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Secure Distributed Storage: Optimal Trade-Off
Between Storage Rate and Privacy Leakage

Rémi A. Chou and Jörg Kliewer , Fellow, IEEE

Abstract— Consider the problem of storing data in a dis-
tributed manner over T servers. Specifically, the data needs to
(i) be recoverable from any τ servers, and (ii) remain private
from any z colluding servers, where privacy is quantified in terms
of mutual information between the data and all the information
available at any z colluding servers. For this model, our main
results are (i) the fundamental trade-off between storage size
and the level of desired privacy, and (ii) the optimal amount
of local randomness necessary at the encoder. As a byproduct,
our results provide an optimal lower bound on the individual
share size of ramp secret sharing schemes under a more general
leakage symmetry condition than the ones previously considered
in the literature.

Index Terms— Secret sharing, ramp secret sharing, privacy,
information leakage, optimal share size.

I. INTRODUCTION

CENTRALIZED data storage of sensitive information
means compromising the entirety of the data in the case

of a data breach. By contrast, well-known distributed storage
strategies, where data are stored in multiple servers, can offer
resilience against data breaches at a subset of servers and avoid
having a single point of failure. Secure distributed storage
schemes, e.g., [2], [3], [4], and [5], often rely on the idea
of secret sharing as introduced in [6] and [7] – we refer to [8]
for a comprehensive literature review on secret sharing. Hence,
there is a fundamental lower bound on the required storage
space necessary to securely store information in a distributed
manner. Specifically, in any threshold secret sharing scheme,
the total amount of information that needs to be stored must at
least be equal to the entropy of the secret times the number of
participants, see e.g., [9], and it is thus impossible to reduce the
storage space without any changes to the model assumptions.
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In this paper, we propose to determine the optimal cost
reduction, in terms of storage space, that can be obtained
in exchange of tolerating a controlled amount of reduced
privacy. Specifically, we focus on a setting where a file F
needs to be stored at T servers. The file must be recoverable
from τ servers, and needs to remain private from any z
colluding servers. Here, privacy is quantified in terms of
mutual information between the data and all the information
available at any z colluding servers. In particular, we introduce
a parameter α ∈ [0, 1], to be chosen by the system designer,
and require that no more than a fraction α of the file can be
learned by a set of z colluding servers. As a function of the
parameters (τ, z, α), we establish the optimal sum of the share
sizes and the optimal amount of local randomness needed at
the encoder. Under the assumption of leakage symmetry, i.e.,
when the information leakage about the file at a given set of
colluding servers only depends on the cardinality of the set and
not on the identities of the servers among this set, we establish
the optimal individual share size for each server. Secret sharing
schemes that satisfy such a leakage symmetry are also referred
to as uniform secret sharing schemes, e.g., [10] and [11].

A. Previous Work

Secret sharing was first introduced in [6] and [7] and pro-
vides perfect security in that any set of colluding participants
that is not allowed to reconstruct the secret cannot learn,
in an information-theoretic sense, any information about the
secret. With the objective to reduce the size of the participants’
shares, ramp secret sharing has then been introduced in [12]
and [13] to relax the security guarantees of secret sharing
schemes. Specifically, in [12] and [13], any set of colluding
users with size smaller than some parameter z cannot learn any
information about the secret, any set of colluding users with
size larger than or equal to some parameter τ can reconstruct
the secret, and any set of colluding users with size striclty
larger than z but strictly smaller than τ can learn part of the
secret. Additionally, for this last type of set of colluding users,
the information leakage about the secret grows linearly with
its size. Later, this idea to reduce the size of the shares by
allowing information leakage was generalized to non-linear
access function, e.g., [14] and [15], and further studied under
the term non-perfect secret sharing, e.g., [10], [11], and [16].

Performance metrics of interest for any secret sharing
include the characterization of the optimal size of the shares.
More specifically, characterizing the optimal sum of the share
sizes, the optimal maximal share size, or the optimal individual
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share sizes for various secret sharing settings has been the
subject of intense research, e.g., [9], [10], [11], [17], [18], [19],
[20], [21], and [22], we also refer to [8] for a survey of known
results. For instance, optimal individual share sizes have been
characterized for the original secret sharing setting [6], [7],
e.g., [9], and the optimal sum of the share sizes for ramp secret
sharing has also been fully characterized, e.g., [23]. Unfor-
tunately, even for the relatively simple case of ramp secret
sharing the full characterization of optimal individual share
sizes is unknown and a challenging problem. A partial solution
is proposed in [23] by restricting the class of ramp secret
sharing scheme to the class of linear ramp secret schemes,
which adds symmetry to the problem. More recently, a more
general and natural definition of symmetry is introduced in the
form of uniform secret sharing [10], [11], [24]. In these works,
the authors characterize the optimal individual share sizes
obtained under such a symmetry condition, which requires that
the information leakage only depends on the size of the set of
colluding participants, and not on the specific identities of the
participants in this set.

B. Comparison to Previous Work

Our setting not only considers generalizations of previous
secret sharing settings but also introduces a fundamentally
different view to study the trade-off between storage needs
and privacy leakage. Specifically, a major difference between
the study of uniform secret sharing in [10] and [11] and our
work is that, in [10] and [11], optimal individual share sizes
are derived for a fixed access function, i.e., the information
leakage about the file tolerated at a given set of colluding
servers is a fixed and given value. In contrast, in our setting
we derive optimal individual share sizes for secret sharing
schemes whose access functions are not fixed but are allowed
to belong to a set of access functions. Indeed, in our setting,
only two points of the access functions are fixed as parameters:
one point indicates a reconstruction threshold τ , and the other
point indicates a maximum number of colluding servers z.
All the other points of the access function are optimized
to minimize the share sizes. This difference introduces a
non-trivial optimization problem over a set of access functions
to determine optimal individual share sizes. We show that this
optimization reduces to maximizing the sum of consecutive
gradients of an access function over the set of all possible
access functions that satisfy our problem constraints, i.e.,
it must be less than or equal to α in point z and equal to
one in point τ . The crux to solve this optimization is to
introduce the concave envelopes of the access functions to
show that piecewise linear access functions are solutions to
the optimization.

We note that the idea of trading storage space against
information leakage is also closely related to non-perfect secret
sharing [10], [11], [25], including ramp secret sharing with
linear [12], [13] or non-linear access functions [14], [15].
Similar to our previous comment, these settings have been
studied for fixed access functions, whereas, in this study,
to minimize share sizes, we consider secret sharing schemes
with access functions allowed to belong to a set of access
functions.

