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R a n d o m q u a nt u m cir c uits c o nti n u e t o i ns pir e a  wi d e r a n g e of a p pli c ati o ns i n q u a nt u m i nf or m ati o n

s ci e n c e a n d  m a n y- b o d y q u a nt u m p h ysi cs,  w hil e r e m ai ni n g a n al yti c all y tr a ct a bl e t hr o u g h pr o b a bilisti c

m et h o ds.  M oti v at e d b y a n i nt er est i n d et er mi nisti c cir c uits  wit h si mil ar a p pli c ati o ns,  w e c o nstr u ct cl ass es

of n o nr a n d o m u nit ar y  Cli ff or d cir c uits b y i m p osi n g tr a nsl ati o n i n v ari a n c e i n b ot h ti m e a n d s p a c e. F ur-

t h er i m p osi n g d u al u nit arit y, o ur cir c uits e ff e cti v el y b e c o m e cr yst alli n e s p a c eti m e l atti c es  w h os e v erti c es

ar e S W A P or i S W A P t w o- q u bit g at es a n d  w h os e e d g es  m a y c o nt ai n o n e- q u bit g at es.  O n e c a n t h e n r e q uir e

i n v ari a n c e u n d er (s u b gr o u ps of) t h e cr yst al’s p oi nt gr o u p.  W or ki n g o n t h e s q u ar e a n d k a g o m e l atti c es,

w e us e t h e f or m alis m of  Cli ff or d q u a nt u m c ell ul ar a ut o m at a t o d es cri b e o p er at or s pr e a di n g, e nt a n gl e m e nt

g e n er ati o n, a n d r e c urr e n c e ti m es of t h es e cir c uits.  A f ull cl assi fi c ati o n o n t h e s q u ar e l atti c e r e v e als, of p ar-

ti c ul ar i nt er est, a “ n o nfr a ct al g o o d s cr a m bli n g cl ass ”  wit h d e ns e o p er at or s pr e a di n g t h at g e n er at es c o d es

wit h li n e ar c o nti g u o us c o d e dist a n c e a n d hi g h p erf or m a n c e u n d er er as ur e err ors at t h e e n d of t h e cir c uit.

We als o br e a k u nit arit y b y a d di n g s p a c eti m e tr a nsl ati o n-i n v ari a nt  m e as ur e m e nts a n d fi n d a cl ass of s u c h

cir c uits  wit h fr a ct al d y n a mi cs.
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I. I N T R O D U C TI O N

R a n d o m q u a nt u m cir c uits ar e a  m o d el s yst e m of  m a n y-
b o d y q u a nt u m p h ysi cs, i n  w hi c h t h e d e gr e es of fr e e d o m
ar e q u bits or q u dits a n d t h e e v ol uti o n u n d er a l o c al  H a mil-
t o ni a n is  m o d el e d b y l o c al u nit ar y g at es.  R a n d o m u nit ar y
cir c uits t h us pr o vi d e a pl atf or m f or a n al yti c c o m p ut ati o n
of, f or e x a m pl e, o ut- of-ti m e- or d er c orr el at ors a n d e nt a n-
gl e m e nt gr o wt h [ 1 – 4 ].  T h e y als o h a v e n u m er o us a p pli-
c ati o ns t o q u a nt u m c o m pl e xit y t h e or y [ 1 ,5 – 9 ], t o m o gr a-
p h y [ 1 0 ,1 1 ], b e n c h m ar ki n g [1 2 ,1 3 ], a n d cir c uit c o m pl e xit y
b o u n ds [ 1 4 ,1 5 ].  A p arti c ul ar  m oti v ati o n f or t his  w or k
c o m es fr o m t h e fi el d of q u a nt u m err or c orr e cti o n,  w h er e
r a n d o m cir c uits h a v e als o pl a y e d a n i m p ort a nt r ol e [1 6 ,1 7 ].
F or e x a m pl e, r a n d o m fi nit e-r at e st a bili z er c o d es h a v e li n-
e ar c o d e dist a n c e a n d r e a c h c h a n n el c a p a cit y, a n d t h eir
p erf or m a n c e u n d er er as ur e err ors c a n b e  m o d el e d b y r a n-
d o m  m atri x t h e or y [ 1 8 ].  R a n d o m n ess h as als o pr o v e n
us ef ul f or i m pr o vi n g t h e err or t hr es h ol d a n d l o gi c al err or
r at es of s urf a c e c o d es u n d er bi as e d n ois e, t hr o u g h r a n d o m
Cli ff or d- g at e d ef or m ati o ns [ 1 9 ].

* g s o m m ers @ pri n c et o n. e d u

P u blis h e d b y t h e  A m eri c a n  P h ysi c al S o ci et y u n d er t h e t er ms of
t h e Cr e ati v e  C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er distri b uti o n of t his  w or k  m ust  m ai nt ai n attri b uti o n t o t h e
a ut h or(s) a n d t h e p u blis h e d arti cl e’s titl e, j o ur n al cit ati o n, a n d
D OI.

W hil e r a n d o m n ess is a v al u a bl e t h e or eti c al t o ol f or
st u d yi n g q u a nt u m cir c uit d y n a mi cs, ulti m at el y, t h er e is a
n e e d f or d et er mi nisti c cir c uits  wit h si mil ar a p pli c ati o ns.
F or e x a m pl e, t h e b e h a vi or of pr a cti c all y r el e v a nt al g o-
rit h ms  m a y n ot b e  w ell c a pt ur e d b y r a n d o m cir c uits.
I n d e e d, i n t h e c as e of t h e v ari ati o n al q u a nt u m ei g e n-
s ol v er ( V Q E), i niti ali zi n g t h e s ol v er  wit h r a n d o m cir c uits
l e a ds t o b arr e n pl at e a us i n t h e gr a di e nt [2 0 ,2 1 ].  N o n-
r a n d o m cir c uits ar e li k el y t o b e  m or e n at ur al f or  m a n y
a p pli c ati o ns a n d a v oi d t h es e b arr e n pl at e a us. I n t h e c o n-
t e xt of q u a nt u m si m ul ati o n al g orit h ms, o n e  m a y q u esti o n
w h et h er g e n eri c  H a milt o ni a n e v ol uti o n dis pl a ys t h e s a m e
p h e n o m e n a as r a n d o m cir c uits.  T h e gr o wt h of q u a nt u m
cir c uit c o m pl e xit y  wit h e v ol uti o n ti m e is n ot u n d erst o o d
o utsi d e of r a n d o m cir c uits [ 2 2 ]. I n a d diti o n, s p e ci fi c cir-
c uit f a mili es  wit h  m or e i d e nti fi a bl e str u ct ur e h a v e b e e n
n e c ess ar y t o b o ost t h e p erf or m a n c e of g at e-s et t o m o gr a-
p h y i n pr a cti c al us e c as es [ 2 3 ], a n d ar e li k el y t o pl a y a
cr u ci al r ol e i n t h e e ffi ci e nt v eri fi c ati o n of q u a nt u m a d v a n-
t a g e o n n e ar-t er m d e vi c es [2 4 ].  E v e n a d dr essi n g t h es e
q u esti o ns fr o m a c o n c e pt u al p oi nt of vi e w or pr o vi d-
i n g a r o ut e t o w ar ds f ut ur e pr o gr ess c a n b e us ef ul. Fr o m
a t h e or eti c al c o m p ut er-s ci e n c e p ers p e cti v e, t his r es e ar c h
a v e n u e h as e c h o es of “ d er a n d o mi z ati o n. ” I n cl assi c al c o m-
pl e xit y t h e or y, t his t er m r ef ers t o t h e pr o c ess of t ur ni n g
pr o b a bilisti c al g orit h ms i nt o d et er mi nisti c o n es as p art of
t h e q u est t o pr o v e t h at t h e l att er ar e j ust as p o w erf ul (i. e.,
B P P = P ) [2 5 ]. Si mil arl y, i n t h e t h e or y of e x p a n d er gr a p hs
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a n d err or- c orr e cti n g c o d es, d er a n d o mi z ati o n r ef ers t o t h e
art of fi n di n g e x pli cit c o nstr u cti o ns f or o bj e cts o nl y k n o w n
t o e xist fr o m pr o b a bilisti c ar g u m e nts [2 6 ].

H er e  w e t a k e a l ess f or m al,  m or e p h ysi c al vi e w of
t h e pr o bl e m b y a n al y zi n g a cl ass of d et er mi nisti c cir c uits
wit h “tr a nsl ati o n al ” i n v ari a n c e i n b ot h ti m e a n d s p a c e.
T h es e s p a c eti m e tr a nsl ati o n-i n v ari a nt ( S T TI) cir c uits ar e
e n d o w e d  wit h t w o s p e ci al f e at ur es t h at e n a bl e a n a n al yti c
tr e at m e nt  w hil e still all o wi n g f or er g o di c d y n a mi cs. First,
all t h e g at es ar e d u al u nit ar y, n a m el y, u nit ar y  w h e n vi e w e d
i n t h e s p ati al dir e cti o n as  w ell as t h e us u al ti m e dir e c-
ti o n.  As a n o ntri vi al  m o d el of q u a nt u m c h a os  wit h c ert ai n
e x a ctl y s ol v a bl e c orr el ati o n f u n cti o ns, d u al u nit ar y cir c uits
ar e t h e s u bj e ct of a ri c h, r a pi dl y d e v el o pi n g lit er at ur e o n
w hi c h  w e b uil d [ 2 7 – 3 8 ]. S e c o n d, t h e g at es i n o ur cir c uits
ar e  Cli ff or d.  Cli ff or d cir c uits h ol d a p p e al b e c a us e t h e y c a n
b e cl assi c all y si m ul at e d i n p ol y n o mi al ti m e [ 3 9 ,4 0 ], y et ar e
p h ysi c all y r el e v a nt i n t h e s e ns e t h at t h e n - q u dit u nif or m
Cli ff or d e ns e m bl e is a u nit ar y 2- d esi g n f or t h e n - q u dit  H a ar
e ns e m bl e [ 4 1 ] if t h e q u dit di m e nsi o n is a pri m e p o w er [4 2 ]
( a n d i n f a ct a 3- d esi g n if t h e q u dit di m e nsi o n is a p o w er
of 2 [ 4 2 ,4 3 ]).  A n al yti c all y,  Cli ff or d cir c uits  wit h s p a c e-
ti m e r a n d o m n ess o b e y e ff e cti v e h y dr o d y n a mi c e q u ati o ns
[2 ,3 ,4 4 ],  w hil e s p ati all y r a n d o m Fl o q u et  Cli ff or d cir c uits
c a n e x hi bit str o n g l o c ali z ati o n i n 1 + 1 D [ 4 5 – 4 7 ]. I n t h e
pr es e nt  w or k,  wit h s p a c eti m e tr a nsl ati o n i n v ari a n c e, o ur
cir c uits c a n b e i nt er pr et e d as q u a nt u m c ell ul ar a ut o m at a
( Q C A) [4 8 ,4 9 ], a n d r estri cti n g t o  Cli ff or d g at es all o ws us
t o c o m pl e m e nt t h e e x a ct  m et h o ds f or tr e ati n g d u al u ni-
t ar y cir c uits  wit h t h e t o ols of s y m pl e cti c c ell ul ar a ut o m at a
[5 0 – 5 2 ].

Cli ff or d q u a nt u m c ell ul ar a ut o m at a ( C Q C A) o n pri m e-
di m e nsi o n al q u dits  wit h s p ati al p eri o d a = 1 h a v e r e c ei v e d
a t h or o u g h tr e at m e nt i n e arli er  w or k, b ut t o o ur k n o wl-
e d g e t h er e is n o s yst e m ati c cl assi fi c ati o n of a ut o m at a  wit h
a > 1 a n d b e y o n d.  O ur pri m ar y f o c us i n t his  w or k is
o n bri c k w or k d u al u nit ar y  Cli ff or d cir c uits,  w hi c h n at u-
r all y ar e e x pr ess e d as q u bit  C Q C A  wit h a = 2 a n d e x hi bit
ri c h er b e h a vi or t h a n a = 1.  We hi g hli g ht s e v er al p h ysi c al
pr o p erti es of t h es e cir c uits t h at c a n b e gl e a n e d fr o m t h e
s y m pl e cti c a ut o m at o n r e pr es e nt ati o n, i n cl u di n g fr a ct alit y
i n o p er at or s pr e a di n g a n d r e c urr e n c e ti m es. I n a d diti o n t o
cl assif yi n g a n d sit u ati n g t h es e cir c uits  wit hi n t h e br o a d er
c o nt e xt of  C Q C A,  w e e xt e n d t h e c o n c e pt of “s elf- d u al
u nit ar y ” g at es — g at es s u c h as t h e S W A P g at e  w h os e s p a c e-
ti m e r ot ati o n is n ot o nl y u nit ar y, b ut i n f a ct i n v ari a nt
[2 8 ,5 3 ] —t o all t h e p oi nt- gr o u p s y m m etri es of t h e l atti c e,
ass o ci at e d  wit h d u al u nit arit y, ti m e r e v ers al, a n d r e fl e cti o n.
We f urt h er g e n er ali z e t o (s elf-)tri u nit ar y [ 5 4 ] a ut o m at a
usi n g t h e k a g o m e l atti c e, f or  w hi c h a = 4 a n d  w e c a n
d e fi n e t hr e e a x es of ti m e  wit h u nit ar y e v ol uti o n.

O n t h e q u a nt u m i nf or m ati o n si d e,  w e f o c us i n t his
w or k o n t h e a p pli c ati o ns t o q u a nt u m err or c orr e cti o n.
We hi g hli g ht a cl ass of  C Q C A o n t h e s q u ar e l atti c e i n
w hi c h i niti all y l o c al o p er at ors s cr a m bl e a n d s pr e a d d e ns el y

wit hi n t h e li g ht c o n e,  w hi c h c a n s er v e as e n c o di n g cir c uits
f or fi nit e-r at e c o d es  wit h hi g h p erf or m a n c e u n d er er a-
s ur e err ors a n d  w h os e q u asi c y cli c str u ct ur e [ 5 5 ,5 6 ] c o ul d
pr o vi d e a p at h t o w ar d e ffi ci e nt d e c o di n g u n d er  m or e g e n-
er al n ois e [ 5 7 – 6 1 ].  M or e br o a dl y, o ur r es ults o n t h es e
s p e ci fi c cl ass es of q u a nt u m d y n a mi cs h a v e p ot e nti al a p pli-
c ati o ns i n t h e s a m e ar e as as r a n d o m cir c uits, i n cl u di n g
b e n c h m ar ki n g, q u a nt u m c h a os, a n d c o m pl e xit y t h e or y.

A.  O utli n e

T h e p a p er pr o c e e ds as f oll o ws. S e cti o n II pr o vi d es a
hi g h-l e v el o v er vi e w of o ur r es ults.  As a c as e st u d y i n t h e
m ost n o v el cl ass of cir c uits dis c o v er e d i n o ur  w or k, S e c. III
d et ails t h e b e h a vi or of t h e “ d e ns e g o o d s cr a m bli n g cl ass ”
o n t h e s q u ar e l atti c e S e c. III.  T a ki n g a st e p b a c k, i n S e c.
I V,  w e d e fi n e t h e g e n er al  m o d els i n d et ail a n d d e m o nstr at e
h o w t h e s y m m etr y tr a nsf or m ati o ns ar e e n a ct e d at t h e l e v el
of t h e o n e- a n d t w o- q u bit g at es.  T o g ai n gr e at er i nsi g ht
i nt o t h es e s y m m etri es,  w e i ntr o d u c e t h e  C Q C A f or m alis m
a n d s h o w h o w t h e c orr es p o n di n g  m atri c es tr a nsf or m u n d er
r ot ati o ns a n d r e fl e cti o ns of t h e l atti c e, i n S e c. V . S e cti o n VI
s p e ci ali z es t o t h e s q u ar e l atti c e, cl assif yi n g t h e S W A P - c or e
a n d i S W A P - c or e a = 2 a ut o m at a i n cl u di n g t h e n o nfr a ct al
g o o d s cr a m bli n g cl ass. I n S e c. VII ,  w e t ur n t o t h e k a g o m e
l atti c e,  w h er e t h e cir c uits ar e d es cri b e d b y a = 4  C Q C A.
R et ur ni n g t o t h e s q u ar e l atti c e, i n S e c. VIII w e d es cri b e
t h e fr a ct al str u ct ur e t h at aris es  w h e n  w e i ntr o d u c e pr oj e c-
ti v e  m e as ur e m e nts. Fi n all y,  w e c o n cl u d e i n S e c. I X wit h a
dis c ussi o n of f ut ur e r es e ar c h a v e n u es.

II.  O V E R VI E W

B ef or e pr es e nti n g o ur  m et h o ds a n d r es ults i n d et ail,
w e b e gi n  wit h a n o v er vi e w of o ur fi n di n gs.  T h e t w o
c o m m o n f e at ur es of t h e S T TI cir c uits c o nsi d er e d i n t his
w or k — d u al u nit arit y a n d  Cli ff or d n ess — pr o vi d e c o m pl e-
m e nt ar y a v e n u es f or st u d y.

A. S y m m et ri es, d u al u nit a rit y, a n d t ri u nit a rit y

T h e cir c uits  w e c o nsi d er ar e all cr yst alli n e l atti c es, i n
w hi c h v erti c es c orr es p o n d t o g at es a n d e d g es c orr es p o n d t o
q u bits, p ossi bl y dr ess e d  wit h si n gl e- q u bit g at es. F o c usi n g
o ur att e nti o n o n t w o- q u bit g at es,  w e c h o os e l atti c es  wit h
c o or di n ati o n n u m b er z = 4. I n a d diti o n t o s p a c eti m e tr a ns-
l ati o n i n v ari a n c e, t h e b ar e l atti c es ar e i n v ari a nt u n d er t h e
r ot ati o ns a n d r e fl e cti o ns t h at c o m pris e t h eir p oi nt gr o u p
[6 2 ]. I n t h e cir c uit p ers p e cti v e, h o w e v er, v erti c es ar e n o
l o n g er p oi ntli k e o bj e cts, a n d e d g es h a v e a dir e cti o n alit y
i m p os e d b y t h e si n gl e- q u bit g at es.  We c a n t h er ef or e as k
w hi c h of t h e s y m m etri es of t h e l atti c e ar e als o s y m m etri es
of t h e cir c uit .

O n e  m ai n t hr ust of t his  w or k is or g a ni zi n g a n d cl assi-
f yi n g t h es e s y m m etri es f or t w o s u c h l atti c es, s q u ar e a n d
k a g o m e. I m pli cit i n t his a n al ysis is t h at t h e tr a nsf or m e d
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FI G. 1.  T h e c o n v e nti o n f or t h e d u al g at e us e d i n t his p a p er

[3 1 ,3 4 ]: gi v e n a u nit ar y g at e U
β 1 β 2
α 1 α 2 (l eft),  w e r ot at e t h e s p a c e-

ti m e a x es b y π / 2 ( c e nt er) t o o bt ai n t h e d u al Ũ
β 2 α 2
β 1 α 1

(ri g ht). If U is

d u al u nit ar y, t h e n Ũ i s u nit ar y ( as is t h e s p a c eti m e r ot ati o n i n t h e
o p p osit e dir e cti o n).

g at es ar e u nit ar y. F or t w o- q u bit g at es, t his i m p os es d u al
u nit arit y: r ot ati n g t h e g at e b y π / 2 i n s p a c eti m e yi el ds
a n ot h er u nit ar y g at e ( Fi g. 1 ). Fr o m t h e p ar a m et eri z ati o n
of d u al u nit ar y g at es i n  R ef. [ 2 8 ], r estri cti n g t o t h e  Clif-
f or d gr o u p, t h e d u al u nit ar y o p er at or U i m pl e m e nt e d b y t h e
g at e c a n b e  writt e n as eit h er a S W A P c or e ( n o n e nt a n gli n g)
or i S W A P c or e ( m a xi m all y e nt a n gli n g),  wit h si n gl e- q u bit
Cli ff or d g at es o n e a c h of t h e f o ur l e gs.

O ur  m ai n  m o d el is t h e bri c k w or k cir c uit s h o w n i n Fi g. 2 ,
a s q u ar e l atti c e of S W A P or i S W A P c or es,  wit h si n gl e- q u bit
g at es o n e a c h e d g e.  T h e b ar e S W A P a n d i S W A P c or es ar e
“s elf- o ct a- u nit ar y ” si n c e t h e y ar e i n v ari a nt u n d er all ei g ht
p oi nt- gr o u p tr a nsf or m ati o ns of t h e s q u ar e.  Wit h t h e i n cl u-
si o n of si n gl e- q u bit g at es, t h e r es ulti n g S T TI cir c uit c a n
h a v e s o m e, all, or n o n e of t h es e s y m m etri es.  T his is t h e
f o c us of S e c. I V.

O n t h e k a g o m e l atti c e,  w h os e p oi nt gr o u p is D 6 i nst e a d
of D 4 ,  w e c a n d e fi n e t hr e e a x es (si x arr o ws) of ti m e,
m a ki n g t h es e cir c uits (s elf)-tri u nit ar y. I n  R ef. [ 5 4 ],  w h er e
tri u nit arit y is first i ntr o d u c e d, tri u nit ar y g at es ar e d e fi n e d
o n t hr e e q u bits a n d til e d o n a tri a n g ul ar l atti c e.  H o w e v er,

= i
or 

FI G. 2. S T TI d u al u nit ar y bri c k w or k cir c uit r e pr es e nt e d as a
r ot at e d s q u ar e l atti c e.  Bl a c k s q u ar es ar e (i)S W A P c or es.  E d g es
ar e d e c or at e d  wit h si n gl e- q u bit  Cli ff or d g at es, r e pr es e nt e d as r e d
a n d bl u e cir cl es.  O n e ti m e st e p is d e fi n e d as t w o l a y ers of t h e
bri c k w or k cir c uit.

a s t h e a ut h ors n ot e, t h e f a mil y of tri u nit ar y g at es c o nsi d-
er e d i n t h at p a p er c a n b e d e c o m p os e d i nt o t hr e e t w o- q u bit
g at es, a n d t h e r es ulti n g cir c uit c a n t h e n b e e x pr ess e d o n
t h e k a g o m e l atti c e.  T h e t hr e e a x es of ti m e r estri ct t h e
t w o- p oi nt c orr el ati o ns b et w e e n tr a c el ess o n e-sit e o p er at ors
a v er a g e d o v er all st at es t o v a nis h e x c e pt at x 1 − x 2 = 0
a n d at |x 1 − x 2 | = v |t1 − t2 | w h er e v is t h e v el o cit y of t h e
li g ht c o n e.

B.  Cl assi fi c ati o n of  C Q C A

B e c a us e o ur cir c uits ar e b ot h S T TI a n d  Cli ff or d,  w e c a n
r e pr es e nt t h e m as  C Q C A,  w hi c h is t h e pri m ar y a n al yti c
t e c h ni q u e us e d i n t his  w or k. F or a  m or e d et ail e d i ntr o d u c-
ti o n t o t h e  C Q C A f or m alis m, t h e r e a d er is r ef err e d t o S e c.
V a n d t o  R efs. [ 5 0 – 5 2 ].

T h e cir c uit i n Fi g. 2 is tr a nsl ati o n i n v ari a nt  wit h a u nit
c ell of T = 1 / 2, a = 2, c o m p os e d  wit h a s hift b y o n e sit e,
s o it c a n b e tr e at e d as a n “ a = 2 a ut o m at o n. ” I n S e c. VI , w e
cl assif y all i S W A P - c or e a ut o m at a o n t h e s q u ar e l atti c e i nt o
si x cl ass es,  w h er e  m e m b ers of e a c h cl ass ar e r el at e d b y a
r e fl e cti o n a b o ut t h e c e nt er of t h e g at e, a n d/ or a c h a n g e of
b asis.  T h e p oi nt- gr o u p tr a nsf or m ati o ns e x c h a n g e  m e m b ers
of t h e s a m e cl ass.  A si mil ar cl assi fi c ati o n s c h e m e c a n b e
a p pli e d o n t h e k a g o m e l atti c e,  w h er e a = 4, b ut i n S e c.
VII w e f o c us o ur att e nti o n o n t h os e  wit h a hi g h a m o u nt of
s y m m etr y, t h e “s elf-tri u nit ar y ” cir c uits.

Si n c e t h e  Cli ff or d gr o u p n or m ali z es t h e P a uli gr o u p, t h e
d y n a mi cs u n d er a  Cli ff or d cir c uit  wit h s p ati al p eri o d a is
f ull y e n c o d e d ( m o d ul o p h as es) b y t h e i m a g e of X i a n d Z i

o n e a c h sit e i = 1, . . . , a of t h e u nit c ell.  L e v er a gi n g t his
tr a nsl ati o n i n v ari a n c e, a  C Q C A  wit h a u nit c ell c o nt ai ni n g
a q u dits is d es cri b e d b y a 2 a × 2 a m atri x M ,  w h os e e ntri es
ar e  L a ur e nt p ol y n o mi als i n t h e v ari a bl e u ,  w hi c h l a b els t h e
u nit c ell [ 6 3 ].

We a d a pt a n d e xt e n d t o a > 1 t h e t e c h ni q u es pr es e nt e d
i n f o u n d ati o n al  w or ks [5 0 – 5 2 ],  w hi c h f o c us o n pri m e q ,
a = 1 a ut o m at a [ 6 4 ]. a = 1  C Q C A h a v e d et er mi n a nt u 2 d

w h er e d ∈ Z . F a ct ori n g o ut a s hift of u d 1 m a k es a c e nt er e d
s y m pl e cti c c ell ul ar a ut o m at o n ( C S C A)  wit h d et er mi n a nt 1,
w h os e c h ar a ct eristi c p ol y n o mi al is u ni q u el y d et er mi n e d b y
Tr (M ) [5 1 ,5 2 ]:

χ M (y ) = y 2 + Tr (M )y + 1. ( 1)

W hil e t his si m pl e r el ati o ns hi p b et w e e n  Tr (M ) a n d χ M (y )
n o l o n g er h ol ds f or a > 1, t h e c h ar a ct eristi c p ol y n o mi al
r e m ai ns i n e xtri c a bl y li n k e d t o t hr e e r el at e d pr o p erti es of
t h e a ut o m at o n: e nt a n gl e m e nt g e n er ati o n, o p er at or s pr e a d-
i n g, a n d t h e r e c urr e n c e ti m e i n a fi nit e s yst e m.

T h e r e c urr e n c e ti m e of t h e u nit ar y, u p t o a p h as e, o n
a s yst e m of L q u bits, or m = L / a u nit c ells ( wit h p eri-
o di c b o u n d ar y c o n diti o ns) is d e n ot e d τ ( m ), t h e  mi ni m u m
p o w er s u c h t h at M τ = 1 m o d (u m − 1 ) u p t o gl o b al s hifts.
U n d er t h e e v ol uti o n of t h e a ut o m at o n, a n y st a bili z er gr o u p,
mi x e d or p ur e, r e p e ats  m o d ul o si g ns a n d s hifts aft er a n
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i nt er v al t h at di vi d es τ ( m ).  T h e s c ali n g of τ ( m ) di vi d es
t h e si x s q u ar e l atti c e cl ass es i nt o t w o gr o u ps: t hr e e f or
w hi c h τ ( m ) ≤ 3 m f or all m , a n d t hr e e f or  w hi c h τ ( m ) is
li n e ar i n m f or m = 2 k , b ut gr o ws  m u c h f ast er f or g e n eri c
m .  We als o d e m o nstr at e a s h ar p disti n cti o n b et w e e n t h es e
t w o gr o u ps  wit h r es p e ct t o t h e e nt a n gl e m e nt g e n er ati o n
f or a r a n d o m i niti al pr o d u ct st at e.  T h e first gr o u p c o n-
sists of “ p o or s cr a m bl ers, ” f or  w hi c h t h e r es ulti n g P a g e
c ur v e [ 6 5 ] h as a sl o p e l ess t h a n 1, i. e., t h e t ot al e ntr o p y
of a s u bs yst e m of l e n gt h |A | < L / 2 is f |A |,  w h er e 0 <
f < 1.  T his s u b m a xi m al e nt a n gl e m e nt g e n er ati o n c a n b e
attri b ut e d, at l e ast i n p art, t o t h e pr es e n c e of c o ns er v e d Z
c h ar g es, or “ gli d ers. ” I n p arti c ul ar,  w e fi n d a cl os e c o n n e c-
ti o n b et w e e n t h e “ b ar e iS W A P cl ass ” ( all si n gl e- q u bit g at es
ar e t h e i d e ntit y) a n d t h e st a n d ar d gli d er a ut o m at o n  wit h
a = 1 [ 5 2 ].

C.  F r a ct alit y, d e ns e o p e r at o r s p r e a di n g, a n d q u a nt u m
e r r o r c o r r e cti o n

T h e s e c o n d gr o u p of i S W A P - c or e a ut o m at a o n t h e s q u ar e
l atti c e is c o m pris e d of “ g o o d s cr a m bl ers, ”  w hi c h,  w h e n
a cti n g o n r a n d o m i niti al pr o d u ct st at es, g e n er at e P a g e
c ur v es of sl o p e 1 at ti m es a w a y fr o m t h e r e c urr e n c es.
T h e t hr e e cl ass es  wit hi n t his gr o u p e x hi bit di ff er e nt fr a c-
t al b e h a vi or.  T h e fr a ct al i n q u esti o n is t h e f o ot pri nt of
a n i niti all y l o c al P a uli o p er at or,  w hi c h s pr e a ds  wit hi n
t h e li g ht c o n e.  We d e fi n e t h e fr a ct al di m e nsi o n t hr o u g h
t h e s c ali n g of t h e c u m ul ati v e n u m b er of n o ni d e ntit y sit es
wit hi n t his f o ot pri nt v ers us t h e d e pt h of t h e cir c uit, s o t h at
d f ≤ 2 f or  C Q C A d e fi n e d i n 1 + 1 D. I n t h e li mit of i n fi nit e
ti m e, t h e fr a ct al str u ct ur e of t h e f o ot pri nt d e p e n ds o nl y o n
t h e  mi ni m al p ol y n o mi al μ M of t h e a ut o m at o n M [6 6 ].  T h e
mi ni m al p ol y n o mi al is t h e l o w est- d e gr e e  m o ni c p ol y n o-
mi al μ M f or  w hi c h μ M (M ) = 0, t h us e n c o di n g a r e c ursi o n
r el ati o n f or M .

We r ef er t o o n e cl ass as t h e s elf- d u al ki c k e d Isi n g
( S D KI) cl ass, a r e pr es e nt ati v e of  w hi c h  m a ps t o t h e S D KI
m o d el vi a a “ b o u n d ar y ” cir c uit [ 2 8 ].  Wit h o ut i n v o ki n g
t his dir e ct  m a p pi n g at t h e l e v el of g at es, t h e c o n n e cti o n
t o S D KI is cl e ar fr o m t h e a ut o m at a,  w hi c h b ot h h a v e
t h e  mi ni m al p ol y n o mi al μ( y ) = y 2 + (u − 1 + 1 + u )y + 1.
I niti all y l o c al o p er at ors s pr e a d i n t his cl ass of cir c uits  wit h
a fr a ct al di m e nsi o n d f = l o g2 [(3 +

√
1 7 ) /2] = 1. 8 3 2 5 · · ·

[6 6 ].  A s e c o n d g o o d s cr a m bli n g cl ass h as fr a ct al di m e n-
si o n d f

∼= 1. 9, a p att er n n ot s e e n i n a = 1 a ut o m at a [ 6 7 ].
S p e ci al att e nti o n is p ai d t o t h e t hir d “ g o o d s cr a m bli n g ”

cl ass, t h e s u bj e ct of a c as e st u d y i n S e c. III.  We d es cri b e its
o p er at or s pr e a di n g as “ n o nfr a ct al ” or “ d e ns e, ” b e c a us e t h e
n u m b er of X , Y , a n d Z sit es  wit hi n a s pr e a di n g o p er at or
ar e all a fi nit e fr a cti o n of t h e li g ht c o n e v ol u m e ( d f = 2).
O n o n e h a n d, as  wit h all of t h es e d u al u nit ar y  C Q C A, t his
n o nfr a ct al cl ass h as l ar g e a m o u nts of str u ct ur e n ot s e e n i n
r a n d o m  Cli ff or d cir c uits. I n f a ct, a r e pr es e nt ati v e of t his

cl ass,  w hi c h h as π / 2 X r ot ati o ns o n e a c h l e g, is s elf- o ct a-
u nit ar y.  O n t h e ot h er h a n d, it s h ar es i m p ort a nt f e at ur es
wit h r a n d o m cir c uits, i n cl u di n g d e ns e o p er at or s pr e a di n g.
It als o h as pr o mis e f or err or c orr e cti o n.  N a m el y,  w h e n a
r a n d o m i niti al pr o d u ct st at e  wit h n o n z er o e ntr o p y d e nsit y
is f e d i nt o t his cir c uit, t h e l o gi c al o p er at ors s pr e a d li n-
e arl y i n ti m e, s o t h at at l at e ti m es t h e c o nti g u o us l e n gt h
of t h e s h ort est l o gi c al o p er at or —t h e c o nti g u o us c o d e dis-
t a n c e [6 8 ] —is li n e ar i n m . Si n c e o p er at ors als o s pr e a d
d e ns el y,  w e e x p e ct t h eir  w ei g ht t o s c al e pr o p orti o n all y t o
t h eir l e n gt h,  w hi c h t h e n i m pli es a li n e ar c o d e dist a n c e.
I n d e e d, q u asi c y cli c c o d es g e n er at e d fr o m i niti al p eri o di c
pr o d u ct st at es p erf or m  w ell u n d er er as ur e err ors a p pli e d
at t h e e n d of t h e cir c uit.  U n d er  m or e g e n er al n ois e, t h e
cr yst alli n e s y m m etri es of t h e e n c o di n g cir c uit c o ul d b e
b e n e fi ci al f or fi n di n g e ffi ci e nt o pti m al d e c o d ers.  N ot e t h at
w e d o n ot a d dr ess t h e o v er h e a d n e e d e d t o  m a k e t h es e c o d es
or t h e cir c uits f a ult t ol er a nt,  w hi c h  w e l e a v e as a pr o bl e m
f or f ut ur e  w or k.

D.  A d di n g  m e as u r e m e nts

Fi n all y, i n S e c. VIII w e br e a k u nit arit y b y a d di n g  m e a-
s ur e m e nts i n a S T TI f as hi o n.  Wit h o n e  m e as ur e m e nt p er
d o u bl e d s p a c eti m e u nit c ell of t h e s q u ar e l atti c e, i n  m ost
c as es a n i niti al f ull y  mi x e d st at e r e a c h es a st e a d y st at e
( mi x e d or p ur e) aft er O (1 ) ti m e st e ps, b ut f or t h e d f

∼=
1. 9 g o o d s cr a m bli n g cl ass i n t h e a p pr o pri at e  m e as ur e m e nt
b asis, a f ull y  mi x e d i niti al st at e p uri fi es i n m ti m e st e ps
f or m = 2 k .  D uri n g t h e i niti al tr a nsi e nt, t h e st at e a c q uir es
v ol u m e-l a w e nt a n gl e m e nt, b ut l os es it b ef or e r e a c hi n g t h e
st e a d y st at e,  w hi c h h as z er o e nt a n gl e m e nt.  A p ert ur b ati o n
t o t his pr o d u ct st e a d y st at e s pr e a ds as a Si er pi ns ki g as k et,
a p att er n n ot s e e n o n t h e s q u ar e-l atti c e d u al u nit ar y cir c uits
wit h o ut  m e as ur e m e nts.  We pr es e nt t his as j ust o n e e x a m-
pl e of t h e ri c h  m e n a g eri e of h y bri d S T TI cir c uits, d ef erri n g
a n e xt e n d e d dis c ussi o n of t h e hi er ar c hi c al cl assi fi c ati o n
of s u c h cir c uits, i n cl u di n g t h os e  w h os e st e a d y st at e is a
hi g h- p erf or mi n g fi nit e-r at e c o d e, t o a f ut ur e p a p er [ 6 9 ].

