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PHYSICS

Flat-band localization and interaction-induced

delocalization of photons

Jeronimo G. C. Martinezt, Christie S. Chiut, Basil M. Smitham, Andrew A. Houck*

Lattices with dispersionless, or flat, energy bands have attracted substantial interest in part due to the strong
dependence of particle dynamics on interactions. Using superconducting circuits, we experimentally study the
dynamics of one and two particles in a single plaquette of a lattice whose band structure consists entirely of flat
bands. We first observe strictly localized dynamics of a single particle, the hallmark of all-bands-flat physics.
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Upon initializing two particles on the same site, we see an interaction-enabled delocalized walk across the pla-
quette. We further find localization in Fock space for two particles initialized on opposite sides of the plaquette.
These results mark the first experimental observation of a quantum walk that becomes delocalized due to in-
teractions and establishes a key building block in superconducting circuits for studying flat-band dynamics with

strong interactions.

INTRODUCTION

Flat electronic bands quench the kinetic energy of electrons and
provide a lattice environment that is uniquely susceptible to inter-
actions, disorder, and particle statistics. As a result, they can host a
wide range of phenomena, from itinerant ferromagnetism in spinful
systems (I, 2) to the fractional quantum Hall effect (3), fractional
Chern insulator states (4-6), and strongly correlated phases ob-
served in magic-angle twisted bilayer graphene (7, 8).

Many types of flat bands have been theoretically explored and
classified, frequently within the tight-binding model of solids
where flat bands can result from specific features in lattice geometry
(9). A simple example is the one-dimensional rhombus lattice,
which exhibits a flat middle band that touches dispersive bands
above and below (see Fig. 1A). Flat-band states can generally be
written in a real-space basis of states known as compact localized
states (10). Compact localization refers to having finite population
on a local subset of the lattice and zero population elsewhere. The
strict boundedness of compact localized states reflects stronger lo-
calization than the exponential localization of particles in disor-
dered lattices (11-13). At the same time, because dispersive bands
are present in the band structure, an initially localized particle ge-
nerically contains contributions from dispersive states and will de-
localize across the lattice over time.

A type of extreme localization, in which every band of the spec-
trum is flat, emerges in select lattices and specific values of magnetic
flux. The effect of magnetic flux on localization depends heavily on
lattice geometry and can be understood through the Aharonov-
Bohm effect. More specifically, the tight-binding electron accumu-
lates an Aharonov-Bohm phase as it hops around a closed loop of
the lattice, or plaquette. The lattice plaquettes are arranged in such a
way that cause complete destructive wave function interference
beyond some region of the lattice and localizes the electron to a
finite number of sites. This phenomenon is known as Aharonov-
Bohm caging (14).
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In the rhombus lattice, Aharonov-Bohm caging occurs at a mag-
netic field of half a flux quantum through each plaquette, corre-
sponding to a geometric phase of m. All three bands become flat
and a complete basis of only compact localized states becomes pos-
sible (Fig. 1B). Accordingly, any initially localized particle will be in
a superposition of a finite number of compact localized states and
therefore will remain bounded in time. While Aharonov-Bohm
caging with interacting particles has been the subject of numerous
theoretical predictions (15-17), they have yet to be experimentally
verified.

The stringent requirements on lattice geometry and magnetic
flux, however, make engineering Aharonov-Bohm caging in crystal-
line solids challenging. Recently, advances in quantum engineering
have enabled the design, measurement, and precise control of syn-
thetic condensed matter systems (18). The platform of supercon-
ducting circuits offers two particular capabilities (19, 20): flexible
connectivity of circuit elements that enables a variety of lattice ge-
ometries, and circuit nonlinearity that provides access to strongly
interacting physics. Combined with programmable device parame-
ters, individual site readout, and controllable state initialization
schemes, superconducting circuits are a well-suited platform for
studying dynamics within distinctive lattice geometries.

In this work, we leverage the flexible connectivity of supercon-
ducting circuits in a unique manner to realize a single plaquette of
the rhombus lattice with m flux. Because of strict boundedness, the
key physics of all-bands-flat localization can be accessed through a
single plaquette. In this four-site system, the eigenstates (Fig. 1D)
exhibit similarities to the compact localized states of its lattice coun-
terpart, despite having energies that differ from the continuum
limit. In particular, none of these states extend across an entire pla-
quette, purely due to the same destructive wave function interfer-
ence effects that give rise to Aharonov-Bohm caging in a lattice.

