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with highly misaligned electric fields
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Common proposals for realizing topological superconductivity and Majorana zero modes in semiconductor-
superconductor hybrids require large magnetic fields, which paradoxically suppress the superconducting gap of
the parent superconductor. Although two-channel schemes have been proposed as a way to eliminate magnetic
fields, geometric constraints make their implementation challenging, since the channels should be immersed
in nearly antiparallel electric fields. Here, we propose an experimentally favorable scheme for realizing field-
free topological superconductivity, in two-channel InAs-Al nanowires, that overcomes such growth constraints.
Crucially, we show that antiparallel fields are not required, if the channels are energetically detuned. We compute
topological phase diagrams for realistically modeled nanowires, finding a broad range of parameters that could
potentially harbor Majorana zero modes. This paper, therefore, solves a major technical challenge and opens the
door to near-term experiments.
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I. INTRODUCTION

Majorana zero modes (MZMs) are zero-energy modes
localized at the ends of topological superconductors and a
potential building block for topological qubits [1–4]. Over the
past decade, there has been considerable progress in realiz-
ing MZMs in semiconductor-superconductor hybrids [5–12],
primarily in the context of the Lutchyn-Oreg model [13,14],
which requires applying a large magnetic field to the hybrid
system. The application of magnetic fields is worrisome, how-
ever, since it suppresses the superconductivity [15,16]. This
has motivated research into topological superconductivity in
the absence of magnetic fields, so-called time-reversal invari-
ant topological superconductivity (TRITSC) [17–35], where
the MZMs on either end of a wire occur in pairs called
Majorana Kramers pairs (MKP), due to the preservation of
time-reversal symmetry. Of particular interest are proposals
that rely on two channels with approximately opposite spin-
orbit coupling vectors, such as Rashba bilayers [18–20] and
two-channel nanowires [24–28], where the system is essen-
tially composed of two copies of the Lutchyn-Oreg model
with the spin degree of freedom replaced by the channel
degree of freedom.

The planar geometry of Rashba bilayers naturally provides
antiparallel spin-orbit vectors in the two channels, as illus-
trated in Fig. 1(a), because the spin-orbit vectors align with the
local electric field. Creating such structures in semiconductor-
superconductor hybrids is challenging, however, because it
requires growing a high-quality semiconducting crystal layer
between two superconductors, which has yet to be demon-
strated. In contrast, epitaxial growth of superconductors on
semiconductor nanowires has already been accomplished
[36]. In this case, however, it is difficult to engineer an-
tiparallel spin-orbit vectors in the two channels. This is a
serious problem because small misalignments of the spin-
orbit vectors are expected to collapse the topological gap [24],

by effectively coupling the two copies of the Lutchyn-Oreg
model present in the wire.

In this paper, we turn the problem on its head by show-
ing that TRITSC can be realized in experimentally feasible
[37,38] two-channel hybrid nanowires where the spin-orbit
vectors of the two channels are highly misaligned, as de-
picted in Fig. 1(b). The key to our proposal is to introduce
an energy detuning between the two channels, on order of
the superconducting gap. Essentially, the detuning separates
the two copies of the Lutchyn-Oreg model in momentum
space, which significantly reduces the coupling induced by
the spin-orbit vector misalignment, allowing the topological
phase to persist. Since the success of our proposal hinges on
the degree of spin-orbit vector misalignment and other device
parameters, we consider a more rigorous device model than
the Hamiltonian-level models typically used in the literature,
incorporating both geometric and electrostatic details. This
ensures that our conclusions do not result from inaccurate
estimates of the model parameters.

II. MODEL

We consider the system shown in Fig. 1(c) in which a semi-
conducting InAs nanowire with a triangular cross section is
coupled to two Al superconductors that cover half of the upper
facets. The system is translationally invariant along the ẑ axis.
Similar to previous TRITSC proposals [24–27], an external
flux loop [39] imposes an order parameter phase difference
of π between the two superconductors. In addition, gates sur-
round the nanowire to control the electrostatics. The system is
modeled by a Bogoliubov-de-Gennes (BdG) Hamiltonian of
the canonical form [40,41]

HBdG(kz ) =
(
HN (kz ) �̃

−�̃∗ −H∗
N (−kz )

)
, (1)
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FIG. 1. Structures for realizing TRITSC. (a) Schematic cross
section of a proposed Rashba bilayer system, where two supercon-
ductors are coupled to two tunnel-coupled channels, with opposite
spin-orbit vectors, ᾱ2 = −ᾱ1. Here, the spin-orbit vectors align to
the local electric field produced by charge inside of the channels.
(b) Schematic cross section of the InAs-Al hybrid nanowire sys-
tem proposed here, where two channels (blue ovals) with highly
misaligned spin-orbit vectors, ᾱL and ᾱR, form near the InAs-Al
interfaces. Various parameters appearing in the low-energy effective
Hamiltonian, Eq. (4), are labeled, including the tunnel coupling t ,
energy detuning g, spin-orbit misalignment angle θ , and supercon-
ductive pairing ±�0. (c) Zoomed-out view (not drawn to scale)
of the system in (b), showing the gates (gold) used to control the
electrostatic environment. The potential −eφ calculated for the gate
voltages (VT ,VB,VL,VR ) = (−5.5, −3, 0, 0)V and the InAs-Al in-
terface boundary condition φ = 0.3V is plotted in the cross section
of the nanowire.

where HN and �̃ are the normal and superconductive pairing
components, respectively, kz is the momentum along the ẑ
axis, and the first and second columns act upon particle and
hole degrees of freedom, respectively. The normal Hamilto-
nian takes the form HN = H0 + HSO, where H0 is an effective
mass Hamiltonian given by

H0(kz ) = h̄2

2m∗
(−∂2

x − ∂2
y + k2z

) − eφ(x, y). (2)

Here, m∗ is the effective mass and φ is the electrostatic po-
tential that satisfies Poisson’s equation, ∇ · [ε(r)∇φ(r)] =
−ρ(r), where ε is a material-dependent dielectric constant
and ρ is the free-charge density that is calculated self-
consistently [42]. The potential φ satisfies Dirichlet boundary
conditions on the gates shown in Fig. 1(c). The surfaces of
the Al superconductors are also set to φ = 0, except for the
InAs-Al interfaces, which are set to φ = 0.3 V to account
for the band offset between the two materials [43–46]. The
spin-orbit term HSO is given by

HSO(kz ) = [̃αx(x, y)σy − α̃y(x, y)σx]kz, (3)

where α̃ j are Rashba fields and σ j are Pauli spin matrices.
We neglect Dresselhaus and transverse-Rashba spin-orbit cou-
pling contributions because they are weak, as explained in
Appendix D. Importantly, the Rashba fields are position de-
pendent and related to the potential by α̃(x, y) = eC∇φ(x, y)
[47,48], whereC is a material-dependent constant. Finally, the

superconductive pairing is treated as an induced pairing within
the InAs, with �̃ = i�(x, y)σy. (See details below.)