While the above remark on non-perfect secret sharing
applies ramp secret sharing schemes, e.g., [12] and [13],
we highlight a new result for ramp secret sharing that fol-
lows from our main results. Specifically, when the privacy
parameter is α = 0, i.e., perfect privacy is required against
z colluding servers, our results prove that among all uniform
ramp secret sharing schemes, which represents a more general
class of secret sharing schemes than linear ramp secret sharing
schemes, the ones that have a piecewise linear access function
have the minimum individual share sizes. This result had also
not been previously proved in the literature.

C. Paper Organization

We formulate our problem statement and review known
results in Section II. We present our main results in Section III
and relegate the proofs to Sections IV, V to streamline presen-
tation. Finally, we provide concluding remarks in Section VI.

II. PROBLEM STATEMENT AND REVIEW
OF KNOWN RESULTS

Notation: Let N, R, and Q be the sets of natural, real, and
rational numbers, respectively. For a, b ∈ R, define Ja, bK ≜
[⌊a⌋, ⌈b⌉]∩N and [a]+ ≜ max(0, a). For two arbitrary sets S
and T , a sequence of elements xt ∈ S, t ∈ T , indexed by the
set T is written as (xt)t∈T .

A. Problem Statement

Consider T ⩾ 2 servers indexed by T ≜ J1, T K. For t ∈ T ,
define [T ]⩾t as the set of all the subsets of T that have a
cardinality larger than or equal to t, i.e., [T ]⩾t ≜ {S ⊆ T :
|S|⩾ t}. Similarly, define [T ]⩽t ≜ {S ⊆ T : |S|⩽ t} and
[T ]=t ≜ {S ⊆ T : |S|= t}.

Definition 1: Let (λt)t∈T ∈ NT , ρ ∈ N, and τ ∈ T . A
(τ, (λt)t∈T , ρ) coding scheme consists of
• A file F , which is represented by a random binary

sequence with finite length;
• Local randomness in the form of a sequence R of ρ bits

uniformly distributed over {0, 1}ρ and independent of F ;
• T encoders (et)t∈T , where for t ∈ T ,

et : {0, 1}|F | × {0, 1}ρ → {0, 1}λt , (F,R) 7→Mt,

which takes as input the file F and the local randomness
R, and outputs the sequence Mt, referred to as share in
the following, of length λt ∈ N. λt is referred to as share
size in the following.

• T servers, where Server t ∈ T stores Mt. In the
following, for any subset S ⊆ T of servers, we use the
notation MS ≜ (Mt)t∈S .

• For any subset S ⊆ T such that |S|⩾ τ , a decoder

dS :×
t∈S
{0, 1}λt → {0, 1}|F |,MS 7→ F̂ (S),

which takes as input MS and outputs F̂ (S), an estimate
of F .
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Fig. 1. Secure distributed storage (a) and retrieval (b) with privacy leakage
for T = 3 servers, reconstruction threshold τ = 3, privacy threshold z = 2,
and privacy leakage parameter α. Mi is stored at Server i ∈ {1, 2, 3} and
created from the File F and the local randomness R available at the encoder.

Definition 2: For τ ∈ T , α ∈ Q∩ [0, 1], and z ∈ J1, τ −1K,
a (τ, (λt)t∈T , ρ) coding scheme is (α, z)-private if

max
S∈[T ]⩾τ

H(F |F̂ (S)) = 0, (Recoverability) (1)

max
S∈[T ]⩽z

I(F ;MS)
H(F )

⩽ α, (Privacy). (2)

Requirement (1) means that any subset of τ or more servers
can reconstruct the file F . Note that Requirement (1) implies
max

S∈[T ]⩾τ
H(F |MS) = 0. Requirement (2) means that any

subset of servers with size smaller than or equal to z must not
learn more than αH(F ) bits of information about F . In the
following, τ is referred to as reconstruction threshold, α is
referred to as privacy leakage parameter, and z is referred to
as privacy threshold. The setting is illustrated in Figure 1 when
(T, τ, z) = (3, 3, 2).

Remark 1: In Definition 2, α is restricted to be a rational
number. However, note that by density of Q in R, for any
β ∈ [0, 1], for any ϵ > 0, there exists α ∈ Q ∩ [0, 1] such that
|α− β|⩽ ϵ.

Definition 3: Let τ ∈ T , α ∈ Q∩ [0, 1], and z ∈ J1, τ −1K.
Then, for t ∈ T , define

λ⋆
t (α, z, τ)

≜ min{λt ∈ N : there exists an (α, z)-private
(τ, (λt′)t′∈T , ρ) coding scheme

for some ρ ∈N and (λt′)t′∈T \{t} ∈NT−1},

λ⋆
sum(α, z, τ)

≜ min{
∑

t∈T λt ∈ N : there exists an (α, z)-private
(τ, (λt)t∈T , ρ) coding scheme for some ρ ∈N},

ρ⋆(α, z, τ)

≜ min{ρ ∈ N : there exists an (α, z)-private

(τ, (λt)t∈T , ρ) coding scheme for some (λt)t∈T ∈NT }.

For fixed T , α, τ , and z as in Definition 3, our objective in
this paper is to characterize the optimal storage size λ⋆

t (α, z, τ)
at Server t ∈ T , the optimal total storage size λ⋆

sum(α, z, τ),
and the optimal amount of local randomness needed at the
encoder ρ⋆(α, z, τ). Note that it is a priori unclear whether
there exists a coding scheme that can simultaneously achieve
λ⋆

t (α, z, τ), t ∈ T , λ⋆
sum(α, z, τ), and ρ⋆(α, z, τ). However,

our results will prove that such a coding scheme exists.

B. Previous Results

The special case α = 0 has been studied in the literature
and corresponds to ramp secret sharing [12], [13]. Specifically,
by choosing α = 0 and z = τ − L, for some L ∈ J1, τ − 1K,
the problem statement of Section II-A describes a so-called
(τ, L, T ) ramp secret sharing scheme. Additionally, for ramp
secret sharing, we have, e.g., [23], [26],

λ⋆
sum(α = 0, z = τ − L, τ) =

T

L
H(F ),

ρ⋆(α = 0, z = τ − L, τ) =
τ − L
L

H(F ).

