fractal motifs in good scrambling iSWAP-core CQCA
on the square and kagome lattices and used the min-
imal polynomial to relate them to previously studied
automata such as the SDKI automaton [Eq. (59)] and
Clifford East model [Eq. (63)]. We also discovered a
new class of fractal CQCA with dr = 1.9 and asym-
metric operator spreading. Fractals arise in hybrid STTI
circuits as well, as exemplified by the Sierpinski gasket
in the purification dynamics and response to dark per-
turbations when measurements are added to a dr = 1.9
circuit. In light of the prevalence of fractals, which result
in weak ergodicity breaking of otherwise chaotic CQCA
[71], the dense good scrambling class with dr =2 is
particularly interesting. It approaches the sort of mixing
behavior seen in random Clifford circuits, yet the underly-
ing structure of the circuit is still present in the nonuni-
formity of Pauli strings within the bulk of a spreading
operator and the linear recurrence time on finite systems
with m = 2% unit cells. We did not discover such a nonfrac-
tal class on the kagome lattice when we impose the full Dg
symmetry, but it remains open whether there exist nonfrac-
tal good scramblers in kagome circuits with less symmetry,
or in (Dg-symmetric) triangular lattice automata containing
irreducible three-qubit interactions.
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The question of whether any lattices, besides the square
lattice, support a nonfractal good scrambling class is rele-
vant to an additional aspect of our work, the application to
quantum error correction. Time evolution under an STTI
circuit starting from a translation-invariant initial mixed
state produces a quasicyclic stabilizer code, and while we
have not yet developed optimal decoders for realistic noise
models, the possible utility of their quasicyclic structure
for decoding is one motivation for the project of “deran-
domization” embarked upon in this work. A larger fractal
dimension does not necessarily imply the ability to encode
better finite-rate codes, but insofar as the spreading of an
individual local Pauli places a bound on the achievable
code distance—the lowest weight of a logical representa-
tive—a linear code distance can only be achieved if there
exists a sequence of time slices and system sizes for which
local operators spread to a finite fraction of the system.
While we cannot compute the code distance efficiently, on
the square lattice, both the dense good scrambling class
and the dr = 1.9 class generate codes that are competi-
tive with random codes under erasures for certain system
sizes. Future work is also needed to clarify the relation
between contiguous code length and code distance for
fractal and nonfractal automata, as the naive approach of
choosing a snapshot in time with the maximal code length
to define one’s quantum-error-correcting code can result in
suboptimal codes (Fig. 14).

Beyond spacetime translation invariance, the circuits
considered in this paper are restricted to those comprised
of dual unitary (so the circuit produced by any point-group
transformation is also unitary), Clifford gates (allowing
their representation as CQCA). Lifting dual unitarity, the
spacetime dual remains a useful construct even when
the spatial evolution is nonunitary. Mapping to the spa-
tial direction is both a valuable analytical tool, e.g., for
computing the spectral form factor [109-111], and an
asset to certain experimental protocols [112,113]. Non-
trivial phases and phase transitions in the dual can be
related to those in the unitary circuit [114,115], with
measurement-induced phase transitions being just one
example [116]. With two-qubit Clifford gates, the only
interacting gates that are not dual unitary are those with
a CNOT core, discussed briefly in Sec. VIF. Surpris-
ingly, the fractal classes on the kagome lattice (which are
self-triunitary) exhibit the same Sierpinski gasket as the
bare CNOT automaton on the square lattice (which is not
even dual unitary). Further investigation should elucidate
this connection. In addition to this Sierpinski fractal class,
a complete classification of all square-lattice CNOT-core
automata with one gate per unit cell yields several glider
classes and an SDKI-like class, but again, no dense good
scrambling class.

We now elaborate on some future avenues for research.

While the dynamics of Clifford circuits can be quite
rich, they are not universal, and a natural next step would

therefore be to go beyond Clifford. A first step in this direc-
tion is to consider matchgate (free fermion) circuits, which
are also classically simulatable [95,117]. The subset of free
fermion circuits, which are also Clifford are discussed in
Appendix B.