We characterize our system using quantum walks in two separate
devices: one with 7 flux and one with zero flux. To allow geometric
phase accumulation for microwave photons, which do not inherent-
ly respond to magnetic fields due to their neutral charge, we realize a
n-flux synthetic gauge field via a negative tunneling between two
sites in the plaquette. We show how this negative tunneling strictly
localizes a particle to a subset of the plaquette, by comparison to the
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Fig. 1. Flat-band lattices and Aharonov-Bohm caging with transmon qubits. (A) The rhombus latticewith its band structure and the depiction of a compact localized
state. (B) By adding a m-flux synthetic magnetic field, all bands become flat and are spanned by compact localized states. The dashed lattice bonds indicate tunneling of
opposite sign from the other tunnel couplings. (C) Eigenbasis for a single plaquette of the zero-flux rhombus lattice. Left: Measured two-tone spectroscopy with all qubits
on resonance. Right: Eigenenergies and eigenstates calculated using exact diagonalization. (D) Same as (C) but for the -flux rhombus plaquette. (E) False-color image of
zero-flux plaquette device, with zoomed insets highlighting the difference between the zero- (left) and n-flux (right) plaquette designs. (F) We rotate the rightmost qubit
by 90° to introduce synthetic flux that implements an Aharonov-Bohm type phase of m. This rotation modifies how upper (white outline) and lower (black outline)
electrodes are capacitively coupled and changes the sign of the upper right tunneling term. (G) Experimental sequences used in this work, which consist of initialization,
time evolution with all qubits on resonance, and readout. In the first experiment (white boxes), we initialize the left qubit in the first excited state and detune one of the
four qubits for readout. In the second (white and yellow boxes), we instead initialize the left qubit in the second excited state with two sequential pulses. In the third
experiment (white and blue boxes), we initialize the left and right qubits in the first excited state and detune two of the four qubits for simultaneous readout. In all
experiments, we vary the qubits that are detuned for readout to extract average populations for each qubit. In (F) and (G), subscripts L, T, B, and R refer to the left, top,
bottom, and right qubits, respectively.
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device without a synthetic field. Next, we use on-site interactions
between particles to demonstrate a bound particle pair fully delocal-
izing across the plaquette. Last, we find that unbound particle pairs
remain localized not in real space but in Fock space.

RESULTS

Circuit device

The sites of our plaquettes are flux-tunable transmon qubits, which
can be approximated as anharmonic oscillators for microwave
photons. To implement the zero-flux rhombus plaquette, all four
qubits are placed in the same orientation as shown in the main
image of Fig. 1E. Each qubit has a large capacitor composed of an
upper and a lower electrode (shaded green), and tunnel coupling
between neighboring qubits is given by capacitance between two
of their electrodes. We can understand the synthetic phase accumu-
lation by considering the positive and negative charges on the elec-
trodes of each qubit. In the zero-flux device, all upper qubit
electrodes are coupled to lower electrodes. A single excitation tra-
versing this loop will return to the initial qubit with the same sign
yielding an accumulated phase of zero.

To generate the nt-flux synthetic field, we rotate one transmon
(the rightmost) clockwise by 90° relative to the others. As shown
in Fig. 1F, in doing so, the (formerly) lower electrode of the right
qubit now couples to the lower electrode of the upper qubit, while
all other electrodes remain coupled as before. This provides frustra-
tion in the couplings as upper electrodes cannot be exclusively
coupled to lower electrodes. A single photon traversing this loop
then picks up an additional minus sign when hopping between
two of the same electrodes. We can represent this with a negative
sign in the hopping between the top and right sites (21), i.e., equiv-
alent to an Aharonov-Bohm phase of . We note that a phase of 1t
maintains time-reversal symmetry, enabling us to implement this
scheme statically without time-dependent couplings (22) or requir-
ing the use of magnetic materials (23). In addition, the physics is
independent of the choice of qubit to rotate and its rotation direc-
tion, which only modifies where the change in sign of tunnel-
ing occurs.