As remarked in [23], in general, one does not have λ⋆
t (α =

0, z = τ − L, τ) = 1
LH(F ),∀t ∈ T , as for some t ∈ T , the

share size could be zero. For this reason, [23] considers linear
ramp secret sharing schemes, where the leakage on the file F
for a set S of colluding servers scales linearly with the size
of S between τ −L to τ . In other words, a linear ramp secret
sharing satisfies the condition

∀S ∈ [T ]⩾τ−L+1 ∩ [T ]⩽τ−1, H(F |MS) =
τ − |S|
L

H(F ).

(A1)

For such linear ramp secret sharing schemes, [23, Th. 3.3]
establishes the following optimal individual share size:

λ⋆
t (α = 0, z = τ − L, τ) =

1
L
H(F ),∀t ∈ T .

Remark that the definition of linear secret sharing schemes
means that a fixed value is assigned to the information leakage
at a given set of colluding servers, i.e., (A1) can be rewritten
as

∀S ∈ [T ]⩾τ−L+1∩[T ]⩽τ−1, I(F ;MS) =
|S|−(τ − L)

L
H(F ).

C. Discussion of Leakage Symmetry Conditions Used in
Previous Work

For any τ ∈ T , α ∈ Q ∩ [0, 1], and z ∈ J1, τ − 1K, we will
establish the optimal individual share size λ⋆

t (α, z, τ) for any
t ∈ T under the following leakage symmetry condition (A2)

∀t ∈ T ,∃Ct ∈ R+,∀S ∈ [T ]=t,
I(F ;MS)
H(F )

= Ct, (A2)
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where, by convention, we define C0 ≜ 0. Condition (A2)
means that when considering a subset of servers S ⊆ T , the
privacy leakage about F , i.e., I(F ;MS), must only depend on
the cardinality of S and not the specific members in S. Note
that after normalization by H(F ), I(F ;MS)

H(F ) ∈ [0, 1] for any
S ⊆ T . Note also that, by (2), we must have Ct ⩽ α for any
t ∈ J1, zK.

In the special case α = 0, observe that Condition (A2)
is more general than Condition (A1), which is reviewed in
Section II-B and used to derive the optimal size of individual
share for linear secret sharing schemes. Indeed, Condition (A1)
is recovered by setting Ct ≜ t−(τ−L)

L for t ∈ Jτ − L + 1,
τ − 1K in Condition (A2) with L ≜ τ − z. Hence, when α =
0, Condition (A2) describes a class of ramp secret sharing
schemes that contains linear ramp secret sharing schemes.

Note that the leakage symmetry condition (A2) is intro-
duced under the term uniform secret sharing in [10], where
the adjective uniform is used in [10] to reflect that (A2)
holds. In [10], the optimal share size is established when
the constants (Ct)t∈T in (A2) are fixed. By contrast, in this
paper, we are interested in finding the constants (Ct)t∈T that
minimize the individual share size and the necessary amount
of local randomness at the encoder. To this end, we will
carry an optimization over all possible secret sharing schemes
that satisfy the leakage symmetry condition (A2). Another
difference between our study and [10] is that our study
extends [10] in the following aspects: for α ̸= 0, we study
the optimal sum of the share sizes at all the servers and the
optimal amount of local randomness required at the encoder
in the absence of any leakage symmetry condition.

III. MAIN RESULTS

We first establish in Theorem 1 the optimal individual
share size and optimal amount of local randomness under
the leakage symmetry condition (A2). We then derive three
corollaries from Theorem 1 that recover or extend known
results, as outlined below.

Theorem 1: Let τ ∈ T , α ∈ Q ∩ [0, 1], and z ∈ J1, τ −
1K. Suppose that the leakage symmetry condition (A2) holds.
Then, for any t ∈ T , we have

λ⋆
t (α, z, τ)
H(F )

= max
(

1− α
τ − z

,
1
τ

)
=

{
1−α
τ−z if α < z

τ
1
τ if α ⩾ z

τ

,

ρ⋆(α, z, τ)
H(F )

=
[z − τα]+

τ − z
=

{
z−τα
τ−z if α < z

τ

0 if α ⩾ z
τ

.

Moreover, there exists an (α, z)-private
(τ, (λ⋆

t (α, z, τ))t∈T , ρ
⋆(α, z, τ)) coding scheme, i.e.,

λ⋆
t (α, z, τ), t ∈ T , and ρ⋆(α, z, τ) can simultaneously

be achieved by a single coding scheme.
Proof: The achievability proof of Theorem 1 is detailed

in Section IV. The converse proof of Theorem 1 is presented
in Section V.

As expected, Theorem 1 shows that allowing information
leakage, controlled by the parameter α, enables a reduction
of the individual share size and amount of local randomness
needed at the encoder. Theorem 1 also shows the existence

Fig. 2. λ⋆
t (α,z,τ)

H(F )
, t ∈ T , when T = 12, τ = 7, and the privacy threshold

belongs to J1, 6K. The bold blue circle corresponds to the optimal share size
for Shamir’s secret sharing, as reviewed in Corollary 1.

of a threshold with respect to α. Specifically, when α ⩾ z/τ ,
then a (τ, τ, T ) ramp secret sharing is sufficient to achieve
the optimal share size 1/τ , since, in that case, the share size
of any z colluding users is z/τ and the privacy condition is
immediately satisfied.

Corollary 1: Assume that the privacy leakage is α = 0 and
the privacy threshold is z = τ − 1. Observe from (1)
and (2) that, in this case, Condition (A2) is always satisfied,
in particular, Ct = 0 when t ∈ J1, τ − 1K, and Ct = 1 when
t ∈ Jτ, T K. Then, by Theorem 1, we recover the well-known
fact, e.g., [9, Th. 1], that the optimal share size is the entropy
of F for perfect threshold secret sharing, first introduced
in [6], [7].

Corollary 2: Suppose that the leakage symmetry condi-
tion (A2) holds. Assume that the privacy leakage is α = 0 and
the privacy threshold is z = τ − L, for some L ∈ J1, τ − 1K.
Then, Theorem 1 recovers the result in [23] and [26], for
(τ, L, T ) linear ramp secret sharing schemes, i.e., secret
sharing schemes that satisfy Condition (A1), and generalizes
it to the larger class of uniform secret sharing schemes, i.e.,
secret sharing schemes that satisfy Condition (A2). The result
can also be interpreted as follows: Among all uniform secret
sharing schemes, linear secret sharing schemes are optimal in
terms of individual share size and local randomness necessary
at the encoder.