III.  C A S E S T U D Y  O F  T H E  D E N S E  G O O D
S C R A M B LI N G  C L A S S

As  m oti v ati o n f or t h e br o a d er cl assi fi c ati o n pr o gr a m
u n d ert a k e n i n t h e r est of t his p a p er, c o nsi d er a r e ali z ati o n
of Fi g. 2 i n  w hi c h all of t h e t w o- q u bit g at es ( bl a c k s q u ar es)
ar e t h e i S W A P g at e:

iS W A P = e − i π
4 (X X + Y Y ) =

⎛

⎜
⎝

1 0  0 0
0 0 − i 0
0 − i 0 0
0 0  0 1

⎞

⎟
⎠ ( 2)
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a n d all of t h e si n gl e- q u bit g at es (r e d a n d bl u e cir cl es) ar e
r ot ati o ns b y π / 2 a b o ut t h e X a xis o n t h e  Bl o c h s p h er e:

R X [π / 2] = e − i π
4 X . (3 )

T his cir c uit is a  C Q C A  wit h u nit c ell a = 2 c o m p os e d
s ol el y of d u al u nit ar y g at es, t h us l e n di n g it a hi g h d e gr e e
of str u ct ur e. I n f a ct, i n a d diti o n t o b ei n g S T TI, t h e cl ass
t o  w hi c h t his (R X [π / 2], R X [π / 2] ) cir c uit b el o n gs is t h e
o nl y o n e, b esi d es t h e “ b ar e i S W A P cl ass ” (i n  w hi c h all t h e
si n gl e- q u bit g at es ar e t h e i d e ntit y), t h at c o nt ai ns cir c uits
l eft i n v ari a nt u n d er t h e ei g ht r ot ati o ns a n d r e fl e cti o ns of t h e
u nit c ell of t h e s q u ar e l atti c e.  We c all t his pr o p ert y “str o n g
s elf- o ct a- u nit arit y ” a n d d e fi n e it f or m all y i n S e c. I V.

O n t h e ot h er h a n d, t h e d y n a mi cs u n d er t his cir c uit is i n
m a n y  w a ys r e mi nis c e nt of r a n d o m  Cli ff or d cir c uits,  wit h
l o c al o p er at ors s pr e a di n g d e ns el y r at h er t h a n as fr a ct als,
a n d  wit h i niti al pr o d u ct st at es e v ol vi n g t o v ol u m e-l a w-
e nt a n gl e d st at es  w h os e P a g e c ur v e h as sl o p e 1. I n t his
s e cti o n,  w e e x pl or e t his di c h ot o m y b et w e e n str u ct ur e a n d
s cr a m bli n g a n d dis c uss t h e a p pli c ati o n of t h es e cir c uits
t o d e v el o pi n g c o d es  wit h li n e ar dist a n c e.  We r e visit t h es e
c o n c e pts i n  m or e g e n er al s etti n gs t hr o u g h o ut t h e p a p er.

A.  R e c u r r e n c e ti m es

A n i m m e di at e di ff er e n c e fr o m r a n d o m cir c uits is t h e
pr es e n c e of r e c urr e n c es: si n c e t h e d y n a mi cs ar e Fl o q u et,
Cli ff or d, a n d u nit ar y, a n y i niti al st at e o n a fi nit e s yst e m
m ust e v e nt u all y r e p e at u n d er t h e a cti o n of t h e cir c uit.  T o

wit, t h er e ar e L − 1
k = 0 (2 L − k + 1 ) = O (2 c L 2

) u ni q u e st a bili z er
gr o u ps ( m o d ul o si g ns) o n L q u bits [ 4 0 ],  w hi c h pl a c es a n
u p p er b o u n d o n t h e r e c urr e n c e ti m e.

I n f a ct, f or all m ,  w h er e m = L / a is t h e n u m b er of u nit
c ells  wit h p eri o di c b o u n d ar y c o n diti o ns, t h e r e c urr e n c e
ti m e τ ( m ) is  w ell b el o w t his b o u n d.  Of s p e ci al n ot e ar e
s yst e m si z es m = 2 k , f or  w hi c h τ ( m ) gr o ws li n e arl y.  T his
li n e ar tr e n d i n τ ( m ) f or S T TI cir c uits h as b e e n pr o v e n f or
m = 2 k i n a = 1  C Q C A o v er q u bits [ 4 ,7 0 ] as w ell as f or
m = q k i n a cl ass of d u al u nit ar y cir c uits k n o w n as p erf e ct
p er m ut ati o n  m a ps,  w h er e t h e o d d pri m e q is t h e di m e nsi o n
of t h e q u dits [ 3 4 ].

W h at disti n g uis h es t his cir c uit a n d t h e ot h er g o o d
s cr a m bli n g cl ass es fr o m t h e “ p o or s cr a m bli n g ” cl ass es dis-
c uss e d i n S e c. VI  C is t h e tr e n d i n m = 2 k .  As t h e e x a m pl e
of  R ef. [ 3 4 ] i n di c at es, t h e s e nsiti vit y i n o ur g o o d s cr a m-
bli n g cir c uits t o t h e p o w er of 2 is r el at e d t o t h e o nsit e
Hil b ert-s p a c e di m e nsi o n q = 2.  As s h o w n i n Fi g. 3 ,τ ( m )
is str o n gl y n o n m o n ot o ni c i n m .  A c uri o us tr e n d, l eft f or
t h e i nt er est e d r e a d er t o p o n d er, is t h at if  w e  writ e m = j 2 k ,
t h e n τ ( m ) /2 k i s eit h er 2p + 2 or 2 p − 2 f or s o m e p ,  w h er e
p is a f u n cti o n of j al o n e. If t his tr e n d h ol ds f or all m , t h e n
τ ( 2 9 ) ≥ 2 2 4 − 2 (i n di c at e d as t h e l o w er b o u n d o n a n err or
b ar i n Fi g. 3 ). S p e c ul ati v el y, t h e u p p er e n v el o p e of τ ( m )
gr o ws e x p o n e nti all y i n m b ut n o f ast er t h a n O (2 m ) ( gr a y

FI G. 3.  R e c urr e n c e ti m e τ ( m ) of t h e u nit ar y,  m o d ul o si g ns,
a n d s hifts, f or a bri c k w or k cir c uit of i S W A P c or es a n d π / 2 X
r ot ati o ns [ E qs. ( 2) a n d ( 3)], a cti n g o n m = L / 2 u nit c ells  wit h
p eri o di c b o u n d ar y c o n diti o ns.  T h e gr a y li n e is τ = 2 m + 1 , w hi c h
a p p e ars t o b e a n u p p er b o u n d o n τ ( m ).

li n e),  w hi c h is still e x p o n e nti all y s m all er t h a n t h e g e n eri c

u p p er b o u n d of O (2 c m 2
).

B.  E nt a n gl e m e nt g e n e r ati o n f o r p u r e p r o d u ct st at es

T h e s e c o n d d e fi ni n g f e at ur e of t his cl ass, al o n g  wit h
t h e ot h er g o o d s cr a m bli n g cl ass es, is i n t h e g e n er ati o n of
e nt a n gl e m e nt f or i niti al p ur e pr o d u ct st at es. I n t his as p e ct
it b e h a v es li k e a r a n d o m cir c uit: st arti n g fr o m a r a n d o m
pr o d u ct st at e, t h e s u bs yst e m e ntr o p y a v er a g e d o v er all c o n-
ti g u o us r e gi o ns of t h e s a m e l e n gt h i n cr e as es li n e arl y i n
ti m e b ef or e s at ur ati n g at a n e ar- P a g e c ur v e  wit h sl o p e 1
( Fi g. 4 ) [2 ].  H o w e v er, t h e i niti al pr o d u ct st at e d o es e v e n-
t u all y r e c ur. Si n c e τ ( m ) is li n e ar i n m f or m = 2 k , o n t h os e
s yst e m si z es, t h e s yst e m s p e n ds a fi nit e fr a cti o n of its e v o-
l uti o n i n a st at e of s u p pr ess e d e nt a n gl e m e nt. F or t h e ti m e
e v ol uti o n o n m = 6 4 u nit c ells s h o w n i n Fi g. 4 , t h e i ni-
ti al pr o d u ct st at e r e c urs ( m o d ul o si g ns)  wit h a p eri o d of
τ ( m ) = 1 2 8, b ut t h e st at e r et ur ns t o ar e a-l a w e nt a n gl e m e nt
t wi c e p er p eri o d. F or g e n eri c l ar g e m , t h e r e c urr e n c e ti m e
g e n er all y s atis fi es τ ( m ) m , s o t h e st at e s p e n ds  m ost of
its ti m e n e ar- m a xi m all y e nt a n gl e d.

C.  O p e r at o r c o nt e nt

T h e t w o a b o v e pr o p erti es —s u p erli n e ar r e c urr e n c e ti m es
f or g e n eri c m a n d g e n er ati o n of sl o p e- 1 P a g e c ur v es
st arti n g fr o m a p ur e pr o d u ct st at e — ar e als o s e e n i n t w o
ot h er cl ass es of g o o d s cr a m bli n g a ut o m at a, dis c uss e d i n
S e c. VI .  W h at  m a k es t his cl ass u ni q u e a m o n g all t h os e
st u di e d i n t his  w or k is t h at,  w h er e as P a uli stri n gs s pr e a d
as fr a ct als i n t h e ot h er cl ass es, i n t his cl ass all i niti al
l o c al o p er at ors s pr e a d d e ns el y, i. e.,  wit h fr a ct al di m e n-
si o n 2 [ Fi g. 5( a) ].  D e ns e o p er at or s pr e a di n g s ets t his
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FI G. 4.  E nt a n gl e m e nt g e n er ati o n o n a r a n d o m p ur e pr o d u ct
st at e o n L = 1 2 8 q u bits, or m = 6 4 u nit c ells, f or a bri c k w or k
cir c uit of i S W A P c or es a n d π / 2 X r ot ati o ns [ E qs. ( 2) a n d ( 3)].
F or t < 2 0, t h e s u bs yst e m e ntr o p y i n cr e as es at a n e ar- m a xi m al
r at e b ef or e r e a c hi n g a P a g e c ur v e  wit h sl o p e 1 (l eft).  T h e st at e
r e m ai ns n e ar- m a xi m all y e nt a n gl e d u ntil t ∼= 4 5, b ef or e t h e s u b-
s yst e m e ntr o p y st arts t o d e cr e as e u ntil r e a c hi n g a n ar e a-l a w st at e
at t = 6 4 (ri g ht). I n b ot h p a n els, t h e e ntr o p y S (|A |, t0 + t) is
a v er a g e d o v er all c o nti g u o us r e gi o ns of l e n gt h |A | wit h p eri o di c
b o u n d ar y c o n diti o ns,  wit h d ar k er (li g ht er) c ur v es c orr es p o n di n g
t o l at er ( e arli er) ti m es t wit h r es p e ct t o t0 .

cl ass of cir c uits o utsi d e t h e r a n g e of p ossi bl e b e h a vi or
of a = 1 C Q C A [ 5 2 ],  w h er e fr a ct al o p er at or s pr e a di n g
( as di a g n os e d b y t h e o ut- of-ti m e- or d er c o m m ut at or) h as
b e e n i nt er pr et e d as e vi d e n c e of q u a nt u m s c arri n g, i. e.  w e a k
er g o di cit y br e a ki n g [ 7 1 ].  T h us, t h e a bs e n c e of fr a ct als i n
t his cl ass s u g g ests a str o n g er f or m of er g o di cit y t h a n t h at
f o u n d i n ot h er  C Q C A.

As q u a ntit ati v e e vi d e n c e f or d f = 2, t h e c u m ul ati v e
n u m b er of a p p e ar a n c es of t h e P a uli σ wit hi n t h e li g ht c o n e
f or ti m es t = 0, . . . , t is s h o w n f or t h e i niti al stri n g Z 1 i n
Fi g. 5( b) .  T h e c u m ul ati v e c o u nt of e a c h P a uli s c al es as t2 ,
al b eit  wit h a l ar g er pr ef a ct or f or t h e p air I a n d Z , c o m-
p ar e d t o t h e p air X a n d Y .  T his as y m m etr y i n t h e fr e q u e n c y
of t h e t w o p airs of P a ulis,  w hi c h d e p e n ds o n t h e i niti al
stri n g, is o n e i n di c ati o n t h at i n s pit e of t h e d e ns e s pr e a d-
i n g, t h e s u bstr u ct ur e of t h e o p er at or c o nt e nt i n t h e b ul k is
still disti n g uis h a bl e fr o m t h at of a r a n d o m cir c uit. It is als o
i n c o ntr ast t o t h e “ P a uli  mi xi n g ” b e h a vi or — pr o xi mit y t o
a u nif or m distri b uti o n o n t h e P a ulis — of o p er at or s pr e a d-
i n g i n r a n d o m  Fl o q u et Cli ff or d cir c uits, pr o v e n t o h ol d
wit hi n t h e li g ht c o n e f or l ar g e- di m e nsi o n al q u dits, a n d als o
o bs er v e d i n t h e i nt eri or of l o c ali z e d o p er at ors i n q u bit
cir c uits [ 4 6 ].

D.  C o d e l e n gt h a n d c o d e dist a n c e

Vi e wi n g t h e  C Q C A as a n e n c o di n g cir c uit f or a
st a bili z er c o d e, t h e n o nfr a ct al s pr e a di n g of P a uli stri n gs
gi v es t his cl ass str o n g p ot e nti al f or q u a nt u m err or
c orr e cti o n.

O n e fi g ur e of  m erit i n d es cri bi n g q u a nt u m c o d es is t h e
c o d e dist a n c e d , t h e n u m b er of n o ni d e ntit y P a ulis i n t h e
s u p p ort of t h e l o w est- w ei g ht l o gi c al o p er at or [ 7 2 ].  T his
pr o p ert y r el at es t o t h e o p er at or s pr e a di n g i n t h e e n c o d-
i n g cir c uit i n t h e f oll o wi n g  w a y.  C o nsi d er a st a bili z er c o d e

( a)

( b)

FI G. 5. ( a) I m a g e of t h e i niti al stri n g Z 1 u p t o ti m e t = 2 5 6
u n d er t h e a cti o n of t h e cir c uit d e fi n e d b y  E qs. ( 2) a n d ( 3),
s e p ar at e d i nt o i d e ntit y ( bl a c k), X ( bl u e), Y ( gr e e n), a n d Z
( or a n g e) sit es  wit hi n t h e li g ht c o n e. ( b)  C u m ul ati v e n u m b er of
a p p e ar a n c es, t

t = 0 N σ (t ), of σ = I , X , Y , Z wit hi n t h e li g ht c o n e
|x | ≤ t f or Z 1 (t) u p t o t = 1 0 2 4.  T h e gr a y d as h e d li n e s h o ws

N (t ) ∝ t2 .

g e n er at e d b y r u n ni n g t h e cir c uit f or O (m ) l a y ers o n a n i ni-
ti al  mi x e d pr o d u ct st at e  wit h a fi nit e e ntr o p y d e nsit y s. T h e
st a bili z er gr o u p S is g e n er at e d b y (1 − s)L st a bili z er g e n-
er at ors,  w hi c h c a n i niti all y b e c h os e n t o li v e o n si n gl e sit es,
w hil e s L l o gi c al p airs li v e o n t h e u nst a bili z e d sit es.  U n d er
t h e a cti o n of a d e ns e g o o d s cr a m bli n g cir c uit, b ot h t h e
st a bili z er g e n er at ors a n d t h e l o gi c als s pr e a d n o nfr a ct all y
wit hi n t h e li g ht c o n e, e v e nt u all y s at ur ati n g at O (m ) w ei g ht.

B e c a us e t h e c o d e dist a n c e is t h e  mi ni m u m  w ei g ht a cr oss
all l o gi c al r e pr es e nt ati v es — el e m e nts of t h e n or m ali z er
of S t h at a ct n o ntri vi all y o n t h e c o d es p a c e,  w hi c h c a n
p ot e nti all y l o w er t h eir  w ei g ht t hr o u g h  m ulti pli c ati o n b y
el e m e nts of S —t h e gr o wt h of a si n gl e o p er at or i n is ol a-
ti o n pr o vi d es o nl y a n u p p er b o u n d o n t h e c o d e dist a n c e.
Si n c e  mi ni mi zi n g t h e  w ei g ht o v er all all l o gi c al r e pr es e n-
t ati v es h as e x p o n e nti al c o m pl e xit y,  w e us e t h e c o nti g u o us
c o d e dist a n c e, d e fi n e d as t h e l e n gt h d 1 of t h e s h ort est c o n-
ti g u o us r e gi o n ( wit h p eri o di c b o u n d ar y c o n diti o ns) t h at
c o nt ai ns a l o gi c al o p er at or [ 6 8 ], as a n e ffi ci e ntl y c o m-
p ut a bl e pr o x y f or d . d 1 i s o nl y a n u p p er b o u n d o n d , b ut
i n cir c uits  wit h d e ns e o p er at or s pr e a di n g  w h er e t h e  w ei g ht
of a n o p er at or is pr o p orti o n al t o its c o nti g u o us l e n gt h, it is
a r e as o n a bl e st a n d i n f or d et er mi ni n g t h e s c ali n g of d wit h
s yst e m si z e, a n d h as b e e n us e d pr e vi o usl y t o c h ar a ct eri z e
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FI G. 6.  C o d e l e n gt h v ers us ti m e a v er a g e d o v er 1 0 0 r a n d o m
s a m pl es f or s yst e m si z es m = L / 2 = 1 6, 3 2, 3 9, 4 8, 5 8, 6 4, 9 7,
1 2 8, f or t h e cir c uit d e fi n e d b y  E qs. ( 2) a n d ( 3).  T h e gr a y d as h e d
li n e s h o ws t h e q u a nt u m Si n gl et o n b o u n d d m a x / L = 0. 3 7 5.

c o d es pr o d u c e d b y g e o m etri c all y l o c al, r a n d o m  m o nit or e d
cir c uits [ 7 3 – 7 6 ].

F or c o n cr et e n ess  w e c h o os e s = 1 / 4 a n d t a k e a n i ni-
ti al st at e  wit h r a n d o ml y pl a c e d si n gl e-sit e st a bili z ers o n
3 L / 4 sit es.  As s h o w n i n Fi g. 6 , st arti n g fr o m d 1 = 1 i n

t h e pr o d u ct st at e, t h e c o nti g u o us c o d e dist a n c e i n cr e as es
li n e arl y b ef or e r e a c hi n g a  m a xi m u m sli g htl y b el o w t h e
q u a nt u m Si n gl et o n b o u n d of d m a x = 1 + (1 − s)L / 2 →
3 L / 8 [ 7 7 ,7 8 ].  As  wit h t h e h alf- c ut e nt a n gl e m e nt e ntr o p y,
f or m = 2 k , d 1 r et ur ns t o O (1 ) t wi c e p er p eri o d,  w h er e as
f or ot h er m t h e e xt e nsi v e- c o d e-l e n gt h pl at e a u i n d 1 p ersists
l o n g p ast t h e d ur ati o n of t h e r u n o wi n g t o t h e s u p erli n e ar
r e c urr e n c e ti m e.

O n e p ot e nti al b e n e fit of c o d es g e n er at e d b y cr yst alli n e
cir c uits, as o p p os e d t o r a n d o m e n c o di n g cir c uits, is t h at
t h eir a d d e d str u ct ur e c o ul d ai d i n fi n di n g e ffi ci e nt d e c o d-
i n g al g orit h ms.  T o t a k e f ull a d v a nt a g e of t his s y m m etr y,
i n S e c. VI  E w e st u d y c o d es g e n er at e d b y g o o d s cr a m-
bli n g cir c uits a cti n g o n tr a nsl ati o n-i n v ari a nt i niti al st at es.
T o ass ess t h eir p erf or m a n c e b e y o n d t h e h e uristi cs pr o vi d e d
b y t h e c o nti g u o us c o d e dist a n c e,  w e s u bj e ct t h es e c o d es t o
er as ur es, f or  w hi c h a n e ffi ci e nt o pti m al d e c o d er is k n o w n
[1 8 ,7 9 ], a n d o bt ai n r e c o v er y pr o b a biliti es c o m p ar a bl e t o
r a n d o m c o d es f or a r a n g e of s yst e m si z es.

I V.  M O D E L  A N D S Y M M E T RI E S

T h e cir c uit d es cri b e d i n t h e pr e vi o us s e cti o n is j ust
o n e of  m a n y t h at c a n b e c o nstr u ct e d b y tili n g a cr ys-
t alli n e l atti c e  wit h u nit ar y g at es.  T h e b uil di n g bl o c ks of
o ur s p a c eti m e tr a nsl ati o n-i n v ari a nt cir c uits ar e d u al u nit ar y
t w o- q u bit g at es,  w hi c h a d mit t h e p ar a m et eri z ati o n [2 8 ]:

(u 1 ⊗ u 2 )V [J ]( v1 ⊗ v 2 ), (4 )

w h er e

V [J ] = e x p[ − i( π /4 (X X + Y Y ) + J Z Z )] ( 5)

a n d u 1 , u 2 , v 1 , v 2 ar e si n gl e- q u bit g at es.
R estri cti n g t o  Cli ff or d u nit ari es,  w hi c h  m a p el e m e nts of

t h e P a uli gr o u p t o el e m e nts of t h e P a uli gr o u p [3 9 ], o ur
o nl y c h oi c es f or V [J ] ar e t h e S W A P g at e ( J = π / 4, u p t o a n
o v er all p h as e) a n d t h e i S W A P g at e ( J = 0).  T h e l att er g at e,
p er st a n d ar d c o n v e nti o n, s el e cts Z as a s p e ci al a xis, as i n
E q. ( 2).  A c o ns e q u e n c e of t his c o n v e nti o n is t h at  w hil e
a g e n eri c s e p ar a bl e st at e of t w o q u bits b e c o m es e nt a n-
gl e d u n d er t h e a cti o n of t h e i S W A P , pr o d u ct st at es i n t h e
c o m p ut ati o n al ( Z ) b asis r e m ai n pr o d u ct st at es.

A t w o- q u bit g at e c a n n at ur all y b e r e pr es e nt e d as a f o ur-
l e g t e ns or,  wit h t w o i n c o mi n g a n d t w o o ut g oi n g l e gs, as
i n Fi g. 1 .  Vi e w e d as a f o ur- q u bit st at e vi a t h e o p er at or-
st at e c orr es p o n d e n c e, a t w o- q u bit u nit ar y g at e c orr es p o n ds
t o a st at e  wit h  m a xi m al e nt a n gl e m e nt of t h e bi p artiti o n
i nt o “i n c o mi n g ” a n d “ o ut g oi n g ” l e gs,  w hil e d u al u nit ar-
it y als o i m p os es  m a xi m al e nt a n gl e m e nt b et w e e n t h e “l eft ”
a n d “ri g ht ” bi p artiti o ns [ 3 4 ].  We c a n als o i nt er pr et t his t e n-
s or as a g e o m etri c o bj e ct,  w hi c h h as D 4 s y m m etr y: t h e
f o ur-l e g g e d s q u ar e is i n v ari a nt u n d er f o urf ol d r ot ati o ns, as
w ell as r e fl e cti o ns a b o ut t h e h ori z o nt al, v erti c al, a n d t w o
di a g o n al a x es p assi n g t hr o u g h t h e c e nt er of t h e s q u ar e.
T h e c orr es p o n di n g g at e n e e d n ot h a v e t h es e s y m m etri es;
t h us, o ur o bj e cti v e is t o d et er mi n e  w hi c h cir c uits p oss ess
t h e s y m m etri es of t h eir u n d erl yi n g l atti c e.

A. S y m m et r y of S W A P a n d i S W A P c o r es

O n e  m oti v ati o n f or f o c usi n g o n cir c uits  w h er e t h e t w o-
sit e g at es o n t h e v erti c es of t h e l atti c e ar e all d u al u nit ar y
is t h at u n d er a n y p oi nt- gr o u p tr a nsf or m ati o n, t h e cir c uit
r e m ai ns u nit ar y. I n f a ct, t h es e d u al u nit ar y “ c or es ” —S W A P

a n d i S W A P — ar e  m or e t h a n j ust d u al u nit ar y: t h e y p oss ess
t h e f ull D 4 s y m m etr y of t h e s q u ar e.  T h us,  w e c a n tr e at
t h e bl a c k v erti c es i n t h e l atti c e r e pr es e nt ati o n ( Fi gs. 2 a n d
7 ) as “j ust s q u ar es ” a n d f o c us o n t h e e ff e ct of t h e p oi nt-
gr o u p tr a nsf or m ati o ns o n t h e e d g es,  w hi c h ar e dr ess e d b y
si n gl e- q u bit g at es.

As d e pi ct e d i n Fi g. 1 , t h e s p a c eti m e d u al of a t w o- q u bit
u nit ar y g at e is t h e o p er at or r es ulti n g fr o m t h e π / 2 r ot ati o n
of its l e gs. I n  m atri x f or m,

Ũ
β 2 α 2
β 1 α 1

= U β 1 β 2
α 1 α 2

. (6 )

T h er ef or e, t h e S W A P g at e is s elf- d u al ( as  w as pr e vi o usl y
n ot e d i n  R ef. [ 2 8 ]), as is t h e iS W A P g at e,  w hi c h c a n b e
e x pli citl y v eri fi e d fr o m  E q. ( 2).

T h e D 4 p oi nt gr o u p c a n b e g e n er at e d b y c o m p osi n g
π / 2 r ot ati o ns  wit h a n y r e fl e cti o n.  A g ai n t his j ust a m o u nts
t o a r es h u ffli n g of  m atri x i n di c es.  R e fl e cti o n a b o ut t h e
h ori z o nt al c orr es p o n ds t o ti m e r e v ers al,  w hi c h is i m pl e-
m e nt e d b y t h e t a ki n g t h e tr a ns p os e [ 8 0 ].

0 3 0 3 1 3- 7



S O M M E R S,  H U S E, a n d  G U L L A N S P R X  Q U A N T U M 4, 0 3 0 3 1 3 ( 2 0 2 3)

FI G. 7.  Tri u nit ar y cir c uit o n a k a g o m e l atti c e.  Bl a c k s q u ar es
ar e i S W A P c or es.  T h e si x c ol ors of cir cl es c orr es p o n d t o t h e si x
si n gl e- q u bit g at es t h at p o p ul at e o n e u nit c ell.  T hr e e s ets of s p a c e-
ti m e a x es ar e s h o w n; e a c h a xis c o ul d als o b e r e v ers e d t o gi v e a
t ot al of si x p ossi bl e ti m e dir e cti o ns.

S W A P a n d i S W A P ar e b ot h s y m m etri c  m atri c es, a n d h e n c e
ar e i n v ari a nt u n d er ti m e r e v ers al.  C o m bi n e d  wit h i n v ari-
a n c e u n d er π / 2 r ot ati o ns, b ot h g at es c a n b e s ai d t o b e
D 4 - s y m m etri c, or s elf- o ct a- u nit ar y.

N ot e t h at a g e n eri c t w o-sit e  Cli ff or d g at e c a n b e  writ-
t e n i n t er ms of o n e-sit e g at es dr essi n g a S W A P , iS W A P ,
i d e ntit y, or C N O T c or e.  T h e l att er t w o g at es a ct as ( n o n u ni-
t ar y) pr oj e ct ors  w h e n r ot at e d b y π / 2.  Tr a nsl ati o n-i n v ari a nt
C N O T - c or e cir c uits d o e x hi bit n o ntri vi al s cr a m bli n g b e h a v-
i or,  w hi c h  w e f ull y cl assif y o n t h e s q u ar e l atti c e (s e e S e c.
VI F ), b ut t h e r a n g e of b e h a vi or is a ct u all y a s u bs et of  w h at
w e fi n d i n d u al u nit ar y a n d tri u nit ar y cir c uits.

B. S y m m et ri es o n t h e s q u a r e l atti c e

W h at b e c o m es of t h e D 4 s y m m etr y  w h e n  w e i n cl u d e
si n gl e- q u bit g at es ? I n t h e bri c k w or k g e o m etr y of Fi g. 2 ,
e a c h si n gl e- q u bit g at e is r e pr es e nt e d as a r e d or bl u e cir-
cl e o n t h e e d g es b et w e e n t h e bl a c k (i) S W A P c or es.  E a c h
u nit c ell c o nt ai ns o n e c or e, o n e bl u e g at e, a n d o n e r e d g at e,
b ut t o  m a k e t h e s y m m etr y e x pli cit,  w e c a n c o nsi d er t h e
e nl ar g e d “ v ert e x ” c o m pris e d of o n e c or e + o n e-sit e g at es
o n all f o ur l e gs.  T h e n, si n c e t h e c or e is i n v ari a nt u n d er
t h es e o p er ati o ns, it is s u ffi ci e nt t o i m p os e t h e p oi nt- gr o u p
s y m m etr y at t h e l e v el of t h e f o ur l e gs [ 8 1 ].

Si n c e t h e tr a ns p os e o p er ati o n i m pl e m e nts ti m e r e v er-
s al, r e v ersi n g t h e dir e cti o n of a l e g c orr es p o n ds t o t a ki n g
t h e tr a ns p os e of t h e si n gl e- q u bit g at e o n t h at l e g.  L a b el-
i n g e a c h v ert e x b y t h e si n gl e- q u bit g at es o n t h e i n c o mi n g
l e gs, t h e “st a n d ar d v ert e x ” is d e n ot e d (b , r) [ u p p er l eft of
Fi g. 8( a) ].  B y c o m p ari n g t h e l a b el of t h e st a n d ar d v er-
t e x t o t h at of t h e tr a nsf or m e d v ert e x,  w e c a n r e a d o ff t h e

( a)

( b)

FI G. 8. P oi nt- gr o u p o p er ati o ns o n a S W A P or i S W A P v ert e x.
St arti n g fr o m t h e di a gr a m i n t h e u p p er l eft, t h e r est ar e pr o d u c e d
b y ( a) r ot ati o ns b y t h e i n di c at e d a n gl e a n d ( b) r e fl e cti o ns a b o ut
t h e d as h e d a xis.

s y m m etri es of e a c h cl ass of cir c uits. F or e x a m pl e, si n c e
ti m e r e v ers al [ b ott o m l eft of Fi g. 8( b) ] s e n ds (b , r) →
(r T , b T ), b = r T i s a n e c ess ar y a n d s u ffi ci e nt c o n diti o n f or
ti m e-r e v ers al s y m m etr y.

We r et ur n t o t his i n  m or e d et ail i n S e c. VI ,  w h er e t h e
f or m alis m of s y m pl e cti c c ell ul ar a ut o m at a d es cri b e d i n
t h e n e xt s e cti o n pr o vi d es a c o m pl e m e nt ar y fr a m e w or k f or
i nt er pr eti n g t h es e s y m m etri es.

C. S y m m et ri es o n t h e k a g o m e l atti c e

Tri u nit arit y  w as i ntr o d u c e d i n  R ef. [ 5 4 ] as a n e xt e nsi o n
of d u al u nit arit y i n  w hi c h g at es ar e u nit ar y u n d er t hr e e dis-
ti n ct arr o ws of ti m e. I n t h at  w or k, tri u nit arit y is i m p os e d
at t h e l e v el of i n di vi d u al t hr e e- q u bit g at es ,  wit h K = 6,
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( a)

( b)

( c)

( d)

FI G. 9. P oi nt- gr o u p o p er ati o ns o n a u nit c ell of t h e k a g o m e
l atti c e. ( a)  T h e u nit c ell c o nsists of a h e x a g o n a n d t w o a dj a c e nt
tri a n gl es.  T h e bl a c k e d g es l a b el e d 1 – 6 ar e tr e at e d as “ b el o n gi n g ”
t o t h e u nit c ell,  w hil e t h e gr a y e d g es b el o n g t o a dj a c e nt c ells.
( b)  R ot ati o ns b y π / 3, 2 π / 3, a n d π (− π / 3, − 2 π / 3 n ot s h o w n).
( c)  R e fl e cti o ns a b o ut t h e t hr e e a x es c o n n e cti n g o p p osit e v erti c es,
i n di c at e d  wit h d as h e d li n es. ( d)  R e fl e cti o ns a b o ut t h e t hr e e a x es
( d as h e d) c o n n e cti n g o p p osit e e d g es.

w hi c h c a n t h e n b e til e d o n t h e tri a n g ul ar l atti c e t o pr o-
d u c e a tri u nit ar y S T TI cir c uit.  O ur c o nstr u cti o n i nst e a d
us es t h e k a g o m e l atti c e,  w hi c h h as t h e s a m e p oi nt gr o u p
as t h e tri a n g ul ar l atti c e b ut, si n c e its c o or di n ati o n n u m b er
is 4 i nst e a d of 6, c orr es p o n ds t o a cir c uit  wit h t w o- q u bit
g at es [ 8 2 ]. F or t h e cir c uit t o b e tri u nit ar y, t h e t w o- q u bit
g at es  m ust b e d u al u nit ar y, s o r estri cti n g t o  Cli ff or d g at es
yi el ds a l atti c e of (i) S W A P c or es  wit h si n gl e- q u bit  Cli ff or ds
o n e a c h e d g e ( Fi g. 7 ), si mil arl y t o t h e s q u ar e l atti c e.  We
f o c us o n t h e c as e  w h er e e a c h c or e is a n iS W A P , si n c e t h at
all o ws f or i nt er a cti n g d y n a mi cs.

I n o ur a n al ysis, t h e s y m m etr y i m p os e d is t h at of t h e l at-
ti c e, r e q uiri n g t h at t h e f ull cir c uit b e i n v ari a nt u n d er ( a
s u b gr o u p of) its c orr es p o n di n g l atti c e’s p oi nt gr o u p. I n t his
s e ns e, o ur a p pr o a c h di ff ers fr o m  R ef. [ 8 3 ], i n  w hi c h t h e f ull
s y m m etr y is i m p os e d o n t h e i n di vi d u al g at es,  w hi c h h a v e
K ≥ 4 l e gs.  T h es e s p ati all y s y m m etri c g at es ar e i n cl u d e d
u n d er t h e u m br ell a of “ m ulti dir e cti o n al u nit ar y o p er at ors, ”
w hi c h e n c o m p ass es f a mili es of g at es i n cl u di n g d u al u ni-
t ar y (K = 4), tri u nit ar y ( K = 6), a n d t er n ar y u nit ar y ( K =
8) [ 8 4 ].

T h e k a g o m e l atti c e h as t h e u nit c ell s h o w n i n Fi g. 9( a) .
T h e s p a c e gr o u p of t h e l atti c e f a ct ors i nt o s y m m etr y u n d er
tr a nsl ati o n b y a u nit c ell a n d t h e p oi nt gr o u p D 6 ,  w hi c h
c o nsists of t h e tr a nsf or m ati o ns s h o w n i n Fi gs. 9( b) – 9( d) .
Si n c e t h e i S W A P c or e is i n v ari a nt u n d er t h es e r ot ati o ns a n d
r e fl e cti o ns, it s u ffi c es t o c o nsi d er t h e e ff e ct of t h e tr a nsf or-
m ati o ns o n t h e si n gl e- q u bit g at es d e c or ati n g t h e e d g es, as
wit h t h e s q u ar e l atti c e.  T his c a n b e d et er mi n e d b y assi g n-
i n g e a c h e d g e a dir e cti o n a n d l a b el; as a b o v e, r e v ersi n g t h e
dir e cti o n of t h e e d g e c orr es p o n ds t o t a ki n g t h e tr a ns p os e
of t h e g at e.

D e m a n di n g t h e f ull s y m m etr y of t h e k a g o m e l atti c e
yi el ds t h e c o n diti o n 1 = 2 = · · ·  = 6 fr o m i n v ari a n c e
u n d er π / 3 r ot ati o ns [l eft p a n el of Fi g. 9( b) ], a n d 1 = 1 T

fr o m i n v ari a n c e u n d er a n y of t h e r e fl e cti o ns.  A n i m m e di at e
e x a m pl e is t h e b ar e i S W A P cir c uit, i n  w hi c h all si n gl e- q u bit
g at es ar e i d e ntiti es.  T his is o n e of t h e cir c uits a n al y z e d i n
S e c. VII .

T h e gr o u p of si xf ol d r ot ati o ns, C 6 , c o nt ai ns C 2 a n d C 3 a s
s u b gr o u ps.  T h e s y m m etr y gr o u p C 3 i s of p arti c ul ar i nt er est
si n c e r ot ati o n b y 2 π / 3 c orr es p o n ds t o c h a n gi n g fr o m o n e
arr o w of ti m e t o a n ot h er.  T h us, a cir c uit l eft i n v ari a nt u n d er
t his r ot ati o n,  w hi c h i m p os es 1 = 3 = 5 a n d 2 = 4 = 6, c a n
b e c all e d “s elf-tri u nit ar y. ”  Ti m e-r e v ers al s y m m etr y al o n g
e a c h of t h es e arr o ws of ti m e  w o ul d f urt h er i m p os e t h e
s y m m etri es i n Fi g. 9( d) .