In addition, we can generalize beyond the square and
kagome lattices, both in 1+1D and in higher dimensions.
Hyperbolic lattices, considered either as 1+1D spacetime
or as the 2D space of a 2+1D circuit, offer particularly rich
crystallography [118,119] realizable in experiment [120].
Quantum circuits can also be defined on general graphs,
including trees [121,122], which are amenable to tensor
network methods for analytic computation of the code dis-
tance and more general noise models [123]. Preliminary
investigation of tree circuits in which every gate is identi-
cal reveals promising classes of circuits for which the code
distance grows exponentially in the tree depth [69].

Moving to 2+1D makes available a greater variety of
symmetry groups while still being relevant to near-term
quantum computing devices [124-128]; Floquet codes
such as the honeycomb code are one example [129-133].
In this work, we have restricted ourselves to lattices with
coordination number 4, such that each vertex is a SWAP or
ISWAP core, but the broad project of classifying STTI cir-
cuits and their symmetries can also be applied to lattices
with higher coordination number. It would be interest-
ing to connect these crystallographic classifications to the
broader topological and group theoretic characterization of
(non)trivial QCA in higher dimensions [134-138]. QCA
can be used to define subsystem symmetry-protected topo-
logical (SPT) phases, characterized by linelike and fractal
symmetries for the a = 1 glider and fractal classes, respec-
tively [70]. How, then, should we interpret the phase
defined by our nonfractal good scrambling class, and might
it be useful as a resource state for universal measurement-
based quantum computation [70,139]?

Possibilities also abound when we increase the local
Hilbert-space dimension q. Two-qudit gates with ¢ > 3
can be not only dual unitary, but also unitary along the
diagonal, making them “perfect tensors” with maximal
entanglement power [32,34,53]. In the operator-state cor-
respondence, these operators are absolutely maximally
entangled (AME) states, which are maximally entangled
with respect to all bipartitions of the legs [140]. The
symplectic cellular automaton formalism can be used for
general (composite) g, so we can also test whether the
“washing out” of fractal structure observed for the @ = 1
CQCA in the limit of large ¢ in Ref. [71] is also found for
crystalline circuits with a > 1.

The research directions for hybrid STTI circuits, with
or without dual unitarity of the gates, are also numer-
ous. Enlarging the unit cell to reduce the density of
measurements allows for circuits with a mixed, volume-
law-entangled steady-state group with linear code length
and high performance under erasure errors, of interest
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for quantum error correction [69]. To develop an analytic
understanding of these hybrid quantum circuits en route
to the steady state, it would be useful to adapt the tech-
niques of cellular automata to nonunitary dynamics, an
area of research still in its infancy [141-143]. In consider-
ing circuits with measurements and/or noise, it would also
be fruitful to leverage recent work generalizing dual uni-
tary circuits to three- and four-way-unital open quantum
channels [144].

The circuits in this paper are noiseless. Adapting tech-
niques from fault tolerance to either make the circuits
robust to noise or the codes generated by the circuit use-
ful for quantum computation is an interesting direction of
research. As an intermediate goal, one can design quantum
cellular automata that are robust to small amounts of ran-
domness in the choice of Clifford gates or measurement
locations. Partial progress in this direction has recently
been reported for two-dimensional Floquet codes [145].
Fault-tolerant constructions for reliable computation with
classical cellular automata have a rich history [146].

Finally, another way to make nonrandom circuits is by
adding measurements or deforming gates in a determinis-
tic, quasiperiodic manner. This motivated our recent work
on a model of self-dual quasiperiodic percolation on the
square lattice [147]. When quasiperiodic projective mea-
surements are added to a good scrambling dual unitary
circuit, we find that there is a measurement-induced phase
transition, which falls outside the universality class of the
random Clifford transition [69,73,148—150].

Data on iSWAP-core automata and recurrence times is
available at Ref. [151]. Additional data is available upon
request.

Select code used for this study, including a demo Jupyter
notebook, is available at Ref. [151]. Further code is avail-
able upon request.
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APPENDIX A: TWO-POINT CORRELATIONS

In this Appendix, we more carefully define the two-point
correlation functions of one-site observables at infinite
temperature and discuss their connection to strong and
weak symmetries of crystalline circuits. While we focus
on dual unitary brickwork circuits here, the broad concepts
generalize to triunitary circuits and beyond.