Corollary 3: Assume that the reconstruction threshold is
τ = T , the privacy threshold is z = T − 1, and the
Condition (A2) holds. Then, Theorem 1 recovers the results
found in [1] and generalizes them to the case where the shares
are not assumed to be of equal size in the problem statement.

We numerically illustrate Theorem 1 in the following
example.

Example 1: For the case of T = 12 servers and a recon-
struction threshold τ = 7, we depict in Figures 2 and 3,
λ⋆

t (α,z,τ)
H(F ) , t ∈ T , and ρ⋆(α,z,τ)

H(F ) obtained in Theorem 1,
respectively, as functions of the privacy leakage parameter α
and the privacy threshold z.
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Fig. 3. ρ⋆(α,z,τ)
H(F )

when T = 12, τ = 7, and z belongs to J1, 6K. The bold
blue circle corresponds to the optimal amount of necessary randomness at the
encoder for Shamir’s secret sharing, as reviewed in Corollary 1.

Note that, in the absence of any leakage symmetry con-
dition, the minimum size of an individual share could be
zero. For instance, using the notation of Section II-B, one can
construct a (τ, τ − z, T ) ramp secret sharing scheme with T
participants, where the share size of τ − z − 1 participants is
zero as follows: Consider a (z + 1, 1, T − (τ − z − 1)) ramp
secret sharing scheme with T − (τ − z − 1) participants and
consider τ − z− 1 additional participants to whom we do not
give any share. This shows that Theorem 1 does not hold in
the absence of Condition (A2).

Then, beyond the optimal individual share sizes, we also
study the optimal sum of the share sizes in the absence of
any leakage symmetry condition. Specifically, in this case,
we establish the optimal sum of the share sizes λ⋆

sum(α, z, τ)
and the optimal amount of local randomness ρ⋆(α, z, τ), both
defined in Definition 3.

Theorem 2: Let τ ∈ T , α ∈ Q ∩ [0, 1], and z ∈ J1, τ − 1K.
We have

λ⋆
sum(α, z, τ)
H(F )

= T max
(

1− α
τ − z

,
1
τ

)
=

{
T 1−α

τ−z if α < z
τ

T
τ if α ⩾ z

τ

,

ρ⋆(α, z, τ)
H(F )

=
[z − τα]+

τ − z
=

{
z−τα
τ−z if α < z

τ

0 if α ⩾ z
τ .

Moreover, there exists an (α, z)-private (τ,
(λt)t∈T , ρ

⋆(α, z, τ)) coding scheme such that
∑

t∈T λt =
λ⋆

sum(α, z, τ), i.e., λ⋆
sum(α, z, τ) and ρ⋆(α, z, τ) can

simultaneously be achieved by a single coding scheme.
Proof: The achievability part follows from the achievabil-

ity part of Theorem 1 by summing the sizes of the T shares
and the converse part is proved in Appendix B.

Note that the converse proof of Theorem 2 is of combinato-
rial nature and different from the proof of Theorem 1, which
involves an optimization problem. Note also that Theorems 1
and 2 indicate that there is no gain, in terms of necessary
local randomness at the encoder, between an optimization over
secret sharing schemes that satisfy Condition (A2) and any
secret sharing schemes that do not.

IV. ACHIEVABILITY PROOF OF THEOREM 1

Let α ∈ Q∩ [0, 1]. We consider the two cases α ⩾ z/τ and
α < z/τ in Sections IV-B.1 and IV-B.2, respectively. We first
review some definitions in Section IV-A.

A. Preliminary Definitions

1) Access Function: For a coding scheme as in Definition 2
that satisfies the leakage symmetry Condition (A2), one can
define an access function, e.g., [11], which fully describes
the leakage of any set of shares. More specifically, with the
notation of Definition 2, define the access function of a coding
scheme as

g : J0, T K→ [0, 1], t 7→ Ct.

Note that, by (A2), the leakage of any set S of shares only
depends on the cardinality of S. Hence, it is sufficient to
consider g to fully describe the leakage of any set of shares.
Note also that, by (1), the reconstruction threshold τ implies
that g(t) = 1 for any t ∈ Jτ, T K, and, by (2), the privacy
threshold z implies that g(z) ⩽ α. Finally, note that by
definition of Ct, t ∈ T , in (A2), g is non-decreasing.

2) Ramp Secret Sharing: Consider τ, T, L ∈ N such that
1 ⩽ L < τ ⩽ T . A (τ, L, T ) linear ramp secret sharing
scheme, e.g., [12] and [13], is a coding scheme as in Defini-
tion 2 with α = 0, z = τ − L, and with access function

g : J0, T K→ [0, 1], t 7→


0 if t ∈ J0, τ−LK
t−τ+L

L if t ∈ Jτ−L+ 1, τK
1 if t ∈ Jτ + 1, T K

.

In particular, any τ shares can reconstruct F , any set of shares
less than or equal to τ−L does not leak any information about
F , and for sets of shares with cardinality in Jτ−L+1, τK, the
leakage increases linearly with the set cardinality.

B. Achievability Proof

The first step of the achievability scheme is to characterize
the access function g of our desired secret sharing scheme.
Note that beyond being an access function as defined in
Section IV-A, the only constraint that our setting imposes on
g is g(z) ⩽ α. From our converse results, we know that a
piecewise linear access function g would provide the lowest
possible individual share sizes. We then consider two cases:
α ⩾ z/τ and α < z/τ . While we handle the first case
with a simple ramp secret sharing scheme, we follow the idea
from [10] to handle the second case. Specifically, we remark
that g can be written as the sum of two other access functions
g1 and g2, i.e., g = g1 + g2, that correspond to two ramp
secret sharing schemes. Finally, we construct a secret sharing
scheme with access function g by a combination of two ramp
secret sharing schemes with access functions g1 and g2.

1) Case 1: Assume that α ⩾ z/τ . Let g be the access
function of a (τ, τ, T ) ramp secret sharing scheme, which can
be done as in [12] and [13] with, for any t ∈ T , λt(α,z,τ)

H(F ) = 1
τ ,

and ρ(α,z,τ)
H(F ) = 0.

Note that this scheme satisfies (1) because g(t) = 1 for
t ∈ Jτ, T K, and also satisfies (2) because for any t ∈ J0, zK,
g(t) ⩽ z/τ ⩽ α.
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2) Case 2: Assume that α < z/τ . Consider the following
access function

g : t 7→


α
z t if t ∈ J0, zK
1−α
τ−z (t− z) + α if t ∈ Jz + 1, τK
1 if t ∈ Jτ + 1, T K

.