D. St r o n g a n d  w e a k s elf- d u alit y of c o r r el ati o ns

I n t h e pr e vi o us s u bs e cti o ns  w e d e fi n e a str o n g f or m of
s elf- d u alit y: a p pl yi n g t h e gi v e n p oi nt- gr o u p tr a nsf or m ati o n
l e a v es t h e cir c uit stri ctl y i n v ari a nt. I n t h e e ns ui n g a n al y-
sis,  w e als o s e e e x a m pl es of a  w e a k er f or m of i n v ari a n c e,
w h er ei n t h e tr a nsf or m e d cir c uit is r el at e d t o t h e ori gi n al
cir c uit b y a c h a n g e of b asis.

W h at disti n g uis h es str o n g a n d  w e a k s elf- d u alit y ?  O n e
di ff er e n c e is i n t h e s y m m etri es of t h e t w o- p oi nt c orr el a-
ti o ns of o n e-sit e P a uli o p er at ors at i n fi nit e t e m p er at ur e, at
a s p a c eti m e dis pl a c e m e nt of (x , t). I n a d u al u nit ar y cir-
c uit, t h es e c orr el ati o ns ar e n o n v a nis hi n g o nl y o n t h e e d g es
of t h e li g ht c o n e, x = ± v t,  w h er e v is t h e li g ht c o n e v el o c-
it y.  H e n c e, a n y c orr el ati o n f u n cti o n c a n b e d e c o m p os e d
i n t er ms of l eft- a n d ri g ht- m o vi n g q u a nt u m c h a n n els M ±

[2 8 ]. I n a tri u nit ar y cir c uit, o wi n g t o t h e e xist e n c e of t hr e e
a x es of ti m e ( Fi g. 7 ), c orr el ati o ns c a n als o b e n o n z er o
al o n g t h e “st ati c  w or dli n e, ” x = 0,  wit h t h e ass o ci at e d
q u a nt u m c h a n n el M 0 [5 4 ].  T h us, i n b ot h c as es t h e a n al yti c
tr a ct a bilit y of t w o- p oi nt c orr el ati o ns pr o vi d es a si m pl e  w a y
t o pr o b e cir c uit s y m m etri es.  L o os el y s p e a ki n g, i n v ari a n c e
u n d er a gi v e n p oi nt- gr o u p tr a nsf or m ati o n  m a nif ests as a n
e q u alit y b et w e e n c orr el ati o ns at dis pl a c e m e nts r el at e d b y
t h at tr a nsf or m ati o n. If t h e c orr el ati o ns ar e o nl y e q u al aft er
a c h a n g e of b asis, t h e n t h e cir c uit p oss ess es o nl y a  w e a k
f or m of t h e s y m m etr y.  We l e a v e a  m or e d et ail e d tr e at m e nt
of t his t o pi c t o  A p p e n di x A .
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V.  C LI F F O R D  Q U A N T U M  C E L L U L A R
A U T O M A T A

N o w  w e i ntr o d u c e t h e  m ai n a n al yti c al t o ol us e d i n t h e
r est of t h e p a p er:  C Q C A.  Aft er pr es e nti n g t h e f or m alis m,
w e  writ e d o w n t h e g e n er al f or m f or t h e a ut o m at o n o n t h e
s q u ar e l atti c e a n d s h o w h o w it is tr a nsf or m e d u n d er t h e
p oi nt- gr o u p o p er ati o ns d es cri b e d i n t h e pr e vi o us s e cti o n.

A.  M at ri x r e p r es e nt ati o n

B y d e fi niti o n,  Cli ff or d g at es tr a nsf or m si n gl e P a ulis i nt o
si n gl e P a ulis, r at h er t h a n s u p er p ositi o ns of  m a n y P a ulis.
As a r es ult, t h e a cti o n of a  Cli ff or d u nit ar y is d e fi n e d b y
t h e i m a g es of X a n d Z .  T his pr o p ert y f or ms t h e b e dr o c k
of t h e st a bili z er t a bl e a u r e pr es e nt ati o n, b y  w hi c h  Cli ff or d
cir c uits c a n b e si m ul at e d cl assi c all y  wit h q u a dr ati c c o m-
pl e xit y i n t h e n u m b er of q u bits.  T h e u ni niti at e d r e a d er is
r ef err e d t o  R efs. [3 9 ,4 0 ] f or a d et ail e d dis c ussi o n of t his
a p pr o a c h.  T h e ess e n c e of t h e t a bl e a u r e pr es e nt ati o n is a
s hift i n p ers p e cti v e: t o u n d erst a n d h o w a ( mi x e d or p ur e)
st a bili z er st at e e v ol v es, it s u ffi c es t o tr a c k t h e e v ol uti o n (i n
t h e S c hr o di n g er pi ct ur e) of t h e g e n er at ors of t h e st a bili z er
gr o u p, c o m pris e d of t h e o p er at ors  wit h e x p e ct ati o n v al u e
+ 1 i n t h e st at e.  T h e st a bili z er t a bl e a u gi v es a n e ffi ci e nt
m e a ns of tr a c ki n g p h as es o n t h es e o p er at ors [ 4 0 ], b ut t h es e
will n ot b e r el e v a nt t o o ur st u d y of h o w o p er at ors s cr a m bl e
a n d s pr e a d.  We, t h er ef or e, r e pr es e nt X a n d Z as t h e bi n ar y
v e ct ors ξ (X ) = (1 0 )T a n d ξ (Z ) = (0 1 )T ,  w hi c h i m pli es
ξ (I ) = (0 0 )T a n d ξ (Y ) = (1 1 )T .  A si n gl e- q u bit g at e c a n
t h e n b e e x pr ess e d as

C 1 q b = ξ (U X U † ) ξ (U Z U † ) . ( 7)

As  writt e n, C is a  m atri x o v er t h e bi n ar y fi el d F 2 .  T o h a n dl e
P a uli stri n gs t h at s pr e a d b e y o n d o n e u nit c ell, l et

ξ (x ) = ξ X (x ) ξZ (x )
T

. (8 )

ξ (x ) is a f u n cti o n of t h e l atti c e p ositi o n x ,  w h os e v al u e at x
is t h e t w o- c o m p o n e nt bi n ar y v e ct or r e pr es e nti n g t h e P a uli
o p er at or o n t h at sit e.

W h e n t h e cir c uit i n q u esti o n is tr a nsl ati o n i n v ari a nt  wit h
u nit c ell a , it is us ef ul t o e x pr ess it as a  C Q C A.  H er e  w e
d es cri b e t h e str ai g htf or w ar d g e n er ali z ati o n of t h e f or m al-
is m i n  R efs. [5 0 – 5 2 ],  w hi c h is  writt e n f or a = 1, t o g e n er al
a .  E x pl oiti n g tr a nsl ati o n i n v ari a n c e,  w e tr a nsf or m ξ (x ) t o
a 2 a - c o m p o n e nt v e ct or o v er t h e  L a ur e nt p ol y n o mi al ri n g
F 2 [u , u − 1 ] vi a t h e al g e br ai c F o uri er tr a nsf or m.  E x pli citl y,
l etti n g x = a n + j d e n ot e t h e c o or di n at es of t h e j t h sit e i n
t h e n t h u nit c ell,  w e d e fi n e

ξ (u ) = (ξ (1 ) (u ), ξ (2 ) (u ), . . . , ξ (a ) (u )),

w h er e ξ (j ) (u ) =
n ∈ Z

u n ξ (n a + j ).
( 9)

T h e ar g u m e nt u of t h e F o uri er-tr a nsf or m e d v e ct or is
d e fi n e d i m pli citl y t hr o u g h  E q. ( 9),  w h er e f or e as e of n ot a-
ti o n,  w e us e t h e s a m e v ari a bl e, ξ , t o d e n ot e t h e ori gi n al
v e ct or- v al u e d f u n cti o n ξ (x ) a n d its al g e br ai c F o uri er tr a ns-
f or m ξ (u ), disti n g uis hi n g t h e m b y t h eir ar g u m e nts.  A
C Q C A  wit h u nit c ell a c a n t h e n b e e x pr ess e d as a 2 a × 2 a
m atri x M o v er F 2 [u , u − 1 ], i. e., M ∈ M 2 a (F 2 [u , u − 1 ]).

T h e f or m of M is c o nstr ai n e d b y t h e f a ct t h at  C Q C A
pr es er v e t h e P a uli c o m m ut ati o n r el ati o ns. I n t h e F o uri er-
tr a nsf or m e d r e pr es e nt ati o n, t h es e c o m m ut ati o n r el ati o ns
ar e e n c a ps ul at e d i n t h e s y m pl e cti c f or m [ 5 0 ]:

σ̂ ( ξ , η ) =

a

j = 1

(ξ
(j )

X η
(j )
Z − ξ

(j )

Z η
(j )
X ), ( 1 0)

w h er e f (u ) = f (u → u − 1 ). T h e n M is a v ali d  C Q C A [ als o
r ef err e d t o as a s y m pl e cti c c ell ul ar a ut o m at o n ( S C A)] if
a n d o nl y if [ 5 0 ]

σ̂ ( M ξ , M η ) = ˆσ ( ξ , η ). ( 1 1)

T a ki n g t h e al g e br ai c F o uri er tr a nsf or m all o ws us t o c o m-
p a ctl y r e pr es e nt t h e a cti o n of t h e  C Q C A o n a n i n fi nit e
s yst e m, b ut s o m eti m es it is us ef ul t o c o nsi d er t h e b e h a v-
i or o n fi nit e c h ai ns  wit h p eri o di c b o u n d ar y c o n diti o ns. F or
a s yst e m of m u nit c ells, a s hift b y u m i s e q ui v al e nt t o
t h e i d e ntit y, s o  w e t a k e t h e e ntri es of M t o b el o n g t o t h e
r esi d u e ri n g F 2 [u , u − 1 ]/ u m − 1 .  We d e fi n e t h e r e c urr e n c e
ti m e of t h e u nit ar y  w h os e  C Q C A is gi v e n b y M , d e n ot e d
τ ( m ), as t h e  mi ni m u m p o w er s u c h t h at M τ = u d 1 m o d-
ul o u m − 1, f or s o m e d ∈ Z .  All o wi n g d = 0 a c c o u nts f or
t h e c as e  w h er e U r e p e ats u p t o a n o v er all s hift b y a n i nt e g er
n u m b er of u nit c ells.  U n d er t h e e v ol uti o n of t h e a ut o m at o n,
a n y st a bili z er gr o u p o n m u nit c ells,  mi x e d or p ur e, r e p e ats
m o d ul o si g ns a n d s hifts aft er a n i nt er v al t h at di vi d es τ ( m ).

B.  R e vi e w of a = 1 a ut o m at a

B ef or e t ur ni n g t o t h e s q u ar e a n d k a g o m e l atti c e,  w h os e
a ut o m at a h a v e a = 2 a n d a = 4, r es p e cti v el y, it  will b e
us ef ul t o r e c all s o m e f a cts a b o ut a = 1  C Q C A o v er q u dits
wit h pri m e di m e nsi o n q . F or a  m or e t h or o u g h tr e at m e nt
c o m pl et e  wit h pr o ofs, t h e r e a d er is r ef err e d t o  R efs. [ 5 0 –
5 2 ].

F or a = 1, a n a ut o m at o n  wit h l o c al  Hil b ert-s p a c e
di m e nsi o n q is a n el e m e nt M ∈ M 2 (F q [u , u − 1 ]). Fr o m t h e
s y m pl e cti c c o n diti o n o n e c a n pr o v e t h at M is a n S C A if
a n d o nl y if [ 5 0 ]

( 1)  E a c h el e m e nt f (u ) of M is r e fl e cti o n-i n v ari a nt  wit h
r es p e ct t o t h e s a m e l atti c e p oi nt d ∈ Z , t h at is,
u 2 d f (u ) = f (u ).

( 2) d et M = u 2 d .
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A t hir d c o n diti o n,  w hi c h is oft e n st at e d s e p ar at el y [ 5 1 ,5 2 ]
b ut a ct u all y f oll o ws fr o m t h e a b o v e t w o, is t h at t h e i m a g es
of X a n d Z , i. e., t h e c ol u m n v e ct ors of M , ar e c o pri m e.

D u e t o c o n diti o n 2,  w e c a n al w a ys “ c e nt er ” t h e a ut o m a-
t o n b y f a ct ori n g o ut u d .  T his si m pl y e x pr ess es t h at t h e s hift
a ut o m at o n u d 1 ,  w hi c h a cts b y s hifti n g all o p er at ors t o t h e
ri g ht b y d u nits, c o m m ut es  wit h all ot h er a ut o m at a.  T h e n, it
s u ffi c es t o c o nsi d er c e nt er e d s y m pl e cti c c ell ul ar a ut o m at a
( C S C A)  w h os e e ntri es ar e s y m m etri c  L a ur e nt p ol y n o mi als
[5 0 – 5 2 ].

C e nt er e d s y m pl e cti c c ell ul ar a ut o m at a  wit h a = 1 c a n
b e cl assi fi e d i nt o t hr e e gr o u ps b as e d o n t h eir tr a c e [ 5 1 ,5 2 ]:
t h os e  wit h  Tr(M ) = c o nst a nt b el o n g t o t h e p eri o di c cl ass,
t h os e  wit h  Tr(M ) = u n + u − n f or s o m e n ∈ N b el o n g t o
t h e gli d er cl ass, a n d all ot h ers b el o n g t o t h e fr a ct al cl ass.
T his si m pl e cl assi fi c ati o n st e ms fr o m t h e f a ct t h at t h e c h ar-
a ct eristi c p ol y n o mi al of a 2 × 2  m atri x is d et er mi n e d b y
its tr a c e a n d d et er mi n a nt, t h e l att er b ei n g 1 f or  C S C A [ E q.
( 1)]:

χ M (y ) = y 2 + Tr (M )y + d et (M ). ( 1 2)

B y t h e  C a yl e y- H a milt o n t h e or e m, M s atis fi es its c h ar a c-
t eristi c e q u ati o n, s o f or a = 1 C S C A,

M 2 = − Tr (M )M − 1 . ( 1 3)

T his r e c ursi o n r el ati o n f or M u n d erli es s e v er al r el at e d
pr o p erti es. First, t h e as y m pt oti c g e n er ati o n r at e of bi p ar-
tit e e nt a n gl e m e nt o n a tr a nsl ati o n-i n v ari a nt p ur e st at e is
d e g (Tr (M )); t h at is, t h e bi p artit e e nt a n gl e m e nt a cr oss a
c ut of t h e i n fi nit e s yst e m gr o ws li n e arl y f or gli d er a n d
fr a ct al a ut o m at a b ut os cill at es a b o ut a c o nst a nt f or p eri-
o di c a ut o m at a [ 5 1 ,5 2 ].  T h e b e h a vi or of p eri o di c a ut o m at a
is p arti c ul arl y si m pl e f or q = 2 ( q u bits): str ai g htf or w ar d
a p pli c ati o n of  E q. ( 1 3) i m pli es t h at a n o ni d e ntit y  C S C A
wit h  Tr (M ) = c ∈ F 2 r e p e ats  wit h p eri o d c + 2, t h us
e x pl ai ni n g its d esi g n ati o n as p eri o di c.  Of t h e t hr e e cl ass es,
o nl y t h e p eri o di c a ut o m at a a d mit ( 1) p ur e st ati o n ar y
tr a nsl ati o n-i n v ari a nt st a bili z er st at es o n a n i n fi nit e c h ai n
a n d ( 2) st ati o n ar y pr o d u ct st at es, of a n y e ntr o p y d e nsit y
b el o w 1 [ 5 2 ].

M e m b ers of t h e gli d er cl ass e ar n t h eir n a m e b e c a us e
t h e y h a v e ei g e n v e ct ors ξ ± wit h ei g e n v al u es u ± n [8 5 ].
T h es e s o- c all e d “ gli d ers ” ar e o p er at ors t h at s hift b ut d o
n ot s pr e a d u n d er t h e a cti o n of t h e a ut o m at o n, c orr es p o n d-
i n g t o c o ns er v e d c h ar g es a n d r es ulti n g i n a r e c urr e n c e ti m e
τ ( m ) ≤ m o n a s yst e m  wit h p eri o di c b o u n d ar y c o n diti o ns
[7 0 ]. I n c o ntr ast, t h e r e c urr e n c e ti m e f or fr a ct al  C S C A is
e x p o n e nti all y l ar g e f or g e n eri c m , b ut fr o m t h e r e c ursi o n
r el ati o n  E q. ( 1 3), o n e c a n pr o v e t h at f or all  C S C A, i n cl u d-
i n g t h os e i n t h e fr a ct al cl ass, τ ( m ) ≤ 3 m / 2 f or m = 2 k

[7 0 ,8 6 ].  A li n e ar b o u n d o n τ ( m ) f or m = 2 k als o h ol ds f or
a > 1.

F or a > 1, t h e c h ar a ct eristi c p ol y n o mi al r e m ai ns i m p or-
t a nt f or c h ar a ct eri zi n g M , alt h o u g h it is n o l o n g er s ol el y

d et er mi n e d b y t h e tr a c e.  M or e pr e cis el y, of i nt er est is t h e
mi ni m al p ol y n o mi al —t h e  m o ni c p ol y n o mi al μ M of l e ast
d e gr e e f or  w hi c h μ M (M ) = 0 — w hi c h al w a ys di vi d es χ M .
I n  R ef. [6 6 ], it is d e m o nstr at e d t h at f or a n y li n e ar c el-
l ul ar a ut o m at o n o v er a n a b eli a n gr o u p, a br o a d cl ass of
a ut o m at a t h at i n cl u d es  C Q C A  wit h g e n eri c a , o n e c a n c o n-
str u ct a s e q u e n c e of “ c ol or e d s p a c eti m e di a gr a ms, ”  w hi c h
d e pi ct t h e e v ol uti o n of a n i niti al stri n g (i n o ur c as e a
P a uli o p er at or) u n d er t h e a cti o n of t h e a ut o m at o n, as ti m e
t → ∞ . F or a gi v e n i niti al stri n g, t h e s p a c eti m e di a gr a m
c o n v er g es i n t h e li mit of i n fi nit e ti m e, a n d i n p arti c ul ar
a ut o m at a  wit h t h e s a m e  mi ni m al p ol y n o mi al pr o d u c e e v o-
l uti o ns  wit h si mil ar fr a ct al str u ct ur e.  T his li n k b et w e e n t h e
mi ni m al p ol y n o mi al a n d o p er at or s pr e a di n g is n ot u ni q u e
t o a = 1, a n d r ests o n t h e f a ct t h at μ M i m pli es a r e c ursi o n
r el ati o n f or M .

T h e dis c er ni n g r e a d er  m a y q u esti o n  w h y  w e d o n ot
r e c ast o ur a > 1 q u bit  C Q C A as a = 1 q u a nt u m c ell u-
l ar a ut o m at a a cti n g o n 2a - di m e nsi o n al q u dits.  H o w e v er,
r e pr es e nt ati o n as a n el e m e nt of M 2 (F 2 a [u , u − 1 ]) d o es
n ot r e a dil y f oll o w; s e e n ot e [ 6 4 ] f or  m or e d et ails.  O ur
a > 1 q u bit  C Q C A s h o ul d als o b e c o ntr ast e d  wit h t h e
a = 1  C Q C A st u di e d i n  R ef. [ 7 1 ]  wit h l o c al  Hil b ert-
s p a c e di m e nsi o n N ( n ot n e c ess aril y pri m e) e n d o w e d  wit h
a g e n er ali z e d  Cli ff or d al g e br a,  w hi c h ar e d es cri b e d b y el e-
m e nts of M 2 (Z N [u , u − 1 ]) a n d f or  w hi c h N → ∞ is t h e
s e mi cl assi c al li mit.

C.  D e c o m p ositi o n of d u al u nit a r y  C Q C A

E x pr essi n g o ur S T TI  Cli ff or d cir c uits as S C A,  w e n o w
c o m p ut e t h e  m atri x f or m f or t h e ti m e e v ol uti o n of o n e u nit
c ell of t h e cir c uit. I n f ull g e n er alit y, t h e e v ol uti o n c o n-
sists of t hr e e f u n d a m e nt al el e m e nts: t h e t w o- q u bit c or es,
si n gl e- q u bit g at es, a n d o pti o n all y, a s p ati al s hift b et w e e n
s u c c essi v e ti m e st e ps.

1. S hift

C o n cr et el y, l et us c o nsi d er t h e cir c uit o n t h e s q u ar e l at-
ti c e.  Alt h o u g h t h e bri c k w or k r e p e ats o nl y aft er t w o l a y ers
of t h e cir c uit,  w e c a n us e a s m all er u nit c ell, T = 1 / 2, a =
2, b y als o i n cl u di n g a s p ati al s hift of d = 1 b et w e e n
ti m e st e ps.  T his si m pl y e x pr ess es t h at t h e s q u ar e l atti c e is
tr a nsl ati o n i n v ari a nt u n d er tr a nsl ati o ns b y t = 1 / 2, d = 1.

A g e n eri c  C Q C A o n u nit c ell a = 2 t a k es t h e f or m:

M =

⎛

⎜
⎝

M X 1 → X 1
M Z 1 → X 1

M X 2 → X 1
M Z 2 → X 1

M X 1 → Z 1
M Z 1 → Z 1

M X 2 → Z 1
M Z 2 → Z 1

M X 1 → X 2
M Z 1 → X 2

M X 2 → X 2
M Z 2 → X 2

M X 1 → Z 2
M Z 1 → Z 2

M X 2 → Z 2
M Z 2 → Z 2

⎞

⎟
⎠ , ( 1 4)

i. e., t h e c ol u m ns ar e t h e i m a g es of X 1 , Z 1 , X 2 , Z 2 .
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T his  m e a ns t h at a s hift b y o n e sit e t o t h e ri g ht, M s hift ,
t a k es t h e bl o c k- o ff- di a g o n al f or m:

M s hift =
0 u 1
1 0

. ( 1 5)

T his e q u ati o n c a n b e str ai g htf or w ar dl y g e n er ali z e d t o
s hifts b y j = 1, 2, . . . , a − 1 i n a u nit c ell of si z e a .

N ot e t h at M 2
s hift = u 1 , i. e., a s hift b y o n e f ull u nit c ell,

w hi c h c a n b e f a ct or e d o ut t o c e nt er t h e a ut o m at o n as i n t h e
a = 1 c as e. F or m all y,  w e c o ul d a c c o u nt f or t his b y  writi n g

˜M s hift =
0 u 1 / 2 1

u − 1 / 2 1 0
( 1 6)

alt h o u g h of c o urs e u 1 / 2 i s n ot a n el e m e nt of t h e  L a ur e nt
p ol y n o mi al ri n g.

It is s o m eti m es us ef ul t o c o nsi d er t h e a ut o m at o n  wit h
a l ar g er u nit c ell, T = 1, a = 2, si n c e aft er t w o l a y ers t h e
bri c k w or k cir c uit r e p e ats  wit h o ut a s hift.  T h e c e nt er e d
a ut o m at o n is

˜M ≡ M − 2
s hift M

2 = u − 1 M 2 . ( 1 7)

2. (i)S W A P c o r es

T h e t w o- q u bit g at es n at ur all y a ct o n a u nit c ell of a = 2.
If t h e cir c uit is tr a nsl ati o n i n v ari a nt  wit h a l ar g er u nit c ell,
as o n t h e k a g o m e l atti c e,  w e c a n j ust t a k e a t e ns or pr o d u ct
wit h t h e  m atri c es c orr es p o n di n g t o t h e ot h er g at es i n t h at
l a y er.

F or t h e S W A P g at e, t h e a ut o m at o n is

M S W A P =
0 1
1 0

, ( 1 8)

w hil e f or t h e i S W A P :

M iS W A P =
a b
b a

( 1 9)

w h er e

a =
0 0
1 0

, b =
1 0
1 1

. ( 2 0)

3. Si n gl e- q u bit g at es

T h e fi n al i n gr e di e nt i n o ur cir c uits is t h e si n gl e- q u bit
g at es.  O ut of t h e 2 4 el e m e nts of t h e si n gl e- q u bit  Cli ff or d
gr o u p,  w e c o nsi d er t w o g at es t o b e e q ui v al e nt if t h e y di ff er
b y o nl y a P a uli o p er at or, si n c e t h at a ff e cts o nl y t h e si g ns
o n t h e st a bili z ers.

T h e si x r e m ai ni n g u ni q u e el e m e nts f all i nt o t hr e e gr o u ps
[8 7 ].  As i n  E q. ( 7), t h es e g at es c a n b e e x pr ess e d as 2 × 2
m atri c es o v er F 2 ,  w hi c h if pr o m ot e d t o  m atri c es o v er

F 2 [u , u − 1 ] (i. e.,  w e i m a gi n e a p pl yi n g t h e s a m e g at e t o e a c h
q u bit)  w o ul d b e a = 1  C Q C A i n t h e p eri o di c cl ass: si n gl e-
q u bit g at es al o n e c a n n ot g e n er at e a n y e nt a n gl e m e nt.  Yet,
w h e n i n c or p or at e d i nt o cir c uits  wit h i S W A P c or es, t h es e
di ff er e nt gr o u ps of g at es pr o d u c e q u alit ati v el y di ff er e nt
cl ass es of b e h a vi or as d es cri b e d i n S e c. VI .  T his is a  m a n-
if est ati o n of t h e br o a d er p oi nt t h at alt h o u g h cir c uits  wit h
t h e s a m e c or e ar e l o c all y u nit aril y e q ui v al e nt, t h e  mi xi n g
pr o p erti es ar e s e nsiti v e t o t h e l o c al ( o n e-sit e) g at es [ 3 2 ].
T h e t hr e e gr o u ps ar e as f oll o ws.

( 1) I d e ntit y,  w hi c h tri vi all y h as p eri o d 1.
( 2) π / 2 r ot ati o n a b o ut X , Y , or Z ,  w hi c h pr es er v es t h e

P a uli al o n g t h e a xis of r ot ati o n a n d e x c h a n g es t h e
ot h er t w o.  As 2 × 2  m atri c es,

M R X [π / 2] =
1 1
0 1

, ( 2 1 a)

M R Y [π / 2] =
0 1
1 0

, ( 2 1 b)

M R Z [π / 2] =
1 0
1 1

. ( 2 1 c)

As  C Q C A, t h es e ar e all p eri o d- 2 a ut o m at a.  T his
r e fl e cts t h e f a ct t h at u p t o a P a uli, a c o u nt er cl o c k-
wis e r ot ati o n b y π / 2 is e q ui v al e nt t o a cl o c k wis e
r ot ati o n a b o ut t h e s a m e a xis.  E x pli citl y,

(R σ [π / 2] )2 = R σ [π ] = − iσ 1 , ( 2 2)

w h er e σ = X , Y , Z , a n d is us e d t o d e n ot e “ e q u al
u p t o a P a uli. ”

( 3) ± 2 π / 3 r ot ati o n a b o ut t h e a xis (1, 1, 1 ) o n t h e  Bl o c h
s p h er e,  w hi c h i m pl e m e nts a c y cli c p er m ut ati o n of
X , Y , a n d Z m o d ul o si g ns.  E x pli citl y, t h e cl o c k wis e
r ot ati o n s e n ds X → Z → Y → X ,  w hil e t h e c o u n-
t er cl o c k wis e r ot ati o n s e n ds X → Y → Z → X :

M R (1, 1, 1 ) [ 2π / 3] =
1 1
1 0

, ( 2 3 a)

M R (1, 1, 1 ) [− 2 π / 3] =
0 1
1 1

, ( 2 3 b)

w hi c h ar e p eri o d- 3 a ut o m at a. Fr o m t h e  m atri x f or m
w e c a n als o i m m e di at el y s e e t h at

M 2
R (1, 1, 1 ) [± 2 π / 3] = M − 1

R (1, 1, 1 ) [± 2 π / 3]

= M R (1, 1, 1 ) [∓ 2 π / 3] . ( 2 4)

4.  D e c o m p ositi o n o n t h e s q u ar e l atti c e

I n a bri c k w or k cir c uit,  w e c a n si m plif y  m att ers b y n oti n g
t h at  w hil e a g e n eri c d u al u nit ar y g at e h as t h e p ar a m et eri-
z ati o n  E q. ( 4),  wit h si n gl e- q u bit g at es b ef or e a n d aft er t h e
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( a) ( b)

( c) ( d)

FI G. 1 0. F o ur c o n v e nti o ns f or t h e  C Q C A o n t h e s q u ar e l atti c e.
E a c h is f oll o w e d b y a s hift b y o n e sit e, M s hift .  We us e t h e t o p-l eft
c o n v e nti o n,  w hi c h pl a c es b ot h si n gl e- q u bit  Cli ff or ds b ef or e t h e
c or e.

c or e, i n t h e c o nt e xt of a f ull cir c uit t h e g at es o n t h e o ut-
g oi n g l e gs c a n b e a bs or b e d i nt o t h e i n c o mi n g l e gs of t h e
n e xt l a y er.  We c h o os e t o c ut t h e li n ks i n s u c h a  w a y t h at
t h e si n gl e- q u bit g at es c o m e b ef or e t h e c or e:

U = V [J ]( v+ ⊗ v − ). ( 2 5)

Wit h t his c o n v e nti o n, t h e a ut o m at o n f or o n e ti m e st e p
d e c o m p os es as

M = M s hift M c or e
M v + 0

0 M v −

( 2 6)

w h er e M c or e i s t h e  m atri x f or t h e S W A P [ E q. ( 1 8)] or iS W A P

[ E q. ( 1 9)] c or e.
T hr e e alt er n ati v e c o n v e nti o ns ar e s h o w n i n Fi g. 1 0 . It is

str ai g htf or w ar d t o pr o v e t h at all f o ur c o n v e nti o ns h a v e t h e
s a m e c h ar a ct eristi c a n d  mi ni m al p ol y n o mi als, c o nsist e nt
wit h t h e f a ct t h at t h e y r e pr es e nt t h e s a m e p h ysi c al cir c uit
[8 8 ].

D. S y m m et ri es a n d si mil a rit y t r a nsf o r m ati o ns

N o w  w e c a n a n al y z e t h e p oi nt- gr o u p s y m m etri es b y
as ki n g h o w t h e a ut o m at a tr a nsf or m u n d er r ot ati o ns a n d
r e fl e cti o ns of t h e l atti c e.

A n i m p ort a nt c a v e at is t h at si n c e t h e u nit c ell c o nt ai ns
o nl y t w o o n e-sit e g at es, i. e., i n e a c h of t h e f o ur c o n v e nti o ns
s h o w n i n Fi g. 1 0 o nl y t w o of t h e f o ur l e gs ar e d e c or at e d
wit h g at es, n o n e of t h es e c o n v e nti o ns h a v e t h e f ull D 4

s y m m etr y ( u nl ess b ot h g at es ar e i d e ntiti es).  T his is i n c o n-
tr ast  wit h Fi g. 8 a n d t h e s urr o u n di n g dis c ussi o n,  w h er e t h e
“ e x p a n d e d v ert e x ” c o nt ai ns a g at e o n e a c h l e g.  T h us,  w h e n
as ki n g if a  Q C A h as a gi v e n s y m m etr y,  w e  m ust c o m p ar e
t h e tr a nsf or m e d a ut o m at o n t o t h e v ersi o n of M i n t h e c o n-
v e nti o n α ∈ { a , b , c , d } wit h t h e a p pr o pri at e pl a c e m e nt of
o n e-sit e g at es r el ati v e t o t h e c or e.  All f o ur c o n v e nti o ns
yi el d a ut o m at a  wit h t h e s a m e c h ar a ct eristi c p ol y n o mi al, s o
a n e c ess ar y ( b ut n ot s u ffi ci e nt) c o n diti o n f or s y m m etr y is
t h at t h e c h ar a ct eristi c p ol y n o mi al b e l eft i n v ari a nt u n d er
t h e tr a nsf or m ati o n.

T h e ei g ht p oi nt- gr o u p tr a nsf or m ati o ns of t h e s q u ar e c a n
b e e x pr ess e d as t h e c o m p ositi o n of l eft-ri g ht r e fl e cti o n
a n d t h e s p a c eti m e d u al (r ot ati o n b y π / 2) [ 8 3 ].  We dis-
c uss t h es e, al o n g  wit h ti m e r e v ers al (r e fl e cti o n a b o ut t h e
h ori z o nt al), i n t ur n.

1.  L eft-ri g ht r e fl e cti o ns

F or a u nit c ell of si z e a , r e fl e cti o n a b o ut t h e c e nt er of t h e
u nit c ell is e x pr ess e d as

M j ↔ a + 1 − j =

⎛

⎜
⎝

0 1
...

1 0

⎞

⎟
⎠ M

⎛

⎜
⎝

0 1
...

1 0

⎞

⎟
⎠ , ( 2 7)

w h er e e a c h 1 is a 2 × 2  m atri x.  E x pli citl y, f or a = 2 t his
si m pli fi es t o

M 1 ↔ 2 =
0 1
1 0

M
0 1
1 0

. ( 2 8)

T h e r es ulti n g tr a nsf or m ati o n of t h e c h ar a ct eristi c p ol y n o-
mi al is

χ M (y ) → χ M (y ; u → u − 1 ). ( 2 9)

M c or e i s  m a nif estl y i n v ari a nt u n d er  E q. ( 2 8),  w hil e M s hift →
u − 1 M s hift , a n o v er all s hift t h at c a n b e r e m o v e d b y “ c e n-
t eri n g ” M s hift a s i n  E q. ( 1 6).  T h us, t h e n et r es ult of
t h e tr a nsf or m ati o n is j ust t o e x c h a n g e M v + a n d M v − , a s
e x p e ct e d:

M 1 ↔ 2
a ( v + , v − ) = u − 1 M a ( v− , v + ) ( 3 0)

w h er e  w e i ntr o d u c e t h e n ot ati o n M α ( v+ , v − ) t o d e n ot e t h e
a ut o m at o n  wit h c o n v e nti o n α = a , b , c , d a n d si n gl e- q u bit
g at es v + , v − .  N ot e, t h o u g h, t h at i n i m p osi n g t his s y m-
m etr y  w e d o n ot a ct u all y r e q uir e v + = v − a s i m pli e d at
t h e l e v el of t h e u nit ar y i n Fi g. 8 . Si n c e t h e s y m pl e cti c
c ell ul ar a ut o m at o n d o es n ot i n cl u d e si g ns o n t h e st a bili z-
ers, M = M ( u p t o a gl o b al s hift) j ust i m p os es t h at t h e
c orr es p o n di n g u nit ari es ar e e q u al u p t o a P a uli.
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2.  Ti m e r e v ers al

T h e ti m e-r e v ers e d a ut o m at o n is M = M − 1 ,  wit h c h ar-
a ct eristi c p ol y n o mi al

χ M − 1 (y ) =
y 2 a

d et (M )
χ M (1 / y ) = y 2 a χ M (1 / y ), ( 3 1)

w h er e t h e s e c o n d e q u alit y h ol ds f or  C S C A, f or  w hi c h
d et (M ) = 1.  T h e a ut o m at o n tr a nsf or ms as

M − 1
a ( v + , v − ) =

M − 1
v +

0
0 M v − 1

−

M c or e M
− 1
s hift

= M − 1
s hift M b ( v T

− , v T
+ )M − 1

s hift

u − 1 M b ( v T
− , v T

+ ). ( 3 2)

I n t h e l ast li n e, d e n ot es t h at  w hil e t h e t w o a ut o m at a ar e
n ot e q u al, t h e y r e pr es e nt t h e s a m e cir c uit, si n c e t h e h alf-
u nit- c ell s hifts c a n b e a bs or b e d i nt o t h e s u bs e q u e nt l a y ers
at t h e e x p e ns e of a n o v er all s hift b y o n e u nit c ell.

U p t o  m ulti pli c ati o n b y P a ulis,  w e dr a w t h e s a m e c o n-
cl usi o n as i n Fi g. 8 : a s q u ar e l atti c e  C Q C A is ti m e-r e v ers al
s y m m etri c if v + v T

− a n d v − v T
+ .

3. S p a c eti m e d u al

T h e tr a nsf or m ati o n of t h e  C Q C A M u n d er a c o u n-
t er cl o c k wis e π / 2 r ot ati o n c a n i n g e n er al b e  writt e n b y
l o o ki n g at t h e a cti o n o n a c o m pl et e b asis of st a bili z ers a n d
s ol vi n g a s et of li n e ar e q u ati o ns, b ut b y d e c o m p osi n g M as
E q. ( 2 6),  w e c a n str ai g htf or w ar dl y r e a d o ff

M d u al
a ( v + , v − ) M d ( v T

− , v + ) ( 3 3)

u p t o a n o v er all s hift.