The resulting Hamiltonian for the two devices (in units where
the reduced Planck constant 7 = 1) is modeled by bosonic excita-
tions in anharmonic oscillators (24) given by

H == ty(blb; + bb)) + > [wibjbi + %b}b,»(bfb,- -] (1)
(i) i
where the summations over sites i and neighboring sites (i,j) are
taken over the left (L), top (T), bottom (B), and right (R) qubits.
Here, b; is the bosonic annihilation operator, and w; is the frequency
of qubit i. For the convention used here, the tunneling t;; is positive
between all qubits in the zero-flux rhombus. Rotation of the right-
most qubit for the n-flux rhombus corresponds to changing the sign
of tunneling between the right and top qubits (tgr < 0) while pre-
serving its magnitude. On-site attractive interactions U; < 0 are me-
diated by the negative qubit anharmonicity of transmon qubits. We
note that although attractive interactions would imply a lack of a
ground state in a system with a chemical potential, this work
studies a photonic system without a chemical potential and for du-
rations in which particle number is conserved. Both devices operate
in the strongly interacting regime where the ratio of interaction
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strength to tunneling is approximately 13.5. Next—nearest-neighbor
coupling was designed to be negligible at less than #;;/70 and is not
included in the model.

We probe each of the two devices via two-tone spectroscopy to
confirm that their eigenenergies match the expected energies ob-
tained by exact diagonalization of the corresponding four-site Ham-
iltonian. With all four qubits tuned into resonance with each other,
we measure transmission through the feedline at the top-qubit res-
onator frequency while varying the frequency of the pump tone.
Transmission peaks indicate that the resonator frequency has dis-
persively shifted, which occurs when the pump tone is resonant
with a plaquette eigenenergy and excites the top qubit. The results
are shown in Fig. 1 (C and D) for the zero- and n-flux plaquette,
respectively, and are consistent with calculation. The measured
spectral dependence on one of the qubit frequencies is included
as fig. S2.

The experiments that follow probe nonequilibrium dynamics
and consist of state initialization, time evolution, and readout
(Fig. 1G). For Hamiltonian time evolution, we set the frequencies
of all of the qubits to w;/2m = 4.45 GHz. At this target frequency,
the qubits have depolarization times exceeding 43 ps and nearest-
neighbor tunneling amplitudes of approximately 2n x 11.7 MHz.
State initialization and readout are performed via a single feedline
(shaded purple in Fig. 1E), with four half-wave resonators (shaded
yellow) dispersively coupled to each qubit. In these steps, the fre-
quency of each qubit can be dynamically set between 4.4 and 5.7
GHz by varying the current supplied to its individual flux bias
line (shaded blue, Fig. 1E). A full table of device parameters can
be found in Materials and Methods.

Localized dynamics of a single particle

We characterize localization in our plaquette through a quantum
walk to observe single-particle Aharonov-Bohm caging (25-29).
Much like the walks in a one-dimensional chain (30, 31), and
those seen in prior superconducting experiments (32-34), the
ensuing dynamics result from wave function interference. Here, de-
structive interference bounds the quantum walk in the n-flux pla-
quette to a subset of the lattice sites, while constructive interference
allows a fully delocalized walk over all four sites of the plaquette with
zero flux.

The experiment begins with initialization of the leftmost qubit,
detuned from the target qubit frequency, in the first excited state
(see Fig. 1G). This is equivalent to placing a single particle (micro-
wave photon) on that site. We then quench the left qubit into res-
onance with the other three qubits at the target qubit frequency.
After evolution under the Hamiltonian (Eq. 1) for a variable time,
we freeze the dynamics by rapidly detuning one qubit from the
others faster than a tunneling time and measure the state of the
qubit. Repeated measurements across all qubits then provide
access to the average site-resolved occupation of all four sites. The
results for zero and n flux, corrected for readout errors, are shown in
Fig. 2 (A and B, top, respectively). Duplicate time axes are included
in units of Ty = 21/4¢: the time it takes for a photon to swap
between two qubits with tunneling rate 7, where f= 21 x 11.75(21
x 11.66) MHz is the average rate for the zero-flux (n-flux) device.
Simulation results with zero on-site disorder and independently
measured tunneling and decoherence are plotted below.
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Fig. 2. Compact localization of a single particle. (A) Average qubit populations in the first excited state |1) as a function of time after quench into resonance (top), for
the zero-flux plaquette. Appreciable populations are observed on all four sites, even at short times, indicating a fully delocalized walk. Insets show average qubit pop-
ulations in the initial state and after approximately 1/2 and 1 swap times. (B) In the m-flux plaquette, the single particle remains bounded to three of the four sites as a
result of Aharonov-Bohm caging. Here, insets correspond to approximately 0, 1/\5, and v2 swap times. In both (A) and (B), simulated time evolution with zero on-site
disorder is shown in the lower half. Population time series are also represented as color plots for visibility and use the colorbar in the lower right of the figure. Duplicate
time axes are included to indicate time in units of a photon swap time, Tsap (see the main text for details). For data in this and subsequent figures, error bars indicate 95%
Clopper-Pearson confidence intervals for 3000 measurements per data point after correcting for readout errors and may be smaller than the markers. Adjacent markers