A. Two-channel effective Hamiltonian

We derive the low-energy effective Hamiltonian of the
system by considering the electrostatic potential shown in
Fig. 1(c), for typical gate voltages. Here, electrons are at-
tracted to the InAs-Al interfaces, primarily because of the
band offset between the materials, and we observe chan-
nels forming near each InAs-Al interface, as illustrated in
Fig. 1(b). We then project Eq. (1) onto the two lowest-energy
orbital subbands, ϕ1 and ϕ2, defined by H0(0)ϕn(x, y) =
εnϕn(x, y), where ϕ1 and ϕ2 can be expressed as superposi-
tions of the left and right channel wave functions, χL and χR,
depicted in Fig. 1(b), ϕn = anχL + bnχR for n = 1, 2. In this
two-channel basis, as shown in Appendix A, the effective BdG
Hamiltonian becomes

Heff(kz ) = [ε(kz )λ0 + tλx + gλz]σ0τz − �0σyλzτy

+ αkz(cos θσyλzτz + sin θσxλ0τ0), (4)

where σ j , λ j , and τ j are Pauli matrices acting on spin,
channel, and particle-hole space, respectively, and ε(kz ) =
h̄2k2z /(2m

∗) − μ is the bare dispersion. By defining hi j =
〈χi|H0(0)|χ j〉, we can express the chemical potential as μ =
(hLL+hRR)/2, the interchannel tunnel coupling as t = hRL,
and the channel energy detuning as g = (hLL−hRR)/2. We
note that these parameters all depend on the local elec-
trostatics. For example, t characterizes the localization of
the channels near the InAs-Al interfaces, while g is largely
determined by the voltage bias VL −VR between the side
gates, shown in Fig. 1(c). To understand the parameters
α and θ in Eq. (4), it is helpful to define the spin-orbit
vector of channel i as ᾱi = ∫ |χi(x, y)|2α̃(x, y) dxdy, which
averages the electric field over the channel wave function.
The parameters α and θ appearing in Eq. (4) represent the
magnitude and direction of the spin-orbit vectors, as illus-
trated in Fig. 1(b). Crucially, the sample geometry ensures
that ᾱL and ᾱR are generically misaligned. Additionally, the
symmetry of the nanowire cross section imparts approxi-
mate mirror symmetry to the two spin-orbit vectors, such
that ᾱL · x̂ ≈ −ᾱR · x̂ and ᾱL · ŷ ≈ ᾱR · ŷ. This is reflected in
the λz and λ0 factors in the second line of Eq. (4). The
angle θ characterizes the misalignment between the spin-
orbit vectors, and how far the system is from the ideal limit
(θ = 0), typically assumed in the literature [18–20,25–28].
In a real device, the spin-orbit vectors will not be perfectly
mirror symmetric, due to the voltage bias VL −VR and device
imperfections. We neglect such symmetry-breaking terms
here for simplicity, and because they do not significantly affect
the physics, as shown in Appendix A. Finally, we note that the
superconductive pairing for channel i could also be computed
as �i = ∫ |χi(x, y)|2�(x, y) dxdy, in principle. However, a
rigorous calculation of �(x, y) involves complicating factors,
such as details about disorder and the InAs-Al interface [49],
which are beyond the scope of this paper. Here, we simply
define (�L,�R) = (�0,−�0), which captures the π phase
difference between the superconducting order parameters, and
we adopt a typical value of �0 = 0.2meV for such InAs-Al
hybrids [9].
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FIG. 2. Topological phase diagrams in the absence of channel
detuning. (a) Topological phase diagram for antiparallel spin-orbit
vectors (θ = 0) and no channel detuning (g = 0). The color map
shows the computed topological gap �top for the topological phase.
(b) Bulk energy spectrum for parameters corresponding to the green
star in (a). All bands are twofold degenerate because Eq. (5) decom-
poses into two identical spin blocks when θ = g= 0. The shaded
energy gap corresponds to 2�top. (c) Phase diagram for the same
system as (a), but with spin-orbit misalignment θ = 30◦, yielding a
large gapless region (gray). (d) A typical gapless bulk spectrum, for
parameters corresponding to the red triangle in (c).

III. TOPOLOGICAL PHASE DIAGRAMS

Before focusing on the device shown in Fig. 1(c), we first
explore how the channel degree of freedom enables the real-
ization of TRITSC. Additionally, we show how misalignment
of the spin-orbit vector (θ �= 0) is detrimental to the topolog-
ical phase and how introducing a channel detuning (g �= 0)
can alleviate this issue. For now, the parameters μ, t , g, and
θ in Eq. (4) are treated as free parameters, to elucidate the
physics of the effective model. However, they are calculated
more realistically, later in the paper. Other parameters used
here are m∗ = 0.026m0 and α = 20meVnm [9].

To begin, it is helpful to change the basis of the effective
Hamiltonian, Eq. (4), as explained in Appendix B, yielding

H ′
eff(kz ) = [ε(kz )λ0τz + tλxτz − �0λyτy

+ αkz cos θλzτ0]σ0 + gσzλzτ0

+ αkz sin θσxλxτ0. (5)

We first consider the limit of antiparallel spin-orbit vectors
(θ = 0), as typically assumed in the literature [25–28], with
no channel detuning (g = 0). Equation (5) then decomposes
into two identical spin blocks. [This is the reason for the
basis change in Eq. (5).] As noted previously [24], each of
the spin blocks corresponds to an independent Lutchyn-Oreg
model [13,14] of a superconducting nanowire with spin-orbit
coupling in an external magnetic field, except that the spin de-
grees of freedom are now replaced by channels σ j → λ j , and
the Zeeman energy is replaced by the interchannel tunnel cou-
pling t . In analogy with the Lutchyn-Oreg model, the system
transitions from a trivial phase without MZMs to a topological
phase with MZMs when t2 > μ2 + �2

0. In contrast to the
Lutchyn-Oreg model, however, two MZMs (corresponding to

FIG. 3. Effect of channel detuning g on topological phase di-
agrams. [(a), (b)] Topological phase diagrams, as function of the
chemical potential μ and spin-orbit misalignment θ , for t = 0.5meV,
and (a) g = 0, or (b) g = �0. Increasing θ in (a) suppresses the
topological gap �top, yielding a gapless phase (gray) when θ � 22◦.
Introducing the channel detuning g in (b) removes the gapless phase
and extends the topological region out to large θ . [(c), (d)] Bulk
spectra for parameters corresponding to the green circle (θ = 0) and
green cross (θ = 30◦) in (b). In (c), the channel detuning g lifts the
spin degeneracy when kz �= 0, as shown with orange (purple) for the
spin ↑ (↓) bands. Lifting the degeneracy reduces the level repulsion
between spins, caused by misaligned spin-orbit vectors, and allows
the topological phase to survive up to large θ .

one MKP)appear at each end of the nanowire, due to the
presence of dual spin blocks in the TRITSC case. (Note that
the degeneracy of the two pairs of MZMs at zero energy is
protected by time-reversal symmetry [17].) An example phase
diagram is shown in Fig. 2(a) for the case of θ = g= 0. (See
Appendix C for a discussion of our method for calculating
phase diagrams, which involves determining whether an MKP
exists at the end of a semi-infinite wire.)Like other MZM
schemes, several device parameters (including the chemical
potential) must be tuned simultaneously, to enter the topo-
logical phase. Indeed, the range of the chemical potentials
yielding a topological phase in Fig. 2(a) is the same range
found for Majorana nanowires with broken time-reversal sym-
metry [13,14]. In Fig. 2(a), the color map indicates the size of
the topological gap�top, defined by the red region in Fig. 2(b),
where we plot a typical bulk energy spectrum. We note that
this spectrum is everywhere twofold degenerate, due to the
identical spin blocks.