4.  Cir c uit cl ass es

T w o a ut o m at a ar e c o nsi d er e d t o b el o n g t o t h e s a m e
cl ass if t h e y ar e r el at e d b y a p oi nt- gr o u p tr a nsf or m ati o n
or c h a n g e of b asis.  E q ui v al e ntl y,  w e d e fi n e a cl ass as all
t h os e r el at e d b y j ust o n e p oi nt- gr o u p tr a nsf or m ati o n —l eft-
ri g ht r e fl e cti o n — or b y t h e tr a nsf or m ati o n X 1 ↔ Y 1 , a n d/ or
X 2 ↔ Y 2 , i. e., t h e si mil arit y tr a nsf or m ati o n M (X i → Y i) =
S iM S − 1

i w h er e

S 1 =
M R Z [π / 2] 0

0 1
= S − 1

1 , ( 3 4 a)

S 2 =
1 0
0 M R Z [π / 2]

= S − 1
2 . ( 3 4 b)

T his c h a n g e of b asis pr es er v es t h e i S W A P a n d S W A P c or es
w hil e e x c h a n gi n g R X [π / 2] ↔ R Y [π / 2] a n d R (1, 1, 1 ) [ 2π / 3]

↔ R (1, 1, 1 ) [− 2 π / 3].  T h e S W A P c or e is als o pr es er v e d
u n d er tr a nsf or m ati o ns li k e X ↔ Z a n d t h eir c o m p ositi o ns,
i m pl e m e nt e d b y r e pl a ci n g R Z wit h R X or R Y i n t h e a b o v e
e x pr essi o n.

T o s e e t h at si mil arit y tr a nsf or m ati o ns c o m p os e d  wit h
l eft-ri g ht r e fl e cti o ns g e n er at e all t h e a ut o m at a [ e x pr ess e d
i n c o n v e nti o n ( a)] r el at e d b y a p oi nt- gr o u p tr a nsf or m ati o n,
n ot e t h at t a ki n g t h e tr a ns p os e of a n y si n gl e- q u bit g at e, f ol-
l o w e d o pti o n all y b y a si mil arit y tr a nsf or m ati o n, yi el ds t h e
ori gi n al g at e u p t o a P a uli, i. e.,

M v T = M − 1
v =

S M v S
− 1 v = R (1, 1, 1 ) [± 2 π / 3]

M v ot h er wis e
. ( 3 5)

T his  m e a ns t h at a s q u ar e-l atti c e cir c uit is  w e a kl y s elf- d u al
u n d er a n y p oi nt- gr o u p tr a nsf or m ati o n as l o n g as it h as
( w e a k) i n v ari a n c e u n d er l eft a n d ri g ht r e fl e cti o n. Fr o m t h e
t w o c as es i n  E q. ( 3 5),  w e als o s e e t h at o n e-sit e g at es c or-
r es p o n di n g t o a ut o m at a of p eri o d 1 or 2 s atisf y u u T ,
w h er e as t h e p eri o d- 3 a ut o m at a h a v e u u T .

VI.  C L A S S E S  O N  T H E S Q U A R E  L A T TI C E

We n o w a p pl y t h e f or m alis m i n t h e pr e vi o us s e cti o n
t o cl assif y t h e d u al u nit ar y  C Q C A o n t h e s q u ar e l atti c e.
T h e S W A P - c or e a ut o m at a c a n b e vi e w e d as g e n er ali z ati o ns
of t h e p eri o di c cl ass of a = 1 a ut o m at a.  T h e i S W A P - c or e
a ut o m at a f or m si x cl ass es,  w hi c h s plit i nt o t w o gr o u ps:
o n e gr o u p of “ p o or s cr a m bl ers ” is r el at e d t o t h e a = 1
gli d er cl ass,  w hil e t h e “ g o o d s cr a m bl ers ” ar e r el at e d t o t h e
a = 1 fr a ct al cl ass.  T h e  C Q C A f or m alis m als o pr o vi d es
a n ot h er p ers p e cti v e o n t h e tr e n ds i n c orr el ati o n f u n cti o ns,
c o ns er v e d q u a ntiti es, a n d e nt a n gl e m e nt gr o wt h c o m m o n
t o d u al u nit ar y cir c uits,  w hi c h  w e t o u c h o n t hr o u g h o ut t his
s e cti o n a n d f urt h er dis c uss i n S e c. VI F .

A. S W A P c o r e

Si n c e t h e S W A P g at e d o es n ot g e n er at e a n y e nt a n gl e-
m e nt,  w e alr e a d y k n o w t h at t h e S T TI cir c uits  wit h a S W A P

c or e ar e n o n e nt a n gli n g,  wit h a d y n a mi cs t h at is i n s o m e
s e ns e “tri vi al. ”  N e v ert h el ess,  writi n g o ut t h e 4 × 4  m atri-
c es t h at d es cri b e t h es e cir c uits c a n el u ci d at e t h eir str u ct ur e
a n d sit u at e t h e m  wit hi n t h e fr a m e w or k of a = 1  C Q C A.

I ns erti n g  E q. ( 1 8) f or M c or e , E q. ( 2 6) si m pli fi es t o

M ( v+ , v − ) =
u M v + 0

0 M v −

. ( 3 6)

M is bl o c k di a g o n al,  w h er e t h e 2 × 2 bl o c ks o n t h e di a g-
o n al d es cri b e t h e i n d e p e n d e nt ti m e e v ol uti o n al o n g t h e +
a n d − di a g o n als of t h e l atti c e, d et er mi n e d b y t h e si n gl e-
q u bit g at es v + a n d v − , r es p e cti v el y.  T h us, t h e d y n a mi cs
d e c o m p os e i nt o t w o a = 1 a ut o m at a i n t h e p eri o di c cl ass,
c o nsist e nt  wit h t h e f a ct t h at S W A P g at es d o n ot g e n er-
at e e nt a n gl e m e nt [ 5 1 ,5 2 ]. I n d e p e n d e ntl y, t h e t w o a ut o m at a
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h a v e p eri o d 1, 2, or 3 d e p e n di n g o n t h eir tr a c e ( m e as ur e d
i n u nits of t = 1 / 2).  B ut i n a n y fi x e d fr a m e, τ ( m ) is li n-
e ar i n m .  T his is b e c a us e t h e t o p l eft bl o c k is s y m m etri c
wit h r es p e ct t o t h e l atti c e p oi nt d = 1,  w h er e as t h e b ott o m
ri g ht bl o c k is s y m m etri c  wit h r es p e ct t o d = 0 (i. e., is a
c e nt er e d S C A).  T h e f ull a ut o m at o n o nl y a p p e ars p eri o di c
if  w e c h o os e a “st a g g er e d fr a m e ”  w h er e i n e a c h ti m e st e p,
t h e o d d sit es ar e tr a nsl at e d b y o n e u nit c ell  wit h r es p e ct t o
t h e e v e n sit es.

As  writt e n, M c o nt ai ns a n e x pli cit d e p e n d e n c e o n t h e
si n gl e- q u bit g at es v + a n d v − , b ut  w e c a n al w a ys p us h t h e
si n gl e- q u bit g at es t hr o u g h t h e S W A P c or e u p t o t h e t o p l a y er
or b o u n d ar y of t h e cir c uit. I n t his s e ns e, all S W A P - c or e
a ut o m at a ar e e q ui v al e nt t o t h e b ar e S W A P cir c uit,  w hi c h is
s elf- o ct a- u nit ar y. ( P oi nt- gr o u p tr a nsf or m ati o ns  w o ul d j ust
c h a n g e t h e b o u n d ar y l a y ers.) F or t his cir c uit, t h e r e c ur-
r e n c e ti m e i n u nits of t = 1 / 2 o n a s yst e m of m u nit c ells
is m .  A n y tr a nsl ati o n-i n v ari a nt st a bili z er st at e is i n v ari a nt
u n d er t h e a cti o n of t h e cir c uit, s o t h er e is a l ar g e s et of
st ati o n ar y st at es o n a s yst e m of a n y si z e.

Alt h o u g h t h e d y n a mi cs ar e f airl y b ori n g vi e w e d t hr o u g h
t his l e ns, t h e S W A P cl ass is a ct u all y “ m a xi m all y e nt a n-
gli n g ” fr o m t h e p ers p e cti v e of  R ef. [ 8 9 ].  E x pli citl y, st arti n g
fr o m t w o p ur e s u bs yst e ms A a n d B ,  wit h s o m e i niti al e nt a n-
gl e m e nt b et w e e n t h e o d d a n d e v e n sit es o n e a c h h alf,  w h e n
a g at e is i ntr o d u c e d b et w e e n A a n d B , t h e S W A P m o d el
s at ur at es t h e  mi ni m al c ut b o u n d o n e ntr o p y pr o d u cti o n
b et w e e n A a n d B . I n f a ct, i n g e n eri c d u al u nit ar y cir c uits
st arti n g fr o m a pr o d u ct st at e of m n e ar est- n ei g h b or  B ell
p airs o n 2 m sit es, t h e e nt a n gl e m e nt e ntr o p y of a c o nti g u o us
s u br e gi o n A s at ur at es t his b o u n d [ 2 9 ],  w hi c h f or a s yst e m
of l e n gt h L wit h p eri o di c b o u n d ar y c o n diti o ns, r e a ds [ 9 0 ]

li m
L → ∞

S A (t) = mi n (4 t, |A |). ( 3 7)

F or t h e S W A P cir c uit, t h e pr es e n c e of i niti al e nt a n gl e m e nt
alr e a d y i n t h e s yst e m is cr u ci al, b e c a us e t h e S W A P g at e h as
z er o e nt a n gli n g p o w er [ 3 2 ].

B. i S W A P c o r e

S u bstit uti n g M iS W A P [ E q. ( 1 9)] i nt o  E q. ( 2 6) yi el ds:

M ( v+ , v − ) =
u b M v + u a M v −

a M v + b M v −

. ( 3 8)

A k e y di ff er e n c e fr o m t h e S W A P - c or e a ut o m at a is t h at t h e
“ p eri o d- 2 ” si n gl e- q u bit g at es ar e n ot all e q ui v al e nt. Si n c e
t h e iS W A P g at e h as Z as a s p e ci al a xis, a Z r ot ati o n c a n b e
pr o p a g at e d t hr o u g h t h e c or e as i n t h e c as e of a S W A P g at e:

iS W A P (R Z [π / 2] ⊗ 1 ) = (1 ⊗ R Z [π / 2] )iS W A P , ( 3 9)

w hi c h t ells us t h at aft er t w o l a y ers, u p t o si g ns o n P a uli
o p er at ors, p erf or mi n g a Z r ot ati o n is e q ui v al e nt t o a cti n g

wit h t h e i d e ntit y [ 9 1 ].  O n t h e ot h er h a n d, X a n d Y r ot a-
ti o ns,  w h e n pr o p a g at e d t hr o u g h t h e iS W A P , c h a n g e t h e c or e
its elf, as d o t h e c y cli c p er m ut ati o ns [9 2 ].  T his c a n b e s e e n
fr o m  E qs. ( 1 9) a n d ( 2 0): t h e o nl y si n gl e- q u bit  C Q C A t h at
c o m m ut e  wit h b ot h a a n d b ar e 1 a n d M R Z [π / 2] .

T h us,  w h e n c o nsi d eri n g t h e a cti o n of t h e a ut o m at o n
at i nt e g er ti m es t, t h er e ar e t hr e e disti n ct c h oi c es f or
e a c h of v + a n d v − : ( 1) 1 a n d R Z [π / 2], ( 2) R X [π / 2] a n d
R Y [π / 2], ( 3) R (1, 1, 1 ) [± 2 π / 3].  T his i m pli es t h at t h er e ar e

3 C 2 = 6 cl ass es of i S W A P a ut o m at a.  U nli k e  wit h t h e S W A P

c or e, t h es e cl ass es c a n n ot b e f urt h er c o m bi n e d b y p us hi n g
si n gl e- q u bit g at es t hr o u g h t o t h e b o u n d ar y.

All si x cl ass es of a ut o m at a g e n er at e v ol u m e-l a w e nt a n-
gl e m e nt, b ut t h e y di vi d e i nt o t w o gr o u ps b as e d o n h o w
m u c h e nt a n gl e m e nt is g e n er at e d f or a r a n d o m i niti al pr o d-
u ct st at e.  T h er e is als o a s h ar p disti n cti o n b et w e e n t h e
t w o gr o u ps  wit h r es p e ct t o t h e r e c urr e n c e ti m es o n a fi nit e
s yst e m: “ p o or s cr a m bl ers ” h a v e li n e ar i n m r e c urr e n c e
ti m es f or all m , r e mi nis c e nt of t h e a = 1 gli d er cl ass [ 7 0 ],
w h er e as τ ( m ) gr o ws s u p erli n e arl y f or m = 2 k i n t h e “ g o o d
s cr a m bli n g ” cl ass es.

C. “ P o o r s c r a m bl e rs ”

I n t hr e e cl ass es, t h e “ p o or s cr a m bl ers, ” t h e st e a d y-st at e
P a g e c ur v e f or a s yst e m st arti n g i n a r a n d o m p ur e pr o d-
u ct st at e h as a sl o p e l ess t h a n 1, i. e., t h e t ot al e ntr o p y of a
s u bs yst e m of l e n gt h |A | < L / 2 is f |A |,  w h er e 0 < f < 1.
We e m p h asi z e t h at r a n d o m pr o d u ct st at es d o n ot b el o n g
t o t h e cl ass of s ol v a bl e tr a nsl ati o n-i n v ari a nt i niti al st at es
d e fi n e d i n  R ef. [ 2 9 ], h e n c e t h e n o n m a xi m al e nt a n gl e m e nt
g e n er ati o n d es pit e t h e d u al u nit arit y of t h e cir c uit.  All
t hr e e cl ass es h a v e a n i d e ntit y ( or R Z [π / 2]) o n o n e or b ot h
l e gs.  C h o osi n g t h e i d e ntit y g at e t o b e v + wit h o ut l oss of
g e n er alit y, t his yi el ds

M (1 , v − ) =

⎛

⎜
⎜
⎝

u 0
u u

u a M v −

0 0
1 0

b M v −

⎞

⎟
⎟
⎠ . ( 4 0)

R e g ar dl ess of v − , t his a ut o m at o n h as a gli d er o bs er v a bl e,
ξ (Z 1 ),  wit h ei g e n v al u e u . I n t h e “ c e nt er e d ” fr a m e (r e pl a c-
i n g M s hift wit h ˜M s hift [ E q. ( 1 6)]), t h e gli d er f or m all y h as

ei g e n v al u e u 1 / 2 , s o aft er t w o l a y ers ( o n e f ull ti m e st e p) Z (n )
1

s hifts t o Z (n + 1 )
1 ,  w h er e σ (n )

j d e n ot es t h e P a uli o p er at or σ o n
t h e j t h sit e of t h e n t h u nit c ell.

T h e pr es e n c e of gli d ers pr o vi d es s o m e e x pl a n ati o n f or
w h y t h e e nt a n gl e m e nt g e n er at e d b y t h es e cir c uits is s u b-
m a xi m al.  R e c all fr o m S e c. I V  D t h at i n a n y d u al u nit ar y
cir c uit, t h e t w o- p oi nt c orr el ati o ns at i n fi nit e t e m p er at ur e,
w hi c h ar e n o n v a nis hi n g o nl y o n t h e b o u n d ar y of t h e li g ht
c o n e x = ± v t, c a n b e d e c o m p os e d i n t er ms of l eft a n d
ri g ht q u a nt u m c h a n n els M ± [2 8 ].  All c o ns er v e d c h ar g es
ar e gli d ers,  wit h ei g e n v al u e 1 f or o n e of t h e c h a n n els, a n d

0 3 0 3 1 3- 1 5



S O M M E R S,  H U S E, a n d  G U L L A N S P R X  Q U A N T U M 4, 0 3 0 3 1 3 ( 2 0 2 3)

si n c e t h e pr o d u ct of gli d ers  m o vi n g i n t h e s a m e dir e c-
ti o n is als o a gli d er, t h e pr es e n c e of o n e gli d er i m pli es
i n fi nit el y  m a n y [3 4 ].  T h us, a cir c uit f or  w hi c h s o m e b ut
n ot all of t h e ei g e n v al u es ar e e q u al t o 1 is g e n er all y i nt er-
a cti n g b ut n o n er g o di c,  wit h s o m e d y n a mi c al c orr el ati o ns
r e m ai ni n g c o nst a nt [2 8 ]; s e e  A p p e n di x A f or  m or e d et ails.
I n f a ct,  R ef. [9 3 ] pr o v es t h at t h e o nl y s q u ar e-l atti c e cir-
c uits s u p p orti n g  m o vi n g o n e-sit e gli d ers (r ef err e d t o as
“ m o vi n g ultr al o c al s olit o ns ”) ar e d u al u nit ar y.  O ur p o or
s cr a m bl ers ar e  Cli ff or d e x a m pl es of t h e e x pli cit f or m ul as
f or gli d er-s u p p orti n g g at es i n t h at  w or k.

I n t h e pr es e nt c o nt e xt, a n y Z o p er at or i niti ali z e d o n
o nl y o d d sit es g ets s hift e d, b ut d o es n ot s pr e a d, u n d er
t h e a cti o n of t h e cir c uit. I n p arti c ul ar, a n y i niti al pr o d u ct
st at e  wit h Z st a bili z ers o n all o d d sit es r e m ai ns a pr o d u ct
st at e at all ti m es.  O n t h e ot h er h a n d, if t h e i niti al pr o d-
u ct st at e is g e n er at e d b y o nl y X a n d Y st a bili z ers, t h e n it
c a n b e c o m e  m a xi m all y e nt a n gl e d, b ut i m m e di at el y st arts
t o l os e e nt a n gl e m e nt t o r et ur n t o a pr o d u ct st at e b ef or e t h e
n e xt r e c urr e n c e.

T h e f ull d et ails o n t h e p o or s cr a m bl ers ar e pr o vi d e d i n
A p p e n di x C .  H er e  w e j ust i ntr o d u c e t h e si m pl est of t h e
cl ass es, t h e b ar e i S W A P :

( v+ , v − ) = (1 , 1 ). ( 4 1)

T h e c e nt er e d a ut o m at o n aft er t w o l a y ers is

˜M = u − 1 M 2 =

⎛

⎜
⎜
⎝

u 0 0  0
0 u 1 + u 0
0 0 u − 1 0

1 + u − 1 0 0 u − 1

⎞

⎟
⎟
⎠ . ( 4 2)

Si n c e t h e i S W A P g at e pr es er v es t h e s y m m etr y b et w e e n X
a n d Y , t h e c h a n g es of b asis i n  E q. ( 3 4) e x a ctl y pr es er v e t h e
m atri x, or i n ot h er  w or ds, t h er e is o nl y o n e u ni q u e cir c uit
i n t his cl ass.  T his is j ust a  m a nif est ati o n of t h e s elf- o ct a-
u nit arit y of t h e b ar e i S W A P a ut o m at o n.

O wi n g t o t his s elf- o ct a- u nit arit y, si n c e t h e a ut o m at o n is
r e fl e cti o n s y m m etri c, n ot o nl y is Z 1 a gli d er  wit h ei g e n-
v al u e u , b ut Z 2 i s a gli d er  wit h ei g e n v al u e u − 1 .  M or e o v er,
t his  m atri x c a n b e  m a d e bl o c k di a g o n al,  wit h (X 1 , Z 2 )
f or mi n g o n e bl o c k a n d (Z 1 , X 2 ) f or mi n g a n ot h er bl o c k:

⎛

⎜
⎜
⎜
⎝

u 0
1 + u − 1 u − 1 0

0 u 1 + u
0 u − 1

⎞

⎟
⎟
⎟
⎠

. ( 4 3)

N eit h er bl o c k is a s y m pl e cti c  m atri x, s o  w e c a n n ot us e t h e
m a c hi n er y f or a = 1  C Q C A.  H o w e v er, it is  w ort h n oti n g
t h at e a c h bl o c k h as t h e s a m e tr a c e, u + u − 1 , a n d d et er-
mi n a nt, 1, as t h e cl ass of o n e-st e p gli d ers  wit h a = 1,
w hi c h c a n all b e  m a p p e d t o t h e “st a n d ar d gli d er, ” g =

0 1
1 u + u − 1 [5 2 ].  T h us, t h e c h ar a ct eristi c p ol y n o mi al of

˜M is

χ ˜M (y ) = (y 2 + (u + u − 1 )y + 1 )2 = χ g (y )2 , ( 4 4)

a n d t h e t w o a ut o m at a s h ar e t h e s a m e  mi ni m al p ol y n o-
mi al, μ ˜M = μ g = χ g .  T h us, ˜M s atis fi es t h e s a m e r e c ursi o n
r el ati o n as t h e st a n d ar d gli d er a ut o m at o n.  T his l e a ds t o
si mil ariti es i n t h e o p er at or s pr e a di n g of i niti all y l o c al P a uli
stri n gs: s o m e o p er at ors ar e gli d ers,  w hil e ot h ers fill t h e
li g ht c o n e i n a p eri o di c p att er n [5 1 ,6 6 ].

A n ot h er p ers p e cti v e o n t h e i S W A P cir c uit is as i m pl e-
m e nti n g a fr e e f er mi o n Fl o q u et o p er at or, t h e  m assl ess
Dir a c  Q C A [ 9 4 ], vi a J or d a n- Wi g n er tr a nsf or m ati o n [9 5 ].
T h us, t h e i S W A P a ut o m at o n is i n f a ct n o ni nt er a cti n g a n d
i nt e gr a bl e. Fr e e f er mi o n  Q C A ar e dis c uss e d i n  m or e d e pt h
i n  A p p e n di x B .

D. “ G o o d s c r a m bl e rs ”

T h e t hr e e r e m ai ni n g cl ass es e x hi bit a n o nli n e ar str u ct ur e
i n τ ( m ), a n d g e n er at e P a g e c ur v es  wit h sl o p e 1 o n r a n-
d o m i niti al pr o d u ct st at es i n b et w e e n t h e r e c urr e n c es. Si n c e
n eit h er v + n or v − i s t h e i d e ntit y g at e, a ut o m at a i n t h es e
cl ass es h a v e n o si n gl e-sit e gli d ers [ 9 3 ]. I nst e a d, t h e y h a v e
m or e i n c o m m o n  wit h t h e fr a ct al cl ass of a = 1 a ut o m at a.
A n ot a bl e e x c e pti o n, h o w e v er, is t h e d e ns e g o o d s cr a m-
bli n g cl ass i ntr o d u c e d i n S e c. III,  w hi c h  w e r e visit b ef or e
dis c ussi n g t h e t w o cl ass es  wit h fr a ct al str u ct ur e.

1.  N o nfr a ct al g o o d s cr a m bli n g cl ass

I n S e c. III,  w e hi g hli g ht t h e e nt a n gl e m e nt a n d err or-
c orr e cti o n pr o p erti es of t h e cir c uit  wit h si n gl e- q u bit g at es:

( v+ , v − ) = (R X [π / 2], R X [π / 2] ). ( 4 5)

R ef erri n g t o Fi g. 8 c o n fir ms t h at t his cir c uit is s elf- o ct a-
u nit ar y.  T h e c orr es p o n di n g  m atri x is, aft er t w o l a y ers,

˜M =

⎛

⎜
⎜
⎝

0 u u  u
u + 1 u + 1 0  1
u − 1 u − 1 0 u − 1

0 1 u − 1 + 1 u − 1 + 1

⎞

⎟
⎟
⎠ . ( 4 6)

R e fl e cti o n a n d ti m e-r e v ers al s y m m etr y  m a nif est i n t h e
c h ar a ct eristi c p ol y n o mi al [ cf.  E q u ati o ns ( 2 9) a n d ( 3 1)]:

χ ˜M (y ) = y 4 + (u + u − 1 )y 3 + (u 2 + 1 + u − 2 )y 2

+ (u + u − 1 )y + 1. ( 4 7)

Ot h er  m e m b ers of t his cl ass, g e n er at e d b y t h e tr a nsf or m a-
ti o ns  E q. ( 3 4), h a v e R Y [π / 2] i nst e a d of R X [π / 2] o n t h e l eft
a n d/ or ri g ht l e g.
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2.  Fr a ct al d f
∼= 1. 9 cl ass

A s e c o n d g o o d s cr a m bli n g cl ass c o nt ai ns t h e cir c uit  wit h
si n gl e- q u bit g at es:

( v+ , v − ) = (R X [π / 2], R (1, 1, 1 ) [− 2 π / 3] ). ( 4 8)

Aft er t w o l a y ers,

˜M =

⎛

⎜
⎜
⎝

0 u 0 u
u + 1 u + 1 1  0
u − 1 u − 1 u − 1 0
0 1 0 1 + u − 1

⎞

⎟
⎟
⎠ . ( 4 9)

O wi n g t o l eft-ri g ht as y m m etr y,  m e m b ers of t his cl ass
g e n er at e as y m m etri c fr a ct al p att er ns.  T h e si mil arit y tr a ns-
f or m ati o ns a m o u nt t o c h a n gi n g o ut R X [π / 2]  wit h R Y [π / 2]
a n d/ or r e v ersi n g t h e dir e cti o n of t h e s e c o n d- q u bit c y cli c
p er m ut ati o n.

T h e c h ar a ct eristi c p ol y n o mi al,  w hi c h is als o t h e  mi ni m al
p ol y n o mi al, is

χ ˜M (y ) = y 4 + u y 3 + (u 2 + 1 + u − 2 )y 2 + u − 1 y + 1.
( 5 0)

Si n c e χ ˜M (y ) is n ot i n v ari a nt u n d er eit h er ti m e r e v ers al or
l eft-ri g ht r e fl e cti o n, t h e a ut o m at o n its elf is n ot s y m m etri c
u n d er t h es e tr a nsf or m ati o ns.  W hil e t h e c h ar a ct eristi c p ol y-
n o mi al is i n v ari a nt u n d er t h eir c o m p ositi o n (i n v ersi o n),
i n v ersi o n is o nl y a  w e a k s elf- d u alit y of t h e a ut o m at o n its elf
( or t h e c orr es p o n di n g u nit ar y), as is r e fl e cti o n t hr o u g h
t h e + di a g o n al, si n c e M v − = S M v T

−
S − 1 [ E q. ( 3 5)].  T h e

o nl y str o n g s elf- d u alit y is u n d er r e fl e cti o n t hr o u g h t h e
d o w n w ar d-sl o pi n g ( − ) di a g o n al,  w hi c h  m a ps ( v+ , v − ) →
( v T

+ , v − ).
T h e fr a ct al p att er n of t his cl ass is n ot pr es e nt i n t h e a =

1 a ut o m at a; t h e i n h er e nt as y m m etr y of o d d a n d e v e n sit es
m a k es it f u n d a m e nt all y a = 2. F or e x a m pl e, t h e i m a g e of
Z 1 Z 2 [ Fi g. 1 1( a) ] is as y m m etri c e v e n t h o u g h t h e i niti al
o p er at or is r e fl e cti o n i n v ari a nt  wit h r es p e ct t o t h e c e nt er
of t h e u nit c ell.  T h e c u m ul ati v e n u m b er of X , Y , a n d Z
P a ulis  wit hi n t h e f o ot pri nt of Z 1 Z 2 (t) all s c al e  wit h t h e
s a m e fr a ct al di m e nsi o n.

T o d et er mi n e t h e fr a ct al di m e nsi o n  m or e pr e cis el y,  w e
l e v er a g e o n e us ef ul c o m m o n alit y  wit h a = 1,  w hi c h is t h at
m u c h of t his fr a ct al str u ct ur e c a n b e s e e n j ust b y st u d yi n g
t h e e v ol uti o n of t h e tr a c e. I n  R ef. [6 3 ], t h e fr a ct al str u c-
t ur e of t h e C N O T a ut o m at o n ( w hi c h als o h as a = 2, b ut is
n ot d u al u nit ar y) is d e d u c e d fr o m t h e p att er n of n o n z er o
c o e ffi ci e nts of p o w ers of u i n t h e e x p a nsi o n of  Tr( ˜M t).
A p pl yi n g t h e s a m e t e c h ni q u e h er e,  w e fi n d t h at t h e f o ot-
pri nt of  Tr ( ˜M t) a p p e ars as a “ bl a c k- a n d- w hit e ” v ersi o n of
t h e c ol or e d s p a c eti m e di a gr a m ( Fi g. 1 1 ).  T h e n, t h e fr a ct al
di m e nsi o n d f c a n b e i nf err e d n u m eri c all y fr o m t h e s c ali n g

4 0 0 2 0 0 0 2 0 0 4 0 0

x

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

t

( a)

2 0 2 8

t

2 0

2 1 6

N
(t

) '

( b)

FI G. 1 1. ( a) I m a g e of Z 1 Z 2 at i nt e g er ti m e st e ps u p t o t = 2 5 6
u n d er t h e a ut o m at o n  E q. ( 4 9).  Bl u e, gr e e n, a n d or a n g e pi x els
c a n n ot b e i n di vi d u all y disti n g uis h e d b ut c orr es p o n d t o X , Y , a n d
Z ,  w hi c h f oll o w si mil ar fr a ct al p att er ns. ( b)  Vis u al d e pi cti o n of
Tr ( ˜M t) u p t o t = 2 0 4 8.  A bl a c k pi x el at (n , t) i n di c at es t h at t h e
c o e ffi ci e nt of u n i n  Tr( ˜M t) is 1. I ns et: p o w er-l a w fit t o t≤ t N (t )
yi el ds d f = 1. 9 0 (1 ).

of t h e n u m b er of n o n z er o c o e ffi ci e nts N (t):

t ≤ t

N (t ) ∝ td f . ( 5 1)

A fit u p t o t = 2 1 4 yi el ds

d f = 1. 9 0 ± 0. 0 1. ( 5 2)

3. S D KI cl ass

T h e t hir d g o o d s cr a m bli n g cl ass h as t h e d e e p est c o n-
n e cti o ns t o a = 1  C Q C A, as  w ell as t o a  mi ni m al  m o d el of
m a xi m al q u a nt u m c h a os, t h e s elf- d u al ki c k e d Isi n g ( S D KI)
m o d el [ 2 7 ,9 6 – 9 8 ].  T h e ki c k e d Isi n g  m o d el is d es cri b e d b y
t h e Fl o q u et u nit ar y

U KI = e − i b j X j e − i j J (Z j Z j + 1 + h j Z j ) . ( 5 3)

It is d u al u nit ar y al o n g t h e s elf- d u al li n e |J | = |b | = π / 4,
a n d er g o di c f or a n y n o n z er o l o n git u di n al fi el d h j [9 7 ].
Al o n g t h e e ntir e s elf- d u al li n e, t h e e nt a n gl e m e nt v el o cit y
is  m a xi m al, i m pl yi n g a fl at li n e t e nsi o n i n t h e  m e m br a n e
pi ct ur e [ 9 9 ].
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F o c usi n g o n t h e  Cli ff or d p oi nt h j = h = π / 4, t h e S D KI
m o d el  m a ps vi a a b o u n d ar y cir c uit [ 2 8 ] t o a r e pr es e nt ati v e
a ut o m at o n of t his cl ass,  w hi c h h as

( v+ , v − ) = R (1, 1, 1 ) [− 2 π / 3], R (1, 1, 1 ) [− 2 π / 3] . ( 5 4)

Si n c e R (1, 1, 1 ) [− 2 π / 3] = R (1, 1, 1 ) [− 2 π / 3] T , t his cir c uit is
w e a kl y s elf- d u al u n d er all p oi nt- gr o u p tr a nsf or m ati o ns b ut
is str o n gl y i n v ari a nt u n d er o nl y o n e, l eft-ri g ht r e fl e cti o n.
I n d e e d, all a ut o m at a i n t his cl ass — o bt ai n e d fr o m t h e r e p-
r es e nt ati v e  E q. ( 5 4) t hr o u g h t h e si mil arit y tr a nsf or m ati o ns
E q. ( 3 4)— ar e str o n gl y s y m m etri c u n d er at  m ost o n e ki n d
of r e fl e cti o n, h ori z o nt al or v erti c al [ 1 0 0 ].

It s h o ul d b e n ot e d t h at t h er e is a di ff er e nt  w a y of d e c o m-
p osi n g t h e Fl o q u et u nit ar y fr o m  E q. ( 5 3) i nt o a bri c k w or k
cir c uit [ 2 7 ,9 9 ]:

U KI = e − i J Z1 Z 2 − i(h 1 Z 1 + h 2 Z 2 ) /2 e − i b(X 1 + X 2 )

e − i b Z1 Z 2 − i(h 1 Z 1 + h 2 Z 2 ) /2 . ( 5 5)

T his r e pr es e nt ati o n is str o n gl y s elf- o ct a- u nit ar y at t h e s elf-
d u al p oi nt  wit h h o m o g e n e o us h , as p oi nt e d o ut i n  R ef. [8 3 ].
H o w e v er, t his c h oi c e of g at e is n ot  Cli ff or d [ 1 0 1 ].

As a 4 × 4  m atri x, o ur c h os e n r e pr es e nt ati v e [ E q. ( 5 4)]
is

M =

⎛

⎜
⎝

0 u 0 0
u 0 0 u
0 0 0 1
0 1 1 0

⎞

⎟
⎠ . ( 5 6)

O n c e a g ai n, it is us ef ul t o c o nsi d er t h e e v ol uti o n of t h e
c e nt er e d a ut o m at o n aft er t w o l a y ers:

˜M =

⎛

⎜
⎜
⎝

u 0 0 u
0 u + 1 1  0
0 u − 1 u − 1 0
1 0  0 1 + u − 1

⎞

⎟
⎟
⎠ . ( 5 7)

As  wit h t h e b ar e i S W A P cl ass, p er m uti n g r o ws a n d c ol u m ns
bri n gs ˜M i nt o bl o c k- di a g o n al f or m.  E x pli citl y, Z 1 a n d X 2

f or m o n e bl o c k, a n d X 1 a n d Z 2 f or m a n ot h er bl o c k, s o a n
o p er at or t h at st arts  wit h Z ’s s u p p ort e d o nl y o n o d d sit es,
f or e x a m pl e, c a n o nl y s pr e a d t o a pr o d u ct of Z ’s o n o d d
sit es a n d X ’s o n e v e n sit es.  T his is s h o w n i n Fi g. 1 2 f or t h e
i niti al P a uli stri n g Z 1 .  T h e bl o c k- di a g o n al  m atri x is

⎛

⎜
⎜
⎜
⎝

u u
1 1 + u − 1 0

0 1 + u 1
u − 1 u − 1

⎞

⎟
⎟
⎟
⎠

. ( 5 8)

A g ai n, n eit h er bl o c k is a v ali d  C S C A, si n c e t h e y c o n n e ct
X ’s a n d Z ’s o n o p p osit e p arit y sit es.  H o w e v er,  writi n g ˜M

FI G. 1 2.  Ti m e e v ol uti o n fr o m t h e i niti al o p er at or Z 1 u n d er  E q.
( 5 7), s plit i nt o o d d (l eft) a n d e v e n (ri g ht) sit es.  O wi n g t o t h e
bl o c k di a g o n al f or m of  E q. ( 5 8), t h e i m a g e o n o d d sit es is o nl y
Z ’s ( or a n g e),  w hil e t h e i m a g e o n e v e n sit es is o nl y X ’s ( bl u e).

i n t his f or m el u ci d at es t h e c o n n e cti o n t o t h e S D KI  m o d el
at t h e  Cli ff or d p oi nt,  w hi c h as a n a = 1 a ut o m at o n is [ 4 ]

M S D KI =
u − 1 + u 1

u − 1 + 1 + u 1
. ( 5 9)

T his h as t h e s a m e c h ar a ct eristi c p ol y n o mi al as e a c h bl o c k
of  E q. ( 5 8), a n d i n d e e d

χ ˜M (y ) = (y 2 + (u + 1 + u − 1 )y + 1 )2 = χ S D KI (y )2 , ( 6 0)

wit h ˜M a n d M S D KI s h ari n g t h e s a m e  mi ni m al p ol y n o mi al,
μ ˜M = μ S D KI = χ S D KI . Si n c e S C A  wit h t h e s a m e  mi ni-
m al p ol y n o mi al s h ar e a c o m m o n fr a ct al str u ct ur e i n t h eir
c ol or e d s p a c eti m e di a gr a ms, i. e., t h e f o ot pri nts of ti m e
e v ol v e d i niti all y l o c al o p er at ors, t h e s yst e ms d es cri b e d b y
E q. ( 5 7) a n d  E q. ( 5 9) b ot h h a v e fr a ct al di m e nsi o n d f =

l o g2 [(3 +
√

1 7 ) /2] = 1. 8 3 2 5 · · · , a n al yti c all y d et er mi n e d
i n  R ef. [6 6 ] f or a n ot h er a ut o m at o n  wit h t h e s a m e  mi ni m al
p ol y n o mi al.