1. General formalism

Figure 24 shows a closeup of the square-lattice circuit.
Each unit cell is labeled by a time ¢, where Af =1 cor-
responds to two layers (one full time step), and a spatial
coordinate y. Within each unit cell are four distinct space-
time locations, T, = +1/24. Here 7 = —1/2 marks the
time before the one-site gates, T = +1/2 marks the time
after the one-site gates but before the core, and p = =+ lie
along the diagonals with slope =1 [153].

FIG. 24. Spacetime locations in finer detail on the brickwork
circuit of Fig. 2. Dashed lines indicate unit cells of the rotated
square lattice, labeled by a spatial coordinate y and time coordi-
nate . Within each unit cell are four distinct spacetime locations:
—1/2, before the one-site gates, and +1/2_ after the one-site
gates but before the two-site core, associated with the + light
cones. Blue boxes indicate a pair of spacetime locations for
which all correlations vanish in good scrambling iSWAP-core
circuits [Eq. (A10)].
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Now consider the correlation functions:

D (t,1,y,y,7,7) = (0a(t,y, T,)0p (1Y, T))). (A1)

Here {0, }32:_01 is a complete orthonormal basis of operators
on g-dimensional qudits, Tr(ago]g) = qdqp, Where 0p = 1
and the remaining g — 1 operators are traceless [28]. In
our case, § = 2, so 0y, 0,, 03 are the usual Pauli operators
X,Y,Z. As has been the convention throughout this paper,
time evolution is in the Schrodinger picture. We work at
infinite temperature, i.e., the expectation value is taken in
the fully mixed state p = 1/q" where L is the number of
qudits.

For a dual unitary circuit, the correlations are nonvan-
ishing only for [28]

p=p, f—t=pQp -y, (A2)

i.e., for operators along the same diagonal.

Inserting Eq. (A2) into Eq. (A1) and exploiting transla-
tion invariance, we arrive at

D (t.0,9.Y,7.7) = Sy 1y CP( — 1,7, 7),
(A3)

where

C‘;‘B(t’,r,r’) = (04(0,0, 7)o, ut, t))). (A4)
This expression differs from works such as Ref. [28] in
two respects: it uses the Schrodinger picture rather than
the Heisenberg picture, and it distinguishes between two
times with each layer, labeled by 7,7’

Let us denote the blue and red gates along the diago-
nals by vy, v_, respectively, and the two-site core by Ueore.
Then Eq. (A4) can be decomposed into the following two
functions:

11 1
cf (0, -3 5) = ETT[Ua(U:I:U,BU:TI:)]s (ASa)
(L1 1\ noasiop A5b
+\2273) =7 tloaM+(0g: Ucore)],  (ASb)
where the 4+ and — quantum channels are [28]
1
My(o:U) = ETrl [U @ 1)U, (A6a)
M_(o:U) = éTrg[U(]l R o)U']. (A6b)

As is standard in the literature, we can encode the correla-
tions after an integer number of layers of the brickwork

circuit with U = Ugye(vy ® v_) in the pair of q2 X -q2
matrices [28,32,54]:

o 1 1 1 1
MY U= ETr[O'.,Mi(a},; 0] =cy (E’ -3 _5)

11 11 1
=S c?(0,-5.5) (55—
TS C‘j:(o, 2’2) = (2’2‘ 2)'
(A7)

Both channels preserve the identity operator, i.e.,
My (op; U) = 0p. The remaining 2(q2—1) nontrivial

2_ .
eigenvalues {JL,-}?EI Dof M determine whether the asso-

ciated circuit is (1) noninteracting (all {A} are 1, all corre-
lations are constant), (2) nonergodic (» unit eigenvalues,
where 1 <n < 2(q% — 1), so some correlations are con-
stant), (3) ergodic but nonmixing (no unit eigenvalues, but
at least one has [A| = 1, resulting in persistent oscillations
but vanishing of time-averaged correlations at large f), and
(4) ergodic and mixing (all |A| < 1, so correlations van-
ish at large ¢ even before time-averaging) [28,54]. To this
hierarchy, Ref. [32] adds a special case of (4), quantum
Bernoulli circuits, for which My is the perfectly depolar-
izing channel (diagonalizable, and all nontrivial eigenval-
ues are zero). This requires U to be a perfect tensor, which
for two-qudit gates is only possible when g > 2.