Note that if one can construct a coding scheme with access
function g, then this coding scheme satisfies (1) because
g(t) = 1 for t ∈ Jτ, T K, and also satisfies (2) because for
any t ∈ J0, zK, g(t) ⩽ α. We construct such a coding scheme
using the method in [10]. First, note that g = g1 + g2, where
we have defined

g1 : t 7→

{
α
z t if t ∈ J0, τK
α
z τ if t ∈ Jτ + 1, T K

,

g2 : t 7→


0 if t ∈ J0, zK
1−α
τ−z (t− z) + α− α

z t if t ∈ Jz + 1, τK
1− α

z τ if t ∈ Jτ + 1, T K
.

Next, we construct a coding scheme with access function
g from two ramp secret sharing schemes with the normalized
access functions

(
α
z τ

)−1
g1 and

(
1− α

z τ
)−1

g2. By [12] and
[13], there exist a prime q and n′ ∈ N such that one can
construct an optimal (τ, τ, T ) ramp secret sharing (with access
function

(
α
z τ

)−1
g1) that uses ρ(1) random symbols at the

encoder and yields the shares (M (1)
t )t∈T for a secret F1 ∈

GF(qn1) with n1 = α
z τn

′ and ρ(1) = 0, and a (τ, τ − z, T )
ramp secret sharing (with access function

(
1− α

z τ
)−1

g2) that
uses ρ(2) random symbols at the encoder and yields the shares
(M (2)

t )t∈T for a secret F2 ∈ GF(qn2), independent of F1,
with n2 =

(
1− α

z τ
)
n′ and ρ(2) = H(F2) z

τ−z . Then, define
F ≜ (F1, F2) and for any t ∈ T , Mt ≜ (M (1)

t ,M
(2)
t ). By

[10, Th. 3], this defines a coding scheme with access function
g such that for any t ∈ T , λt(α,z,τ)

H(F ) = ∆g1 + ∆g2 , where for
i ∈ {1, 2}, ∆gi ≜ maxt∈J0,T−1K (gi(t+ 1)− gi(t)). Hence,
by remarking that ∆g1 = α

z and ∆g2 = 1−α
τ−z−

α
z , we obtain for

any t ∈ T , λt(α,z,τ)
H(F ) = 1−α

τ−z . Moreover, ρ(α,z,τ)
H(F ) = ρ(1)+ρ(2)

H(F ) =
H(F2)
H(F )

z
τ−z = n2

n1+n2

z
τ−z =

(
1− α

z τ
)

z
τ−z = z−τα

τ−z .

V. CONVERSE PROOF OF THEOREM 1

Under the leakage symmetry Condition (A2), we prove
lower bounds on the individual share size and the necessary
amount of local randomness at the encoder in Sections V-A
and V-B, respectively.

A. Lower Bound on Individual Share Size

Let τ ∈ T , α ∈ [0, 1], z ∈ J1, τ−1K, and consider an (α, z)-
private (τ, (λt)t∈T , ρ) coding scheme for some (λt)t∈T ∈ NT ,
ρ ∈ N, as defined in Definition 2 under the leakage symmetry
Condition (A2). In Sections V-A.1 and V-A.2, we prove that
for any t ∈ T ,

λt

H(F )
⩾

1− α
τ − z

, (3)

and
λt

H(F )
⩾

1
τ
, (4)

respectively. We will thus deduce from (3) and (4) that for any
t ∈ T , λt

H(F ) ⩾ max
(

1−α
τ−z ,

1
τ

)
.

1) Proof of the First Lower Bound (3) on λt: Fix t ∈ T .

For i ∈ Jz, τ−1K, define Si ≜

{
J1, iK if t > i

J1, i+ 1K\{t} if t ⩽ i
and

Sτ ≜ Sτ−1 ∪ {t}. Then, for i ∈ Jz + 1, τ − 1K, we have

H(Mt|MSi
)

(a)
= H(MtF |MSi)−H(F |MSiMt)
(b)
= H(F |MSi

) +H(Mt|FMSi
)−H(F |MSi

Mt) (5)
(c)
= (1− Ci)H(F ) +H(Mt|FMSi)− (1− Ci+1)H(F )
= (Ci+1 − Ci)H(F ) +H(Mt|FMSi), (6)

where
(a) and (b) hold by the chain rule;
(c) holds for some constants Ci and Ci+1 by (A2).
Next, we have

H(Mt|MSτ
)

(a)
= H(F |MSτ

) +H(Mt|FMSτ
)−H(F |MSτ

Mt)
(b)
= H(Mt|FMSτ

)
(c)
= (Cτ+1 − Cτ )H(F ) +H(Mt|FMSτ

), (7)

where
(a) holds as in (5);
(b) holds by (1);
(c) holds by defining Cτ+1 ≜ Cτ = 1.
We also have

H(Mt|MSz
)

(a)
= H(F |MSz ) +H(Mt|FMSz )−H(F |MSzMt)
(b)

⩾ (1− α)H(F ) +H(Mt|FMSz
)− (1− Cz+1)H(F )

= (Cz+1 − α)H(F ) +H(Mt|FMSz
), (8)

where
(a) holds as in (5);
(b) holds by (2) and (A2).
In the following, for convenience, we define Cz ≜ α. Next,
we have

H(Mt)
(a)

⩾ H(Mt|MSz
) (9)

(b)
= H(Mt|MSz

)−H(Mt|MSτ
)

=
τ−1∑
i=z

(
H(Mt|MSi

)−H(Mt|MSi+1)
)

(c)

⩾
τ−1∑
i=z

[(Ci+1 − Ci)H(F ) +H(Mt|FMSi
)

−(Ci+2 − Ci+1)H(F )−H(Mt|FMSi+1)
]+

(d)

⩾ H(F )
τ−1∑
i=z

[(Ci+1 − Ci)− (Ci+2 − Ci+1)]+

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 09,2024 at 16:24:07 UTC from IEEE Xplore.  Restrictions apply. 