T h er ef or e, j ust as t h e b ar e i S W A P cl ass c a n b e t h o u g ht of
as t h e n at ur al a = 2 d es c e n d a nt of t h e st a n d ar d gli d er cl ass,
t h e S D KI cl ass a cts as t h e a = 2 d es c e n d a nt of t h e si m pl est
a = 1 fr a ct al cl ass.  O n e r e m ar k a bl e f e at ur e of t h e st a n-
d ar d fr a ct al a = 1 a ut o m at o n e x a mi n e d i n [ 6 6 ] is t h at, if
t h e Fl o q u et o p er at or f or o n e st e p of t h e a ut o m at o n is  writ-
t e n as t h e e x p o n e nti al of a ( n o n u ni q u e) ti m e-i n d e p e n d e nt
H a milt o ni a n H , t h e n a n y c h oi c e of H is n o nl o c al i n a
stri ct s e ns e, i. e., t h e i nt er a cti o ns d o n ot d e c a y  wit h dis-
t a n c e [1 0 2 ].  C o ns e q u e ntl y, c o ns er v e d o p er at ors ar e als o
n o nl o c al. I n c o ntr ast, u nit ar y e v ol uti o n of t h e b ar e i S W A P

cl ass,  w hi c h  m a ps o nt o fr e e f er mi o ns, is g e n er at e d b y
a ti m e-i n d e p e n d e nt  H a milt o ni a n  wit h al g e br ai c d e c a y of
i nt er a cti o ns [1 0 2 ]; s e e  A p p e n di x B .

O n t h e ot h er h a n d, t h e a = 2 S D KI cl ass pr o vi d es a
c as e st u d y f or t h e  w a ys i n  w hi c h a = 2 a ut o m at a c a n
d e p art fr o m t h e a = 1 a ut o m at a st u di e d pr e vi o usl y.  R e c all
t h at f or a = 1 t h e o nl y cl ass t h at h as eit h er st ati o n ar y
tr a nsl ati o n-i n v ari a nt st a bili z er st at es or st ati o n ar y pr o d u ct
st at es ( ot h er t h a n t h e f ull y  mi x e d st at e) is t h e p eri o di c
cl ass [ 5 2 ]. I n c o ntr ast,  w hil e a r a n d o m p ur e pr o d u ct st at e
b e c o m es e nt a n gl e d  w h e n f e d i nt o t h e a = 2 “ S D KI- cl ass ”
cir c uits, t his cl ass als o h as tr a nsl ati o n-i n v ari a nt pr o d u ct
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st a bili z er ei g e nst at es. I n p arti c ul ar, t h e st at e st a bili z e d b y
Z 1 , X 2 a n d all t h eir tr a nsl at es, as  w ell as its  mirr or i m a g e

st a bili z e d b y X (n )
1 , Z (n )

2 , is st ati o n ar y u n d er t w o l a y ers of
t h e cir c uit.

T o s e e t his i n t h e  C Q C A f or m alis m, r e pr es e nt t h e
tr a nsl ati o n-i n v ari a nt st a bili z er gr o u p S as a 4 × 2  m atri x
S o v er F 2 [u , u − 1 ],  w h er e t h e it h c ol u m n is t h e v e ct or of
p ol y n o mi als c orr es p o n di n g t o t h e it h g e n er at or.  U n d er o n e
st e p of t h e  C Q C A ˜M , t h e g e n er at ors e v ol v e t o ˜M S . I n di vi d-
u al g e n er at ors c a n s cr a m bl e  w hil e l e a vi n g t h e t ot al gr o u p
i n v ari a nt, s o t o c h e c k f or t h e i n v ari a n c e of t h e gr o u p,  w e
p erf or m r o w r e d u cti o n o n ( ˜M S )T . F or ˜M gi v e n b y  E q. ( 5 7)

a n d t h e i niti al gr o u p S = X (n )
1 , Z (n )

2 , t his yi el ds

˜M

⎛

⎜
⎝

1 0
0 0
0 0
0 1

⎞

⎟
⎠ =

⎛

⎜
⎝

u u
0 0
0 0
1 1 + u − 1

⎞

⎟
⎠ ⇒

⎛

⎜
⎝

1 0
0 0
0 0
0 1

⎞

⎟
⎠ . ( 6 1)

E.  G o o d q u asi c y cli c c o d es

T w o of t h e t hr e e g o o d s cr a m bli n g cl ass es —t h e n o nfr a c-
t al cl ass a n d t h e d f

∼= 1. 9 cl ass — ar e es p e ci all y pr o misi n g
f or q u a nt u m err or c orr e cti o n.  As d e m o nstr at e d i n Fi g. 6
a n d t h e s urr o u n di n g dis c ussi o n, t h e d e ns e g o o d s cr a m-
bli n g cl ass g e n er at es fi nit e-r at e c o d es  wit h li n e ar-i n- m
c o d e l e n gt h d 1 f or r a n d o m i niti al pr o d u ct st at es. I n f a ct, t his
pr o p ert y is e nj o y e d b y all t hr e e g o o d s cr a m bli n g cl ass es.

We n o w  m a k e t w o f urt h er d e m a n ds. First, r at h er t h a n
st arti n g fr o m a r a n d o m pr o d u ct st at e of s o m e e ntr o p y
d e nsit y, c o nsi d er t h e a cti o n of t h e cir c uit o n tr a nsl ati o n-
i n v ari a nt pr o d u ct st at es of c o d e r at e 1/ 2.  T h e s p ati al
p eri o di cit y of t h e a ut o m at o n g u ar a nt e es t h at s u c h st at es
r e m ai n tr a nsl ati o n i n v ari a nt at all ti m es; f or s p ati al p eri o d
a > 1, t h e r es ulti n g c o d es ar e k n o w n as q u asi c y cli c c o d es
[5 5 ,5 6 ].  E xisti n g d e c o di n g t e c h ni q u es f or c y cli c q u a nt u m
c o d es [ 5 7 ] a n d ( q u asi) c y cli c cl assi c al c o d es [5 8 – 6 1 ] c o ul d
pr o v e us ef ul f or fi n di n g a d e c o d er f or o ur c o d es.

R estri cti n g t o tr a nsl ati o n-i n v ari a nt pr o d u ct st at es gi v es

si x c h oi c es f or t h e i niti al st at e, g e n er at e d b y σ (n )
j f or j =

1, 2, σ = X , Y , Z .  W h e n a n y of t h es e i niti al st at es is f e d
i nt o a cir c uit i n t h e S D KI cl ass, t h e c o d e l e n gt h r e m ai ns
O (1 ) t o l at e ti m e.  O n t h e ot h er h a n d,  m e m b ers of t h e d f

∼=
1. 9 cl ass a n d n o nfr a ct al cl ass ar e a bl e t o g e n er at e li n e ar-
i n-m c o d e l e n gt h, al b eit  wit h  m or e fr e q u e nt r e c urr e n c es of
s h ort c o d e l e n gt h t h a n f or r a n d o m i niti al st at es.

S e c o n d, f or ass essi n g t h e p erf or m a n c e of t h e r es ulti n g
c o d es u n d er r e alisti c n ois e  m o d els, t h e r el e v a nt  m etri c is
t h e c o d e dist a n c e d , f or  w hi c h d 1 i s o nl y a n u p p er b o u n d.
F or a gi v e n cir c uit a n d i niti al st at e, c o nsi d er t h e c o d e
d e fi n e d b y a s n a ps h ot of t h e s yst e m at t h e ti m e  w h e n d 1

i s  m a xi mi z e d.  W hil e t h e dist a n c e d of t h e r es ulti n g c o d e is
e x p o n e nti all y h ar d t o c o m p ut e,  w e c a n g et a s e ns e f or its
p erf or m a n c e c o m p ar e d t o r a n d o m c o d es b y s u bj e cti n g it t o
er as ur es. F or t his si m pl e err or  m o d el, a n o pti m al d e c o d er
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FI G. 1 3. F ail ur e pr o b a biliti es f or q u asi c y cli c c o d es g e n er at e d
b y a d e ns e g o o d s cr a m bli n g cir c uit st arti n g fr o m t h e pr o d u ct

st at e Z (n )
1 wit h c o d e r at e 1 / 2, as a f u n cti o n of er as ur e r at e,

f or L = 2 0, 4 0, 8 0, 1 6 0, 3 2 0 q u bits.  Ri g ht: s c ali n g c oll a ps e v ers us
(e − e c )L .  Bl a c k d as h e d li n e is t h e r a n d o m  m atri x t h e or y pr e di c-
ti o n f or L = 3 2 0.  At l e ast 1 0 0 0 s a m pl es ar e t a k e n at e a c h er as ur e
r at e.

of c u bi c c o m pl e xit y is k n o w n [ 7 9 ,1 0 3 ], a n d t h e f ail ur e
pr o b a bilit y P F of t h e d e c o d er c a n b e e ffi ci e ntl y c o m p ut e d
[1 8 ].  L et P F (e , s, L ) d e n ot e t h e f ail ur e pr o b a bilit y f or a
c o d e of r at e s o n L q u bits,  w h er e t h e er as ur es ar e a p pli e d
at r a n d o m l o c ati o ns o n a fi x e d fr a cti o n e of t h e sit es. F or
r a n d o m c o d es, t his q u a ntit y is  w ell  m o d el e d b y r a n d o m
m atri x t h e or y, a n d d e c a ys e x p o n e nti all y i n L f or err or r at es
f ar b el o w t hr es h ol d:

P F (e , s, L ) ∝ 2 − 2 L (e c − e )− 1 , e e c , ( 6 2)

w h er e t h e err or t hr es h ol d e c = (1 − s) /2 [ 1 8 ].
T o e v al u at e t h e q u asi c y cli c c o d es g e n er at e d b y g o o d

s cr a m bli n g cir c uits,  w e first as k  w h et h er t h e y a c hi e v e t h e
o pti m al t hr es h ol d. Fi g ur e 1 3 ,  w hi c h s h o ws t h e f ail ur e pr o b-
a biliti es f or q u asi c y cli c c o d es pr o d u c e d b y a d e ns e g o o d
s cr a m bli n g cir c uit f or t h e i niti al Z pr o d u ct st at e at c o d e r at e
1 / 2, s u bj e ct t o r a n d o ml y pl a c e d er as ur es, a ns w ers i n t h e
p ositi v e f or t h e s e q u e n c e of s yst e m si z es L = 1 0 × 2 k .  N ot
o nl y d o es t h e t hr es h ol d s at ur at e t h e b o u n d e c = 1 / 4, b ut a
s c ali n g c oll a ps e of t h e f or m P F (e , s, L ) = f ((e − e c )L ) is
c o nsist e nt  wit h r a n d o m  m atri x t h e or y (ri g ht p a n el). Si mi-
l ar r es ults ar e o bt ai n e d f or ot h er i niti al p eri o di c st at es a n d
f or cir c uits i n t h e d f

∼= 1. 9 cl ass.
B a c ki n g a w a y fr o m t h e t hr es h ol d,  w e c oll e ct 1 0 7

s a m pl es at e a c h s yst e m si z e t o g et a  m or e pr e cis e esti-
m at e of t h e s u bt hr es h ol d f ail ur e pr o b a bilit y at a fi x e d
er as ur e r at e of e = 0. 7 5 e c .  As s h o w n i n Fi g. 1 4 , t h e c o d es
pr o d u c e d b y t h e d f

∼= 1. 9 cl ass a n d n o nfr a ct al cl ass ar e
c o m p etiti v e  wit h r a n d o m c o d es f or a  wi d e r a n g e of L ,
b ut e x hi bit s h ar p p e a ks i n P F f or c ert ai n s yst e m si z es.
S pi k es i n t h e f ail ur e pr o b a bilit y ar e ass o ci at e d  wit h s yst e m
si z es f or  w hi c h t h e c h os e n s n a ps h ot of t h e s yst e m, d es pit e
h a vi n g l ar g e c o d e l e n gt h, h as p o or c o d e dist a n c e — a n
e x c e pti o n t o t h e g e n er al tr e n d t h at hi g h er c o d e l e n gt h is
c orr el at e d  wit h l o w er f ail ur e r at es.  T his p o or p erf or m a n c e

0 3 0 3 1 3- 1 9
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FI G. 1 4. F ail ur e pr o b a biliti es at e ≈ 0. 7 5 e c = 0. 1 8 7 5, f or q u a-
si c y cli c c o d es pr o d u c e d b y a r e pr es e nt ati v e of t h e d f

∼= 1. 9 cl ass
( bl u e) a n d d e ns e g o o d s cr a m bli n g cl ass ( or a n g e) c o m p ar e d t o
r a n d o m c o d es ( m o d el e d b y r a n d o m  m atri x t h e or y, bl a c k).  Wi g-
gl es i n t h e bl a c k c ur v e c o m e fr o m r o u n di n g t h e n u m b er of
er as ur es t o t h e n e ar est i nt e g er.

c a n b e a v oi d e d b y r estri cti n g t o c ert ai n s yst e m si z es ( o d d m
t e n d t o f ar e b ett er, a n d h a v e f e w er r e c urr e n c es) or b y  m o n-
it ori n g t h e p erf or m a n c e u n d er er as ur es f or t h e s e q u e n c e
of c o d es g e n er at e d i n ti m e r at h er t h a n j ust c h o osi n g t h e
s n a ps h ot  wit h  m a xi m u m c o d e l e n gt h.

T h e ast ut e r e a d er  m a y q u esti o n o ur e arli er e m p h asis
o n t h e n o nfr a ct al o p er at or s pr e a di n g i n t h e d e ns e g o o d
s cr a m bli n g cl ass, gi v e n t h at t h e d f

∼= 1. 9 cl ass a p p e ars t o
p erf or m j ust as  w ell, a n d i n f a ct h as l ess dr a m ati c s pi k es
i n t h e f ail ur e pr o b a bilit y.  T h us, s o m e cl arif yi n g p oi nts
ar e i n or d er. First,  w hil e  w e d e fi n e t h e fr a ct al di m e nsi o n
t hr o u g h t h e c u m ul ati v e  w ei g ht of P a uli o p er at ors s pr e a d-
i n g i n s p a c eti m e, t h e c o d e dist a n c e is c o n c er n e d  wit h t h e
l o w est  w ei g ht of a l o gi c al o p er at or at a s p e ci fi c ti m e sli c e.
If t h e fr a ct al di m e nsi o n is d f , t h er e  m ust e xist a s e q u e n c e
of ti m e sli c es f or  w hi c h t h e P a uli  w ei g ht gr o ws at l e ast as
f ast as td f − 1 . F or t h e d f

∼= 1. 9 cl ass, t h er e is n o s e q u e n c e
of ti m es  w h er e t h e s c ali n g is li n e ar, b ut it is cl os e e n o u g h
t h at  wit h t h e pr es e ntl y a c c essi bl e s yst e m si z es  w e c a n n ot
disti n g uis h t h e s u bt hr es h ol d s c ali n g fr o m t h at of a li n e ar
dist a n c e c o d e.  M or e o v er, t h e c o d e dist a n c e f or c o d es g e n-
er at e d fr o m a s p e ci fi c s et of i niti al st at es is n ot n e c ess aril y
m o n ot o ni c i n eit h er t h e s p a c eti m e fr a ct al di m e nsi o n or t h e
o p er at or s c ali n g al o n g p arti c ul ar ti m e sli c es.  E v e n if d f i s
w ell a b o v e 1, t h e c o d e dist a n c e  m a y f ail t o gr o w at all, as
is t h e c as e f or cir c uits i n t h e S D KI cl ass  w h e n f e d i niti al
st at es  wit h p eri o d a = 2.

F.  D u al u nit a rit y a n d b e y o n d

I n t h e pr e c e di n g s u bs e cti o ns,  w e h a v e n ot e d s e v er al
f e at ur es of o ur a ut o m at a t h at ar e g e n er al t o d u al u nit ar y

cir c uits.  H er e  w e s u m m ari z e t h es e f e at ur es a n d c o m p ar e
t h e iS W A P - c or e a ut o m at a t o t h os e  wit h o ut d u al u nit arit y.

O n e k e y f e at ur e of d u al u nit ar y cir c uits is t h eir a bilit y
t o s at ur at e t h e  mi ni m al c ut b o u n d [ E q. ( 3 7)] o n e nt a n-
gl e m e nt, a n d t h e e xist e n c e of c ert ai n i niti al st at es f or
w hi c h t his s at ur ati o n is k n o w n t o b e e x a ct i n t h e li mit
of i n fi nit e s yst e m si z e at all ti m es [ 2 9 ,9 8 ].  N u m eri c all y,
w e o bs er v e t h at t h e e nt a n gl e m e nt i n o ur g o o d s cr a m bli n g
cir c uits i n cr e as es at a n e ar- m a xi m al r at e st arti n g fr o m r a n-
d o m p ur e pr o d u ct st at es.  T h e si g ni fi c a nt s u p pr essi o n of
e nt a n gl e m e nt gr o wt h i n p o or s cr a m bli n g cir c uits a cti n g
o n r a n d o m pr o d u ct st at es, as  w ell t h eir c o m pl et e f ail ur e
t o g e n er at e e nt a n gl e m e nt o n c ert ai n tr a nsl ati o n-i n v ari a nt
Fl o q u et ei g e nst at es, d o es n ot vi ol at e a n y pr o v e n a n al yti c al
r es ults, si n c e t h es e i niti al st at es d o n ot b el o n g t o t h e cl ass
of s ol v a bl e i niti al st at es f or  w hi c h t h e b o u n d is s at ur at e d.

Hist ori c all y, t h e S D KI c h ai n h as s er v e d as a pr ot ot y pi-
c al  m o d el  wit hi n t h e br o a d er r e al m of d u al u nit ar y cir c uits,
a n d t h e first f or  w hi c h t h e e nt a n gl e m e nt gr o wt h ( a m o n g
ot h er q u a ntiti es)  w as c o m p ut e d e x a ctl y [ 9 8 ]. It is t h er ef or e
stri ki n g t h at o ur a = 2  C Q C A i n cl u d e t h e cl os el y r el at e d
S D KI cl ass. F or t h e S D KI  m o d el, t h e cl ass of i niti al st at es
( “s e p ar ati n g st at es ”) f or  w hi c h  E q. ( 3 7) is e x a ctl y s at ur at e d
i n cl u d es pr o d u ct st at es i n t h e c o m p ut ati o n al b asis.  A g ai n,
t h e f a ct t h at o ur S D KI a ut o m at o n a d mits Fl o q u et pr o d u ct
ei g e nst at es is c o nsist e nt  wit h t his r es ult, si n c e t h es e ei g e n-
st at es,  w h e n e v ol v e d u n d er t h e b o u n d ar y l a y er r el ati n g o ur
a ut o m at o n t o t h e st a n d ar d S D KI  m o d el [ E q. ( 5 3)], d o n ot
e v ol v e i nt o s e p ar ati n g st at es.

A n ot h er s p e ci al f e at ur e of d u al u nit ar y cir c uits is t h e
r estri cti o n of t w o- p oi nt c orr el ati o ns of o n e-sit e o bs er v-
a bl es t o t h e e d g es of t h e li g ht c o n e ( S e c. I V  D).  As d et ail e d
i n  A p p e n di x A , t h e g o o d s cr a m bli n g cl ass es of iS W A P -
c or e  C Q C A e nj o y a n e v e n str o n g er r estri cti o n: t w o- p oi nt
c orr el ati o ns of n o ntri vi al o n e-sit e o p er at ors v a nis h f or all
t ≥ 1 (t w o l a y ers of g at es).  T his is as cl os e as  w e c a n g et
wit h t w o- q u bit g at es t o t h e “ m a xi m all y c h a oti c ” b e h a v-
i or of q u a nt u m  B er n o ulli cir c uits, f or  w hi c h c orr el ati o ns
of o n e- a n d e v e n t w o-sit e o p er at ors v a nis h f or all t > 0.
S u c h cir c uits aris e  w h e n U is a p erf e ct t e ns or,  w hi c h is
p ossi bl e f or q u dit di m e nsi o n q ≥ 3, a n d t h eir er g o di cit y is
r o b ust t o o n e-sit e g at es dr essi n g t h e l e gs [3 2 ].  Cl e arl y, t h e
iS W A P g at e a n d its dr essi n gs l a c k t his r o b ust n ess, si n c e t h e
s cr a m bli n g pr o p erti es d e p e n d o n v + a n d v − .  T o  wit, as
alr e a d y n ot e d, i n t h e p o or s cr a m bli n g cl ass es (f or  w hi c h
v + a n d/ or v − i s a n i d e ntit y g at e), t h e pr es e n c e of gli d ers
r es ults i n s o m e c orr el ati o ns t h at ar e c o nst a nt i n ti m e.

Lifti n g t h e c o nstr ai nt of d u al u nit arit y, t h e o nl y ot h er
Cli ff or d g at es t h at pr o d u c e i nt er a cti n g d y n a mi cs ar e t h os e
wit h a C N O T c or e.  Di vi di n g all C N O T - c or e a ut o m at a i nt o
cl ass es as  w e di d f or t h e i S W A P - c or e a ut o m at a,  m ost
cl ass es ar e  mi n or v ari ati o ns o n t h os e  w e h a v e alr e a d y
e n c o u nt er e d: a n S D KI-li k e cl ass a n d s e v er al gli d er cl ass es,
w h er e n o w t h e gli d ers c a n h a v e v el o cit y ot h er t h a n ± 1
o wi n g t o t h e l a c k of d u al u nit arit y (s e e  A p p e n di x B ).
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A n ot h er cl ass c o nt ai ns t h e b ar e C N O T a ut o m at o n, a bri c k-
w or k cir c uit of C N O T g at es als o k n o w n as t h e  Cli ff or d
E ast  m o d el [ 1 0 4 ].  T his cir c uit pr es er v es  C al d er b a n k- S h or-
St e a n e ( C S S) c o d es [ 1 0 5 ,1 0 6 ] — n a m el y, it  m a ps X ’s t o
X ’s a n d Z ’s t o Z ’s — a n d t h us its 4 × 4  m atri x is bl o c k
di a g o n al i n t h e b asis of (X 1 , X 2 , Z 1 , Z 2 ) [6 3 ]:

M C N O T =

⎛

⎜
⎜
⎜
⎝

u + 1 u
1 1

0
0 1 1

u − 1 u − 1 + 1

⎞

⎟
⎟
⎟
⎠

. ( 6 3)

W h er e as t h e b ar e i S W A P cl ass is a p o or s cr a m bl er  wit h gli d-
ers, u n d er t h e a cti o n of a cir c uit i n t h e b ar e C N O T cl ass, a n
i niti all y l o c al P a uli stri n g s pr e a ds fr a ct all y as a Si er pi ns ki
g as k et,  wit h fr a ct al di m e nsi o n d f = l o g2 (3 ) = 1. 5 8 2 4 · · ·
[1 0 4 ].  A cl os el y r el at e d C N O T - c or e cl ass  wit h t h e s a m e
mi ni m al p ol y n o mi al ( a n d h e n c e t h e s a m e fr a ct al di m e n-
si o n) as t h e  Cli ff or d  E ast  m o d el g e n er at es q u asi c y cli c
c o d es  wit h t h e o pti m al t hr es h ol d u n d er er as ur es, d es pit e
d f b ei n g l o w er t h a n t h e a = 2 S D KI cl ass f or  w hi c h t h e
c o d e dist a n c e r e m ai ns 1 at all ti m es.  T his fr a ct al b e h a v-
i or is n ot pr es e nt i n o ur d u al u nit ar y s q u ar e-l atti c e cir c uits,
b ut it r e m ar k a bl y a p p e ars i n t h e tri u nit ar y k a g o m e-l atti c e
C Q C A, t o  w hi c h  w e n o w t ur n.

VII.  K A G O M E- L A T TI C E  A U T O M A T A

T ur ni n g t o t h e k a g o m e l atti c e,  w e c o nsi d er t hr e e r e pr e-
s e nt ati v e e x a m pl es of t h e d y n a mi cs t h at o c c ur  w h e n t h er e
ar e t hr e e (si x i n cl u di n g ti m e-r e v ers al) c h oi c es f or t h e arr o w
of ti m e.

R e c all fr o m Fi g. 9 a n d t h e s urr o u n di n g dis c ussi o n
t h at s y m m etr y u n d er t hr e ef ol d r ot ati o ns ( “s elf-tri u nit ar y ”),
i m p os es 1 = 3 = 5 a n d 2 = 4 = 6 o n t h e si x u ni q u e e d g es
wit hi n t h e u nit c ell.  We f o c us o n a s u bs et of s elf-tri u nit ar y
cir c uits  wit h a n i S W A P c or e  w h er e, li k e o n t h e s q u ar e l at-
ti c e, t h e si n gl e- q u bit g at es o n t h e s a m e di a g o n als  wit h
r es p e ct t o t h e c or e ar e i d e nti c al.  T his c orr es p o n ds t o
assi g ni n g i d e nti c al g at es t o t h e e d g es of a c o m m o n ori-
e nt ati o n o n t h e k a g o m e l atti c e, i. e., 3 T = 6, 1 T = 4, a n d
2 = 5 T .  W h e n t his is c o m bi n e d  wit h C 3 s y m m etr y, t h e
r es ulti n g cir c uits ar e als o i n v ari a nt u n d er t h e t hr e e r e fl e c-
ti o ns i n Fi g. 9( c) .  T h e cir c uits f all i nt o t hr e e cl ass es: t h os e
wit h 1 or R Z [π / 2] o n e a c h l e g, t h os e  wit h R X [π / 2], or
R Y [π / 2] o n e a c h l e g, a n d t h os e  wit h c y cli c p er m ut ati o n
g at es o n e a c h l e g.

E x pr essi n g t h e k a g o m e l atti c e as a r e ct a n g ul ar cir c uit
( Fi g. 1 5 ), n o w a = 4 a n d t h e c orr es p o n di n g S C A ar e 8 × 8
m atri c es.  As o n t h e s q u ar e l atti c e,  w e c o ul d us e a s m all er
u nit c ell b y i n c or p or ati n g a s hift, (T = 1, a = 4, d = 2 ),
b ut t h e e v ol uti o n is s o m e w h at cl e ar er if  w e j ust us e (T =
2, a = 4, d = 0 ).  T h e t hr e e cl ass es e x hi bit s o m e n ot a bl e
si mil ariti es t o a ut o m at a  wit h s m all er a , i n di c ati n g a l at e nt
c o n n e cti o n t o cir c uits  wit h si m pl er g e o m etri es.

i

i i i

i

i

i

i i

i

i

i

i

i i i i

i

FI G. 1 5.  K a g o m e l atti c e e x pr ess e d as a r e ct a n g ul ar cir c uit.
Wit h ti m e ori e nt e d i n t h e v erti c al dir e cti o n, t h e cir c uit is c o m-
p os e d of (T = 1, a = 4 ) “ bri c ks ” ( d as h e d)  wit h a s hift b y d = 2
i n b et w e e n ti m e st e ps. I n c o nstr u cti n g t h e a ut o m at a,  w e i nst e a d
us e t h e e nl ar g e d u nit c ell (s h a d e d gr a y)  wit h (T = 2, a = 4,
d = 0 ).

A.  B a r e i S W A P cl ass

T h e si m pl est e x a m pl e h as i d e ntit y g at es o n all t h e
e d g es, a n d t h us h as t h e f ull D 6 s y m m etr y.  T o el u ci d at e t h e
ti m e e v ol uti o n,  w e p er m ut e t h e r o ws t o b e t h e i m a g e of
X 1 , X 2 , X 3 , X 4 , Z 1 , Z 2 , Z 3 , Z 4 , r es p e cti v el y:

T 1 =
tZ Z 0
tZ X tZ Z

, ( 6 4)

w h er e

tZ Z =

⎛

⎜
⎝

u 0 0  0
0 1 0  0
0 0 1  0
0 0 0 u − 1

⎞

⎟
⎠ ( 6 5)

a n d

tZ X =

⎛

⎜
⎝

0 u u u + 1
1 0 0 1
1 0 0 1

1 + u − 1 u − 1 u − 1 0

⎞

⎟
⎠ . ( 6 6)

Fr o m t h e f or m of tZ Z ,  w e s e e t h at all Z stri n gs ar e ( pr o d u cts
of) gli d ers, j ust li k e i n t h e i S W A P cl ass o n t h e s q u ar e l at-
ti c e. I n d e e d, t his c o ul d h a v e b e e n a nti ci p at e d b y r e c alli n g
t h at t h e iS W A P d o es n ot pr o d u c e e nt a n gl e m e nt o n Z ei g e n-
st at es.  B ut o wi n g t o t h e  m o di fi e d g e o m etr y, i nst e a d of j ust
l eft a n d ri g ht  m o v ers [ξ (Z 1 ) a n d ξ (Z 4 ) h a v e ei g e n v al u es u
a n d u − 1 , r es p e cti v el y], t h er e ar e als o “st ati o n ar y gli d ers ”
[ξ (Z 2 ) a n d ξ (Z 3 ) b ot h h a v e ei g e n v al u e 1].  T his r e fl e cts t h e
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di ff er e nt s p a c eti m e str u ct ur e of t w o- p oi nt c orr el ati o ns at
i n fi nit e t e m p er at ur e i n tri u nit ar y cir c uits vis á vis d u al u ni-
t ar y bri c k w or k cir c uits as dis c uss e d i n S e c. I V  D, n a m el y,
t h e e xist e n c e of n o n v a nis hi n g c orr el ati o ns al o n g t h e st ati c
w orl dli n e x = 0.  C o ns er v e d c h ar g es of Z stri n gs, c orr e-
s p o n di n g t o n o ntri vi al ei g e n v e ct ors of t h e c h a n n els M ±

a n d M 0 wit h ei g e n v al u e 1, t h us pl a c e t his b ar e i S W A P

cir c uit i n t h e n o n er g o di c cl ass of tri u nit ar y cir c uits [ 5 4 ].
D es pit e t h e di ff er e nt g e o m etr y, t his cl ass is si mil ar i n

s pirit t o t h e b ar e i S W A P cl ass o n t h e s q u ar e l atti c e i n t hr e e
r e g ar ds. First, as  wit h all of t h e p o or s cr a m bli n g cl ass es
o n t h e s q u ar e l atti c e, r a n d o m pr o d u ct st at es d o n ot b e c o m e
m a xi m all y e nt a n gl e d.  T h e e nt a n gl e m e nt g e n er ati o n o n a
s yst e m of m = 6 4 u nit c ells ( L = 2 5 6) is s h o w n i n Fi g. 1 6 ,
w h er e t h e  m a xi m u m sl o p e of t h e P a g e c ur v e is  w ell b el o w
1. S e c o n d, t h e r e c urr e n c e ti m e is li n e ar i n m f or all m :
τ ( m ) = 2 m . Fi n all y, si mil arl y t o h o w t h e c h ar a ct eristi c
p ol y n o mi al of t h e b ar e i S W A P cl ass o n t h e s q u ar e l atti c e
is t h e p erf e ct s q u ar e of t h at of t h e a = 1 gli d er [ E q. ( 4 4)],
t h e c h ar a ct eristi c p ol y n o mi al of t h e b ar e iS W A P cl ass o n t h e
k a g o m e l atti c e is als o a p erf e ct s q u ar e:

χ T 1
(y ) = (y 4 + (u + u − 1 )y 3 + (u + u − 1 )y 2 + 1 )2 , ( 6 7)

w hi c h  m e a ns t h at alt h o u g h t his  m atri x is 8 × 8, its  mi ni m al
p ol y n o mi al μ T 1

(y ) = y 4 + (u + u − 1 )y 3 + (u + u − 1 )y 2 +
1 is o nl y d e gr e e 4.  N ot e, h o w e v er, t h at n o n e of t h e a =
2 a ut o m at a c o nsi d er e d i n t his p a p er h a v e t his as t h eir
c h ar a ct eristi c p ol y n o mi al.

B.  C N O T-li k e cl ass

A s e c o n d cl ass,  w hi c h is s y m m etri c u n d er t hr e ef ol d r ot a-
ti o ns a n d t h e t hr e e r e fl e cti o ns i n Fi g. 9( c) b ut n o n e of t h e
ot h er tr a nsf or m ati o ns, c o nt ai ns t h e r e pr es e nt ati v e

1 = 3 = 5 = R (1, 1, 1 ) [− 2 π / 3],

2 = 4 = 6 = R (1, − 1, 1 ) [ 2π / 3].
( 6 8)

T h e c orr es p o n di n g a ut o m at o n is

T 2 =

⎛

⎜
⎜
⎝

t1 1 t1 2 t1 3 t1 4

t2 1 t2 2 0 t 2 4

t2 4 0 t2 2 t2 1

t1 4 t1 3 t1 2 t1 1

⎞

⎟
⎟
⎠ , ( 6 9)

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
0

1 0

2 0

3 0

4 0

5 0

S
(|

A
|,

t 0
+

t)

t 0 /T = 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

t 0 /T = 1 6

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

|A |

0

1 0

2 0

3 0

4 0

5 0

S
(|

A
|,

t 0
+

t)

t 0 /T = 3 2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

|A |

t 0 /T = 4 8

t/T
0

5

1 0

1 5

FI G. 1 6. S u bs yst e m e ntr o p y S (|A |, t0 + t) a v er a g e d o v er
c o nti g u o us r e gi o ns of l e n gt h |A | st arti n g fr o m a r a n d o m p ur e
pr o d u ct st at e o n L = 2 5 6 q u bits, ti m e e v ol v e d u n d er t h e b ar e
iS W A P k a g o m e cir c uit [ E q. ( 6 4)].  E a c h p a n el s h o ws 1 6 ti m e st e ps,
w h er e e a c h ti m e st e p c o nsists of f o ur l a y ers ( T = 2), a n d d ar k er
(li g ht er) c ur v es c orr es p o n d t o l at er ( e arli er) ti m es t wit h r es p e ct
t o t0 .

w h er e [ 1 0 7 ]

t1 1 =
u 0
0 u + 1

, t1 2 =
u u
1 0

( 7 0 a)

t1 3 =
u 0

u + 1 u + 1
, t1 4 =

0 u
u + 1 0

( 7 0 b)

t2 1 =
0 1
1 1

= t2 1 , t2 2 =
1 0
1 0

= t2 2 ( 7 0 c)

t2 4 =
0 0
0 1

= t2 4 . ( 7 0 d)

T h e s y m m etr y of t his cir c uit u n d er l eft-ri g ht r e fl e cti o n
m a nif ests i n its a ut o m at o n as i n v ari a n c e u n d er  E q. ( 2 7),
w hi c h f or a = 4 r e a ds

M 1 ↔ 4, 2 ↔ 3 =

⎛

⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎠ M

⎛

⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎠ .

( 7 1)

W hil e t h e fr a ct als ar e di ff er e nt, t h e b e h a vi or of t his k a g o m e
cl ass is r e mi nis c e nt of t h e cl ass o n t h e s q u ar e l atti c e  wit h
c y cli c p er m ut ati o ns o n e a c h e d g e.  R e c all t h at o n t h e s q u ar e
l atti c e, t h e r es ulti n g a = 2 S D KI cl ass c a n r o u g hl y b e
t h o u g ht of as d e c o m p osi n g i nt o t w o c o pi es of t h e a = 1
S D KI a ut o m at o n, i n t h e s e ns e t h at χ ˜M (y ) = χ S D KI (y )2 .
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FI G. 1 7.  Ti m e e v ol uti o n u n d er t h e a ut o m at o n T 2 [ E q. ( 6 9)] f or
t h e i niti al o p er at or P = X X X X (l eft) a n d P (0 ) P (1 ) = X X X X X X X X
(ri g ht), f or 1 2 8 ti m e st e ps i n u nits of T = 2.  Bl u e, or a n g e, a n d
gr e e n pi x els c orr es p o n d t o X , Y , a n d Z , r es p e cti v el y.