2. Symmetries

If the circuit is strongly self-dual under a given point-
group transformation, then the correlation functions must
also be invariant in the following sense:

(1) Left or right reflection: Cf}(t, 1,7) = P, ).

(2) Time reversal: Cai‘s (t,t,7") = C?F‘S (—t,—1,—1).
(3) Symmetry under reflection about

(a) + diagonal: C**(t,7,7") = C(ig(—t,—r, —7).
(b) — diagonal: C%*(t,7,7) = C3F (—t,—1,—1").

(4) Symmetry under inversion: both (3a) and (3b).
(5) Symmetry under 7r/2 rotation: both (1) and (2).

Here the tilde indicates transposition of the operator basis:
oa =0.. (A8)

That is, if the point-group transformation changes the sign
of time along the given diagonal, then we must also reverse
time in the basis of operators, which corresponds to taking
the transpose.

Some remarks are in order.

First, not surprisingly, the correlations along the +
diagonal do not depend on v_, and vice versa. One con-
sequence of this is that, in the iSWAP-core circuits, the
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existence of gliders with velocity +1 and —1 depends only
on the one-site gates vy and v_, respectively.

Second, since we distinguish between v = —1/2 and
T = +1/2 within each layer, in order to guarantee the
equality of certain correlation functions we require the
one-site gates and core to be individually invariant. Equal-
ity for t=1/2,7 =1/2,7" = —1/2 imposes symmetry
on the core, while equality for t = 0,7 = —1/2,t' = 1/2
imposes symmetry on the one-site gates. If the circuit is
only weakly self-dual, then the correlations are invariant
up to a change of basis, and the required change of basis
can depend on 7 and 7.

3. Correlations in iSWAP-core automata

Specializing to Clifford gates, the two-point correlations
of one-site operators can take only three values: —1, 0, 0or 1.
For the iSWAP-core CQCA studied in Sec. VI, the quantum
channels corresponding to U = iISWAP are manifestly

(o) O
0 G

This is diagonalizable, and the two nontrivial nonzero
eigenvalues are the Z gliders discussed in Sec. VIC.

In the main text, we claimed that the good scram-
bling classes have vanishing correlations for £ > 1. The
exact statement is that for these circuits, for any one-site
operators 0, and og at spacetime locations along the diag-
onal with more than one iSWAP core between them (and
hence at least one intervening one-site gate), the corre-
lation between them is zero. A pair of such locations is
indicated with blue boxes in Fig. 24. To wit,

M [iswWAP | = = M_[iSWAP ]

(A9)

CY (1,1/2,—1/2) = MZP [iswap IME [U]
0 0 0

1
- g —10)(0] (A10)
0

oo o

0
0
0

oo o

where U = iSWAP (v; ® v_). This is the completely depo-
larizing channel. As noted in the main text, it is impossible
for our circuits to satisfy the stronger condition My [U] =
|0}(0], because this would indicate that U is a perfect ten-
sor [32]. Instead, M4[U] are nondiagonalizable: for each
channel, there is one pair @ # B such that M[U]*f = %1.

As an example, consider the representative circuit of the
dense good scrambling class [Eq. (3)]. From Eq. (A5a) we

can read off

eotny-[6 D)
o 0y

The symmetry under left and right reflection is manifest,
while time reversal and self-duality are more subtle, since
T

Then, after the iISWAP core,

1 0

Go) O

0 0 1
0 0

Note that the only surviving nontrivial correlation after one
layer is

(A1)

M:[U] = (A12)

(020,0,—1/24)03(1/2,1/2,-1/25)) = 1. (Al3)

That is, Y(]lJ — Zél) after one full layer, while all other one-

site Paulis spread to two sites. Zél) then spreads to two sites
in the next layer, hence the vanishing of all nontrivial two-
point correlations of one-site operators.

APPENDIX B: FREE FERMION CIRCUITS

In this Appendix, we review matchgate circuits and their
mapping to free fermions, then specialize to free fermion
translation-invariant Clifford circuits and draw connec-
tions to CQCA glider classes, both with and without dual
unitarity.