3664 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

(e)
= H(F )

τ∑
i=z+1

[(ϕ(i)− ϕ(i− 1))− (ϕ(i+ 1)− ϕ(i))]+

(f)

⩾ H(F ) min
ϕ∈F

τ∑
i=z+1

[(ϕ(i)− ϕ(i− 1))− (ϕ(i+ 1)− ϕ(i))],+

(10)

where
(a) holds because conditioning does not increase entropy;
(b) holds because t ∈ Sτ ;
(c) holds because H(Mt|MSi

) − H(Mt|MSi+1) ⩾ 0 (con-
ditioning does not increase entropy and Si ⊂ Si+1) and
by (6), (7), (8);

(d) holds because conditioning does not increase entropy;
(e) holds with the function ϕ : Jz, τ + 1K → [0, 1] defined

such that ϕ(i) = Ci for i ∈ Jz, τ + 1K;
(f) holds with the minimum taken over the set F of all the

functions ϕ : Jz, τ + 1K → [0, 1] that are non-decreasing
(by (A2) because for any S ⊂ S ′ ⊂ T , I(F ;MS)

H(F ) ⩽
I(F ;MS′ )

H(F ) ) and such that ϕ(z) = α (because Cz = α),
ϕ(τ + 1) = ϕ(τ) = 1 (because Cτ+1 = Cτ = 1).

We now lower bound the minimum in the right-hand side
of (10) by an expression that only depends on the concave
envelopes of the access functions that appear in the objective
function. This allows us to conclude that a piecewise linear
access function is solution to the optimization. Specifically,
let ϕ ∈ F and let ϕ+ be the concave envelope of ϕ over
Jz, τ + 1K, i.e., for i ∈ Jz, τ + 1K, ϕ+(i) ≜ min{ψ(i) : ψ ⩾
ϕ, ψ is concave}. Note that ϕ+(z) = ϕ(z) and ϕ+(τ + 1) =
ϕ(τ +1). Then, for any i ∈ Jz+1, τK such that ϕ(i) = ϕ+(i),
we have

[(ϕ(i)− ϕ(i− 1))− (ϕ(i+ 1)− ϕ(i))]+

⩾ (ϕ(i)− ϕ(i− 1))− (ϕ(i+ 1)− ϕ(i))
(a)

⩾ (ϕ(i)− ϕ+(i− 1))− (ϕ+(i+ 1)− ϕ(i))
(b)
= (ϕ+(i)− ϕ+(i− 1))− (ϕ+(i+ 1)− ϕ+(i)), (11)

where
(a) holds because ϕ+ ⩾ ϕ;
(b) holds because ϕ(i) = ϕ+(i).
Moreover, for any i ∈ Jz + 1, τK such that ϕ(i) ̸= ϕ+(i),
we have

[(ϕ(i)− ϕ(i− 1))− (ϕ(i+ 1)− ϕ(i))]+

⩾ 0
= (ϕ+(i)− ϕ+(i− 1))− (ϕ+(i+ 1)− ϕ+(i)), (12)

where the last equality holds because ϕ+ is linear between
i− 1 and i+ 1, i.e., ϕ+(i)− ϕ+(i− 1) = ϕ+(i+ 1)− ϕ+(i)
- details are provided in Appendix A.

Next, we have
τ∑

i=z+1

[(ϕ(i)− ϕ(i− 1))− (ϕ(i+ 1)− ϕ(i))]+

(a)

⩾
τ∑

i=z+1

(ϕ+(i)− ϕ+(i− 1))− (ϕ+(i+ 1)− ϕ+(i)))

= ϕ+(z + 1)− ϕ+(z)− ϕ+(τ + 1) + ϕ+(τ)

(b)
= ϕ+(z + 1)− ϕ+(z)
(c)

⩾
1− α
τ − z

, (13)

where
(a) holds by (11) and (12);
(b) holds because ϕ+(τ + 1) = ϕ+(τ) = 1;
(c) holds because ϕ+(z+1)−ϕ+(z) ⩾ (ϕ+(τ)−ϕ+(z))/(τ−

z) by concavity of ϕ+ and where we have used that
ϕ+(τ) = 1 and ϕ+(z) = ϕ(z) = α.

Finally, we have

λt ⩾ H(Mt)

⩾ H(F )
1− α
τ − z

,

where the last inequality holds by (10) and (13), which is valid
for any ϕ ∈ F .

2) Proof of the Second Lower Bound (4) on λt: Note that
in the proof of (3), one can substitute the variable z by zero
such that one can show

λt ⩾ H(Mt)
⩾ H(F )(ϕ+(1)− ϕ+(0))

⩾ H(F )
1
τ
,

where the last inequality holds because ϕ+(1) − ϕ+(0) ⩾
(ϕ+(τ) − ϕ+(0))/τ by concavity of ϕ+ and where we have
used that ϕ+(τ) = 1 and ϕ+(0) = 0.

B. Lower Bound on the Amount of Local Randomness

Let τ ∈ T , α ∈ [0, 1], z ∈ J1, τ−1K, and consider an (α, z)-
private (τ, (λt)t∈T , ρ) coding scheme for some (λt)t∈T ∈ NT ,
ρ ∈ N, as defined in Definition 2 under the leakage symmetry
Condition (A2). Then, we have

ρ+H(F )

(a)
= H(R) +H(F )

(b)
= H(RF )

(c)

⩾ H(MT )

(d)
= H(MJ1,zK) +H(MT \J1,zK|MJ1,zK)

(e)
=

z∑
t=1

H(Mt|MJ1,t−1K) +H(MT \J1,zK|MJ1,zK)

(f)

⩾
z∑

t=1

H(Mt|MSz,t
) +H(MT \J1,zK|MJ1,zK)

(g)

⩾ z
1− α
τ − z

H(F ) +H(MT \J1,zK|MJ1,zK)

(h)
= z

1− α
τ − z

H(F ) +H(MT \J1,zKF |MJ1,zK)

−H(F |MT \J1,zKMJ1,zK)
(i)

⩾ z
1− α
τ − z

H(F ) +H(F |MJ1,zK)
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(j)

⩾ z
1− α
τ − z

H(F ) + (1− α)H(F )

= τ
1− α
τ − z

H(F ), (14)

where
(a) holds by uniformity of R;
(b) holds by independence between F and R;
(c) holds because MT is a deterministic function of (R,F );
(d) and (e) hold by the chain rule;
(f) holds because conditioning does not increase entropy and

we have defined Sz,t ≜ J1, z + 1K\{t} for t ∈ J1, zK;
(g) holds because for any t ∈ J1, zK, H(Mt|MSz,t

) ⩾
1−α
τ−zH(F ), by the converse proof of Theorem 1 starting
from (9);

(h) holds by the chain rule;
(i) holds because H(F |MT \J1,zKMJ1,zK) = H(F |MT ) =

0 by (1), and H(MT \J1,zKF |MJ1,zK) ⩾ H(F |MJ1,zK) by
the chain rule and positivity of conditional entropy;

(j) holds by (2).
Finally, from (14), we have

ρ ⩾

(
τ

1− α
τ − z

− 1
)
H(F ) =

z − τα
τ − z

H(F ),

and since we also have ρ ⩾ 0, we conclude

ρ

H(F )
⩾

[z − τα]+

τ − z
.