P a uli stri n gs s pr e a d  wit h t h e s a m e fr a ct al di m e nsi o n as t h e
a = 1 S D KI a ut o m at o n, b ut t h es e fr a ct als ar e i n visi bl e i n
t h e f o ot pri nt of  Tr( ˜M n ), us e d t o i nf er t h e fr a ct al di m e n-
si o n i n  R ef. [ 6 3 ]. Si mil arl y, f or t his C N O T k a g o m e cl ass,
t h e tr a c e is n o nfr a ct al — Tr(T n

2 ) = u n + u − n f or all n — b ut
t h e c h ar a ct eristi c p ol y n o mi al t ells a  m or e i nt er esti n g t al e:

χ T 2
(y ) = μ T 2

(y )2 = μ C N O T (y )2 , ( 7 2)

w h er e

μ C N O T (y ) = y 4 + (u + u − 1 )y 3 + y 2 + (u + u − 1 )y + 1

= (y 2 + u y + 1 )(y 2 + u − 1 y + 1 ) ( 7 3)

is t h e  mi ni m al p ol y n o mi al f or t h e b ar e C N O T a ut o m at o n,
als o k n o w n as t h e  Cli ff or d  E ast  m o d el [ E q. ( 6 3)].

P a uli stri n gs i n t h e a = 4 k a g o m e C N O T cl ass e x hi bit a
fr a ct al str u ct ur e  wit h t h e f a mili ar Si er pi ns ki  m otif, as pr e-
s a g e d b y t h e f a ct t h at its  mi ni m al p ol y n o mi al is μ C N O T (y ).
F or a stri n g i niti all y l o c ali z e d t o o n e u nit c ell, t h e n o n-
i d e ntit y p art of t h e i m a g e is  m u c h l ess s p ars e t h a n t h e
st a n d ar d Si er pi ns ki g as k et,  wit h a fr a ct al di m e nsi o n n e ar
2.  T his c a n b e s e e n i n t h e l eft p a n el of Fi g. 1 7 f or t h e i ni-
ti al stri n g X X X X ,  w hi c h r e m ai ns r e fl e cti o n i n v ari a nt at all
ti m es o wi n g t o t h e l eft-ri g ht s y m m etr y of t h e a ut o m at o n.
T o r e c o v er t h e cl assi c Si er pi ns ki p att er n,  w e n ot e t h at e a c h
d e ns e p at c h of X X X X (t) c o nt ai ns a cl e ar p eri o di c str u c-
t ur e.  T h us, i n t h e i m a g e of t h e pr o d u ct X X X X (0 ) X X X X (1 ) ,
w h er e t h e s u p ers cri pt i n d e x es t h e u nit c ell, t h e i nt eri or of
e a c h d e ns e p at c h c a n c els o ut, a n d a fr a ct al di m e nsi o n of
l o g2 (3 ) is r e c o v er e d (ri g ht p a n el of Fi g. 1 7 ).

We l e a v e t h e d et ails of t h e ori gi n of t his r el ati o n t o t h e
C N O T a ut o m at o n t o f ut ur e  w or k b ut n ot e t h at s o m e i nsi g hts
c a n b e g ai n e d b y e x a mi ni n g t h e f o ot pri nt o n e v er y a t h sit e.
T h e ti m e e v ol uti o n of c ert ai n i niti al o n e-sit e o p er at ors p ar-
ti c ul arl y si m pl e. F or e x a m pl e, e x a mi ni n g t h e f o ot pri nt of

Z (0 )
1 Z (1 )

1 (t) o n e v er y f o urt h sit e r e v e als f o ur  m o n o c hr o m e
Si er pi ns ki g as k ets: Z ’s o nl y li v e o n f or x = n a + 1 a n d
x = n a + 3,  w hil e x = n a + 2 is all Y ’s a n d x = n a + 4 is
all X ’s ( Fi g. 1 8 ).

T h e c o n n e cti o n b et w e e n t his k a g o m e cl ass a n d t h e  Clif-
f or d  E ast  m o d el h as i nt er esti n g i m pli c ati o ns f or t h e e nt a n-
gl e m e nt gr o wt h a n d er g o di cit y,  w hi c h h a v e b e e n a n al y z e d

FI G. 1 8.  Ti m e e v ol uti o n u n d er t h e a ut o m at o n T 2 fr o m t h e
i niti al o p er at or Z (0 )

1 Z (1 )
1 , f or 1 2 8 ti m e st e ps i n u nits of T = 2. S e p-

ar at e p a n els s h o w t h e f o ot pri nt o n t h e f o ur sit es of t h e u nit c ell,
i. e., x = n a + j f or j = 1, 2, 3, 4 r es p e cti v el y.  Bl u e, or a n g e, a n d
gr e e n pi x els c orr es p o n d t o X , Y , a n d Z r es p e cti v el y.

f or t h e l att er  m o d el i n s e v er al r e c e nt  w or ks.  R ef er e n c e
[1 0 4 ] fi n ds t h at d es pit e t h e a bs e n c e of i nt e gr a bilit y, t h e
h alf- c h ai n e ntr o p y of t y pi c al  m a n y- b o d y ei g e nst at es gr o ws
o nl y l o g arit h mi c all y  wit h L f or L = 2 k .  A r el at e d “ m e m-
or y e ff e ct ” is d es cri b e d i n  R ef. [ 1 0 8 ]  w h er e f or t = 2 k ,
t h e si n gl e- q u bit d e nsit y  m atri x f or a n i niti al pr o d u ct st at e
c o n v er g es o nl y t o t h e f ull y  mi x e d st at e p ol y n o mi all y i n t.

C. D 6 - s y m m et ri c g o o d s c r a m bli n g cl ass

Fi n all y,  w e d e c or at e t h e k a g o m e l atti c e  wit h t h e o n e-
sit e g at es t h at o n t h e s q u ar e l atti c e pr o d u c e t h e d e ns e
g o o d s cr a m bli n g cl ass.  As o n t h e s q u ar e l atti c e, pl a c-
i n g R X [π / 2] = R X [π / 2] T o n e a c h e d g e  m ai nt ai ns t h e f ull
p oi nt- gr o u p s y m m etr y,  w hi c h i n t his c as e is D 6 .  U nli k e
o n t h e s q u ar e l atti c e, h o w e v er, t his cl ass e x hi bits a fr a c-
t al str u ct ur e,  w hi c h is i n f a ct q uit e si mil ar t o t h e C N O T -li k e
cl ass a b o v e.

T h e a ut o m at o n f or t his cir c uit is

T 3 =

⎛

⎜
⎝

s 1 1 s 1 2 s 1 3 s 1 4

s 2 1 s 2 2 s 2 3 s 2 4

s 2 4 s 2 3 s 2 2 s 2 1

s 1 4 s 1 3 s 1 2 s 1 1

⎞

⎟
⎠ , ( 7 4)

w h er e

s 1 1 =
u u

u + 1 0
, s 1 2 =

0 0
u + 1 u

( 7 5 a)

s 1 3 =
u 0
u u

, s 1 4 =
u 0
1 u + 1

( 7 5 b)

s 2 1 =
1 1
0 1

= s 2 1 , s 2 2 =
0 1
0 0

= s 2 2 ( 7 5 c)
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FI G. 1 9.  Vis u al d e pi cti o n of  Tr (M t) u p t o t = 6 4.  A bl a c k
p oi nt at (n , t) i n di c at es t h at t h e c o e ffi ci e nt of u n i n t h e e x p a n-
si o n of  Tr (M t) is 1, f or b ot h M = M C N O T [ E q. ( 6 3)] a n d M = T 3

[ E q. ( 7 4)].  R e d p oi nts,  w hi c h o c c ur f or t m o d 3 = 0,  m ar k t h e
l o c ati o n of n o n z er o c o e ffi ci e nts i n  Tr(M t

C N O T ),  w h er e as  Tr(T t
3 )

v a nis h es i n e v er y t hir d ti m e st e p.

s 2 3 =
0 0
1 1

= s 2 3 , s 2 4 =
0 0
1 0

= s 2 4 . ( 7 5 d)

A g ai n,  E q. ( 7 4) is e x pli citl y i n v ari a nt u n d er t h e r e fl e cti o n
i m pl e m e nt e d b y  E q. ( 7 1).

F or t his cl ass, t h e c h ar a ct eristi c p ol y n o mi al d o es n ot f a c-
t ori z e, b ut r e m ar k a bl y, t h e f o ot pri nt of  Tr(T t

3 ) i s cl os el y
r el at e d t o  Tr(M t

C N O T ).  As s h o w n i n Fi g. 1 9 ,

Tr (T t
3 ) =

0 t m o d 3 = 0

Tr (M t
C N O T ) ot h er wis e.

( 7 6)

Of c o urs e, t h e p h ysi c al o bs er v a bl e is n ot t h e tr a c e
( w hi c h c a n hi d e t h e tr u e fr a ct al str u ct ur e of t h e o p er at or
s pr e a di n g, as i n t h e c as e of t h e C N O T -li k e cl ass a b o v e), b ut
t h e i m a g e of a s pr e a di n g P a uli stri n g. F or stri n gs i niti all y
l o c ali z e d o n o n e u nit c ell, t h e o p er at or s pr e a di n g h as f ar
l ess  w hit e s p a c e t h a n Fi g. 1 9 , a n d  wit h a  m or e i ntri c at e
p att er n of X , Y , Z t h a n i n t h e C N O T -li k e cl ass.  B ut t a ki n g
t h e pr o d u ct of t w o u nit- c ell-s u p p ort e d P a ulis tr a nsl at e d b y
n = 2  wit h r es p e ct t o e a c h ot h er, i. e., P (0 ) P (2 ) , yi el ds t h e
cl assi c Si er pi ns ki g as k et  wit h d f = l o g2 (3 ). F or e x a m pl e,
Fi g. 2 0 s h o ws t h e ti m e e v ol uti o n f or P = X X X X . Si n c e P
is s y m m etri c a b o ut t h e c e nt er of t h e u nit c ell, t h e i m a g e
of X X X X (0 ) X X X X (2 ) (t) o n sit es x = a n + 1 is t h e  mirr or
i m a g e of t h at o n sit es x = a n + 4, a n d x = a n + 2 is t h e
mirr or i m a g e of x = a n + 3.

I n a d diti o n t o b ot h pr o d u ci n g Si er pi ns ki tri a n gl es i n t h e
o p er at or s pr e a di n g a n d g e n er ati n g P a g e c ur v e  wit h sl o p e 1
o n r a n d o m i niti al pr o d u ct st at es, t his cl ass a n d t h e C N O T -
li k e cl ass a b o v e als o h a v e t h e s a m e r e c urr e n c e ti m es τ ( m )
w h e n a p pli e d t o fi nit e s yst e ms  wit h p eri o di c b o u n d ar y
c o n diti o ns.  As  wit h t h e g o o d s cr a m bli n g cl ass es o n t h e
s q u ar e l atti c e, τ ( m ) is li n e ar i n m f or m = 2 k b ut gr o ws
s u p erli n e arl y f or g e n eri c m .  B ut u nli k e o n t h e s q u ar e l at-
ti c e, b ot h t h e fr a ct al di m e nsi o n a n d t h e r e c urr e n c e ti m es

FI G. 2 0.  Ti m e e v ol uti o n u n d er t h e a ut o m at o n T 3 [ E q. ( 7 4)]
fr o m t h e i niti al o p er at or X X X X (0 ) X X X X (2 ) , i. e., X X X XIIII X X X X ,
u p t o 1 2 8 ti m e st e ps i n u nits of T = 2. S e p ar at e p a n els s h o w t h e
f o ot pri nt o n t h e f o ur sit es of t h e u nit c ell, i. e., x = n a + j f or
j = 1, 2, 3, 4. X , Y , a n d Z ar e s h o w n i n bl u e, gr e e n, a n d or a n g e,
r es p e cti v el y.

ar e i n di ff er e nt t o  w h et h er t h e si n gl e- q u bit g at es ar e all
c y cli c p er m ut ati o ns ( as i n t h e C N O T -li k e cl ass) or X or Y
r ot ati o ns.

VIII.  H Y B RI D  CI R C UI T S

R et ur ni n g t o t h e s q u ar e l atti c e,  w e n o w br e a k u nit ar-
it y b y a d di n g pr oj e cti v e  m e as ur e m e nts i n a S T TI f as hi o n.
W hil e t h e  m e as ur e m e nt o ut c o m es ar e r a n d o m, f or st a bi-
li z er cir c uits di ff er e nt q u a nt u m tr aj e ct ori es j ust di ff er  wit h
r es p e ct t o si g ns o n t h e st a bili z ers, s o  w h e n c o nsi d eri n g t h e
d y n a mi cs of st a bili z er gr o u ps’  m o d ul o si g ns, t h e s p a c eti m e
tr a nsl ati o n i n v ari a n c e is pr es er v e d.

T h e r e al m of p ossi biliti es f or cr yst alli n e h y bri d cir c uits
is v ast, a n d a  m or e t h or o u g h tr e at m e nt of t h e p uri fi c a-
ti o n d y n a mi cs, st e a d y-st at e pr o p erti es, a n d i m pli c ati o ns f or
q u a nt u m err or c orr e cti o n is l eft t o a f ort h c o mi n g p a p er
[6 9 ].  H er e,  w e f o c us u p o n a  mi ni m al  m o di fi c ati o n of t h e
bri c k w or k cir c uits st u di e d i n t his p a p er ( Fi g. 2 ) i n  w hi c h
o n e si n gl e-sit e  m e as ur e m e nt i n t h e σ b asis is p erf or m e d
p er d o u bl e d u nit c ell (T = 1, a = 2 ) ( Fi g. 2 1 ). I n a d diti o n
t o e nl ar gi n g t h e u nit c ell of t h e l atti c e, t h e a d d e d  m e a-
s ur e m e nts r e d u c e t h e p oi nt- gr o u p s y m m etr y. If t h e o n e-sit e
g at es al o n g t h e di a g o n al c o nt ai ni n g t h e  m e as ur e m e nts
(t a k e n t o b e t h e + di a g o n al i n Fi g. 2 1 ) ar e i d e ntit y g at es,
t h e n r e fl e cti o ns a b o ut b ot h di a g o n als ( a n d t h us i n v ersi o n as
w ell) pr es er v e t h e r el ati v e p ositi o ns of t h e g at es a n d  m e a-
s ur e m e nts. If t h e bl u e o n e-sit e g at es ar e n o ni d e ntiti es, t h e n
of t h e ori gi n al p oi nt- gr o u p tr a nsf or m ati o ns ( Fi g. 8 ), o nl y
r e fl e cti o n a b o ut t h e di a g o n al c o nt ai ni n g t h e  m e as ur e m e nts
is a p ossi bl e s y m m etr y.

St arti n g fr o m a f ull y  mi x e d i niti al st at e, t h e first l a y er
of m m e as ur e m e nts p erf or m e d o n t h e j t h sit e of e a c h u nit
c ell p uri fi es t h e st at e b y m bits, t o e ntr o p y S (t = 0 ) =
m (a − 1 ), si n c e t h e  m e as ur e d o p er at ors ar e c o m m uti n g
a n d i n d e p e n d e nt. I m m e di at el y aft er t h e  m e as ur e m e nts, t h e
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FI G. 2 1. S q u ar e-l atti c e ( bri c k w or k) cir c uit  wit h  m e as ur e m e nts
( c.f. Fi g. 2 ).  W hit e x’ e d cir cl es r e pr es e nt  m e as ur e m e nts i n a fi x e d
P a uli b asis.

st a bili z er gr o u p is g e n er at e d b y t h e  m e as ur e d o p er at ors:

S (t = 0 ) = σ ( n a + j ) ≡ σ (n )
j n = 1, ...,m . ( 7 7)

T h e st a bili z er g e n er at ors t h e n s pr e a d u n d er t w o l a y ers of
u nit ar y g at es. S u bs e q u e nt  m e as ur e m e nt l a y ers  m a y or  m a y
n ot p urif y t h e st at e f urt h er; a gi v e n  m e as ur e m e nt c a us es
a p uri fi c ati o n b y 1 bit if a n d o nl y if t h e  m e as ur e d o p er a-
t or c o m m ut es  wit h all of S , b ut d o es n ot alr e a d y b el o n g
t o S , i. e., a nti c o m m ut es  wit h a l o gi c al o p er at or.  O n c e t h e
st at e st o ps p urif yi n g, t h e st a bili z er gr o u p ( mi x e d or p ur e)
is st ati c, t h at is, i n v ari a nt u n d er o n e ti m e st e p of t h e cir c uit;
w e c all t his t h e “ pl at e a u gr o u p. ”

We e x a mi n e t h e d y n a mi cs f or all c h oi c es of d u al u ni-
t ar y g at es,  m e as ur e m e nt l o c ati o ns, a n d  m e as ur e m e nt b as es
wit h t h e g e o m etr y of Fi g. 2 1 . I n  m ost c as es t h e pl at e a u
gr o u p is r e a c h e d aft er O (1 ) ti m e st e ps,  w hi c h  w e r ef er
t o as “ g a p p e d p uri fi c ati o n ” b e c a us e t h e p uri fi c ati o n ti m e
d o es n ot s c al e  wit h s yst e m si z e.  B ut f or cir c uits i n t h e
d f

∼= 1. 9 cl ass i n t h e a p pr o pri at e  m e as ur e m e nt b asis, a
f ull y  mi x e d i niti al st at e p uri fi es “ g a pl essl y ” i n m ti m e st e ps
t o a p ur e pr o d u ct st at e f or m = 2 k .  T his e xt e nsi v e p uri fi-
c ati o n ti m e gi v es ris e t o n o ntri vi al e nt a n gl e m e nt b e h a vi or
a n d t h e a p p e ar a n c e of Si er pi ns ki fr a ct als  w h e n t h e st e a d y
st at e is p ert ur b e d.  T o gi v e t h e r e a d er a s m all t ast e of t h e
ri c h d y n a mi cs t h at c a n aris e i n h y bri d cir c uits,  w e n o w
dis c uss t his cl ass of cir c uits i n d et ail.

A.  P u ri fi c ati o n d y n a mi cs

C o nsi d er t h e r e pr es e nt ati v e cir c uit of t h e d f
∼= 1. 9 cl ass

[ E q. ( 4 8)], n o w  wit h  m e as ur e m e nts i n t h e X b asis at s p a c e-
ti m e l o c ati o ns (t, x ) = (k , 2n + 1 ) wit h i nt e g er k .  E a c h
m e as ur e m e nt i m m e di at el y pr e c e d es v + = R X [π / 2] o n t h e
l eft i n c o mi n g l e g t o t h e iS W A P c or e.  T h e u nit ar y cir c uit
o nl y h as o n e str o n g p oi nt- gr o u p s y m m etr y —i n v ari a n c e

u n d er r e fl e cti o n t hr o u g h t h e d o w n w ar d-sl o pi n g di a g o-
n al — w hi c h is n ot pr es e nt i n t h e h y bri d cir c uit.

At t = 0, t h e first r o u n d of  m e as ur e m e nts a d ds a n X st a-
bili z er o n t h e first sit e of e a c h u nit c ell, i. e., X (n )

1 . Fr o m E q.
( 4 9),  w e c a n r e a d o ff t h e ti m e- e v ol v e d st a bili z er g e n er at ors
aft er t h e s u bs e q u e nt t w o l a y ers:

X (n )
1 → X (n − 1 )

2 Z (n )
1 Z (n + 1 )

1 . ( 7 8)

I n t h e n e xt r o u n d of  m e as ur e m e nts,  w e a g ai n  m e as ur e

X (n )
1 , f or n = 1, 2, . . . , m . Si n c e t h e  m e as ur e m e nts c o m-

m ut e  wit h e a c h ot h er,  w e c a n p erf or m t h e m i n a n y or d er.
T h e first m − 1  m e as ur e m e nts a nti c o m m ut e  wit h a p air of
st a bili z er g e n er at ors.  B ut e a c h  m e as ur e m e nt  m o di fi es S
s u c h t h at t h e fi n al  m e as ur e m e nt c o m m ut es  wit h t h e e ntir e
gr o u p, c a usi n g t h e st at e t o p urif y b y e x a ctl y o n e bit.  T o s e e

w h y t his is t h e c as e, n ot e t h at o n c e  w e  m e as ur e X (n )
1 f or

all n , t h e o p er at or m
n = 1 X (n )

1 ,  w hi c h is a l o gi c al o p er at or of
t h e pr e m e as ur e m e nt st at e, h as als o b e e n  m e as ur e d.

Aft er t h e f ull r o u n d of  m e as ur e m e nts, t h e st a bili z er
gr o u p h as m + 1 g e n er at ors:

S (t = 1 ) = {X (n )
1 } m

n = 1 ,

m

n = 1

X (n )
2 . ( 7 9)

T his c a n b e pr o v e n b y n oti n g t h at X (n )
2 i s t h e o nl y

el e m e nt of t h e pr e m e as ur e m e nt st a bili z er gr o u p t h at c o m-
m ut es  wit h all t h e  m e as ur e m e nts.

C o m p ari n g  E q. ( 7 9) t o  E q. ( 7 7),  w e s e e t h at S (t = 0 )
is a s u b gr o u p of S (t = 1 ). I n d e e d, t his is a n e x a m pl e of
a  m or e g e n er al pr o p ert y of t h e p uri fi c ati o n d y n a mi cs i n
a n y Fl o q u et  Cli ff or d cir c uit,  wit h or  wit h o ut s p ati al tr a nsl a-
ti o n i n v ari a n c e: f or t h e f ull y  mi x e d i niti al c o n diti o n, or a n y
st at e i n t h e s e q u e n c e of st a bili z er gr o u ps fr o m f ull y  mi x e d
t o t h e st e a d y-st at e gr o u p, S (t − 1 ) is a s u b gr o u p of S (t).
A c or oll ar y is t h at t h e e ntr o p y S (t) d e cr e as es at a n o ni n-
cr e asi n g r at e.  T his gi v es us a ni c e  w a y t o p arti all y fi x t h e
g e n er at ors of t h e i nst a nt a n e o us st a bili z er gr o u p: t h e “ti m e-
or d er e d ” st a bili z er t a bl e a u at ti m e t is d e fi n e d s o t h at f or
all t ≤ t, t h e first L − S (t ) st a bili z ers g e n er at e t h e gr o u p
at ti m e t [6 9 ].

I n t h e pr es e nt e x a m pl e, f or m = 2 k , e a c h s u bs e q u e nt
ti m e st e p i n d u c es e x a ctl y o n e p uri fi c ati o n e v e nt, u ntil t h e
st at e p uri fi es c o m pl et el y at t∗ = m .  T h e fi n al st e a d y st at e
is a pr o d u ct gr o u p:

S ∗ = X (n )
j j = 1, 2; n = 1, ...,m . ( 8 0)

R e m ar k a bl y, alt h o u g h t h e pl at e a u gr o u p h as z er o e nt a n gl e-
m e nt, si n c e t h e ti m e t o r e a c h t his st at e s c al es li n e arl y  wit h
m f or g e n eri c i niti al st at es (i n cl u di n g t h e f ull y  mi x e d st at e,
as  w ell as r a n d o m pr o d u ct st at es of a n y e ntr o p y d e nsit y),
it is p ossi bl e f or t h e cir c uit t o g e n er at e a v ol u m e-l a w tr a n-
si e nt d es pit e t h e pr es e n c e of  m e as ur e m e nts.  T his c a n b e
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FI G. 2 2.  M ut u al i nf or m ati o n I (A : A , t0 + t), a v er a g e d o v er
all c o nti g u o us s u br e gi o ns A of a gi v e n l e n gt h ≤ L / 2, st arti n g
fr o m a f ull y  mi x e d st at e o n L = 2 5 6 q u bits, u n d er t h e cir-
c uit e v ol uti o n d e pi ct e d i n Fi g. 2 1 wit h U = iS W A P (R X [π / 2] ⊗
R (1, 1, 1 ) [− 2 π / 3] ) a n d  m e as ur e m e nts i n t h e X b asis.  L eft p a n el
s h o ws  m ut u al i nf or m ati o n i n cr e asi n g u p t o t = 6 4 ( d ar k est bl u e),
w hil e t h e ri g ht p a n el s h o ws  m ut u al i nf or m ati o n d e cr e asi n g t o
t = 1 2 8 = m .

s e e n fr o m t h e gr o wt h of t h e  m ut u al i nf or m ati o n fr o m t h e
f ull y  mi x e d i niti al st at e ( Fi g. 2 2 ), d e fi n e d as

I (A : A , t) = S ( ρA (t)) + S ( ρA (t)) − S ( ρ (t)) ( 8 1)

f or c o nti g u o us r e gi o ns A ,  w h er e A is t h e c o m pl e m e nt of
A a n d ρ ( t) is t h e st at e of t h e f ull s yst e m of L q u bits at
ti m e t.  A v er a gi n g o v er all c o nti g u o us r e gi o ns ( wit h p eri-
o di c b o u n d ar y c o n diti o ns) of t h e s a m e l e n gt h |A | ≤ L / 2,
at e arl y ti m es I (A : A ) h as a pi e c e wis e li n e ar f or m:

I (A : A , t) =
|A |/ 4 |A | ≤ 2 t

t/ 2 |A | > 2 t
. ( 8 2)

T h us, t h e h alf- c ut  m ut u al i nf or m ati o n i n cr e as es li n e arl y
u ntil t = m / 2 (l eft p a n el of Fi g. 2 2 ). It t h e n d e cr e as es li n-
e arl y u ntil t = t∗ , at  w hi c h p oi nt t h e st e a d y st at e  wit h z er o
e nt a n gl e m e nt is r e a c h e d (ri g ht p a n el).  A n a n al o g o us tr e n d
is pr es e nt i n e nt a n gl e m e nt e ntr o p y st arti n g fr o m r a n d o m
p ur e pr o d u ct st at es.

W h e n m is n ot a p o w er of 2, t h e f ull y  mi x e d i niti al st at e
still p uri fi es b y o n e bit p er ti m e st e p, b ut d o es n ot p urif y
c o m pl et el y, a p h e n o m e n o n ti e d t o a n u n d erl yi n g fr a ct alit y
i n t h e p uri fi c ati o n d y n a mi cs.  E x pli citl y, f or m = p 2 k w h er e
p is o d d,

t∗ = 2 k , S (t∗ ) = m − t∗ = (p − 1 )2 k ( 8 3)

s o t h e e ntr o p y d e nsit y of t h e pl at e a u gr o u p is (p − 1 ) /2 p ,
as y m pt oti n g t o w ar d 1/ 2 f or l ar g e p .  T h us, r e mi nis c e nt of
h o w t h e r e c urr e n c e ti m e of fr a ct al or g o o d s cr a m bli n g
C Q C A is s e nsiti v e t o t h e p o w er of 2,  w h e n  m e as ur e m e nts
ar e i ntr o d u c e d, t h e p uri fi c ati o n ti m e c a n als o b e s e nsiti v e
t o p o w ers of 2.  All g a pl ess cir c uits s ur v e y e d, a cr oss a  wi d e
r a n g e of u nit- c ell di m e nsi o ns a n d e v e n  w h e n  w e p o p u-
l at e e a c h u nit c ell  wit h r a n d o m  Cli ff or d g at es r at h er t h a n

d u al u nit ar y g at es, e x hi bit t his s e nsiti vit y, i n di c ati n g t h at
g a pl ess n ess a n d fr a ct alit y ar e i nti m at el y li n k e d.

T h e fr a ct al str u ct ur e i n o ur c urr e nt e x a m pl e is a Si er-
pi ns ki g as k et,  w hi c h c a n b e s e e n fr o m t h e ti m e- or d er e d
st a bili z er t a bl e a u.  T h e first m g e n er at ors i n t h e t a bl e a u

ar e t h e  m e as ur e d o p er at ors X (n )
1 .  T h er e aft er,  w e e xt e n d

t h e ti m e- or d er e d t a bl e a u b y o n e g e n er at or i n e a c h ti m e
st e p, a n d c a n f urt h er fi x t his g e n er at or s u c h t h at its c y cl e
l e n gt h —t h e n u m b er of u nit c ells b y  w hi c h it  m ust b e tr a ns-
l at e d b ef or e r et ur ni n g t o its elf —is  mi ni mi z e d.  At t = 1,

w e o bt ai n a f ull y tr a nsl ati o n-i n v ari a nt g e n er at or n X (n )
2 ,

wit h c y cl e l e n gt h 1.  As ti m e i n cr e as es, t h e  mi ni m u m
c y cl e l e n gt h i n cr e as es, a n d a p arti c ul ar c h oi c e of tr a nsl at es
of e a c h g e n er at or pr o d u c es a s p a c eti m e Si er pi ns ki g as-
k et i n t h e n o ni d e ntit y e ntri es of t h e t a bl e a u  m atri x.  M or e
cl os el y r el at e d t o t h e t o pi c of o p er at or s pr e a di n g a d dr ess e d
t hr o u g h o ut t his p a p er,  w e als o i d e ntif y t his Si er pi ns ki
g as k et i n t h e s pr e a di n g of l o c al p ert ur b ati o ns, d es cri b e d
n e xt.

B.  D a r k p e rt u r b ati o ns

T h e p ur e gr o u p d e fi n e d b y  E q. ( 8 0) c a n b e vi e w e d as
a n a bs or bi n g, or “ d ar k, ” st at e of t h e p uri fi c ati o n d y n a mi cs:
f or m = 2 k , a n y i niti al st a bili z er gr o u p  will e v ol v e t o t his
pr o d u ct gr o u p  wit hi n m ti m e st e ps.  M or e o v er,  w hil e t h e
st e a d y-st at e gr o u p f or m = 2 k i s  mi x e d,  E q. ( 8 0) d e fi n es
a st ati o n ar y gr o u p  wit hi n t his  mi x e d pl at e a u, i. e., it h as
p eri o d 1 u n d er t h e a cti o n of t h e cir c uit.  We c a n t h e n p er-
t ur b t his d ar k st at e i n v ari o us  w a ys a n d o bs er v e t h e fr a ct al
s pr e a di n g of t h e p ert ur b ati o n.  At ti m e t,  w e  m ar k t h e n t h

u nit c ell as d ar k if X (n )
2 i s c o nt ai n e d i n t h e gr o u p; ot h er-

wis e, it is  m ar k e d li g ht.  O n e c h oi c e of p ert ur b ati o n is a
l o c al p ert ur b ati o n  w h er e t h e e ntir e st at e is d ar k, e x c e pt f or
a c o nti g u o us r e gi o n of O (1 ) c ells.

As a n e x a m pl e, c o nsi d er a p ert ur b ati o n o n t h e ri g ht m ost

sit e, X (m )
2 → Z (m )

2 .  T his pr o d u c es a n ot h er pr o d u ct st a bi-
li z er gr o u p,  wit h a si n gl e li g ht c ell. I n t h e s u bs e q u e nt ti m e
e v ol uti o n, s h o w n i n Fi g. 2 3 , t h e f a mili ar Si er pi ns ki g as k et
a p p e ars i n t h e s p a c eti m e str u ct ur e of t h e s pr e a di n g “li g ht ”
c ells. I m m e di at el y aft er s pr e a di n g t hr o u g h t h e e ntir e s ys-
t e m, t h e li g ht is a n ni hil at e d at t = m , u p o n r et ur n t o t h e
a bs or bi n g st at e.

It s h o ul d b e e m p h asi z e d t h at  w hil e t h e s p a c eti m e
s pr e a di n g fr o m a n i niti all y l o c al p ert ur b ati o n is fr a ct al,
t his is a di ff er e nt fr a ct al fr o m t h at o bs er v e d i n t h e u nit ar y
cir c uits b el o n gi n g t o t his cl ass.  N a m el y,  w hil e o p er at or
s pr e a di n g i n t h e u nit ar y cir c uits is c h ar a ct eri z e d b y fr a ct al
di m e nsi o n d f

∼= 1. 9, t h e h y bri d cir c uit pr o d u c es Si er pi n-
s ki g as k ets,  wit h d f = l o g2 (3 ) = 1. 5 8 4 9 · · · , a n d a  m u c h
st ar k er as y m m etr y, as t h e li g ht sit es o nl y s pr e a d l eft fr o m
t h e i niti al p ert ur b ati o n.  T h e str o n g as y m m etr y is ti e d t o t h e
f a ct t h at pl a ci n g a  m e as ur e m e nt o n o d d sit es o nl y br e a ks
t h e l eft a n d ri g ht s y m m etr y  m or e str o n gl y t h a n d o es t h e
c h oi c e of di ff er e nt o n e-sit e g at es.
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n

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0
t

FI G. 2 3. P att er n of li g ht ( or a n g e) a n d d ar k ( bl a c k) u nit c ells,
f or m = 1 2 8 a n d a p ert ur b ati o n o n t h e ri g ht m ost c ell fr o m
X → Z .

I X.  DI S C U S SI O N

T his  w or k is t h e b e gi n ni n g of a n i n v esti g ati o n i nt o t h e
cr yst all o gr a p h y of q u a nt u m cir c uits, t h at is, t h e d es cri p-
ti o n of S T TI q u a nt u m cir c uits d e fi n e d o n l atti c es  wit h
v ar yi n g a m o u nts of s y m m etri es. J ust as r a n d o m n ess i n c er-
t ai n li mits i m b u es  m o d els of q u a nt u m  m a n y- b o d y p h ysi cs
wit h a n al yti c tr a ct a bilit y, at t h e ot h er e n d of t h e s p e ctr u m
cr yst alli n e q u a nt u m cir c uits ar e als o a m e n a bl e t o pr e cis e
st at e m e nts a b o ut o p er at or s pr e a di n g, e nt a n gl e m e nt gr o wt h,
a n d p uri fi c ati o n d y n a mi cs.  T h e a n al ysis b e c o m es p arti c u-
l arl y fri e n dl y  w h e n  w e r estri ct t o  Cli ff or d g at es, as  w e h a v e
d o n e i n t his  w or k, t h us all o wi n g o ur S T TI cir c uits t o b e
r e pr es e nt e d as  C Q C A  wit h u nit c ell a .  L e v er a gi n g t his f or-
m alis m,  w e cl assif y all d u al u nit ar y  Cli ff or d cir c uits  wit h
o n e g at e p er u nit c ell o n t h e s q u ar e l atti c e ( a = 2),  w hi c h
r o u g hl y s e p ar at e i nt o p eri o di c, gli d er, a n d fr a ct al cl ass es
li k e t h e a = 1  C Q C A st u di e d pr e vi o usl y. Stri ki n gl y,  w e
als o fi n d a cl ass of cir c uits, a r e pr es e nt ati v e of  w hi c h
is c o m p os e d b y a p pl yi n g t h e g at e iS W A P (R X [π / 2] ⊗
R X [π / 2] ) i n a bri c k w or k f as hi o n,  w hi c h p oss ess es t h e
f ull s y m m etr y of t h e s q u ar e l atti c e  w hil e als o a cti n g as a
“ g o o d s cr a m bl er ”  wit h n o nfr a ct al o p er at or s pr e a di n g.  We
m or e o v er e x a mi n e t h e e ff e ct of tr a nsl ati o n-i n v ari a nt  m e a-
s ur e m e nts o n s q u ar e-l atti c e  C Q C A, as  w ell as a n al y zi n g a
s u bs et of tri u nit ar y  Cli ff or d cir c uits o n t h e k a g o m e l atti c e.