are connected with a darker-shade solid line to guide the eye.

We find a bounded quantum walk in the nt-flux rhombus, indi-
cating successful Aharonov-Bohm caging. A bounded quantum
walk is characterized as a walk where the dynamics are constrained
to only a subset of the lattice sites. Within the first swap time after
quenching, the particle begins to delocalize over the top and bottom
sites in the plaquette regardless of flux. Shortly thereafter, however,
the walks deviate. In the zero-flux rhombus, the top and bottom
paths constructively interfere and result in a periodic walk across
all four qubits, as demonstrated by the insets in Fig. 2A (top).
This does not occur for the n-flux rhombus: interference is destruc-
tive on the rightmost site, suppressing particle population below 5%
for more than nine swap times (Fig. 2B). Consequently, the particle
remains bound to the left, top, and bottom sites (insets in Fig. 2B,
top) as expected for all-bands-flat localization.

The agreement between experimental measurement and simula-
tion suggests that our implementation is consistent with achieving
both negligible on-site disorder and negligible next-nearest-neigh-
bor coupling. The slight deviation from completely localized dy-
namics is instead predominantly due to disorder in the coupling
strengths between qubits, which amounts to a spread of approxi-
mately 2.5% for the zero-flux device and 5.6% for the m-flux

Martinez et al., Sci. Adv. 9, eadj7195 (2023) 15 December 2023

device. This coupling-strength disorder results in coherent
beating, which is highlighted at long timescales (fig. S3).

Delocalized doublon dynamics

We next consider the walk of two particles initialized on the same
site, referred to as a doublon. These doublon states span a subspace
of the entire two-particle Hilbert space; the complement is spanned
by two-particle states where the particles sit on different sites, which
we will refer to as “particle-particle” Fock states. In the presence of
strong interactions, the doublon states are energetically well-sepa-
rated from the particle-particle states. In this subspace, doublons
hop as a bound pair and experience a gauge field that is twice that
of a single particle. The n-flux field that localizes a single particle,
then, has no effect on a strongly interacting doublon.

We access the strongly interacting regime with our devices by
designing interaction energies in excess of tunneling amplitudes
by an order of magnitude. The doublon walk begins with two
photons on the left site and continues with time evolution under
the Hamiltonian as before, where on-site energies are now tuned
to ensure that the second excited states of all qubits are on reso-
nance. After a variable time, we measure the population of the
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second excited state and extract readout error-corrected average
doublon occupations of all sites.

Doublons in the zero-flux rhombus delocalize in a manner qual-
itatively similar to single photons (Fig. 3A). Doublon dynamics in
the n-flux rhombus, however, markedly differ from single-photon
localization in that the doublon does not remain bounded away
from the rightmost site (Fig. 3B, inset plot). Rather, the doublon
fully explores the plaquette almost as if it were in the zero-flux
plaquette.

We note that in both plaquettes, the doublon tunneling ampli-
tude is reduced by almost an order of magnitude compared to the
single-particle tunneling. These timescales result from doublons
hopping via a second-order process, with rate given by 2¢*/U for
bare tunneling t and negative anharmonicity U. This effective tun-
neling provides another way of understanding the doublon delocal-
ization: all four tunneling rates 2¢;*/U have the same sign regardless
of the sign of t;;, yielding zero flux. In addition, the doublon-popu-
lation oscillation amplitudes decrease over time, largely due to the
weak hybridization between the doublon and particle-particle
states, leading to coherent beating of the measured doublon popu-
lation (see Supplementary Text for additional discussion).