Next, we consider the case of misaligned spin-orbit vec-
tors (θ �= 0), although we still assume g = 0. The term
αkzsin θσxλxτ0 in Eq. (5) now plays an important role, cou-
pling the two spin blocks. This has a dramatic effect on the
phase diagram, as shown in Fig. 2(c) for θ = 30◦. Here, the
topological phase boundary is unchanged at small t ; how-
ever, the topological gap is significantly reduced, disappearing
all together for large enough t . Importantly, the closing of
the gap destroys the topological phase and accompanying
MZMs because a topological phase is only well defined in
the presence of a bulk gap [50]. This explains why misaligned
spin-orbit vectors are considered dangerous for TRITSC [24].
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A typical gapless bulk spectrum is shown in Fig. 2(d). Here,
the coupling between the spin blocks, due to spin-orbit vec-
tor misalignment, causes the degenerate bands to split, when
kz �= 0.

The key result of this paper is that the topological gap
can remain robust, even for highly misaligned spin-orbit vec-
tors, if we introduce an energy detuning g between the two
channels. This is demonstrated in Figs. 3(a) and 3(b), where
we report topological phase diagrams for different channel
detunings, as a function of the spin-orbit misalignment angle
θ and chemical potential μ. For the case g = 0 [Fig. 3(a)],
we see that increasing θ suppresses the topological gap, until
the system becomes gapless for θ � 22◦, as consistent with
Fig. 2(c). In stark contrast for g = �0 [Fig. 3(b)], there is
no gapless phase, and the topological phase remains intact
for a range of chemical potentials that is nearly constant for
θ between 0 and 40◦. In fact, the topological phase extends
nearly to the worst-case limit of θ = 90◦, where the spin-orbit
vectors of the two channels are parallel. Detuning is therefore
found to be crucial for maintaining a topological phase in
TRITSC when θ �= 0.

To understand the mechanism providing robustness to
the topological gap, we first consider the case of θ = 0
and g �= 0. Solving for the gap-closing condition, we obtain
the topological criterion, t2 > (μ − Eg)2 + �2

0, where Eg =
h̄2g2/(2m∗α2). Interestingly, we find that the bulk gap does
not close at kz = 0, as in the Lutchyn-Oreg model, but rather
at kz = ∓g/α. More importantly, the topological criterion is
the same as the g = 0 case, except for an overall shift to
larger chemical potentials. Therefore, introducing the channel
detuning g by itself does not alter the size of the topological
region. We then consider the spectrum for θ = 0 and g = �0,
in the topological regime [Fig. 3(c)]. Comparing this to the
g = 0 spectrum in Fig. 2(b), we see that the channel detun-
ing g breaks the twofold spin degeneracy when kz �= 0. This
occurs because the gσzλzτ0 term in Eq. (5) renders the two
spin blocks inequivalent. If we also misalign the spin-orbit
vectors (θ �= 0), as shown in Fig. 3(d) for the case θ = 30◦,
we find that the topological gap is reduced, as expected from
Fig. 2. However, the topological gap is more robust, because
the band minima are separated in kz space [see Fig. 3(c)],
effectively reducing the level repulsion between the two spin
blocks when θ �= 0. Finally, we note that, to be effective, g
must be comparable to other energies in the problem, which
are of order of the induced gap �0.

IV. FULL DEVICE CALCULATIONS

We now compute topological phase diagrams for the device
shown in Fig. 1(c), as well as the parameters t , θ , and α

appearing in the effective Hamiltonian, Eq. (5). The results
suggest that prospects for realizing TRITSC in such a device
are very promising, and validate the conclusions of Figs. 2
and 3 in a realistic setting. For these calculations, we adopt
the geometric parameters (L, d, h,w) = (65, 50, 90, 100) nm
and assume a 45◦ angle at the base of the nanowire, as
consistent with recent experiments [38]. The triangular cross
section is found to be beneficial for TRITSC by provid-
ing single-subband occupancy in the conduction band, while
maintaining a large interchannel tunnel coupling t , due to the

FIG. 4. Topological phase diagrams for full device. Phase dia-
grams are shown for the device in Fig. 1(c), as functions of top gate
voltage VT and chemical potential μ, for channel detuning values of
(a) g = 0, or (b) g = �0. Similar to Figs. 3(a) and 3(b), we find a
large gapless region (gray) in (a) for g = 0, which is nearly removed
in (b) by introducing a channel detuning g = �0. (Inset) Normalized
tunnel coupling t/�0 (blue) and spin-orbit misalignment angle θ

(red), which characterize the effective Hamiltonian in Eq. (4), and
are numerically extracted as a function of top gate voltage VT , for
μ = g = 0. Note that the width of the topological region, as a func-
tion of μ, is largely determined by t . Also note that θ ≈ 35◦ for all
VT , indicating highly misaligned spin-orbit vectors. Parameters like t
and θ depend strongly on the device geometry and electrostatics.

large surface-to-volume ratio. As before, the band offset at the
InAs-Al interfaces is set to 0.3V [51], and other parameters
are given by C = 1.17 nm2 and (εInAs, εSiO2 ) = (14.6, 3.9)
[52]. Our numerical procedure begins by self-consistently
[42] solving the Schrödinger-Poisson equations, treating the
charge density in the Hartree approximation. Here, the orbital
subbands ϕn of H0 in Eq. (2) are solved using finite-element
methods [53] and the electrostatic potential is solved with help
from the FEniCS software library [54]. Note that we focus
on the very-low-density regime, where self-consistency has
only a modest impact on the results. We then use the solutions
obtained for ϕn to calculate the matrix elements ofHSO and �̃.
Projecting onto just a few (n � 10) low-energy subbands, we
finally calculate the local density of states near zero energy,
for a semi-infinite wire, as described in Appendices A and C.
This procedure is repeated for a range of system parameters
to obtain a topological phase diagram.

Figures 4(a) and 4(b) compare the topological phase dia-
grams obtained for the different channel detuning values, (a)
g = 0 and (b) g = �0. Here, the back gate and top gate pro-
vide full control over the chemical potential μ, where μ = 0
is defined as the Fermi energy lying halfway between the first
two subband energies, at kz = 0. The phase diagrams can be
understood in analogy to Figs. 2 and 3. In short, Fig. 4(a)
shows a large gapless region, due to the absence of channel
detuning (g = 0). However, this region almost disappears in
4(b), when we include a channel detuning g = �0 by apply-
ing a voltage bias VL −VR. The striking difference between
Figs. 4(a) and 4(b) can be attributed to the channel detuning
in the presence of highly misaligned spin-orbit vectors. Here,
the computed misalignment angle θ is shown in the inset (red
curve), and is found to range from 32◦ to 39◦, remaining close
to 45◦ due to the geometry. The topological gap in Fig. 4(b)
is also large, indicating a robust topological phase. Moreover,
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the phase diagram is quite broad with respect toμ, particularly
for larger VT values, due to the exponential dependence of
the interchannel tunnel coupling t on VT , as shown in the
inset (blue curve). We note that a broad phase diagram is
particularly conducive for forming MZMs, since larger fluc-
tuations in μ can be tolerated along the length of the wire,
without admitting localized Andreev bound states [55–63].
Finally, we obtain a spin-orbit magnitude of α ≈ 25meVnm
for the range of voltages shown in Fig. 4, a spin-orbit energy
of ESO = m∗α2/(2h̄2) ≈ 0.11meV, and a spin-orbit length
of lSO = h̄2/(m∗α) ≈ 115 nm. This large spin-orbit coupling
arises mainly from the electric field induced by the band offset
at the InAs-Al interfaces.