T h e t w o  m ai n f e at ur es of t h e “ d e ns e g o o d s cr a m-
bli n g cl ass ” —s y m m etr y u n d er p oi nt- gr o u p tr a nsf or m a-
ti o ns a n d n o nfr a ct al o p er at or s pr e a di n g —s er v e as o v er-
ar c hi n g t h e m es of t his  w or k.  T h e l att er t h e m e p oi nts
t o o ur ai m t o bri n g t h e t o ols of cr yst all o gr a p h y  w ell
k n o w n t o c o n d e ns e d- m att er p h ysi cists t o b e ar o n t h e
st u d y of q u a nt u m cir c uits,  w hil e b uil di n g o n t h e c urr e nt

u n d erst a n di n g of d u al u nit ar y [ 2 8 ], tri u nit ar y [5 4 ], a n d,
br o a dl y,  m ulti dir e cti o n al- u nit ar y [ 8 3 ,8 4 ] g at es.  W h e n t h e
c o nstit u e nt g at es r e m ai n u nit ar y u n d er all p oi nt- gr o u p
tr a nsf or m ati o ns,  w e c a n t h e n as k h o w t h at tr a nsf or m e d
u nit ar y cir c uit r el at es t o t h e ori gi n al cir c uit.  A cir c uit
l eft i n v ari a nt u n d er a gi v e n tr a nsf or m ati o n is s ai d t o b e
str o n gl y “s elf- d u al, ” a n d o n t h e s q u ar e l atti c e, t h e d e ns e
g o o d s cr a m bli n g cir c uit is s elf- o ct a- u nit ar y —i n v ari a nt
u n d er all el e m e nts of t h e D 4 p oi nt gr o u p.  A br o a d q u es-
ti o n is h o w t h e pr es e n c e or a bs e n c e of c ert ai n p oi nt- gr o u p
s y m m etri es  m a nif ests i n t h e cir c uit d y n a mi cs, a n d  w h et h er
i m p osi n g t h es e s y m m etri es b e ars a n y r el ati o n t o d esir a bl e
c o di n g f e at ur es.  L eft-ri g ht r e fl e cti o n i n v ari a n c e cl e arl y
m a nif ests i n  w h et h er i niti all y r e fl e cti o n-s y m m etri c o p er-
at ors r e m ai n s o u n d er ti m e e v ol uti o n, b ut t h e i nt er pr et a-
ti o n of i n v ari a n c e u n d er ot h er p oi nt- gr o u p tr a nsf or m ati o ns,
s u c h as r ot ati o ns of t h e s p a c eti m e a x es, is l ess cl e ar.  O n e
o bs er v a bl e,  w hi c h is s e nsiti v e t o all p oi nt- gr o u p tr a nsf or-
m ati o ns, is t h e t w o- p oi nt f u n cti o n of o n e-sit e o p er at ors,
dis c uss e d i n  A p p e n di x A , b ut f or g o o d s cr a m bli n g cir-
c uits t h es e c orr el ati o ns ar e n o n v a nis hi n g o nl y at v er y e arl y
ti m es.  T h us, f oll o w- u p  w or k is n e e d e d t o i d e ntif y pr o b es
of s y m m etr y i n t h e l at e-ti m e d y n a mi cs of b ot h u nit ar y a n d
h y bri d cir c uits.

M e a n w hil e, fr a ct alit y i n o p er at or s pr e a di n g pr o vi d es
a n i m p ort a nt p oi nt of c o ntr ast b et w e e n r a n d o m q u a n-
t u m cir c uits, i n  w hi c h t h e o p er at ors b e c o m e s cr a m bl e d
a n d s pr e a d d e ns el y  wit hi n t h e li g ht c o n e, a n d  m ost g o o d
s cr a m bli n g  C Q C A,  w hi c h g e n er at e st at e e nt a n gl e m e nt
b ut  w h er e o p er at ors s pr e a d o nl y o n a s p a c eti m e r e gi o n
of fr a ct al di m e nsi o n d f < 2. I n t his  w or k,  w e i d e nti-
fi e d fr a ct al  m otifs i n g o o d s cr a m bli n g i S W A P - c or e  C Q C A
o n t h e s q u ar e a n d k a g o m e l atti c es a n d us e d t h e  mi n-
i m al p ol y n o mi al t o r el at e t h e m t o pr e vi o usl y st u di e d
a ut o m at a s u c h as t h e S D KI a ut o m at o n [ E q. ( 5 9)] a n d
Cli ff or d  E ast  m o d el [ E q. ( 6 3)].  We als o dis c o v er e d a
n e w cl ass of fr a ct al  C Q C A  wit h d f

∼= 1. 9 a n d as y m-
m etri c o p er at or s pr e a di n g. Fr a ct als aris e i n h y bri d S T TI
cir c uits as  w ell, as e x e m pli fi e d b y t h e Si er pi ns ki g as k et
i n t h e p uri fi c ati o n d y n a mi cs a n d r es p o ns e t o d ar k p er-
t ur b ati o ns  w h e n  m e as ur e m e nts ar e a d d e d t o a d f

∼= 1. 9
cir c uit. I n li g ht of t h e pr e v al e n c e of fr a ct als,  w hi c h r es ult
i n  w e a k er g o di cit y br e a ki n g of ot h er wis e c h a oti c  C Q C A
[7 1 ], t h e d e ns e g o o d s cr a m bli n g cl ass  wit h d f = 2 is
p arti c ul arl y i nt er esti n g. It a p pr o a c h es t h e s ort of  mi xi n g
b e h a vi or s e e n i n r a n d o m  Cli ff or d cir c uits, y et t h e u n d erl y-
i n g str u ct ur e of t h e cir c uit is still pr es e nt i n t h e n o n u ni-
f or mit y of P a uli stri n gs  wit hi n t h e b ul k of a s pr e a di n g
o p er at or a n d t h e li n e ar r e c urr e n c e ti m e o n fi nit e s yst e ms
wit h m = 2 k u nit c ells.  We di d n ot dis c o v er s u c h a n o nfr a c-
t al cl ass o n t h e k a g o m e l atti c e  w h e n  w e i m p os e t h e f ull D 6

s y m m etr y, b ut it r e m ai ns o p e n  w h et h er t h er e e xist n o nfr a c-
t al g o o d s cr a m bl ers i n k a g o m e cir c uits  wit h l ess s y m m etr y,
or i n ( D 6 - s y m m etri c) tri a n g ul ar l atti c e a ut o m at a c o nt ai ni n g
irr e d u ci bl e t hr e e- q u bit i nt er a cti o ns.

0 3 0 3 1 3- 2 7



S O M M E R S,  H U S E, a n d  G U L L A N S P R X  Q U A N T U M 4, 0 3 0 3 1 3 ( 2 0 2 3)

T h e q u esti o n of  w h et h er a n y l atti c es, b esi d es t h e s q u ar e
l atti c e, s u p p ort a n o nfr a ct al g o o d s cr a m bli n g cl ass is r el e-
v a nt t o a n a d diti o n al as p e ct of o ur  w or k, t h e a p pli c ati o n t o
q u a nt u m err or c orr e cti o n.  Ti m e e v ol uti o n u n d er a n S T TI
cir c uit st arti n g fr o m a tr a nsl ati o n-i n v ari a nt i niti al  mi x e d
st at e pr o d u c es a q u asi c y cli c st a bili z er c o d e, a n d  w hil e  w e
h a v e n ot y et d e v el o p e d o pti m al d e c o d ers f or r e alisti c n ois e
m o d els, t h e p ossi bl e utilit y of t h eir q u asi c y cli c str u ct ur e
f or d e c o di n g is o n e  m oti v ati o n f or t h e pr oj e ct of “ d er a n-
d o mi z ati o n ” e m b ar k e d u p o n i n t his  w or k.  A l ar g er fr a ct al
di m e nsi o n d o es n ot n e c ess aril y i m pl y t h e a bilit y t o e n c o d e
b ett er fi nit e-r at e c o d es, b ut i ns of ar as t h e s pr e a di n g of a n
i n di vi d u al l o c al P a uli pl a c es a b o u n d o n t h e a c hi e v a bl e
c o d e dist a n c e —t h e l o w est  w ei g ht of a l o gi c al r e pr es e nt a-
ti v e — a li n e ar c o d e dist a n c e c a n o nl y b e a c hi e v e d if t h er e
e xists a s e q u e n c e of ti m e sli c es a n d s yst e m si z es f or  w hi c h
l o c al o p er at ors s pr e a d t o a fi nit e fr a cti o n of t h e s yst e m.
W hil e  w e c a n n ot c o m p ut e t h e c o d e dist a n c e e ffi ci e ntl y, o n
t h e s q u ar e l atti c e, b ot h t h e d e ns e g o o d s cr a m bli n g cl ass
a n d t h e d f

∼= 1. 9 cl ass g e n er at e c o d es t h at ar e c o m p eti-
ti v e  wit h r a n d o m c o d es u n d er er as ur es f or c ert ai n s yst e m
si z es. F ut ur e  w or k is als o n e e d e d t o cl arif y t h e r el ati o n
b et w e e n c o nti g u o us c o d e l e n gt h a n d c o d e dist a n c e f or
fr a ct al a n d n o nfr a ct al a ut o m at a, as t h e n ai v e a p pr o a c h of
c h o osi n g a s n a ps h ot i n ti m e  wit h t h e  m a xi m al c o d e l e n gt h
t o d e fi n e o n e’s q u a nt u m- err or- c orr e cti n g c o d e c a n r es ult i n
s u b o pti m al c o d es ( Fi g. 1 4 ).

B e y o n d s p a c eti m e tr a nsl ati o n i n v ari a n c e, t h e cir c uits
c o nsi d er e d i n t his p a p er ar e r estri ct e d t o t h os e c o m pris e d
of d u al u nit ar y (s o t h e cir c uit pr o d u c e d b y a n y p oi nt- gr o u p
tr a nsf or m ati o n is als o u nit ar y),  Cli ff or d g at es ( all o wi n g
t h eir r e pr es e nt ati o n as  C Q C A).  Lifti n g d u al u nit arit y, t h e
s p a c eti m e d u al r e m ai ns a us ef ul c o nstr u ct e v e n  w h e n
t h e s p ati al e v ol uti o n is n o n u nit ar y.  M a p pi n g t o t h e s p a-
ti al dir e cti o n is b ot h a v al u a bl e a n al yti c al t o ol, e. g., f or
c o m p uti n g t h e s p e ctr al f or m f a ct or [ 1 0 9 – 1 1 1 ], a n d a n
ass et t o c ert ai n e x p eri m e nt al pr ot o c ols [ 1 1 2 ,1 1 3 ].  N o n-
tri vi al p h as es a n d p h as e tr a nsiti o ns i n t h e d u al c a n b e
r el at e d t o t h os e i n t h e u nit ar y cir c uit [1 1 4 ,1 1 5 ],  wit h
m e as ur e m e nt-i n d u c e d p h as e tr a nsiti o ns b ei n g j ust o n e
e x a m pl e [ 1 1 6 ].  Wit h t w o- q u bit  Cli ff or d g at es, t h e o nl y
i nt er a cti n g g at es t h at ar e n ot d u al u nit ar y ar e t h os e  wit h
a C N O T c or e, dis c uss e d bri e fl y i n S e c. VI F . S ur pris-
i n gl y, t h e fr a ct al cl ass es o n t h e k a g o m e l atti c e ( w hi c h ar e
s elf-tri u nit ar y) e x hi bit t h e s a m e Si er pi ns ki g as k et as t h e
b ar e C N O T a ut o m at o n o n t h e s q u ar e l atti c e ( w hi c h is n ot
e v e n d u al u nit ar y). F urt h er i n v esti g ati o n s h o ul d el u ci d at e
t his c o n n e cti o n. I n a d diti o n t o t his Si er pi ns ki fr a ct al cl ass,
a c o m pl et e cl assi fi c ati o n of all s q u ar e-l atti c e C N O T - c or e
a ut o m at a  wit h o n e g at e p er u nit c ell yi el ds s e v er al gli d er
cl ass es a n d a n S D KI-li k e cl ass, b ut a g ai n, n o d e ns e g o o d
s cr a m bli n g cl ass.

We n o w el a b or at e o n s o m e f ut ur e a v e n u es f or r es e ar c h.
W hil e t h e d y n a mi cs of  Cli ff or d cir c uits c a n b e q uit e

ri c h, t h e y ar e n ot u ni v ers al, a n d a n at ur al n e xt st e p  w o ul d

t h er ef or e b e t o g o b e y o n d  Cli ff or d.  A first st e p i n t his dir e c-
ti o n is t o c o nsi d er  m at c h g at e (fr e e f er mi o n) cir c uits,  w hi c h
ar e als o cl assi c all y si m ul at a bl e [ 9 5 ,1 1 7 ].  T h e s u bs et of fr e e
f er mi o n cir c uits,  w hi c h ar e als o  Cli ff or d ar e dis c uss e d i n
A p p e n di x B .

I n a d diti o n,  w e c a n g e n er ali z e b e y o n d t h e s q u ar e a n d
k a g o m e l atti c es, b ot h i n 1 + 1 D a n d i n hi g h er di m e nsi o ns.
H y p er b oli c l atti c es, c o nsi d er e d eit h er as 1 + 1 D s p a c eti m e
or as t h e 2 D s p a c e of a 2 + 1 D cir c uit, o ff er p arti c ul arl y ri c h
cr yst all o gr a p h y [ 1 1 8 ,1 1 9 ] r e ali z a bl e i n e x p eri m e nt [1 2 0 ].
Q u a nt u m cir c uits c a n als o b e d e fi n e d o n g e n er al gr a p hs,
i n cl u di n g tr e es [1 2 1 ,1 2 2 ],  w hi c h ar e a m e n a bl e t o t e ns or
n et w or k  m et h o ds f or a n al yti c c o m p ut ati o n of t h e c o d e dis-
t a n c e a n d  m or e g e n er al n ois e  m o d els [1 2 3 ]. Pr eli mi n ar y
i n v esti g ati o n of tr e e cir c uits i n  w hi c h e v er y g at e is i d e nti-
c al r e v e als pr o misi n g cl ass es of cir c uits f or  w hi c h t h e c o d e
dist a n c e gr o ws e x p o n e nti all y i n t h e tr e e d e pt h [ 6 9 ].

M o vi n g t o 2 + 1 D  m a k es a v ail a bl e a gr e at er v ari et y of
s y m m etr y gr o u ps  w hil e still b ei n g r el e v a nt t o n e ar-t er m
q u a nt u m c o m p uti n g d e vi c es [ 1 2 4 – 1 2 8 ]; Fl o q u et c o d es
s u c h as t h e h o n e y c o m b c o d e ar e o n e e x a m pl e [ 1 2 9 – 1 3 3 ].
I n t his  w or k,  w e h a v e r estri ct e d o urs el v es t o l atti c es  wit h
c o or di n ati o n n u m b er 4, s u c h t h at e a c h v ert e x is a S W A P or
iS W A P c or e, b ut t h e br o a d pr oj e ct of cl assif yi n g S T TI cir-
c uits a n d t h eir s y m m etri es c a n als o b e a p pli e d t o l atti c es
wit h hi g h er c o or di n ati o n n u m b er. It  w o ul d b e i nt er est-
i n g t o c o n n e ct t h es e cr yst all o gr a p hi c cl assi fi c ati o ns t o t h e
br o a d er t o p ol o gi c al a n d gr o u p t h e or eti c c h ar a ct eri z ati o n of
( n o n)tri vi al  Q C A i n hi g h er di m e nsi o ns [1 3 4 – 1 3 8 ].  Q C A
c a n b e us e d t o d e fi n e s u bs yst e m s y m m etr y- pr ot e ct e d t o p o-
l o gi c al ( S P T) p h as es, c h ar a ct eri z e d b y li n eli k e a n d fr a ct al
s y m m etri es f or t h e a = 1 gli d er a n d fr a ct al cl ass es, r es p e c-
ti v el y [7 0 ].  H o w, t h e n, s h o ul d  w e i nt er pr et t h e p h as e
d e fi n e d b y o ur n o nfr a ct al g o o d s cr a m bli n g cl ass, a n d  mi g ht
it b e us ef ul as a r es o ur c e st at e f or u ni v ers al  m e as ur e m e nt-
b as e d q u a nt u m c o m p ut ati o n [ 7 0 ,1 3 9 ] ?

P ossi biliti es als o a b o u n d  w h e n  w e i n cr e as e t h e l o c al
Hil b ert-s p a c e di m e nsi o n q .  T w o- q u dit g at es  wit h q ≥ 3
c a n b e n ot o nl y d u al u nit ar y, b ut als o u nit ar y al o n g t h e
di a g o n al,  m a ki n g t h e m “ p erf e ct t e ns ors ”  wit h  m a xi m al
e nt a n gl e m e nt p o w er [ 3 2 ,3 4 ,5 3 ]. I n t h e o p er at or-st at e c or-
r es p o n d e n c e, t h es e o p er at ors ar e a bs ol ut el y  m a xi m all y
e nt a n gl e d ( A M E) st at es,  w hi c h ar e  m a xi m all y e nt a n gl e d
wit h r es p e ct t o all bi p artiti o ns of t h e l e gs [ 1 4 0 ].  T h e
s y m pl e cti c c ell ul ar a ut o m at o n f or m alis m c a n b e us e d f or
g e n er al ( c o m p osit e) q , s o  w e c a n als o t est  w h et h er t h e
“ w as hi n g o ut ” of fr a ct al str u ct ur e o bs er v e d f or t h e a = 1
C Q C A i n t h e li mit of l ar g e q i n  R ef. [7 1 ] is als o f o u n d f or
cr yst alli n e cir c uits  wit h a > 1.

T h e r es e ar c h dir e cti o ns f or h y bri d S T TI cir c uits,  wit h
or  wit h o ut d u al u nit arit y of t h e g at es, ar e als o n u m er-
o us.  E nl ar gi n g t h e u nit c ell t o r e d u c e t h e d e nsit y of
m e as ur e m e nts all o ws f or cir c uits  wit h a  mi x e d, v ol u m e-
l a w- e nt a n gl e d st e a d y-st at e gr o u p  wit h li n e ar c o d e l e n gt h
a n d hi g h p erf or m a n c e u n d er er as ur e err ors, of i nt er est
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f or q u a nt u m err or c orr e cti o n [6 9 ].  T o d e v el o p a n a n al yti c
u n d erst a n di n g of t h es e h y bri d q u a nt u m cir c uits e n r o ut e
t o t h e st e a d y st at e, it  w o ul d b e us ef ul t o a d a pt t h e t e c h-
ni q u es of c ell ul ar a ut o m at a t o n o n u nit ar y d y n a mi cs, a n
ar e a of r es e ar c h still i n its i nf a n c y [ 1 4 1 – 1 4 3 ]. I n c o nsi d er-
i n g cir c uits  wit h  m e as ur e m e nts a n d/ or n ois e, it  w o ul d als o
b e fr uitf ul t o l e v er a g e r e c e nt  w or k g e n er ali zi n g d u al u ni-
t ar y cir c uits t o t hr e e- a n d f o ur- w a y- u nit al o p e n q u a nt u m
c h a n n els [ 1 4 4 ].

T h e cir c uits i n t his p a p er ar e n ois el ess.  A d a pti n g t e c h-
ni q u es fr o m f a ult t ol er a n c e t o eit h er  m a k e t h e cir c uits
r o b ust t o n ois e or t h e c o d es g e n er at e d b y t h e cir c uit us e-
f ul f or q u a nt u m c o m p ut ati o n is a n i nt er esti n g dir e cti o n of
r es e ar c h.  As a n i nt er m e di at e g o al, o n e c a n d esi g n q u a nt u m
c ell ul ar a ut o m at a t h at ar e r o b ust t o s m all a m o u nts of r a n-
d o m n ess i n t h e c h oi c e of  Cli ff or d g at es or  m e as ur e m e nt
l o c ati o ns. P arti al pr o gr ess i n t his dir e cti o n h as r e c e ntl y
b e e n r e p ort e d f or t w o- di m e nsi o n al Fl o q u et c o d es [ 1 4 5 ].
F a ult-t ol er a nt c o nstr u cti o ns f or r eli a bl e c o m p ut ati o n  wit h
cl assi c al c ell ul ar a ut o m at a h a v e a ri c h hist or y [ 1 4 6 ].

Fi n all y, a n ot h er  w a y t o  m a k e n o nr a n d o m cir c uits is b y
a d di n g  m e as ur e m e nts or d ef or mi n g g at es i n a d et er mi nis-
ti c, q u asi p eri o di c m a n n er.  T his  m oti v at e d o ur r e c e nt  w or k
o n a  m o d el of s elf- d u al q u asi p eri o di c p er c ol ati o n o n t h e
s q u ar e l atti c e [ 1 4 7 ].  W h e n q u asi p eri o di c pr oj e cti v e  m e a-
s ur e m e nts ar e a d d e d t o a g o o d s cr a m bli n g d u al u nit ar y
cir c uit,  w e fi n d t h at t h er e is a  m e as ur e m e nt-i n d u c e d p h as e
tr a nsiti o n,  w hi c h f alls o utsi d e t h e u ni v ers alit y cl ass of t h e
r a n d o m  Cli ff or d tr a nsiti o n [6 9 ,7 3 ,1 4 8 – 1 5 0 ].

D at a o n i S W A P - c or e a ut o m at a a n d r e c urr e n c e ti m es is
a v ail a bl e at  R ef. [ 1 5 1 ].  A d diti o n al d at a is a v ail a bl e u p o n
r e q u est.

S el e ct c o d e us e d f or t his st u d y, i n cl u di n g a d e m o J u p yt er
n ot e b o o k, is a v ail a bl e at  R ef. [ 1 5 1 ]. F urt h er c o d e is a v ail-
a bl e u p o n r e q u est.

A C K N O W L E D G M E N T S

We  wis h t o a c k n o wl e d g e h el pf ul c o n v ers ati o ns  wit h
Ar pit  D u a, S ar a n g  G o p al a kris h n a n, St ef a n  Kr ast a n o v, a n d
J o n  N els o n.  We t h a n k J e o n g w a n  H a a h a n d  M att h e w  H ast-
i n gs f or h el pf ul c o m m e nts o n t h e p a p er, a n d  M att e o
I p p oliti f or p oi nti n g o ut t h e r el ati o n b et w e e n t h e k a g o m e
a n d tri a n g ul ar l atti c e c o nstr u cti o ns of tri u nit ar y cir c uits.
We als o cr e dit S u h ail  R at h er  wit h al erti n g us t o t h e v a n-
is hi n g c orr el ati o ns b et w e e n o n e-sit e o p er at ors f or t ≥ 1
i n t h e g o o d s cr a m bli n g s q u ar e-l atti c e cir c uits.  G. M. S. is
s u p p ort e d b y t h e  D e p art m e nt of  D ef e ns e ( D o D) t hr o u g h
t h e  N ati o n al  D ef e ns e S ci e n c e  &  E n gi n e eri n g  Gr a d u at e
( N D S E G) F ell o ws hi p.  We als o a c k n o wl e d g e s u p p ort fr o m
t h e  N ati o n al S ci e n c e F o u n d ati o n ( Q L CI  Gr a nt  O M A-
2 1 2 0 7 5 7).  N u m eri c al  w or k  w as c o m pl et e d usi n g c o m p u-
t ati o n al r es o ur c es  m a n a g e d a n d s u p p ort e d b y Pri n c et o n
R es e ar c h  C o m p uti n g, a c o ns orti u m of gr o u ps i n cl u di n g t h e

Pri n c et o n I nstit ut e f or  C o m p ut ati o n al S ci e n c e a n d  E n gi-
n e eri n g ( PI C S ci E) a n d t h e  O ffi c e of I nf or m ati o n  T e c h n ol-
o g y’s  Hi g h P erf or m a n c e  C o m p uti n g  C e nt er a n d  Vis u ali z a-
ti o n  L a b or at or y at Pri n c et o n  U ni v ersit y.  T h e o p e n-s o ur c e
Q u a n t u m C l i f f o r d . j l p a c k a g e  w as us e d t o si m ul at e
Cli ff or d cir c uits [ 1 5 2 ].

A P P E N DI X  A:  T W O- P OI N T  C O R R E L A TI O N S

I n t his  A p p e n di x,  w e  m or e c ar ef ull y d e fi n e t h e t w o- p oi nt
c orr el ati o n f u n cti o ns of o n e-sit e o bs er v a bl es at i n fi nit e
t e m p er at ur e a n d dis c uss t h eir c o n n e cti o n t o str o n g a n d
w e a k s y m m etri es of cr yst alli n e cir c uits.  W hil e  w e f o c us
o n d u al u nit ar y bri c k w or k cir c uits h er e, t h e br o a d c o n c e pts
g e n er ali z e t o tri u nit ar y cir c uits a n d b e y o n d.

1.  G e n e r al f o r m alis m

Fi g ur e 2 4 s h o ws a cl os e u p of t h e s q u ar e-l atti c e cir c uit.
E a c h u nit c ell is l a b el e d b y a ti m e t,  w h er e t = 1 c or-
r es p o n ds t o t w o l a y ers ( o n e f ull ti m e st e p), a n d a s p ati al
c o or di n at e y .  Wit hi n e a c h u nit c ell ar e f o ur disti n ct s p a c e-
ti m e l o c ati o ns, τ μ = ± 1 / 2 ± .  H er e τ = − 1 / 2  m ar ks t h e
ti m e b ef or e t h e o n e-sit e g at es, τ = + 1 / 2  m ar ks t h e ti m e
aft er t h e o n e-sit e g at es b ut b ef or e t h e c or e, a n d μ = ± li e
al o n g t h e di a g o n als  wit h sl o p e ± 1 [ 1 5 3 ].

FI G. 2 4. S p a c eti m e l o c ati o ns i n fi n er d et ail o n t h e bri c k w or k
cir c uit of Fi g. 2 .  D as h e d li n es i n di c at e u nit c ells of t h e r ot at e d
s q u ar e l atti c e, l a b el e d b y a s p ati al c o or di n at e y a n d ti m e c o or di-
n at e t.  Wit hi n e a c h u nit c ell ar e f o ur disti n ct s p a c eti m e l o c ati o ns:
− 1 / 2 ± b ef or e t h e o n e-sit e g at es, a n d + 1 / 2 ± aft er t h e o n e-sit e
g at es b ut b ef or e t h e t w o-sit e c or e, ass o ci at e d  wit h t h e ± li g ht
c o n es.  Bl u e b o x es i n di c at e a p air of s p a c eti m e l o c ati o ns f or
w hi c h all c orr el ati o ns v a nis h i n g o o d s cr a m bli n g i S W A P - c or e
cir c uits [ E q. ( A 1 0)].
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N o w c o nsi d er t h e c orr el ati o n f u n cti o ns:

D
α β
μ μ (t, t , y , y , τ , τ ) = σ α (t, y , τ μ ) σβ (t , y , τ μ ) . ( A 1)

H er e {σ α }
q 2 − 1
α = 0 i s a c o m pl et e ort h o n or m al b asis of o p er at ors

o n q - di m e nsi o n al q u dits,  Tr( σ
†
α σ β ) = q δ α β ,  w h er e σ 0 = 1

a n d t h e r e m ai ni n g q 2 − 1 o p er at ors ar e tr a c el ess [ 2 8 ]. I n
o ur c as e, q = 2, s o σ 1 , σ 2 , σ 3 ar e t h e us u al P a uli o p er at ors
X , Y , Z .  As h as b e e n t h e c o n v e nti o n t hr o u g h o ut t his p a p er,
ti m e e v ol uti o n is i n t h e S c hr o di n g er pi ct ur e.  We  w or k at
i n fi nit e t e m p er at ur e, i. e., t h e e x p e ct ati o n v al u e is t a k e n i n
t h e f ull y  mi x e d st at e ρ = 1 / q L w h er e L is t h e n u m b er of
q u dits.

F or a d u al u nit ar y cir c uit, t h e c orr el ati o ns ar e n o n v a n-
is hi n g o nl y f or [2 8 ]

μ = μ , t − t = μ( y − y ), ( A 2)

i. e., f or o p er at ors al o n g t h e s a m e di a g o n al.
I ns erti n g  E q. ( A 2) i nt o  E q. ( A 1) a n d e x pl oiti n g tr a nsl a-

ti o n i n v ari a n c e,  w e arri v e at

D
α β
μ μ (t, t , y , y , τ , τ ) ≡ δ μ μ δ t − t,μ( y − y ) C

α β
μ (t − t, τ , τ ),

( A 3)

w h er e

C α β
μ (t , τ , τ ) = σ α (0, 0, τ μ ) σβ (t , μ t , τ μ ) . ( A 4)

T his e x pr essi o n di ff ers fr o m  w or ks s u c h as  R ef. [ 2 8 ] i n
t w o r es p e cts: it us es t h e S c hr o di n g er pi ct ur e r at h er t h a n
t h e  H eis e n b er g pi ct ur e, a n d it disti n g uis h es b et w e e n t w o
ti m es  wit h e a c h l a y er, l a b el e d b y τ , τ .

L et us d e n ot e t h e bl u e a n d r e d g at es al o n g t h e di a g o-
n als b y v + , v − , r es p e cti v el y, a n d t h e t w o-sit e c or e b y U c or e .
T h e n  E q. ( A 4) c a n b e d e c o m p os e d i nt o t h e f oll o wi n g t w o
f u n cti o ns:

C
α β
± 0, −

1

2
,
1

2
=

1

q
Tr[ σ α ( v± σ β v

†
± )], ( A 5 a)

C
α β
±

1

2
,
1

2
, −

1

2
=

1

q
Tr[ σ α M ± ( σβ ; U c or e )], ( A 5 b)

w h er e t h e + a n d − q u a nt u m c h a n n els ar e [ 2 8 ]

M + ( σ ; U ) =
1

q
Tr 1 [U ( σ ⊗ 1 )U † ], ( A 6 a)

M − ( σ ; U ) =
1

q
Tr 2 [U (1 ⊗ σ ) U † ]. ( A 6 b)

As is st a n d ar d i n t h e lit er at ur e,  w e c a n e n c o d e t h e c orr el a-
ti o ns aft er a n i nt e g er n u m b er of l a y ers of t h e bri c k w or k

cir c uit  wit h U = U c or e ( v + ⊗ v − ) i n t h e p air of q 2 × q 2

m atri c es [ 2 8 ,3 2 ,5 4 ]:

M α γ
± [U ] ≡

1

q
Tr[ σ α M ± ( σγ ; U )] = C

α γ
±

1

2
, −

1

2
, −

1

2

=
β

C
α β
± 0, −

1

2
,
1

2
C

β γ
±

1

2
,
1

2
, −

1

2
.

( A 7)

B ot h c h a n n els pr es er v e t h e i d e ntit y o p er at or, i. e.,
M ± ( σ0 ; U ) = σ 0 .  T h e r e m ai ni n g 2(q 2 − 1 ) n o ntri vi al

ei g e n v al u es {λ i}
2 (q 2 − 1 )
i= 1 of M ± d et er mi n e  w h et h er t h e ass o-

ci at e d cir c uit is ( 1) n o ni nt er a cti n g ( all {λ } ar e 1, all c orr e-
l ati o ns ar e c o nst a nt), ( 2) n o n er g o di c (n u nit ei g e n v al u es,
w h er e 1 ≤ n < 2 (q 2 − 1 ), s o s o m e c orr el ati o ns ar e c o n-
st a nt), ( 3) er g o di c b ut n o n mi xi n g ( n o u nit ei g e n v al u es, b ut
at l e ast o n e h as |λ | = 1, r es ulti n g i n p ersist e nt os cill ati o ns
b ut v a nis hi n g of ti m e- a v er a g e d c orr el ati o ns at l ar g e t), a n d
( 4) er g o di c a n d  mi xi n g ( all |λ | < 1, s o c orr el ati o ns v a n-
is h at l ar g e t e v e n b ef or e ti m e- a v er a gi n g) [ 2 8 ,5 4 ].  T o t his
hi er ar c h y,  R ef. [ 3 2 ] a d ds a s p e ci al c as e of ( 4), q u a nt u m
B er n o ulli cir c uits, f or  w hi c h M ± i s t h e p erf e ctl y d e p ol ar-
i zi n g c h a n n el ( di a g o n ali z a bl e, a n d all n o ntri vi al ei g e n v al-
u es ar e z er o).  T his r e q uir es U t o b e a p erf e ct t e ns or,  w hi c h
f or t w o- q u dit g at es is o nl y p ossi bl e  w h e n q > 2.

2. S y m m et ri es

If t h e cir c uit is str o n gl y s elf- d u al u n d er a gi v e n p oi nt-
gr o u p tr a nsf or m ati o n, t h e n t h e c orr el ati o n f u n cti o ns  m ust
als o b e i n v ari a nt i n t h e f oll o wi n g s e ns e:

( 1)  L eft or ri g ht r e fl e cti o n: C
α β
+ (t, τ , τ ) = C

α β
− (t, τ , τ ).

( 2)  Ti m e r e v ers al: C
α β
± (t, τ , τ ) = C

α̃ β̃
∓ (− t, − τ , − τ ).

( 3) S y m m etr y u n d er r e fl e cti o n a b o ut

( a) + di a g o n al: C
α β
− (t, τ , τ ) = C

α̃ β̃
− (− t, − τ , − τ ).

( b) − di a g o n al: C
α β
+ (t, τ , τ ) = C

α̃ β̃
+ (− t, − τ , − τ ).

( 4) S y m m etr y u n d er i n v ersi o n: b ot h ( 3 a) a n d ( 3 b).
( 5) S y m m etr y u n d er π / 2 r ot ati o n: b ot h ( 1) a n d ( 2).

H er e t h e til d e i n di c at es tr a ns p ositi o n of t h e o p er at or b asis:

σ α̃ = σ T
α . ( A 8)

T h at is, if t h e p oi nt- gr o u p tr a nsf or m ati o n c h a n g es t h e si g n
of ti m e al o n g t h e gi v e n di a g o n al, t h e n  w e  m ust als o r e v ers e
ti m e i n t h e b asis of o p er at ors,  w hi c h c orr es p o n ds t o t a ki n g
t h e tr a ns p os e.

S o m e r e m ar ks ar e i n or d er.
First, n ot s ur prisi n gl y, t h e c orr el ati o ns al o n g t h e +

di a g o n al d o n ot d e p e n d o n v − , a n d vi c e v ers a.  O n e c o n-
s e q u e n c e of t his is t h at, i n t h e i S W A P - c or e cir c uits, t h e
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e xist e n c e of gli d ers  wit h v el o cit y + 1 a n d − 1 d e p e n ds o nl y
o n t h e o n e-sit e g at es v + a n d v − , r es p e cti v el y.

S e c o n d, si n c e  w e disti n g uis h b et w e e n τ = − 1 / 2 a n d
τ = + 1 / 2  wit hi n e a c h l a y er, i n or d er t o g u ar a nt e e t h e
e q u alit y of c ert ai n c orr el ati o n f u n cti o ns  w e r e q uir e t h e
o n e-sit e g at es a n d c or e t o b e i n di vi d u all y i n v ari a nt.  E q u al-
it y f or t = 1 / 2, τ = 1 / 2, τ = − 1 / 2 i m p os es s y m m etr y
o n t h e c or e,  w hil e e q u alit y f or t = 0, τ = − 1 / 2, τ = 1 / 2
i m p os es s y m m etr y o n t h e o n e-sit e g at es. If t h e cir c uit is
o nl y  w e a kl y s elf- d u al, t h e n t h e c orr el ati o ns ar e i n v ari a nt
u p t o a c h a n g e of b asis, a n d t h e r e q uir e d c h a n g e of b asis
c a n d e p e n d o n τ a n d τ .

3.  C o r r el ati o ns i n i S W A P - c o r e a ut o m at a

S p e ci ali zi n g t o  Cli ff or d g at es, t h e t w o- p oi nt c orr el ati o ns
of o n e-sit e o p er at ors c a n t a k e o nl y t hr e e v al u es: − 1, 0, or 1.
F or t h e i S W A P - c or e  C Q C A st u di e d i n S e c. VI , t h e q u a nt u m
c h a n n els c orr es p o n di n g t o U c or e = iS W A P ar e  m a nif estl y
s y m m etri c:

M + [iS W A P ] =

⎛

⎜
⎜
⎜
⎝

1 0
0 0

0
0 0 0

0 1

⎞

⎟
⎟
⎟
⎠

= M − [iS W A P ]

( A 9)

T his is di a g o n ali z a bl e, a n d t h e t w o n o ntri vi al n o n z er o
ei g e n v al u es ar e t h e Z gli d ers dis c uss e d i n S e c. VI  C .

I n t h e  m ai n t e xt,  w e cl ai m e d t h at t h e g o o d s cr a m-
bli n g cl ass es h a v e v a nis hi n g c orr el ati o ns f or t ≥ 1.  T h e
e x a ct st at e m e nt is t h at f or t h es e cir c uits, f or a n y o n e-sit e
o p er at ors σ α a n d σ β at s p a c eti m e l o c ati o ns al o n g t h e di a g-
o n al  wit h  m or e t h a n o n e i S W A P c or e b et w e e n t h e m ( a n d
h e n c e at l e ast o n e i nt er v e ni n g o n e-sit e g at e), t h e c orr e-
l ati o n b et w e e n t h e m is z er o.  A p air of s u c h l o c ati o ns is
i n di c at e d  wit h bl u e b o x es i n Fi g. 2 4 .  T o  wit,

C
α γ
± (1, 1 / 2, − 1 / 2 ) = M α β

± [iS W A P ]M β γ
± [U ]

=

⎛

⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠ = | 0 0 | ( A 1 0)

w h er e U = iS W A P ( v+ ⊗ v − ).  T his is t h e c o m pl et el y d e p o-
l ari zi n g c h a n n el.  As n ot e d i n t h e  m ai n t e xt, it is i m p ossi bl e
f or o ur cir c uits t o s atisf y t h e str o n g er c o n diti o n M ± [U ] =
|0 0 |, b e c a us e t his  w o ul d i n di c at e t h at U is a p erf e ct t e n-
s or [ 3 2 ]. I nst e a d, M ± [U ] ar e n o n di a g o n ali z a bl e: f or e a c h
c h a n n el, t h er e is o n e p air α = β s u c h t h at M [U ]α β = ± 1.