VI. CONCLUDING REMARKS

We considered a setting where a file must be stored in L
servers such that: (i) any τ servers that pool their information
together can reconstruct the file, and (ii) any z servers cannot
learn more than a fraction α ∈ [0, 1] of the file, where
τ , z, and α are parameters to be chosen by the system
designer. This setting generalizes ramp secret sharing in that
information leakage about the file is allowed up to a fraction
α, and goes beyond existing works on uniform secret sharing
by considering share size optimization over a set of access
functions rather than for a fixed access function. Specifically,
for given parameters τ , z, α, and under the leakage symmetry
assumption that any set of colluding servers must have the
same information leakage about the file that any other set
of colluding servers of same size, we derived the optimal
individual share size at each server. In the absence of any
leakage symmetry, we also derived the optimal sum of the
share sizes at all the servers and the optimal amount of local
randomness needed at the encoder. As a byproduct, in the case
α = 0, our results prove that among all uniform secret sharing
schemes for our model, linear ramp secret sharing schemes
require the smallest individual share size.

APPENDIX A
PROOF OF (12)

By contradiction, assume that ϕ+ is not linear between
i− 1 and i+ 1, then we must have

ϕ+(i) >
ϕ+(i+ 1) + ϕ+(i− 1)

2
(15)

since ϕ+ is concave. Next, we have a contradiction by con-
structing ψi, a concave function such that ϕ ⩽ ψi < ϕ+,
as follows:

ψi : Jz, τ + 1K→ R

j 7→

{
ϕ+(j) if j ̸= i

max
(

ϕ+(i+1)+ϕ+(i−1)
2 , ϕ(i)

)
if j = i

.

We have ϕ ⩽ ψi (since ϕ ⩽ ϕ+), and ψi < ϕ+ by (15) and
because ϕ+(i) > ϕ(i) (since ϕ+ ⩾ ϕ and ϕ+(i) ̸= ϕ(i)).
Then, to show concavity of ψi, it is sufficient to show that
ψ∆

i is non-increasing, where ψ∆
i is defined as

ψ∆
i : Jz, τK→ R

j 7→ ψi(j + 1)− ψi(j).

For j ∈ Jz, i− 3K ∪ Ji+ 1, τK, we have

ψ∆
i (j + 1) ⩽ ψ∆

i (j) (16)

by definition of ψ∆
i and concavity of ϕ+. Then, we have

ψ∆
i (i− 1)

(a)
= ψi(i)− ψi(i− 1)

(b)
= ψi(i)− ϕ+(i− 1)

(c)

⩽ ϕ+(i)− ϕ+(i− 1)

(d)

⩽ ϕ+(i− 1)− ϕ+(i− 2)

(e)
= ψi(i− 1)− ψi(i− 2)

(f)
= ψ∆

i (i− 2),

where
(a) and (f) hold by definition of ψ∆

i ;
(b) and (e) hold by definition of ψi;
(c) holds because ψi < ϕ+;
(d) holds by concavity of ϕ+.
Then, we have

ψ∆
i (i)

(a)
= ψi(i+ 1)− ψi(i)
(b)
= ϕ+(i+ 1)− ψi(i)
(c)

⩽ ψi(i)− ϕ+(i− 1)
(d)
= ψi(i)− ψi(i− 1)
(e)
= ψ∆

i (i− 1), (17)

where
(a) and (e) hold by definition of ψ∆

i ;
(b) and (d) hold by definition of ψi;
(c) holds because ϕ+(i+1)+ϕ+(i−1)

2 ⩽ ψi(i).
Then, we also have

ψ∆
i (i+ 1)

(a)
= ψi(i+ 2)− ψi(i+ 1)
(b)
= ϕ+(i+ 2)− ϕ+(i+ 1)
(c)

⩽ ϕ+(i+ 1)− ϕ+(i)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 09,2024 at 16:24:07 UTC from IEEE Xplore.  Restrictions apply. 



3666 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 5, MAY 2024

(d)

⩽ ϕ+(i+ 1)− ψi(i)
(e)
= ψi(i+ 1)− ψi(i)
(f)
= ψ∆

i (i), (18)

where
(a) and (f) hold by definition of ψ∆

i ;
(b) and (e) hold by definition of ψi;
(c) holds by concavity of ϕ+;
(d) holds because ψi < ϕ+.
Hence, by (16), (17), and (18), ψ∆

i is non-increasing and we
have thus proved (12) by contradiction.

APPENDIX B
CONVERSE PROOF OF THEOREM 2

Let τ ∈ T , α ∈ [0, 1], z ∈ J1, τ−1K, and consider an (α, z)-
private (τ, (λt)t∈T , ρ) coding scheme for some (λt)t∈T ∈ NT ,
ρ ∈ N, as defined in Definition 2. We prove the lower bounds∑

t∈T λt

H(F )
⩾ T max

(
1− α
τ − z

,
1
τ

)
, (19)

ρ

H(F )
⩾

[z − τα]+

τ − z
, (20)

in Appendices B-A and B-B, respectively.

A. Lower Bound on the Sum of the Share Sizes

For W ⊆ T and S ⊆ T \W such that |W|= z and |S|=
τ − z, we have∑

l∈S

H(Ml)
(a)

⩾ H(MS)

(b)

⩾ H(MS |MW)
⩾ I(MS ;F |MW)
= H(F |MW)−H(F |MW∪S)
(c)
= H(F |MW)
= H(F )− I(F ;MW)
(d)

⩾ (1− α)H(F ), (21)

where
(a) and (b) hold by the chain rule and because conditioning

does not increase entropy;
(c) holds by (1) because |S ∪W|= τ ;
(d) holds by (2) because |W|= z.