1. Classical simulation of matchgate circuits

Matchgate circuits are composed of nearest-neighbor
gates of the form [95]:

uo oo o Uy
0 Uy UR 0
0 Uy Uy 0|
Ul 0 o0 Uy

U=é? (B1)

where UV, U® € SU(2), and ¢ is an arbitrary phase.
Loosely speaking, circuits of this form can be classically
simulated in polynomial time, a statement that can take on
different meanings. In Ref. [95], it is proven that, given an
initial state in the computational basis, the probability dis-
tribution of measurement outcomes on any subsystem (one
or more qubits) can be efficiently computed. Reference
[154] proves efficient classical computation of a slightly
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different quantity: the probability of a measurement out-
come on one qubit, given any initial product state. The
circuits in question can be supplemented by special gates
on the first two qubits only [117], classical conditioning on
projective measurements in the computational basis [95],
and conjugation by Clifford gates [154], while preserving
classical simulatability. On the other hand, just by adding
a SWAP gate, or by adding arbitrary single-qubit gates, the
circuits become universal for quantum computation [95].
Focusing on nearest-neighbor gates of the form Eq.
(B1), efficient classical simulation rests on the ability to
express U as evolution under a free fermion Hamiltonian:

U = ¢ it +Ha+Hs) (B2)
where
Hy = ayZI + BIZ = 2aicle; + cley), (B3a)
Hy = an XX + B YY
= 0!-'2(61f - Cl)(CE +c2) — ﬁz(cir + Cl)("’; —c2),
(B3b)

H;y = ax XY + B YX

= —if:t's(cif — C])(C; —c) — :‘,8;(::;’ + Cl)(CE +c2),
(B3c)

with ¢;, c:.f the fermionic creation and annihilation opera-
tors, obtained via a Jordan-Wigner transformation [95].

2. Free fermion (C)QCA

When nearest-neighbor gates of the form Eq. (Bl) are
arranged on a crystalline lattice, the resulting circuits are
less interesting than the “good scramblers” discussed in
the main text, because they can be cast in terms of nonin-
teracting fermions. Nevertheless, they can exhibit nontriv-
ial topological phases, which can be classified according
to Floquet band theory [155-157]. To our knowledge,
it remains an open question which of the ten Floquet
topological classes [155]—the Floquet versions of the
Altland-Zirnbauer classes for time-independent Hamilto-
nians [158,159]—can be realized in infinite systems with
nearest-neighbor gates and a finite Floquet period [160].

While free fermion gates were obtained from a Jordan-
Wigner transformation in the previous subsection, we
can also start from fermions and define a quantum cel-
lular automaton in terms of how it transforms the cre-
ation and annihilation operators (or, equivalently, Majo-
rana fermions satisfying a; = a:.f} [49]. In this context,
a quasi-free-fermionic QCA is one that acts as a linear
transformation on the Majorana operators, i.e., transform-
ing each Majorana fermion into a linear combination of
Majoranas [102].

Restricting to Clifford quantum cellular automata,
spacetime translation-invariant circuits of free fermion

U = iswap

U = e/mBY3@I-xx-YX)

FIG. 25. Dispersion relation of (left) two momentum bands
of Dirac fermions in the bare iSWAP automaton and (right)
four momentum bands of Majorana fermions in the CNOT-core
automaton with the unitary gate given by Eq. (B5).

gates either are periodic or host gliders. Quasi-free station-
ary states of the a = 1 standard glider class are discussed in
terms of the Araki-Jordan-Wigner construction—an exten-
sion of the Jordan-Wigner transformation to infinite spin
chains—in Ref. [52].

Fora > 1, we have already seen an example of a match-
gate circuit: the bare iSWAP circuit. In fact, the bare iSWAP
class (which includes circuits dressed by Z rotations on
the edges) is the only class of iSWAP-core automata that
contains matchgate circuits.

As we know from the CQCA representation [Eq. (42)],

(n) n+1) i n) (n—1)
after two layers, Z,"” — Z} whlleZé — . These
gliders manifest in the free fermion mapping through the
momentum eigenoperators on odd and even sites, c(k, 1)
and c(k, 2), satisfying

Urc(k, UL = —e*c(k, 1),
Urc(k,2)U} = —e*c(k,2),

(B4a)
(B4b)

where Uy is the Floquet operator corresponding to one
time step (two layers) of the brickwork circuit. The
quasienergy spectrum in terms of Dirac fermions therefore
has two bands, with quasienergy €(k) = w £k, in a Bril-
louin zone of [—m, w] and Floquet zone of [—m, ]. This
dispersion relation is shown in the left panel of Fig. 25.
Here we use units of x/a in the spatial direction, so the
gliders have velocities 1.