V. CONCLUSIONS

Contrary to previous expectations [24], we have shown
how TRITSC may be realized in InAs-Al two-channel
nanowires with highly misaligned spin-orbit vectors. The key
ingredient in our scheme is an energy detuning g between
the two channels. By incorporating geometrical and electro-
static details into a realistic device model, we have shown
that MZMs can be realized, without magnetic fields, using
currently existing InAs-Al technology [37,38].

We caution, however, that the proposed scheme still re-
quires a high degree of uniformity along the length of the
wire to avoid forming low-energy Andreev bound states, sim-
ilar to other MZM schemes. Moreover, fluctuations of the
interchannel tunnel coupling t and the detuning parameter g
could also affect the formation of Andreev bound states, in
addition to more well-studied fluctuations of the chemical po-
tential μcoming from electrostatic nonuniformities [55–60],
including smooth confinement potentials at the edges of the
wire [61–63]. Finally, we note that the decoupling of the
MKP in TRITSC relies upon time-reversal symmetry. Mag-
netic impurities, such as Overhauser fields from nuclear spins,
familiar to the quantum dot community [64], could therefore
be detrimental and will be addressed in future work.
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APPENDIX A: DERIVATION OF THE TWO-CHANNEL
EFFECTIVE HAMILTONIAN

In the main text, we stated that the effective Hamiltonian
Heff in Eq. (4) can be derived by projecting the BdG Hamil-
tonian HBdG in Eq. (1) onto the two-channel orbital wave

functions χL and χR, which are superpositions of the two
lowest-energy orbital subbands ϕ1 and ϕ2 of the effective mass
Hamiltonian H0. In this section, we provide details regarding
this derivation. For clarity, some statements from the main text
will be repeated here.

To begin, we define an orbital subband ϕn as the eigenstate
of the effective mass Hamiltonian H0 for kz = 0, i.e.,

H0(0)ϕn(x, y) = εnϕn(x, y), (A1)

where εn is the subband energy and n ∈ N+. Note that ϕn(x, y)
can be chosen to be real valued, which we adopt. Also note
that the orbital subband ϕn is only an orbital wave function,
which does not contain spin. This is well defined because
the effective mass Hamiltonian H0 is spin independent, i.e.,
H0 is proportional to the identity operator σ0 in spin space.
We can construct a subband wave function with spin using
a simple tensor product, ϕn,σ = ϕn(x, y) |σ 〉, where σ =↑, ↓.
Furthermore, we can define a BdG subband wave function that
specifies both the spin and particle-hole degrees of freedom
as the tensor product, ϕn,σ,τ = ϕn(x, y) |στ 〉, where τ = p for
particle and τ = h for hole.

We now rewrite our BdG Hamiltonian using the basis con-
sisting of the BdG subband wave functions {ϕn,σ,τ }. This leads
to the BdG Hamiltonian

H ′
BdG(kz ) =

(
H ′
N (kz ) �̃′

−�̃′∗ −H ′∗
N (−kz )

)
, (A2)

where H ′
N (kz ) and �̃′ are matrices whose elements are

found by evaluating the expressions, 〈ϕm,σ |HN (kz )|ϕn,σ ′ 〉 and
〈ϕm,σ |�̃|ϕn,σ ′ 〉, respectively. Performing these calculations,
we find H ′

N (kz ) and �̃′ can be expressed as

H ′
N (kz ) = �̄(kz )σ0 + ᾱxkzσy − ᾱykzσx, (A3)

�̃′ = i�̄σy, (A4)

where σ j are Pauli spin matrices. Here, �̄, ᾱx, ᾱy, and �̄ are
real-symmetric matrices with elements,

�̄mn(kz ) = δmn

(
εn + h̄2k2z

2m∗

)
, (A5)

(ᾱ j )mn = eC
∫

ϕm(x, y)(∂ jφ)ϕn(x, y) dxdy, (A6)

�̄mn =
∫

ϕm(x, y)�(x, y)ϕn(x, y) dxdy. (A7)

Notice that �̄ is diagonal in subband space since the kinetic
energy term h̄2k2z /(2m

∗) in the effective mass Hamiltonian
H0(kz ) has no spatial dependence. The spin-orbit ᾱ j and su-
perconductive pairing �̄matrices, in contrast, couple different
subbands because of the spatial inhomogeneity of φ(x, y) and
�(x, y). The full BdG Hamiltonian H ′

BdG(kz ) can then be
expressed as

H ′
BdG(kz ) = �̄(kz )σ0τz + ᾱxkzσyτz − ᾱykzσxτ0 − �̄σyτy,

(A8)

where τ j are Pauli matrices acting in particle-hole space.
The largest energy scale present in Eq. (A8) is the energy

separation between most subbands, i.e., εm − εn for m �= n. In
comparison, the ᾱ j and �̄ terms that provide inter-subband
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coupling are small perturbations. We can then arrive at a
low-energy effective Hamiltonian that captures all of the rel-
evant low-energy physics by projecting H ′

BdG(kz ) onto a few
low-energy subbands. As stated in the main text, the two
lowest-energy subbands ϕ1 and ϕ2 are superpositions of the
left and right channel wave functions χL and χR, depicted
in Fig. 1(b) of the main text: ϕn = anχL + bnχR for n = 1, 2.
The channel wave functions, being strongly localized near the
InAs-Al interfaces as shown in Fig. 1(b) of the main text, have
relatively weak tunnel coupling t = 〈χR|H0(0)|χL〉, which
leads to a small subband energy difference ε2 − ε1 ≈ 2t be-
tween the two lowest-energy subbands. Indeed, t is typically
on the same energy scale as ᾱ jkz and �̄. We, therefore, need to
keep both ϕ1 and ϕ2 in the low-energy basis to capture the rele-
vant low-energy physics. In contrast, ε3 − ε2 � ε2 − ε1 since
ε3 − ε2 ∼ h̄2/(m∗�2), where � is the small length scale associ-
ated with the localization of the channel wave functions near
each InAs-Al interface. Therefore, the relevant low-energy
physics can be fully captured while ignoring subbands ϕn for
n � 3. In other words, we only keep the first two rows and
columns of the �̄, ᾱx, ᾱy, and �̄ matrices in Eq. (A8) for our
low-energy effective Hamiltonian.