As a n e x a m pl e, c o nsi d er t h e r e pr es e nt ati v e cir c uit of t h e
d e ns e g o o d s cr a m bli n g cl ass [ E q. ( 3)]. Fr o m  E q. ( A 5 a) w e

c a n r e a d o ff

C ± 0, −
1

2
,
1

2
=

⎛

⎜
⎜
⎜
⎝

1 0
0 1

0
0 0 1

− 1 0

⎞

⎟
⎟
⎟
⎠

. ( A 1 1)

T h e s y m m etr y u n d er l eft a n d ri g ht r e fl e cti o n is  m a nif est,
w hil e ti m e r e v ers al a n d s elf- d u alit y ar e  m or e s u btl e, si n c e
σ T

2 = − σ 2 .
T h e n, aft er t h e i S W A P c or e,

M ± [U ] =

⎛

⎜
⎜
⎜
⎝

1 0
0 0

0
0 0 1

0 0

⎞

⎟
⎟
⎟
⎠

. ( A 1 2)

N ot e t h at t h e o nl y s ur vi vi n g n o ntri vi al c orr el ati o n aft er o n e
l a y er is

σ 2 (0, 0, − 1 / 2 ± ) σ3 (1 / 2, 1 / 2, − 1 / 2 ± ) = 1. ( A 1 3)

T h at is, Y (1 )
1 → Z (1 )

2 aft er o n e f ull l a y er,  w hil e all ot h er o n e-

sit e P a ulis s pr e a d t o t w o sit es. Z (1 )
2 t h e n s pr e a ds t o t w o sit es

i n t h e n e xt l a y er, h e n c e t h e v a nis hi n g of all n o ntri vi al t w o-
p oi nt c orr el ati o ns of o n e-sit e o p er at ors.

A P P E N DI X  B:  F R E E  F E R MI O N  CI R C UI T S

I n t his  A p p e n di x,  w e r e vi e w  m at c h g at e cir c uits a n d t h eir
m a p pi n g t o fr e e f er mi o ns, t h e n s p e ci ali z e t o fr e e f er mi o n
tr a nsl ati o n-i n v ari a nt  Cli ff or d cir c uits a n d dr a w c o n n e c-
ti o ns t o  C Q C A gli d er cl ass es, b ot h  wit h a n d  wit h o ut d u al
u nit arit y.

1.  Cl assi c al si m ul ati o n of  m at c h g at e ci r c uits

M at c h g at e cir c uits ar e c o m p os e d of n e ar est- n ei g h b or
g at es of t h e f or m [ 9 5 ]:

U = e iφ

⎛

⎜
⎜
⎜
⎜
⎝

U (1 )
1 1 0 0 U (1 )

1 2

0 U (2 )
1 1 U (2 )

1 2 0

0 U (2 )
2 1 U (2 )

2 1 0

U (1 )
2 1 0 0 U (1 )

2 2

⎞

⎟
⎟
⎟
⎟
⎠

, ( B 1)

w h er e U (1 ) , U (2 ) ∈ S U (2 ), a n d φ is a n ar bitr ar y p h as e.
L o os el y s p e a ki n g, cir c uits of t his f or m c a n b e cl assi c all y
si m ul at e d i n p ol y n o mi al ti m e, a st at e m e nt t h at c a n t a k e o n
di ff er e nt  m e a ni n gs. I n  R ef. [ 9 5 ], it is pr o v e n t h at, gi v e n a n
i niti al st at e i n t h e c o m p ut ati o n al b asis, t h e pr o b a bilit y dis-
tri b uti o n of  m e as ur e m e nt o ut c o m es o n a n y s u bs yst e m ( o n e
or  m or e q u bits) c a n b e e ffi ci e ntl y c o m p ut e d.  R ef er e n c e
[1 5 4 ] pr o v es e ffi ci e nt cl assi c al c o m p ut ati o n of a sli g htl y
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di ff er e nt q u a ntit y: t h e pr o b a bilit y of a  m e as ur e m e nt o ut-
c o m e o n o n e q u bit, gi v e n a n y i niti al pr o d u ct st at e.  T h e
cir c uits i n q u esti o n c a n b e s u p pl e m e nt e d b y s p e ci al g at es
o n t h e first t w o q u bits o nl y [ 1 1 7 ], cl assi c al c o n diti o ni n g o n
pr oj e cti v e  m e as ur e m e nts i n t h e c o m p ut ati o n al b asis [ 9 5 ],
a n d c o nj u g ati o n b y  Cli ff or d g at es [ 1 5 4 ],  w hil e pr es er vi n g
cl assi c al si m ul at a bilit y.  O n t h e ot h er h a n d, j ust b y a d di n g
a S W A P g at e, or b y a d di n g ar bitr ar y si n gl e- q u bit g at es, t h e
cir c uits b e c o m e u ni v ers al f or q u a nt u m c o m p ut ati o n [ 9 5 ].

F o c usi n g o n n e ar est- n ei g h b or g at es of t h e f or m  E q.
( B 1), e ffi ci e nt cl assi c al si m ul ati o n r ests o n t h e a bilit y t o
e x pr ess U as e v ol uti o n u n d er a fr e e f er mi o n  H a milt o ni a n:

U = e iφ e i(H 1 + H 2 + H 3 ) , (B 2 )

w h er e

H 1 = α 1 ZI + β 1 I Z = 2 ( α1 c
†
1 c 1 + c

†
2 c 2 ), ( B 3 a)

H 2 = α 2 X X + β 2 Y Y

= α 2 (c
†
1 − c 1 )(c

†
2 + c 2 ) − β 2 (c

†
1 + c 1 )(c

†
2 − c 2 ),

( B 3 b)

H 3 = α 3 X Y + β 3 Y X

= − iα 3 (c
†
1 − c 1 )(c

†
2 − c 2 ) − iβ 3 (c

†
1 + c 1 )(c

†
2 + c 2 ),

( B 3 c)

wit h c i, c
†
i t h e f er mi o ni c cr e ati o n a n d a n ni hil ati o n o p er a-

t ors, o bt ai n e d vi a a J or d a n- Wi g n er tr a nsf or m ati o n [9 5 ].

2.  F r e e f e r mi o n ( C) Q C A

W h e n n e ar est- n ei g h b or g at es of t h e f or m  E q. ( B 1) ar e
arr a n g e d o n a cr yst alli n e l atti c e, t h e r es ulti n g cir c uits ar e
l ess i nt er esti n g t h a n t h e “ g o o d s cr a m bl ers ” dis c uss e d i n
t h e  m ai n t e xt, b e c a us e t h e y c a n b e c ast i n t er ms of n o ni n-
t er a cti n g f er mi o ns.  N e v ert h el ess, t h e y c a n e x hi bit n o ntri v-
i al t o p ol o gi c al p h as es,  w hi c h c a n b e cl assi fi e d a c c or di n g
t o Fl o q u et b a n d t h e or y [1 5 5 – 1 5 7 ].  T o o ur k n o wl e d g e,
it r e m ai ns a n o p e n q u esti o n  w hi c h of t h e t e n Fl o q u et
t o p ol o gi c al cl ass es [1 5 5 ] —t h e Fl o q u et v ersi o ns of t h e
Altl a n d- Zir n b a u er cl ass es f or ti m e-i n d e p e n d e nt  H a milt o-
ni a ns [ 1 5 8 ,1 5 9 ] — c a n b e r e ali z e d i n i n fi nit e s yst e ms  wit h
n e ar est- n ei g h b or g at es a n d a fi nit e Fl o q u et p eri o d [ 1 6 0 ].

W hil e fr e e f er mi o n g at es  w er e o bt ai n e d fr o m a J or d a n-
Wi g n er tr a nsf or m ati o n i n t h e pr e vi o us s u bs e cti o n,  w e
c a n als o st art fr o m f er mi o ns a n d d e fi n e a q u a nt u m c el-
l ul ar a ut o m at o n i n t er ms of h o w it tr a nsf or ms t h e cr e-
ati o n a n d a n ni hil ati o n o p er at ors ( or, e q ui v al e ntl y,  M aj o-

r a n a f er mi o ns s atisf yi n g a i = a
†
i ) [4 9 ]. I n t his c o nt e xt,

a q u asi-fr e e-f er mi o ni c  Q C A is o n e t h at a cts as a li n e ar
tr a nsf or m ati o n o n t h e  M aj or a n a o p er at ors, i. e., tr a nsf or m-
i n g e a c h  M aj or a n a f er mi o n i nt o a li n e ar c o m bi n ati o n of
M aj or a n as [ 1 0 2 ].

R estri cti n g t o  Cli ff or d q u a nt u m c ell ul ar a ut o m at a,
s p a c eti m e tr a nsl ati o n-i n v ari a nt cir c uits of fr e e f er mi o n

0

k

0(k
)

U = i S W A P

0

k

U = e i / 3 3 (Z I  X X  Y X )

FI G. 2 5.  Dis p ersi o n r el ati o n of (l eft) t w o  m o m e nt u m b a n ds
of Dir a c f er mi o ns i n t h e b ar e i S W A P a ut o m at o n a n d (ri g ht)
f o ur  m o m e nt u m b a n ds of  M aj or a n a f er mi o ns i n t h e  C N O T- c or e
a ut o m at o n  wit h t h e u nit ar y g at e gi v e n b y  E q. ( B 5).

g at es eit h er ar e p eri o di c or h ost gli d ers.  Q u asi-fr e e st ati o n-
ar y st at es of t h e a = 1 st a n d ar d gli d er cl ass ar e dis c uss e d i n
t er ms of t h e  Ar a ki-J or d a n- Wi g n er c o nstr u cti o n — a n e xt e n-
si o n of t h e J or d a n- Wi g n er tr a nsf or m ati o n t o i n fi nit e s pi n
c h ai ns —i n  R ef. [ 5 2 ].

F or a > 1,  w e h a v e alr e a d y s e e n a n e x a m pl e of a  m at c h-
g at e cir c uit: t h e b ar e i S W A P cir c uit. I n f a ct, t h e b ar e i S W A P

cl ass ( w hi c h i n cl u d es cir c uits dr ess e d b y Z r ot ati o ns o n
t h e e d g es) is t h e o nl y cl ass of iS W A P - c or e a ut o m at a t h at
c o nt ai ns  m at c h g at e cir c uits.

As  w e k n o w fr o m t h e  C Q C A r e pr es e nt ati o n [ E q. ( 4 2)],

aft er t w o l a y ers, Z (n )
1 → Z (n + 1 )

1 w hil e Z (n )
2 → Z (n − 1 )

2 . T h es e
gli d ers  m a nif est i n t h e fr e e f er mi o n  m a p pi n g t hr o u g h t h e
m o m e nt u m ei g e n o p er at ors o n o d d a n d e v e n sit es, c (k , 1)
a n d c (k , 2), s atisf yi n g

U F c (k , 1)U †
F = − e i kc (k , 1), ( B 4 a)

U F c (k , 2)U †
F = − e − i kc (k , 2), ( B 4 b)

w h er e U F i s t h e Fl o q u et o p er at or c orr es p o n di n g t o o n e
ti m e st e p (t w o l a y ers) of t h e bri c k w or k cir c uit.  T h e
q u asi e n er g y s p e ctr u m i n t er ms of  Dir a c f er mi o ns t h er ef or e
h as t w o b a n ds,  wit h q u asi e n er g y (k ) = π ± k , i n a  Bril-
l o ui n z o n e of [− π , π ] a n d Fl o q u et z o n e of [− π , π ].  T his
dis p ersi o n r el ati o n is s h o w n i n t h e l eft p a n el of Fi g. 2 5 .
H er e  w e us e u nits of x / a i n t h e s p ati al dir e cti o n, s o t h e
gli d ers h a v e v el o citi es ± 1.

T his ill ustr at es a n i m p ort a nt f e at ur e of d u al u nit ar y fr e e
f er mi o ni c  Q C A: i n or d er f or t h e si n gl e- p arti cl e dis p er-

si o n f or t h e d u al Fl o q u et o p er at or ˜U F t o b e  w ell d e fi n e d,
t h e Fl o q u et b a n ds  m ust h a v e a n o ntri vi al  wi n di n g i n t h e
q u asi e n er g y.  T his h as i m pli c ati o ns f or t h e l o c alit y of t h e
( n o n u ni q u e) ti m e-i n d e p e n d e nt  H a milt o ni a n t h at g e n er at es
U F , i. e., U F = e − i H .  R ef er e n c e [1 0 2 ] pr o v es t h at if U F

i s t h e u nit ar y ass o ci at e d t o a q u asi-fr e e-f er mi o ni c  Q C A,
it c a n b e g e n er at e d b y a ti m e-i n d e p e n d e nt  H a milt o ni a n
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w h os e i nt er a cti o ns d e c a y  wit h dist a n c e.  H o w e v er,  w h er e as
t h e i nt er a cti o ns d e c a y e x p o n e nti all y if all b a n ds h a v e z er o
wi n di n g, t h e d e c a y is o nl y a p o w er l a w i n t h e c as e of
n o n z er o  wi n di n g. I n d e e d, U F f or t h e iS W A P cir c uit is n o n e
ot h er t h a n t h e s o- c all e d  Dir a c  Q C A at t h e  m assl ess p oi nt
[9 4 ],  w hi c h is g e n er at e d b y a  H a milt o ni a n  wit h 1/ r i nt er-
a cti o ns [ 4 8 ,1 0 2 ].  W h e n t h e  m ass t er m is r est or e d, t h e
c orr es p o n di n g q u a nt u m cir c uit is n o l o n g er  Cli ff or d b ut
r e m ai ns a fr e e f er mi o n cir c uit, a n i nt er esti n g dir e cti o n f or
f ut ur e  w or k.

3.  C N O T- c o r e f r e e f e r mi o n a ut o m at a

Lifti n g t h e c o nstr ai nt of d u al u nit arit y, t h er e ar e t hr e e
m at c h g at e cl ass es of s q u ar e-l atti c e a ut o m at a  wit h a C N O T

c or e,  w h er e  m e m b ers of t h e s a m e cl ass ar e r el at e d b y
a  Cli ff or d c h a n g e of b asis. Si n c e t h e C N O T g at e is n ot
d u al u nit ar y, t h e si n gl e- p arti cl e Fl o q u et b a n ds c a n h a v e
wi n di n gs ot h er t h a n ± 1 i n t h e q u asi e n er g y.  T w o of t h es e
cl ass es h a v e “st ati o n ar y gli d ers, ” a n d t h us o n e ti m e st e p
c a n b e g e n er at e d b y a e x p o n e nti all y l o c ali z e d  H a milt o ni a n
[1 0 2 ,1 6 1 ].

T h e t hir d cl ass of cir c uit is  m or e s u btl e. It is d es cri b e d
b y t h e g at e:

U = (R Y [π / 2] ⊗ R X [π / 2] )C N O T (R X [π / 2] ⊗ I )

= e − iπ / 4 e iπ /( 3
√

3 )(ZI − X X − Y X ) . (B 5 )

U nli k e t h e  Dir a c  Q C A t o  w hi c h t h e i S W A P cir c uit  m a ps,
E q. ( B 5) m a ps o nt o a fr e e f er mi o n  Q C A i n  w hi c h o nl y t h e
f er mi o n p arit y, a n d n ot t h e f er mi o n n u m b er, is c o ns er v e d.
T h e ti m e e v ol uti o n is b est u n d erst o o d i n t er ms of  M aj o-
r a n a f er mi o ns.  T h e n, t h er e ar e f o ur  M aj or a n a  m o d es p er
u nit c ell, t hr e e  wit h v el o cit y − 1 / 3 a n d o n e  wit h v el o cit y
+ 1.  T h us, as  wit h t h e i S W A P cir c uit, t his C N O T - c or e cir-
c uit d es cri b e d b y  E q. ( B 5) h as n o ntri vi al  wi n di n g (ri g ht
p a n el of Fi g. 2 5 ), u ni q u e a m o n g t h e C N O T - c or e  m at c h g at e
a ut o m at a.

T o u n d erst a n d t h es e ei g e n m o d es i n t er ms of t h e ori gi-
n al cir c uit of q u bits, c o nsi d er t h e f o ur s e mi-i n fi nit e stri n gs
. . . Z Z Z Z X a n d . . . Z Z Z Z Y w h er e t h e t er mi n ati n g X or Y
c a n b e o n t h e first or s e c o n d sit e of t h e u nit c ell.  T h es e P a uli
stri n gs all h a v e o d d f er mi o n p arit y a n d s q u ar e t o 1, t h us
a cti n g as  M aj or a n a f er mi o ns.  As s h o w n i n Fi g. 2 6 , t hr e e of
t h es e stri n gs gli d e t o t h e l eft  wit h s p e e d 1/ 3 a n d a p eri o d
of t hr e e l a y ers (r et ur ni n g t o t h e s a m e p oi nt i n t h e u nit c ell,
wit h t h e s a m e si g n, aft er si x l a y ers/t hr e e ti m e st e ps),  w hil e
t h e f o urt h gli d es t o t h e ri g ht  wit h a p eri o d of 1 l a y er ( a n d
r et ur ns t h e s a m e p oi nt i n t h e u nit c ell aft er o n e f ull ti m e
st e p). I n c o ntr ast, i n t h e b ar e i S W A P cir c uit, t h e s a m e P a uli
stri n gs c o m e i n p airs, t w o  wit h v el o cit y + 1 a n d t w o  wit h
v el o cit y − 1, a n d (t a ki n g t h e si g ns o n t h e o p er at ors i nt o
a c c o u nt,  w hi c h ar e n ot i n cl u d e d i n t h e  C Q C A r e pr es e nt a-
ti o n) all a c q uir e a si g n of − 1 aft er o n e f ull ti m e st e p.  T his

FI G. 2 6. I m a g e of o d d- p arit y P a uli stri n gs u n d er t h e C N O T -
c or e  m at c h g at e a ut o m at o n gi v e n b y  E q. ( B 5). I n t h e t o p ( b ott o m)
r o w, t h e t er mi n ati n g X a n d Y ar e o n e v e n ( o d d) sit es.  T h e i m a g e
of e a c h stri n g is s h o w n aft er e a c h l a y er, i. e., i n st e ps of t = 1 / 2.

mi n us si g n is t h e r e as o n  w h y (k = 0 ) = π f or b ot h  Dir a c
f er mi o n  m o d es i n t h e l eft p a n el of Fi g. 2 5 .

As pr o v e n i n  R ef. [ 9 3 ], o nl y d u al u nit ar y cir c uits c a n
h ost  m o vi n g o n e-sit e gli d ers.  T h es e “ ultr al o c al s olit o ns ”
σ ar e pr es er v e d u n d er o n e ti m e st e p u p t o a p h as e a n d

s hift b y o n e u nit c ell: U F σ x U
†
F = σ x ± a .  T his is p erf e ctl y

c o nsist e nt  wit h Fi g. 2 6 , b e c a us e  w hil e . . . Z Z Z Z XI d o es
m o v e  wit h v el o cit y + 1, it r eli es u p o n t h e s e mi-i n fi nit e
stri n g of Z ’s t o k e e p fr o m s pr e a di n g i n t h e b a c k w ar d dir e c-
ti o n.  As f or t h e v = − 1 / 3 gli d ers,  m ulti pl yi n g . . . Z Z Z Y
wit h . . . Z Z Z X (t o p r o w of Fi g. 2 6 d o es yi el d a o n e-sit e

“ gli d er ” Z (n )
2 of e v e n f er mi o n p arit y, b ut t his is a s olit o n

o nl y o n str o b os c o pi c ti m e s c al es: aft er t hr e e ti m e st e ps

U 3
F Z (n )

2 (U †
F ) 3 = Z (n − 1 )

2 , b ut i n t h e i nt er v e ni n g l a y ers it

tr a nsf or ms as Z (n )
2 → − X (n )

1 Y (n )
2 → − X (n )

1 X (n )
1 → · · · .

A P P E N DI X  C:  P O O R S C R A M B L E R S

I n S e c. VI  C w e i ntr o d u c e t h e gr o u p of i S W A P - c or e
a ut o m at a o n t h e s q u ar e l atti c e,  w hi c h h a v e gli d er o bs er v-
a bl es.  H er e  w e pr o vi d e  m or e d et ail o n t h e t hr e e cl ass es i n
t his gr o u p, i n or d er of i n cr e asi n g c o m pl e xit y.

1.  B a r e i S W A P cl ass

I n t h e  m ai n t e xt,  w e fi n d t h at t h e b ar e iS W A P cl ass is
d es cri b e d b y t h e a ut o m at o n  E q. ( 4 3) aft er t w o st e ps  w h e n
writt e n i n t h e b asis (X 1 , Z 2 , Z 1 , X 2 ). I n t h at b asis, ˜M is bl o c k
di a g o n al, a n d a n a n al yti c e x pr essi o n f or ˜M n c a n b e pr o v e n
b y i n d u cti o n:

˜M n =

⎛

⎜
⎜
⎜
⎝

u n 0
f (n ) u − n 0

0 u n f (n )
0 u − n

⎞

⎟
⎟
⎟
⎠

, ( C 1)
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w h er e

f (n ) = (u n + 1 )

n

j = 1

u − j . ( C 2)

Fr o m t his  w e c a n r e a d o ff t h e ti m e e v ol uti o n of a n y i niti al
P a uli stri n g aft er a n i nt e g er n u m b er of ti m e st e ps. It is als o
cl e ar t h at τ ( m ) = m f or all m .  W hil e a t y pi c al p ur e st a bi-
li z er st at e  will r e c ur  wit h p eri o d τ ( m ), t his cl ass als o h as
s e v er al st ati o n ar y st at es: a n y tr a nsl ati o n-i n v ari a nt pr o d u ct
st a bili z er st at e  wit h Z 1 a n d/ or Z 2 a s a st a bili z er g e n er a-
t or is a n ei g e nst at e u n d er ˜M .  T his is c o nsist e nt  wit h t h e
f a ct, n ot e d a b o v e, t h at t h e iS W A P g at e al o n e g e n er at es n o
e nt a n gl e m e nt o n a s e p ar a bl e st at e f or  w hi c h o n e of t h e t w o
q u bits is i n a Z ei g e nst at e.

T h e f ail ur e t o g e n er at e e nt a n gl e m e nt o n Z ei g e nst at es
r es ults i n t h e “ p o or s cr a m bli n g ” b e h a vi or d es cri b e d i n t h e
m ai n t e xt: st arti n g fr o m a r a n d o m p ur e pr o d u ct st at e, all
t hr e e p o or s cr a m bli n g cl ass es s u c c e e d i n g e n er ati n g s o m e
e nt a n gl e m e nt, b ut d o n ot s at ur at e t h eir P a g e c ur v es.  T his
is s h o w n i n Fi g. 2 7( a) f or t h e b ar e iS W A P cl ass, o n a s ys-
t e m of m = 6 3 u nit c ells.  T h e e ntr o p y r e a c h es a  m a xi m u m
at t ∼= m / 4, a n d p eri o di c all y t h er e aft er, b ut  wit h a sl o p e of
∼= 0. 4. I m m e di at el y aft er r e a c hi n g a  m a xi m u m, t h e e nt a n-
gl e m e nt b e gi ns t o d e cr e as e, r et ur ni n g t o a n ar e a l a w t wi c e
p er p eri o d. F or all m a n d all t hr e e p o or s cr a m bli n g cl ass es,

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

|A |

0

5

1 0

1 5

2 0

2 5

S
(|

A
|,

t 0
+

t)

t 0 = 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

|A |

t 0 = 1 6

0

5

1 0

1 5

t

( a)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

|A |

0

1 0

2 0

3 0

4 0

5 0

6 0

S
(|

A
|,

t 0
+

t)

t 0 = 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

|A |

t 0 = 1 6

0

5

1 0

1 5

t

( b)

FI G. 2 7.  E nt a n gl e m e nt g e n er ati o n u n d er t h e b ar e i S W A P cir c uit
o n L = 1 2 6 q u bits, or m = 6 3 u nit c ells, f or ( a) a r a n d o m p ur e
pr o d u ct i niti al st at e a n d ( b) a p ur e pr o d u ct st at e  wit h r a n d o ml y
c h os e n X a n d Y st a bili z ers o n e a c h sit e. I n b ot h c as es, t h e s u b-
s yst e m e ntr o p y, a v er a g e d o v er all c o nti g u o us r e gi o ns of l e n gt h
|A |, i n cr e as es li n e arl y u ntil t ∼= 1 6 (l eft), t h e n i m m e di at el y st arts
t o d e cr e as e f or t ≥ 1 6 (ri g ht).  D ar k er (li g ht er) c ur v es c orr es p o n d
t o l at er ( e arli er) ti m es t wit h r es p e ct t o t0 .

t h e s yst e m r et ur ns t o ar e a l a w e nt a n gl e m e nt e v er y m / 2
ti m e st e ps.

Si n c e t h e pr es e n c e of Z gli d ers s u p pr ess es t h e e nt a n gl e-
m e nt,  m or e e nt a n gl e m e nt c a n b e pr o d u c e d if  w e st art i n a
pr o d u ct st at e of o nl y X a n d Y gli d ers. I n d e e d, i n t h at c as e a
fi nit e s yst e m s at ur at es t o a sl o p e- 1 P a g e c ur v e [ Fi g. 2 7( b) ].
H o w e v er, t h er e is still a r e c urr e n c e of ar e a l a w e nt a n-
gl e m e nt at t = m / 2, a n d si n c e t h e t ot al e ntr o p y c a n o nl y
i n cr e as e b y ≤ 2 bits p er l a y er, or f o ur p er ti m e st e p [ E q.
( 3 7)], t h e e arli est it c a n s at ur at e is at t = m / 4.  T h us, as  wit h
t h e r a n d o m i niti al st at e, t h e e ntr o p y i m m e di at el y st arts t o
d e cr e as e aft er r e a c hi n g a  m a xi m u m.  T his is a n ot h er k e y
disti n cti o n fr o m t h e g o o d s cr a m bl ers ( e. g., Fi g. 4 ),  w h er e
t h e sl o p e- 1 P a g e c ur v e s ur vi v es f or O (m ) ti m e st e ps if
m = 2 k , a n d  m u c h l o n g er f or g e n eri c m (O ( τ (m )) st e ps).

2.  T r a c el ess gli d e r cl ass

T h e s e c o n d p o or s cr a m bli n g cl ass h as

M =

⎛

⎜
⎝

u 0 0 0
u u 0 u
0 0 0 1
1 0 1 0

⎞

⎟
⎠ ( C 3)

c orr es p o n di n g t o t h e p air of si n gl e- q u bit g at es:

( v+ , v − ) = (1 , R (1, 1, 1 ) [− 2 π / 3] ). ( C 4)

T h e 4 × 4  m atri x f or t his a ut o m at o n c a n i n f a ct b e i nf err e d
fr o m t h e b ar e iS W A P a n d S D KI cl ass es, si n c e t h e first
t w o c ol u m n v e ct ors, d et er mi n e d b y v + , ar e t h e s a m e f or
all p o or s cr a m bl ers [ E q. ( 4 0)], a n d t h e l ast t w o c ol u m n
v e ct ors, d et er mi n e d b y v − , ar e t h e s a m e as i n  E q. ( 5 6).

C o ns ulti n g Fi g. 8 , t h e o nl y stri ct p oi nt- gr o u p s y m m etr y
f or t his a ut o m at o n is u n d er r e fl e cti o n a b o ut t h e − di a g o-
n al,  w hi c h t a k es M a ( v+ , v − ) → M d ( v T

+ , v − ). I n p arti c ul ar,
a ut o m at a i n t his cl ass e vi d e ntl y l a c k l eft-ri g ht r e fl e cti o n
s y m m etr y, n or c a n  w e  m ass a g e a w a y t his as y m m etr y
t hr o u g h a si mil arit y tr a nsf or m ati o n.  O n e c o ns e q u e n c e of
t his is t h at t h e s et of gli d ers is “ c hir al ”: Z 1 i s a gli d er  wit h
ei g e n v al u e u b ut Z 2 i s n ot.  Aft er t w o l a y ers,

˜M = u − 1 M 2 =

⎛

⎜
⎜
⎝

u 0 0  0
1 u 1 u

u − 1 0 u − 1 0
1 0 0 u − 1

⎞

⎟
⎟
⎠ . ( C 5)

W hil e n ot i m m e di at el y o b vi o us fr o m  E q. ( C 3), ˜M h as t h e
s a m e c h ar a ct eristi c p ol y n o mi al, a n d i n d e e d t h e s a m e  mi n-
i m al p ol y n o mi al μ g (y ), as t h e b ar e iS W A P cl ass.  T h us, t h e
c h ar a ct eristi c p ol y n o mi al is i n v ari a nt u n d er all p oi nt- gr o u p
tr a nsf or m ati o ns, e v e n t h o u g h M its elf is o nl y i n v ari a nt
u n d er o n e: i n v ari a n c e of t h e c h ar a ct eristi c p ol y n o mi al is
a n e c ess ar y, b ut n ot s u ffi ci e nt, c o n diti o n f or t h e i n v ari a n c e
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of t h e c orr es p o n di n g a ut o m at o n.  Alt h o u g h t h e b ar e i S W A P

cl ass a n d t his tr a c el ess gli d er cl ass h a v e di ff er e nt s y m m e-
tri es a n d ar e n ot r el at e d b y a p oi nt- gr o u p tr a nsf or m ati o n,
t h eir c o m m o n  mi ni m al p ol y n o mi al p oi nts t o t h e si mil ar
str u ct ur e of t h eir t → ∞ “s p a c eti m e di a gr a ms ” [ 6 6 ], as
i niti all y l o c al P a uli stri n gs eit h er fill t h e li g ht c o n e or tr a v el
al o n g t h e b o u n d ar y,  wit h n o n o ntri vi al fr a ct al p att er n.

P er m uti n g r o ws a n d c ol u m ns c orr es p o n di n g t o X 2 a n d
Z 1 , as  w e di d f or t h e b ar e iS W A P cl ass, si m pli fi es t h e  m atri x
a bit:

˜M =

⎛

⎜
⎜
⎜
⎝

u 0
u − 1 u − 1 0

1 1
1 0

u u
0 u − 1

⎞

⎟
⎟
⎟
⎠

. ( C 6)

I n t his b asis it is cl e ar t h at, li k e i n t h e b ar e iS W A P cl ass,
P a uli stri n gs of o nl y Z ’s e v ol v e i nt o pr o d u cts of o nl y Z ’s.

A g ai n usi n g i n d u cti o n,  w e fi n d

˜M
n

=

⎛

⎜
⎜
⎝

u n 0
u − 1 g (n ) u − n 0
g (n ) g (n )
g (n ) 0

u n u g (n )
0 u − n

⎞

⎟
⎟
⎠ , ( C 7)

w h er e

g (n ) =

n − 1

j = 0

u n − 2 j − 1 . (C 8 )

W h e n m is e v e n, t his f a ct ors as

g (n ) = (u n + 1 )

n / 2 − 1

j = 0

u − 2 j − 1 = f (n ). ( C 9)

T h us g (m ) v a nis h es  m o d ul o u m + 1 f or e v e n m , fr o m
w hi c h  w e d e d u c e t h e r e c urr e n c e ti m e:

τ ( m ) =
m m m o d 2 = 0

2 m ot h er wis e.
( C 1 0)

3.  P o o r s c r a m bl e rs  wit h n o n z e r o t r a c e

T h e fi n al cl ass of “ p o or s cr a m bl ers ” is als o r e fl e cti o n
as y m m etri c,  wit h t h e p air of g at es:

( v+ , v − ) = (1 , R X [π / 2] ) ( C 1 1)

c orr es p o n di n g, aft er t w o l a y ers, t o t h e a ut o m at o n:

˜M =

⎛

⎜
⎜
⎝

u 0 0  0
1 u u u + 1

u − 1 0 0 u − 1

1 0 u − 1 u − 1

⎞

⎟
⎟
⎠ . ( C 1 2)

U nli k e t h e first t w o cl ass es, n ot all pr o d u cts of Z ’s r e m ai n
Z ’s. Z 1 i s a gli d er, as a nti ci p at e d fr o m t h e g e n er al f or m

of  E q. ( 4 0), b ut Z 2 e v ol v es i nt o a t e ns or pr o d u ct of Z 1

s pr e a di n g o n o d d sit es, a n d a “ p eri o di c gli d er ” alt er n at-
i n g b et w e e n X , Y , a n d Z o n e v e n sit es.  T h e c h ar a ct eristi c
p ol y n o mi al is

χ ˜M (y ) = (y 2 + u 2 )(y 2 + u − 1 y + u − 2 ) = μ ˜M (y ). ( C 1 3)

U nli k e t h e pr e vi o us cl ass, t h e as y m m etr y u n d er l eft-ri g ht
r e fl e cti o n is  m a nif est i n t h e c h ar a ct eristi c p ol y n o mi al,
si n c e χ ˜M (y ) = χ ˜M (y ; u → u − 1 ). χ ˜M (y ) is als o as y m m etri c
u n d er ti m e r e v ers al.  T o  wit,

χ ˜M − 1 (y ) = (y 2 + u − 2 )(y 2 + u y + u 2 )

= χ ˜M 1 ↔ 2
(y ). ( C 1 4)

T h at is, r e fl e cti o ns i n ti m e h a v e t h e s a m e e ff e ct o n t h e
c h ar a ct eristi c p ol y n o mi al as r e fl e cti o ns i n s p a c e. I n f a ct,
si n c e v − = v T

− , t h e y h a v e t h e s a m e e ff e ct o n t h e a ut o m a-
t o n its elf ( u p t o a c h a n g e i n c o n v e nti o n f or t h e pl a c e m e nt
of t h e si n gl e- q u bit g at es r el ati v e t o t h e c or e).  T his  m e a ns
t h at t o g et h er, ti m e + s p a c e r e fl e cti o n — w hi c h is j ust i n v er-
si o n, or r ot ati o n b y π —is a s y m m etr y of t h e a ut o m at o n. M
is als o i n v ari a nt u n d er r e fl e cti o n t hr o u g h eit h er di a g o n al,
w hi c h i n s o m e  w or ks (s e e, f or e x a m pl e,  R efs. [ 2 7 ,2 8 ,3 2 ])
is us e d as t h e d e fi niti o n of t h e s p a c eti m e d u al.

We e m piri c all y o bs er v e t h at

τ ( m ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m m m o d 6 = 0

3 m / 2 m m o d 2 = 0, m m o d 3 = 0

2 m m m o d 2 = 1, m m o d 3 = 0

3 m ot h er wis e.

( C 1 5)

N ot e t h at i n all c as es, τ ( m ) is di visi bl e b y 3.  T his c a n
b e tr a c e d t o t h e e xist e n c e of tr a nsl ati o n-i n v ari a nt pr o d u ct

st at es, st a bili z e d b y Z (n )
1 , σ (n )

2 o n e a c h u nit c ell n ,  w hi c h
c y cl e t hr o u g h σ = X , Y , Z wit h p eri o d 3.
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[ 5 1] J.  G üts c h o w,  E nt a n gl e m e nt g e n er ati o n of  Cli ff or d q u a n-
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[ 5 8]  G.- L. F e n g a n d  K.  T z e n g,  A g e n er ali z e d  E u cli d e a n
al g orit h m f or  m ultis e q u e n c e s hift-r e gist er s y nt h esis, I E E E
Tr a ns. I nf.  T h e or y 3 5 , 5 8 4 ( 1 9 8 9).
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[ 7 8]  N. J.  C erf a n d  R.  Cl e v e, I nf or m ati o n-t h e or eti c i nt er pr et a-
ti o n of q u a nt u m err or- c orr e cti n g c o d es, P h ys. R e v. A 5 6 ,
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w hi c h o ur k a g o m e-l atti c e c o nstr u cti o n d o es n ot all o w.
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( 2 0 2 2).
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[ 8 5]  T h at  Tr(M ) = u n + u − n i s a s u ffi ci e nt c o n diti o n f or M t o
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