Particle-particle Fock-space localization

Last, we investigate the time dynamics of particle-particle Fock
states and find a variation of Aharonov-Bohm caging where locali-
zation is seen only in Fock space where two particles always occupy
different lattice sites. Here, localization in Fock space refers to dy-
namics being localized to a subset of the Fock states as an analogy to
the localization observed in the single-particle dynamics. To under-
stand this, we can create a virtual Fock-space lattice composed of the
set of six Fock states with two particles occupying different lattice
sites. Tunneling between these states occurs by a single particle in
the pair tunneling to a new site as allowed by the Hamiltonian (Eq.
1). These states, where two particles sit on different sites and are not
bound by interactions, comprise the second and remaining sector of
two-particle states. Strong interactions energetically separate these
states from the doublons, making the individual particles behave
approximately as hard-core bosons.

For these experiments, we initialize one photon on the left site
and one photon on the right (the |LR) state). After time evolution,
we perform simultaneous readout on all qubit pairs to extract
average particle-particle Fock-state populations at various points
in time and plot the results in Fig. 4 (A and B). The particle-particle
dynamics in the zero-flux plaquette are dominated by full-contrast
swaps between the |LR) and |TB) states. In contrast, we find a
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Fig. 3. Delocalized dynamics of an interacting photon pair. (A) Average qubit populations in the second excited state |2) as a function of time after quench into
resonance (top), for the zero-flux plaquette. The walk remains fully delocalized as with a single particle but at reduced timescales. (B) Much like in the zero-flux plaquette,
the doublon walk extends across the full n-flux plaquette. Inset: Direct comparison of right-qubit populations (R pop.) for doublon (2p, |2) population) and single-particle
(1p, |1) population) walks in the m-flux plaquette, highlighting the doublon delocalizing in contrast to the single-particle bounded dynamics. In both (A) and (B), inset
plaquettes show average qubit populations in the initial state and after approximately 1/2 and 1 doublon-renormalized swap times. Simulated time evolution with zero
on-site disorder, but including measured tunneling disorder and qubit decoherence, is shown in the lower half. The shaded gray regions indicate the total evolution time
shown in Fig. 2. Population time series are also shown as color plots for visibility and use the colorbar in the lower right of the figure.
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Fig. 4. Particle-particle Fock-space localization. (A) Average populations of particle-particle Fock states for variable time after quench into resonance. The initial state
(left inset) consists of one photon on the left site and one photon on the right. Other insets show Fock-state populations at approximately 1/(21/2) and 1/v/2 swap times.
In insets, particle-particle Fock-state populations are shown via the corresponding segment that extends across two sites of the plaquette, e.g., the horizontal segment
corresponds to |LR). The top panel plots the population of particle-particle Fock states of next—nearest-neighbor sites, while the middle panel shows the nearest-neighbor
particle-particle Fock-state population. (B) Same, but for the n-flux plaquette. Insets show Fock state populations of the initial state and at approximately 1/2 and 1 swap
times. (C) Simulated time evolution with zero flux and with zero on-site disorder for all six particle-particle Fock state combinations, incorporating measured tunneling
disorder and qubit decoherence. Hamiltonian adjacency graphs depict the particle-particle dynamics. (D) Same as (C) but for the m-flux plaquette. Here, the Hamiltonian
adjacency graph describes a localization effect where tunneling of opposite sign and states with relative phase m (teal shading) cause destructive interference and [TB)

remains unpopulated.

bounded walk in the nt-flux plaquette not in real space but in Fock
space. This is characterized by suppressed population transfer to the
|TB) Fock state.