Then, by defining Θ ≜ T
τ−z

(
T
z

)−1(T−z
τ−z

)−1
, we have

T
1− α
τ − z

H(F )

(a)
= Θ

∑
W⊆T
|W|=z

∑
S⊆Wc

|S|=τ−z

(1− α)H(F )

(b)

⩽ Θ
∑
W⊆T
|W|=z

∑
S⊆Wc

|S|=τ−z

∑
l∈S

H(Ml)

(c)
= Θ

∑
W⊆T
|W|=z

(
T − z − 1
τ − z − 1

) ∑
l∈Wc

H(Ml)

(d)
= Θ

(
T − z − 1
τ − z − 1

) ∑
W⊆T

|W|=T−z

∑
l∈W

H(Ml)

(e)
= Θ

(
T − z − 1
τ − z − 1

)(
T − 1

T − z − 1

) ∑
l∈T

H(Ml)

=
∑
l∈T

H(Ml)

(f)

⩽
∑
l∈T

λl, (22)

where
(a) holds because

(
T
z

)−1(T−z
τ−z

)−1 ∑
W⊆T
|W|=z

∑
S⊆Wc

|S|=τ−z

1 = 1;

(b) holds by (21);
(c) holds because for any l ∈ Wc, H(Ml) appears exactly(

T−z−1
τ−z−1

)
times in the term

∑
S⊆Wc

|S|=τ−z

∑
l∈S H(Ml), note

that this observation is similar to [27, Lemma 3.2];
(d) holds by a change of variables in the sums;
(e) holds because for any l ∈ T , H(Ml) appears exactly(

T−1
T−z−1

)
times in the sum

∑
W⊆T

|W|=T−z

∑
l∈W H(Ml);

(f) holds by definition of Ml, l ∈ T .
Then, for any S ⊆ T such that |S|= τ , we have∑

l∈S

H(Ml) ⩾ H(MS)

⩾ H(F ), (23)

where the last inequality holds because if H(MS) < H(F ),
then by (1), we have H(F |MS) = 0 and then the contradiction
H(MS |F ) = H(MS)−H(F ) < 0. We also have

T

τ
H(F ) =

T

τ

(
T

τ

)−1 ∑
S⊆T|S|=τ

H(F )

(a)

⩽
T

τ

(
T

τ

)−1 ∑
S⊆T
|S|=τ

∑
l∈S

H(Ml)

=
T

τ

(
T

τ

)−1(
T − 1
τ − 1

) ∑
l∈T

H(Ml)

=
∑
l∈T

H(Ml)

(b)

⩽
∑
l∈T

λl, (24)

where
(a) holds by (23);
(b) holds by definition of Ml, l ∈ T .

Finally, we conclude from (22) and (24) that (19) holds.

B. Lower Bound on the Amount of Local Randomness

Let V ⊆ T such that v ≜ |V|< z. For W ⊆ T \V and
S ⊆ T \(W ∪ V) such that |W|= z − v and |S|= τ − z,
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we have ∑
l∈S

H(Ml|MV)
(a)

⩾ H(MS |MV)

(b)

⩾ H(MS |MV∪W)
(c)

⩾ (1− α)H(F ), (25)

where
(a) and (b) hold by the chain rule and because conditioning

does not increase entropy;
(c) holds similar to (21) with the substitution W ← V ∪W ,

which is possible because |V∪W∪S|= τ and |V∪W|= z.

Then, by defining Λ ≜ 1
τ−z

(
T−v
z−v

)−1(T−z
τ−z

)−1
, we have

1− α
τ − z

H(F )

= Λ
∑

W⊆T \V
|W|=z−v

∑
S⊆T \(W∪V)
|S|=τ−z

(1− α)H(F )

(a)

⩽ Λ
∑

W⊆T \V
|W|=z−v

∑
S⊆T \(W∪V)
|S|=τ−z

∑
l∈S

H(Ml|MV)

(b)
= Λ

∑
W⊆T \V
|W|=z−v

(
T−z − 1
τ−z − 1

) ∑
l∈T \(W∪V)

H(Ml|MV)

(c)
= Λ

(
T − z − 1
τ − z − 1

) ∑
W⊆T \V
|W|=T−z

∑
l∈W

H(Ml|MV)

(d)
= Λ

(
T − z − 1
τ − z − 1

)(
T − v − 1
T − z − 1

) ∑
l∈T \V

H(Ml|MV)

=
1

T − v
∑

l∈T \V

H(Ml|MV)

(e)

⩽
1

T − v
∑

l∈T \V

H(Ml⋆(V)|MV)

= H(Ml⋆(V)|MV)
= H(MT |MV)−H(MT |MV∪{l⋆(V)}), (26)

where
(a) holds by (25);
(b) holds because for any l ∈ T \(W ∪ V), the term

H(Ml|MV) appears exactly
(
T−z−1
τ−z−1

)
times in the term∑

S⊆T \(W∪V)
|S|=τ−z

∑
l∈S H(Ml|MV), this argument is similar

to [27, Lemma 3.2];
(c) holds by a change of variables in the sums;
(d) holds because for any l ∈ T \V , H(Ml|MV)

appears exactly
(
T−v−1
T−z−1

)
times in the term∑

W⊆T \V
|W|=T−z

∑
l∈W H(Ml|MV);

(e) holds with l⋆(V) ∈ arg maxl∈T \V H(Ml|MV).

Next, define V0 ≜ ∅ and for i ∈ J1, zK, Vi ≜ Vi−1 ∪
{l⋆(Vi−1)}. Then, we have

z − τα
τ − z

H(F )

=
(
z
1− α
τ − z

− α
)
H(F )

= −αH(F ) + z
1− α
τ − z

H(F )

= −αH(F ) +
z−1∑
i=0

1− α
τ − z

H(F )

(a)

⩽ −αH(F ) +
z−1∑
i=0

[H(MT |MVi
)−H(MT |MVi+1)]

= −αH(F ) +H(MT )−H(MT |MVz
)

(b)

⩽ −αH(F ) +H(F,R)−H(MT |MVz )
(c)
= (1− α)H(F ) +H(R)−H(MT |MVz

)
(d)
= (1− α)H(F ) +H(R)−H(FMT |MVz )
⩽ (1− α)H(F ) +H(R)−H(F |MVz )
(e)

⩽ H(R)
= ρ, (27)

where
(a) holds by applying z times (26) and the definition of Vi,

i ∈ J0, zK;
(b) holds because MT is a deterministic function of (F,R)
(c) holds by independence between F and R;
(d) holds by the chain rule and because H(F |MT ) = 0 by (1);
(e) holds because −H(F |MVz

) ⩽ −(1− α)H(F ) by (2).
Finally, since we also have ρ ⩾ 0, we conclude from (27)
that (20) holds.
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