This illustrates an important feature of dual unitary free
fermionic QCA: in order for the single-particle disper-
sion for the dual Floquet operator U to be well defined,
the Floquet bands must have a nontrivial winding in the
quasienergy. This has implications for the locality of the
(nonunique) time-independent Hamiltonian that generates
Up, ie., Up = e . Reference [102] proves that if Ug
is the unitary associated to a quasi-free-fermionic QCA,
it can be generated by a time-independent Hamiltonian
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whose interactions decay with distance. However, whereas
the interactions decay exponentially if all bands have zero
winding, the decay is only a power law in the case of
nonzero winding. Indeed, Uf for the iSWAP circuit is none
other than the so-called Dirac QCA at the massless point
[94], which is generated by a Hamiltonian with 1/r inter-
actions [48,102]. When the mass term is restored, the
corresponding quantum circuit is no longer Clifford but
remains a free fermion circuit, an interesting direction for
future work.

3. CNOT-core free fermion automata

Lifting the constraint of dual unitarity, there are three
matchgate classes of square-lattice automata with a CNOT
core, where members of the same class are related by
a Clifford change of basis. Since the CNOT gate is not
dual unitary, the single-particle Floquet bands can have
windings other than %1 in the quasienergy. Two of these
classes have “stationary gliders,” and thus one time step
can be generated by a exponentially localized Hamiltonian
[102,161].

The third class of circuit is more subtle. It is described
by the gate:

U= (Ryl7/2] @ Rx[r/2])CNOT(Rx [7/2] ® I)

— o im/Agin/ BB -XX-YX) (B5)

Unlike the Dirac QCA to which the iSWAP circuit maps,
Eq. (B5) maps onto a free fermion QCA in which only the
fermion parity, and not the fermion number, is conserved.
The time evolution is best understood in terms of Majo-
rana fermions. Then, there are four Majorana modes per
unit cell, three with velocity —1/3 and one with velocity
+1. Thus, as with the iSWAP circuit, this CNOT-core cir-
cuit described by Eq. (BS5) has nontrivial winding (right
panel of Fig. 25), unique among the CNOT-core matchgate
automata.

To understand these eigenmodes in terms of the origi-
nal circuit of qubits, consider the four semi-infinite strings
.. ZZZZX and ...ZZZZY where the terminating X or ¥
can be on the first or second site of the unit cell. These Pauli
strings all have odd fermion parity and square to 1, thus
acting as Majorana fermions. As shown in Fig. 26, three of
these strings glide to the left with speed 1/3 and a period
of three layers (returning to the same point in the unit cell,
with the same sign, after six layers/three time steps), while
the fourth glides to the right with a period of 1 layer (and
returns the same point in the unit cell after one full time
step). In contrast, in the bare iISWAP circuit, the same Pauli
strings come in pairs, two with velocity +1 and two with
velocity —1, and (taking the signs on the operators into
account, which are not included in the CQCA representa-
tion) all acquire a sign of —1 after one full time step. This

LZZZZZY WZZ272ZX
[ . : . . : .
e 3k
ok , . ) . .
WZZZZY] WLZZZX]
' ' ' ' - =l
6 L 4
L 3k
ok , , . 1L ) . .
-5 0 5 -5 0 5
x/a x/a
FIG. 26. Image of odd-parity Pauli strings under the CNOT-

core matchgate automaton given by Eq. (B5). In the top (bottom)
row, the terminating X and Y are on even (odd) sites. The image
of each string is shown after each layer, i.e., in steps of t = 1/2.

minus sign is the reason why €(k = 0) = & for both Dirac
fermion modes in the left panel of Fig. 25.