Finally, we transform the low-energy effective Hamiltonian
from the basis containing the first two orbital subbands ϕ1 and
ϕ2 to the basis containing the two channels χL and χR. To do
so, we explicitly define the channel wave functions as(

χL(x, y)

χR(x, y)

)
= O

(
ϕ1(x, y)

ϕ2(x, y)

)
, (A9)

where O is an orthogonal matrix. Specifically, we choose O
such that the channel wave functions are maximally separated
from one another in the x direction, i.e., �x = 〈χR|x|χR〉 −
〈χL|x|χL〉 is maximized. To find such an O, we first define X
as

X =
(〈ϕ1|x|ϕ1〉 〈ϕ1|x|ϕ2〉

〈ϕ2|x|ϕ1〉 〈ϕ2|x|ϕ2〉
)

, (A10)

i.e., the matrix representation of the x operator within the
subspace containing the two lowest-energy orbital subbands.
�x is then maximized by choosing O to be the matrix which
diagonalizes X , OTXO = diag(̃x1, x̃2) where x̃1 < x̃2. An ex-
ample is shown in Fig. 5 of the wave functions of the two
lowest-energy orbital subbands, ϕ1 and ϕ2, and how they
decompose into left and right channel wave functions, χL and
χR. Note that in the case where we have mirror symmetry
about the ŷ axis (g = 0), the channel wave functions, χL and
χR, are simply the even and odd equal superpositions of the
orbital subband wave functions, ϕ1 and ϕ2, as is the case in
Fig. 5. Evaluating the effective BdG Hamiltonian in this new
basis, where the channel wave functions χL and χR replace
the orbital subbands ϕ1 and ϕ2, then yields the two-channel
effective Hamiltonian,

H eff
BdG(kz ) =

[(
h̄2k2z
2m∗ − μ

)
λ0 + tλx + gλz

]
σ0τz − �0σyλzτy

+ αkz(cos θσyλzτz + sin θσxλ0τ0)

+ (η1λ0 + ξ1λx )kzσyτz + (η2λz + ξ2λx )kzσxτ0

+ (�1λ0 + �2λx )σyτy, (A11)

FIG. 5. Wave function profiles for the two lowest-energy orbital
subbands ϕ1 and ϕ2 are shown in (a) and (b), respectively. These
subbands can be decomposed into left and right channels whose wave
functions χ1 and χ2 are shown in (c) and (d), respectively. Note
that these channel wave functions are localized near the InAs-Al
interfaces because of the strong band bending near these interfaces,
which is primarily due to the band offset between the materials.
The gate voltages for this calculation are VT = −5.5V, VB = −3V,
VL = VR = 0, and the boundary condition at the InAs-Al interfaces
is φ = 0.3V. Note that the electrostatic potential φ(x, y) within the
InAs nanowire for these gate settings is shown in Fig. 1(c) of the
main text.

where σ j , λ j , and τ j with j = 0, x, y, z are Pauli matrices
acting in spin, channel, and particle-hole space, respectively.
In other words, the first and second columns of a λ j matrix
correspond to the left and right channel, respectively. The
parameters in Eq. (A11) are given by the expressions,

μ = (hLL + hRR)/2, (A12)

t = hRL, (A13)

g = (hLL − hRR)/2, (A14)

�0 = (dLL − dRR)/2, (A15)

α cos θ = (
sxLL − sxRR

)/
2, (A16)

α sin θ = −(
syLL + syRR

)/
2, (A17)

η1 = (
sxLL + sxRR

)/
2, (A18)

η2 = −(
syLL − syRR

)/
2, (A19)

ξ1 = sxRL, (A20)

ξ2 = −syRL, (A21)

�1 = (dLL + dRR)/2, (A22)

�2 = dRL, (A23)

where hi j = 〈χi|H0(kz )|χ j〉, sxi j = 〈χi |̃αx(x, y)|χ j〉, syi j =
〈χi |̃αy(x, y)|χ j〉, and di j = 〈χi|�(x, y)|χ j〉 with i, j = L,R.
Note that Eq. (A11) contains additional terms involving η1,
η2, ξ1, ξ2, �1, and �2 that are not show in Eq. (4) of the
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main text. Here, η1 and η2 account for the fact that the x
and y components of the electric field at the positions of the
two channels are only approximately opposite and equal,
respectively. The terms ξ1 and ξ2 account for the interchannel
spin-orbit coupling, as indicated by the λx matrix. The �1

and �2 terms allow for differences between the two channels
in pairing strength and interchannel pairing, respectively.
These six terms in our calculations are all found to be small
and do not qualitatively impact the physics of the effective
model. For simplicity, we have ignored these terms when
showing the effective Hamiltonian in Eq. (4) of the main text.
However, these terms have been included in the calculation
of the topological phase diagrams shown in Figs. 4(a) and
4(b) of the main text. Furthermore, we find that ignoring
these terms only slightly changes the phase diagrams with no
qualitative differences.

APPENDIX B: TRANSFORMATION OF THE
TWO-CHANNEL EFFECTIVE HAMILTONIAN

In the main text, we stated that the two-channel effective
Hamiltonian Heff(kz ) shown in Eq. (4) transforms into H ′

eff(kz )
shown in Eq. (5). The Hamiltonians are connected by the
relation H ′

eff(kz ) = U †Heff(kz )U , where U is a unitary matrix.
Here, we provide the form ofU and discuss its structure. The
goal of the transformation is to bring the Hamiltonian into
a form where the spins are decoupled for the ideal limit of
antiparallel spin-orbit vectors (θ = 0).

The unitary matrix U is best understood as the product of
four simple transformations, U = Rσ

x S
σ
h S

λ
hS

λ
↓, where R and S

stand for rotation and swap operations that we now explain.
The first operation Rσ

x is a rotation of the spins by 90◦ about
the x axis,

Rσ
x = 1√

2
(1 + iσxτz ). (B1)

This results in the transformed Hamiltonian H1(kz ) =
Rσ
x
†Heff(kz )Rσ

x given by

H1(kz ) = [ε(kz )λ0 + tλx + gλz]σ0τz − �0σyλzτy

+ αkz(cos θσzλzτo + sin θσxλ0τ0), (B2)

where we see that the spin-orbit coupling aligns with the z axis
for the ideal limit of antiparallel spin-orbit vectors (θ = 0).
Next, we notice that the superconductive pairing exists be-
tween particles and holes of the opposite spin species, as
evident in the �0σyλzτy term. We want, however, the pairing
to exist between the same spin species since we are seeking a
final Hamiltonian that is block diagonal in spin space for the
case of θ = 0. To accomplish this, we swap the spin degrees
of freedom in the hole sector using the operator,

Sσ
h = 1

2 [σ0(τ0 + τz ) + σx(τ0 − τz )]. (B3)

This results in the transformed Hamiltonian H2(kz ) =
Sσ
h
†H1(kz )Sσ

h given by

H2(kz ) = [ε(kz )λ0 + tλx + gλz]σ0τz + �0σzλzτx

+ αkz(cos θσzλzτz + sin θσxλ0τ0), (B4)

where we see that the Hamiltonian is indeed block diagonal
in spin space for the case of θ = 0. Next, we notice that the

superconductive pairing within each spin block is diagonal in
channel space. We want, however, the channels to play the
role of ordinary spins in an s-wave superconductor, which
have superconductive pairing between particles and holes of
opposite spin. In order to make the channel degree of freedom
better resemble the ordinary spin degree of freedom, we swap
the channel degrees of freedom in the hole sector using the
operator,