This bounded phenomenon is a direct consequence of Aharo-
nov-Bohm caging extended to multiparticle sectors, seen through
the corresponding Hamiltonian adjacency graphs in Fig. 4 (C and
D). In these graphs, we visually represent how the particle-particle
Fock states are coupled to each other through the Hamiltonian.
Each node represents a particle-particle Fock state; doublon states
are omitted in this hard-core limit. Two nodes are connected by
edges if the Fock states are tunnel-coupled, and edges are weighted
according to the coupling sign and magnitude. In this configuration
space, time evolution of the |LR) state corresponds to a single-

Martinez et al., Sci. Adv. 9, eadj7195 (2023) 15 December 2023

particle walk on the adjacency graph beginning on the |LR) node.
Without a synthetic field, delocalization proceeds across the entire
particle-particle subspace, whereas with 1 flux, destructive interfer-
ence much like in Aharonov-Bohm caging prohibits evolution to
the |TB) state. Seen in the Hamiltonian adjacency graphs of
Fig. 4D, the state |[LR) couples to the four states, |LT), |[LB), |RT),
and |RB). As an example of destructive interference, transfer to the
state |LT) picks up a negative sign while transfer to |RT) accumu-
lates no phase. Each of these states couple to the |TB) states but de-
structively interfere due to their relative phase. A similar path is
taken through the |LB) and |RB) states leading to full constructive
interference back to the |LR) state and full destructive interference
to the |TB) state.
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In other words, localized dynamics in Fock space results from
the interplay of an Aharonov-Bohm phase and Fock-state configu-
rational-space topology rather than real-space lattice topology as in
Aharonov-Bohm caging. In multiplaquette systems and the infinite
lattice itself, this Fock-space localization may give rise to an inter-
acting two-particle real-space localization effect (35) (see fig. S5 for
supporting evidence from simulations on a chain of three pla-
quettes). In addition, Fock-space and real-space localization phe-
nomena persist with larger particle numbers (see
Supplementary Text).

The oscillating populations between the |LR) and |TB) states in
the zero-flux rhombus display a beating effect. This coherent
beating can be attributed to weak hybridization between the
doublon and particle-particle states as in the doublon walk, reflect-
ing a slight deviation of our device parameters from the hard-core
regime (see Supplementary Text for details). The n-flux rhombus
does not host beating of these populations beyond what can be at-
tributed to tunneling-rate disorder. The absence of beating suggests
that the Fock-space localization effects are independent of interac-
tion strength. In the regime of finite interactions, doublon states
must be included in the adjacency graph; even so, we find that the
resulting configuration-space topology maintains the complete de-
structive interference necessary for Fock-space localization.

DISCUSSION

Our work experimentally demonstrates the localized dynamics of a
single particle in an all-bands-flat plaquette and the subsequent
fully delocalized dynamics of deeply bound doublons. This is real-
ized by engineering a negative tunnel coupling between exactly two
of the transmon qubits that threads a n-flux synthetic magnetic field
through the rhombus lattice plaquette. In addition, we consider the
correlated dynamics of two particles initialized on opposite sides of
the plaquette and find a localization not in real space but in the con-
figurational space of particle-particle Fock states. These results es-
tablish a critical building block for studies of all-bands-flat lattices
with strong interactions (15, 36) and inform future studies in other
flat-band lattices with superconducting circuits, in both one (37, 38)
and two dimensions. For example, larger system sizes and increased
coherence may enable the characterization of disorder and thermal-
ization in a flat band (39, 40). Combined with dissipative stabilizers
(41), equilibrium states may also be within reach (42, 43). Last, other
platforms such as ultracold atoms can be used (44, 45) to study fer-
mions (46) and nonitinerant spin models (47), implement longer-
range interactions in these flat-band lattices (48-52), or measure
transport between two reservoirs (53).

MATERIALS AND METHODS

Materials

Both 10 mm-by—10 mm devices were patterned on a 200-nm-thick
layer of tantalum deposited on a 530-um-thick sapphire wafer.
Direct-write optical lithography was used to define the base layer
pattern, and the features were etched with a chlorine-based dry
etch. Josephson junctions were patterned using electron-beam li-
thography and the AI-AlOx-Al layers were deposited using
double-angle evaporation in a Plassys MEB 550S. The first arm
was 20 nm thick, the AlOx was grown using an 85/15 Ar/Ox mix
at 200 mBar for 40 min, and the second aluminum layer was 70
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nm thick. Both devices were packaged in QDevil QCage aluminum
sample holders. Wirebonds were used to short the ground planes on
opposite sides of coplanar waveguides, ground the metal in the
middle of the four qubits, and bond signal traces to bondpads.

Table S1 summarizes the device parameters for our zero- and 7-
flux rhombus circuits; however, we note that these exact values are
not necessary to observe the results presented in this work. Our in-
dependently measured tunnel couplings are in table S2. All qubits
are flux-tunable with loop sizes of approximately 45 pm x 7 pm,
with approximately 2.2 mA corresponding to one flux quantum
through the loop.