As proven in Ref. [93], only dual unitary circuits can
host moving one-site gliders. These “ultralocal solitons”
o are preserved under one time step up to a phase and
shift by one unit cell: UFO‘xUI: = Oy+q4- This is perfectly
consistent with Fig. 26, because while ...ZZZZXI does
move with velocity +1, it relies upon the semi-infinite
string of Z’s to keep from spreading in the backward direc-
tion. As for the v = —1/3 gliders, multiplying ...ZZZY
with ...ZZZX (top row of Fig. 26 does yield a one-site
“glider” Zé") of even fermion parity, but this is a soliton
only on stroboscopic time scales: after three time steps
U}Zém (TU};)3 = Zé"_l), but in the intervening layers it
transforms as Z\” — —X" ¥y - —x"x" - ...

APPENDIX C: POOR SCRAMBLERS

In Sec. VIC we introduce the group of iSWAP-core
automata on the square lattice, which have glider observ-
ables. Here we provide more detail on the three classes in
this group, in order of increasing complexity.

1. Bare iSWAP class

In the main text, we find that the bare iISWAP class is
described by the automaton Eq. (43) after two steps when
written in the basis (X1, Z3, Z1, X3). In that basis, M is block
diagonal, and an analytic expression for M” can be proven
by induction:

u”(}) 0

- (n) u™
I (_?i)) ’

M" =
0 (@

(CDH
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where

fy=@"+1)) u. (€2)
j=1

From this we can read off the time evolution of any initial
Pauli string after an integer number of time steps. It is also
clear that T(m) = m for all m. While a typical pure stabi-
lizer state will recur with period t(m), this class also has
several stationary states: any translation-invariant product
stabilizer state with Z; and/or Z; as a stabilizer genera-
tor is an eigenstate under M. This is consistent with the
fact, noted above, that the iISWAP gate alone generates no
entanglement on a separable state for which one of the two
qubits is in a Z eigenstate.

The failure to generate entanglement on Z eigenstates
results in the “poor scrambling” behavior described in the
main text: starting from a random pure product state, all
three poor scrambling classes succeed in generating some
entanglement, but do not saturate their Page curves. This
is shown in Fig. 27(a) for the bare iSWAP class, on a sys-
tem of m = 63 unit cells. The entropy reaches a maximum
at t = m/4, and periodically thereafter, but with a slope of
= 0.4. Immediately after reaching a maximum, the entan-
glement begins to decrease, returning to an area law twice
per period. For all m and all three poor scrambling classes,

@ -
25| 1F 1 ms
to=0 to=16
= 20f
< 10
+ 15 F
g
T 10} 5
el
“u st .
/- N\ o
0 20 40 60 80 100 120 0 20 40 60 80 100 120
IA| IA|
=) i —
60 [ s | 15
to=16
=sof -
< 10
s 40f {t ]
5 30 1t ]
= 5
= nf L J
g
2 ol L/ \
/ \ 0
0 L L L L L L ME L L L L M
0 20 40 60 80 100 120 0 20 40 60 80 100 120

|A| IA]

FIG. 27. Entanglement generation under the bare iSWAP circuit
on L = 126 qubits, or m = 63 unit cells, for (a) a random pure
product initial state and (b) a pure product state with randomly
chosen X and Y stabilizers on each site. In both cases, the sub-
system entropy, averaged over all contiguous regions of length
| 4|, increases linearly until # = 16 (left), then immediately starts
to decrease for ¢ = 16 (right). Darker (lighter) curves correspond
to later (earlier) times At with respect to #,.

the system returns to area law entanglement every m/2
time steps.

Since the presence of Z gliders suppresses the entangle-
ment, more entanglement can be produced if we start in a
product state of only X and ¥ gliders. Indeed, in that case a
finite system saturates to a slope-1 Page curve [Fig. 27(b)].
However, there is still a recurrence of area law entan-
glement at £ = m/2, and since the total entropy can only
increase by < 2 bits per layer, or four per time step [Eq.
(37)], the earliest it can saturate is at f = m/4. Thus, as with
the random initial state, the entropy immediately starts to
decrease after reaching a maximum. This is another key
distinction from the good scramblers (e.g., Fig. 4), where
the slope-1 Page curve survives for O(m) time steps if
m = 2F, and much longer for generic m (O( (m)) steps).