Sλ
h = 1

2 [λ0(τ0 + τz ) + λx(τ0 − τz )]. (B5)

This results in the transformed Hamiltonian H3(kz ) =
Sλ
h
†
H2(kz )Sλ

h given by

H3(kz ) =[ε(kz )λ0 + tλx]σ0τz + gσ0λzτ0 − �0σzλyτy

+ αkz(cos θσzλzτo + sin θσxλ0τ0). (B6)

Interestingly for g = 0, each diagonal spin block of Eq. (B6)
is exactly the Lutchyn-Oreg Hamiltonian of Refs. [13,14]
for a superconducting nanowire with spin-orbit coupling in
an external magnetic field, except that the spin degrees of
freedom are replaced by channels σ j → λ j , and the Zeeman
energy is replaced by the interchannel tunnel coupling t . The
diagonal spin blocks are not identical, however, since they
have opposite superconductive pairing and spin-orbit cou-
pling coefficients, as evident by the σz in the �0σzλyτy and
αkz cos θσzλzτo terms. The spin blocks become identical if we
swap the channel degrees of freedom within the spin ↓ sector
using the operator,

Sλ
↓ = 1

2 [(σ0 + σz )λ0 + (σ0 − σz )λx]. (B7)

Finally, this results in the effective Hamiltonian H ′
eff(kz ) =

Sλ
h
†
H3(kz )Sλ

h = U †Heff(kz )U shown in Eq. (5) of the main
text. Notice that this last operation transforms the gσ0λzτo
term in H3(kz ) into gσzλzτo, where the channel detuning g is
effectively opposite for the two spin blocks. As stressed in
the main text, this difference between the spin blocks arising
from the channel detuning g is responsible for the increased
robustness of the topological phase to spin-orbit vector mis-
alignment (θ = 0). Lastly, we note that the product of these
four simple operations can be algebraically manipulated into
the more compact expression,

U = 1
4 (1 + i[σx + σy + σz])(1 − iσzλx )(1 + iλxτz ). (B8)

APPENDIX C: PHASE DIAGRAM
CALCULATION METHOD

In the main text, we provide several phase diagrams show-
ing the boundary between the trivial and topological phases,
as well as the topological gap �top within the topological
regions. Often times, the assignment of trivial and topological
phases is done by calculating a topological invariant [41]. In
this paper, we use an alternative technique where we look
for the presence of zero-energy Majorana zero modes at the
end of a semi-infinite system. To do so, we first discretize
the Hamiltonian in Eq. (A11) on a 1D lattice with a small
lattice spacing of a = 0.5 nm. Note that each site of the 1D
lattice has eight orbitals to account for the spin, channel, and
particle-hole degrees of freedom. Information about the local
density of states is then contained in the Green’s function
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FIG. 6. Surface (red) and bulk (blue) local density of states for
a system in the topological phase. The presence of Majorana zero
modes is evident from the peak in the surface local density of states
at zero energy ω = 0. The absence or presence of such a peak can
be used to determine if the system is in the trivial or topological
phase for any given choice of parameters. System parameters are
m∗ = 0.026mo, �0 = 0.2meV, t = 0.5meV, α = 20meVnm, and
θ = 0. All other parameters in Eq. (A11) are zero.

matrix G(ω) = (ωI − Hdis + iη)−1, where ω ∈ R is the in-
put energy, Hdis is the discretized Hamiltonian matrix, I is
the identity matrix, and η = 10−5 meV is a small energy to
bring the Green’s function into the upper half of the complex
plane. While generic matrix inversion is numerically expen-
sive, finding the diagonal elements of G(ω) can be done in
a numerically efficient manner for systems with translation
invariance by using the decimation technique of Ref. [65].
Using this technique, the surface Green’s function block Gs

(which is just the block of the Green’s function matrix for
the first lattice site) and the bulk Green’s function block Gb

can be found for a system with 2N lattice sites using only N
decimation iterations. These, in turn, give us the surface and
bulk local density of states,

LDOSs(ω) = − 1

π
Im(Tr[Gs(ω)]), (C1)

LDOSb(ω) = − 1

π
Im(Tr[Gb(ω)]). (C2)

Using N = 50 iterations, we can then obtain the surface and
bulk density of states for system of length L ≈ 106 m, which
is semi-infinite for all practical purposes. An example of the
surface and bulk local density of states for a system in the
topological phase is shown in Fig. 6. We see a peak in the
surface local density of states at zero energy ω = 0 coming
from the presence of Majorana zero modes at the ends of the
system. The absence or presence of such a peak can then be
used to determine if the system is in the trivial or topological
phase for any given choice of parameters. In addition, we can
read off the topological gap�top of the topological phase from
the location of the coherence peaks in the bulk local density
of states (blue curve in Fig. 6).

APPENDIX D: QUANTIFYING DRESSELHAUS AND
TRANSVERSE-RASHBA SPIN-ORBIT COUPLING

In the main text, we only included Rashba spin-orbit
coupling and limited it to the component involving the lon-
gitudinal momentum kz [see Eq. (3) of main text]. However,

there also exists Rashba spin-orbit coupling involving the
transverse momenta kx and ky, along with Dresselhaus spin-
orbit coupling. Within in the main text, we neglected these
terms due to their contributions yielding only small quan-
titative effects while not affecting the qualitative aspects of
the physics. In this Appendix, we quantify these other forms
of spin-orbit coupling to show that neglecting them is well
justified.

Let us begin with the Dresselhaus spin-orbit coupling,
which arises from the bulk inversion asymmetry of the InAs
zinc blende lattice. Its Hamiltonian component, which is to be
added to HSO in Eq. (3) of the main text, takes the form [52]

HBIA = γD
[(
k2y − k2z

)
kxσx + (

k2z − k2x
)
kyσy

+ (
k2x − k2y

)
kzσz

]
, (D1)

where γD is a material-dependent constant given by γD =
27.18meVnm3 for InAs [52]. (Reference [66] gives a simi-
lar value of γD = 21.7meVnm3.) Note that the Dresselhaus
spin-orbit Hamiltonian takes the particular form shown in
Eq. (D1) because the triangular InAs nanowires studied in
this work are grown along the [001] crystallographic direction
with the upper facets of the nanowire being within the [110]
and [1̄10] planes [47]. Otherwise, the appropriate coordinate
rotation would have to be applied to Eq. (D1). Projecting the
Dresselhaus Hamiltonian onto the two-channel basis defined
in Appendix A leads to the term

H eff,BIA
BdG = νxσxλyτ0 + νyσyλyτz +

[(
βLL + βRR

2

)
λ0

+
(

βLL − βRR

2

)
λz + βLRλx

]
kzσzτ0 + O

(
k2z

)
,

(D2)

which should be added to H eff
BdG in Eq. (A11). Here, νx and

νy are interchannel spin-orbit coupling coefficients that come
from the two terms in Eq. (D1) not involving the longitudinal
momentum kz and are given by

νx = −iγD〈χR|kxk2y |χL〉, (D3)

νy = iγD〈χR|k2x ky|χL〉, (D4)

where χL and χR are the channel wave functions. Note that
these terms do not produce analogous intrachannel spin-orbit
coupling coefficients. This is because the expectation values
of the operators kxk2y and k

2
x ky automatically vanish since they

both have an imaginary prefactor when expressed as differ-
ential operators and the channel wave functions χi are real
valued. The βi j coefficients come from the term involving σz

in Eq. (D1) and are given by

βi j = γD〈χi|k2x − k2y |χ j〉. (D5)

Note that both interchannel βLR and intrachannel βii coeffi-
cients exist since the expectation value of the operator k2x − k2y
for each channel wave function generically does not vanish.