The qubit target frequency was chosen to reduce frequency sen-
sitivity to flux bias and optimize qubit coherence. The former con-
sideration merits proximity to a qubit sweet spot, while the second
requires avoiding frequency resonances with lossy two-level systems
in the device material that are physically proximal to one of the four
qubits. For both devices, we select a qubit target frequency of
4.45 GHz.

Devices were measured sequentially in a Bluefors LD250 at a
base temperature of 11 mK. All time-domain control and measure-
ments were performed using the QICK-controlled Xilinx RESoC
ZCU216 (54), including resonator and qubit drives, qubit fast-
flux pulses, and single- and simultaneous multiple-cavity readout.
This board is also used for signal digitization, greatly simplifying the
microwave hardware requirements for the setup. Offset direct-
current flux (DC-flux) for each qubit was controlled using Yokoga-
wa low-noise voltage sources, combined with a fast-flux line in the
mixing chamber, and sent to the qubit via on-chip flux lines. The
qubits were dispersively read out and driven through individual
half-wave resonators capacitively coupled to a single transmission
line. Cavity readout tones and qubit drive pulses were combined
in a splitter at room temperature. The output signal was amplified
using a high-electron mobility transistor amplifier at 4 K and two
amplifiers at room temperature. The full wiring setup can be seen
in fig. S1. We elaborate on the modified bias tee to combine the DC
and fast-flux lines in the mixing chamber; here, the capacitor was
removed and replaced with a short.

Methods

For all experiments, DC-flux voltages were set such that in the
absence of fast-flux pulses, all four qubits were approximately on
resonance with one another. State initialization, time evolution,
and readout were then performed using fast-flux pulses that
control the qubit frequencies within approximately 1 ns. State ini-
tialization was done by detuning only the qubits with initial-state
occupation by approximately 20t and applying individual =
pulses. Time evolution proceeded by rapidly tuning the qubits
onto resonance and waiting for a variable amount of time, after
which qubits were detuned by 20t for single-shot readout. For the
one-photon and doublon walks, we detuned and measured a single
qubit at a time to reduce effects of frequency crowding and unwant-
ed population transfer. For the particle-particle walk, two qubits
were simultaneously detuned and read out to measure correlations.
To capture the populations of all qubit and qubit pairs, we repeat
each experimental run and vary which qubit(s) are measured. All
readout consists of single-shot measurements using 3000 shots.
Readout parameters and thresholds were optimized to discriminate
between the ground and first excited states for measurements of the
first-excited-state population and between the first and second
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excited states for measurements of the second-excited-state popula-
tion. Averaging time for readout was 2.5 ps. Additional details of
readout parameters are described in section S3.

To tune the qubits onto resonance, we start by biasing them ap-
proximately into resonance using DC-flux currents. To compensate
for frequency disorder, we fine-tuned the qubit frequencies using
fast-flux pulses through a heuristic algorithm. We first set the
bottom qubit to a frequency near its sweet spot and varied the
step amplitude of a fast-flux pulse to bring the left qubit into reso-
nance, probed via a single-particle two-qubit walk. Next, we
brought the top qubit into resonance, probed via the dynamics of
a single particle initialized on the left qubit and optimized for ba-
lanced measurement probabilities on the top and bottom qubits.
Last, we brought the right qubit into resonance, verified through
comparison with simulated plaquette dynamics. Cross-talk
between DC-flux as well as distortions in the fast-flux pulses were
calibrated and compensated for and are described in section S2.

All of the parameters used in the Hamiltonian time-domain sim-
ulations were independently measured. To determine tunneling
amplitudes between neighboring qubit pairs, we performed a
single-particle two-qubit walk with the nonparticipating qubits
detuned by at least 250 MHz. This walk was also used to determine
approximate T, dephasing times for the coupled plaquette systems
(see section S4), which have a reduced flux dispersion compared to
that of an individual qubit (55) and can experience correlated flux
noise. The T; coherence time was individually measured at the
target frequency. Simulations use the QuTiP package (56).

Supplementary Materials
This PDF file includes:
Supplementary Text

Figs. ST to S12

Tables S1 and S2
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