2. Traceless glider class

The second poor scrambling class has

u 0 0 0
M= 0 0 i (©3)
1 01 0
corresponding to the pair of single-qubit gates:
(v4,v-) = (L, R,y [—27/3]). (C4)

The 4 x 4 matrix for this automaton can in fact be inferred
from the bare iSWAP and SDKI classes, since the first
two column vectors, determined by vy, are the same for
all poor scramblers [Eq. (40)], and the last two column
vectors, determined by v_, are the same as in Eq. (56).

Consulting Fig. 8, the only strict point-group symmetry
for this automaton is under reflection about the — diago-
nal, which takes M,(v.,v_) — Md(v{, v_). In particular,
automata in this class evidently lack left-right reflection
symmetry, nor can we massage away this asymmetry
through a similarity transformation. One consequence of
this is that the set of gliders is “chiral”: Z; is a glider with
eigenvalue u but Z; is not. After two layers,

u 0 0 0

~ _ 1 u 1 u

M=u'M?= O (C5)
1 0 0 u'!

While not immediately obvious from Eq. (C3), M has the
same characteristic polynomial, and indeed the same min-
imal polynomial j1g(y), as the bare iSWAP class. Thus, the
characteristic polynomial is invariant under all point-group
transformations, even though M itself is only invariant
under one: invariance of the characteristic polynomial is
a necessary, but not sufficient, condition for the invariance
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of the corresponding automaton. Although the bare iSWAP
class and this traceless glider class have different symme-
tries and are not related by a point-group transformation,
their common minimal polynomial points to the similar
structure of their # — 00 “spacetime diagrams” [66], as
initially local Pauli strings either fill the lightcone or travel
along the boundary, with no nontrivial fractal pattern.
Permuting rows and columns corresponding to X> and
Z,, as we did for the bare iSWAP class, simplifies the matrix

a bit:
() 0
M = . (Co)
1 1 u u
(1 0) (0 u_l)

In this basis it is clear that, like in the bare iSWAP class,
Pauli strings of only Z’s evolve into products of only Z’s.
Again using induction, we find

u" 0
-~ n (u_]g(n) u_”) 0
M.F

= , (€T
(g(n) g(n)) (u” ug(n))
g(n) 0 0 u™
where
n—1
gy =Y w¥ (C8)
=0
When m is even, this factors as
nf2—1
g =@ +1) Y w¥ ' =F@m.  (C9
j=0

Thus g(m) vanishes modulo #™ + 1 for even m, from
which we deduce the recurrence time:

r(m):{m mmod 2 =10 (C10)

2m otherwise.
3. Poor scramblers with nonzero trace

The final class of “poor scramblers” is also reflection
asymmetric, with the pair of gates:

(vy,v_) = (1, Ry[7/2]) (C11)
corresponding, after two layers, to the automaton:
u 0 0 0
W= 11 u u u+l (C12)

u 0 0 u!
1 0 wl! !

Unlike the first two classes, not all products of Z’s remain
Z’s. Z is a glider, as anticipated from the general form

of Eq. (40), but Z; evolves into a tensor product of Z;
spreading on odd sites, and a “periodic glider” alternat-
ing between X, ¥, and Z on even sites. The characteristic
polynomial is

xia® =+ +uy +u?) = pg (). (C13)

Unlike the previous class, the asymmetry under left-right
reflection is manifest in the characteristic polynomial,

since X (V) # Xy Viu — u ). Xir () is also asymmetric
under time reversal. To wit,

Xii-1 ) = 02 +u™) 0 +uy +u?)

= Xit,, O)- (C14)

That is, reflections in time have the same effect on the
characteristic polynomial as reflections in space. In fact,
since v_ = v!, they have the same effect on the automa-
ton itself (up to a change in convention for the placement
of the single-qubit gates relative to the core). This means
that together, time + space reflection—which is just inver-
sion, or rotation by m—is a symmetry of the automaton. M
is also invariant under reflection through either diagonal,
which in some works (see, for example, Refs. [27,28,32])
is used as the definition of the spacetime dual.
We empirically observe that

m mmod 6 =0
3m/2 d2=0 d3#£0
(m) = m/2 mmo ,mmo #* C15)
2m mmod 2=1,mmod 3 =0
Im otherwise.

Note that in all cases, T(m) is divisible by 3. This can
be traced to the existence of translation-invariant product
states, stabilized by (Z("),az(")) on each unit cell n, which
cycle through o = X, ¥, Z with period 3.
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