The values of the βi j coefficients are shown in Fig. 7(a)
as a function of top gate voltage VT for μ = g = 0. The in-
terchannel coefficient βLR and intrachannel coefficient βii are
shown as blue (dashed) and gold (solid) lines, respectively.
Note that βLL = βRR because of mirror symmetry about the ŷ
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FIG. 7. Spin-orbit coefficients from Dresselhaus and transverse-
Rashba spin-orbit coupling as a function of top gate voltage VT for
μ = g = 0. (a) Intrachannel βii (solid gold) and interchannel βLR

Dresselhaus coefficients (dashed blue). The intrachannel Dresselhaus
coefficient βii dominates for the interchannel Dresselhaus coefficient
βLR. Furthermore, the intrachannel Dresselhaus coefficient βii is
smaller than the numerically extracted Rashba spin-orbit coefficient
of α ≈ 25meV · nm (given in the main text) by over a factor of
40. (b) Interchannel spin-orbit coefficients νx and νz that come from
Dresselhaus and transverse-Rashba spin-orbit coupling, respectively.
(c) Ratio of interchannel tunnel coupling t and interchannel spin-
orbit coefficient νz, showing that the spin-independent coupling t
dominates over the spin-dependent coupling νz.

axis when g = 0. Notice that the interchannel coefficient βLR

is smaller than the intrachannel coefficient βii by at least an
order of magnitude over the entire voltage range. Furthermore,
comparing the intrachannel Dresselhaus coefficient βii to the
extracted Rashba spin-orbit coefficient of α ≈ 25meVnm
from the main text, we see that βii is smaller by over a factor
of 40. Therefore, we conclude that the Dresselhaus terms in-
volving βi j have a negligible effect on the physics. In addition,
the interchannel spin-orbit coefficient νx is shown in Fig. 7(b)
as a function of VT , as a red (dashed) line. We numerically
find that νx is always small (νx � 1 µeV), and is therefore
safely neglected. Finally, we also numerically found that νy
from Dresselhaus spin-orbit coupling vanishes, and, therefore,
plays no role in our system.

It is interesting to note that the physical reason why the
intrachannel coefficients βii are so small in this system is
because the upper facets of the InAs nanowire are within the
[110] and [1̄10] planes. To understand this, notice first that the
left channel wave function χL in Fig. 7(c) closely resembles
a particle-in-a-box state with quantization axes that are ≈45◦
with respect to the x and y axes, respectively, that is, along
the [110] and [1̄10] crystallographic directions. Next, we can
rewrite the k2x − k2y operator appearing in Eq. (D5) as

k2x − k2y = 2kx′ky′ , (D6)

where the x′ and y′ axes align with the [110] and [1̄10] crys-
tallographic directions. Importantly, a particle-in-a-box state

FIG. 8. Topological phase diagram of the same system as Fig. 4
of the main text except that the νzσzλyτ0 term from transverse-Rashba
spin-orbit coupling is included in the model. Comparing the results
to Figs. 4(a) and 4(b) of the main text, we find that inclusion of the
transverse-Rashba spin-orbit coupling slightly reduces the area of the
topological phase and the topological gap �top within the topological
region. The effect is quite modest although.

with quantization axes along the x′ and y′ axes has vanish-
ing expectation value for the operator kx′ky′ . This is because
the the operators kx′ and ky′ have imaginary prefactors when
expressed as differential operators, and the particle-in-a-box
state decomposes into a product of real wave functions in the
x′ and y′ direction. Now, χL is not perfectly captured by a
product state separable in the x′ and y′ direction, so βLL does
not exactly vanish. Its close resemblance, however, keeps βLL

very small.
Next, let us consider the transverse-Rashba spin-orbit cou-

pling. The Rashba spin-orbit coupling included within HSO in
Eq. (3) of the main text only involves longitudinal momentum
kz, whereas transverse-Rashba spin-orbit coupling involves
the transverse momenta kx and ky. Its Hamiltonian component,
which is to be added toHSO in Eq. (3) of the main text, is given
by [48]

HR⊥ = 1
2 ([αy(x, y)kx + kxαy(x, y)]

− [αx(x, y)ky + kyαx(x, y)])σz, (D7)

where care has been taken to properly symmetrize the oper-
ators such that the Hamiltonian is Hermitian. Projecting the
transverse-Rashba Hamiltonian onto the two-channel basis
defined in Appendix A leads to the term

H eff,R⊥
BdG = νzσzλyτ0, (D8)

which should be added to H eff
BdG in Eq. (A11). Here, νz is an

interchannel spin-orbit coupling coefficient given by

νz = i

2
〈χR|(αy(x, y)kx + kxαy(x, y))|χL〉

− i

2
〈χR|(αx(x, y)ky + kyαx(x, y))|χL〉. (D9)

Note that the transverse-Rashba Hamiltonian does not pro-
duce an analogous intrachannel spin-orbit coupling coeffi-
cient. This is because the expectation values of the operators
kx and ky automatically vanish for the same reason given
above for the kxk2y and k2x ky operators.

The interchannel spin-orbit coefficient νz is shown in
Fig. 7(b) as a function of VT , as a black (solid) line. We find
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that the interchannel spin-orbit coefficient νz coming from
transverse-Rashba spin-orbit coupling is comparable to the
superconducting gap �0 = 0.2meV for the larger top gate
voltages in Fig. 7(b). It may then at first seem we cannot
ignore the transverse-Rashba spin-orbit coupling. However, if
we compare this coupling to the interchannel coupling t , as
shown in Fig. 7(c), we see that νz is smaller by roughly an or-
der of magnitude within the entire voltage range. We therefore
do not expect νz to play a significant role in the physics of the
system. To test this expectation, we redo the calculation of the
topological phase diagrams shown in Figs. 4(a) and 4(b) of
the main text with the inclusion of the νzσzλyτ0 term into the
effective two-channel Hamiltonian given in Eq. (A11). The

results are shown in Fig. 8, again for two values of channel
detuning, (a) g = 0 and (b) g = �0. Comparing the results to
Figs. 4(a) and 4(b) of the main text, we see that the addition
of transverse-Rashba spin-orbit coupling has a modest effect
on the topological phase diagrams. The results are qualita-
tively the same as the results in Figs. 4(a) and 4(b) of the
main text, with the only quantitative differences being a small
reduction of the topological region and the reduction of the
topological gap �top within the topological region. Therefore,
we conclude that while transverse-Rashba spin-orbit coupling
is slightly detrimental to topological superconductivity in our
system, the effect is quite small and does not qualitatively
impact the physics.

[1] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation,
Ann. Phys. 298, 210 (2002).

[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[3] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[4] V. Lahtinen and J. K. Pachos, A short introduction to topologi-
cal quantum computation, SciPost Phys. 3, 021 (2017).

[5] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[6] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb
nanowire-Nb hybrid device, Nano Lett. 12, 6414 (2012).

[7] J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Ex-
perimental phase diagram of zero-bias conductance peaks in
superconductor/semiconductor nanowire devices, Sci. Adv. 3,
e1701476 (2017).

[8] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani,
C. J. Palmstrøm, C. M. Marcus, and F. Nichele, Zero-energy
modes from coalescing Andreev states in a two-dimensional
semiconductor-superconductor hybrid platform, Phys. Rev.
Lett. 119, 176805 (2017).

[9] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Majorana zero modes
in superconductor-semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018).

[10] H. Zhang, M.W. A. deMoor, J. D. S. Bommer, D. Xu, G.Wang,
N. van Loo, C.-X. Liu, S. Gazibegovic, J. A. Logan, D. Car
et al., Large zero-bias peaks in InSb-Al hybrid semiconductor-
superconductor nanowire devices, arXiv:2101.11456

[11] M. Aghaee, A. Akkala, Z. Alam, R. Ali, A. Alcaraz Ramirez,
M. Andrzejczuk, A. E. Antipov, P. Aseev, M. Astafev, B. Bauer,
J. Becker, S. Boddapati, F. Boekhout, J. Bommer, T. Bosma, L.
Bourdet, S. Boutin, P. Caroff, L. Casparis, M. Cassidy et al.,
InAs-Al hybrid devices passing the topological gap protocol,
Phys. Rev. B 107, 245423 (2023).

[12] S. D. Sarma, In search of Majorana, Nat. Phys. 19, 165 (2023).
[13] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana

fermions and a topological phase transition in semiconductor-

superconductor heterostructures, Phys. Rev. Lett. 105, 077001
(2010).

[14] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and
Majorana bound states in quantum wires, Phys. Rev. Lett. 105,
177002 (2010).

[15] B. S. Chandrasekhar, A note on the maximum critical field of
high-field superconductors, Appl. Phys. Lett. 1, 7 (1962).

[16] A. M. Clogston, Upper limit for the critical field in hard super-
conductors, Phys. Rev. Lett. 9, 266 (1962).

[17] A. Haim and Y. Oreg, Time-reversal-invariant topological su-
perconductivity in one and two dimensions, Phys. Rep. 825, 1
(2019).

[18] S. Nakosai, Y. Tanaka, and N. Nagaosa, Topological super-
conductivity in bilayer Rashba system, Phys. Rev. Lett. 108,
147003 (2012).

[19] Y. Volpez, D. Loss, and J. Klinovaja, Rashba sandwiches with
topological superconducting phases, Phys. Rev. B 97, 195421
(2018).

[20] Y. Volpez, D. Loss, and J. Klinovaja, Second-order topological
superconductivity in π -junction Rashba layers, Phys. Rev. Lett.
122, 126402 (2019).

[21] S. Deng, L. Viola, and G. Ortiz, Majorana modes in
time-reversal invariant s-wave topological superconductors,
Phys. Rev. Lett. 108, 036803 (2012).

[22] F. Zhang, C. L. Kane, and E. J. Mele, Time-reversal-invariant
topological superconductivity and Majorana Kramers pairs,
Phys. Rev. Lett. 111, 056402 (2013).

[23] S. Deng, G. Ortiz, and L. Viola, Multiband s-wave topological
superconductors: Role of dimensionality and magnetic field
response, Phys. Rev. B 87, 205414 (2013).

[24] A. Keselman, L. Fu, A. Stern, and E. Berg, Inducing time-
reversal-invariant topological superconductivity and fermion
parity pumping in quantum wires, Phys. Rev. Lett. 111, 116402
(2013).

[25] E. Gaidamauskas, J. Paaske, and K. Flensberg, Majorana bound
states in two-channel time-reversal-symmetric nanowire sys-
tems, Phys. Rev. Lett. 112, 126402 (2014).

[26] C. Schrade, M. Thakurathi, C. Reeg, S. Hoffman, J. Klinovaja,
and D. Loss, Low-field topological threshold in Majorana dou-
ble nanowires, Phys. Rev. B 96, 035306 (2017).

[27] M. Thakurathi, P. Simon, I. Mandal, J. Klinovaja, and D. Loss,
Majorana Kramers pairs in Rashba double nanowires with in-
teractions and disorder, Phys. Rev. B 97, 045415 (2018).

155142-10

https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.21468/SciPostPhys.3.3.021
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1126/sciadv.1701476
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1038/s41578-018-0003-1
http://arxiv.org/abs/arXiv:2101.11456
https://doi.org/10.1103/PhysRevB.107.245423
https://doi.org/10.1038/s41567-022-01900-9
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1063/1.1777362
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1016/j.physrep.2019.08.002
https://doi.org/10.1103/PhysRevLett.108.147003
https://doi.org/10.1103/PhysRevB.97.195421
https://doi.org/10.1103/PhysRevLett.122.126402
https://doi.org/10.1103/PhysRevLett.108.036803
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevB.87.205414
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevLett.112.126402
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.97.045415


REALIZING MAJORANA KRAMERS PAIRS IN … PHYSICAL REVIEW B 108, 155142 (2023)

[28] P. Kotetes, Topological superconductivity in Rashba semicon-
ductors without a Zeeman field, Phys. Rev. B 92, 014514
(2015).

[29] X.-J. Liu, C. L. M. Wong, and K. T. Law, Non-Abelian
Majorana doublets in time-reversal-invariant topological super-
conductors, Phys. Rev. X 4, 021018 (2014).

[30] A. Haim, A. Keselman, E. Berg, and Y. Oreg, Time-reversal-
invariant topological superconductivity induced by repulsive
interactions in quantum wires, Phys. Rev. B 89, 220504(R)
(2014).

[31] J. Klinovaja and D. Loss, Time-reversal invariant parafermions
in interacting Rashba nanowires, Phys. Rev. B 90, 045118
(2014).

[32] A. Haim, K. Wölms, E. Berg, Y. Oreg, and K. Flensberg,
Interaction-driven topological superconductivity in one dimen-
sion, Phys. Rev. B 94, 115124 (2016).

[33] H. Ebisu, B. Lu, J. Klinovaja, and Y. Tanaka, Theory of
time-reversal topological superconductivity in double Rashba
wires: Symmetries of Cooper pairs and Andreev bound states,
Prog. Theor. Exp. Phys. 2016, 083I01 (2016).

[34] F. Parhizgar and A. M. Black-Schaffer, Highly tunable time-
reversal-invariant topological superconductivity in topological
insulator thin films, Sci. Rep. 7, 9817 (2017).

[35] D. Oshima, S. Ikegaya, A. P. Schnyder, and Y. Tanaka, Flat-
band Majorana bound states in topological Josephson junctions,
Phys. Rev. Res. 4, L022051 (2022).

[36] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht,
M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus, and
T. S. Jespersen, Epitaxy of semiconductor-superconductor
nanowires, Nat. Mater. 14, 400 (2015).
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