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We study one-dimensional hybrid quantum circuits perturbed by quenched quasiperiodic (QP) modulations
across the measurement-induced phase transition (MIPT). Considering non-Pisot QP structures, characterized by
unbounded fluctuations, allows us to tune the wandering exponent β to exceed the Luck bound ν � 1/(1 − β )
for the stability of the MIPT, where ν = 1.28(2). Via robust numerical simulations of random Clifford cir-
cuits interleaved with local projective measurements, we find that sufficiently large QP structural fluctuations
destabilize the MIPT and induce a flow to a broad family of critical dynamical phase transitions of the infinite
QP type that is governed by the wandering exponent β. We numerically determine the associated critical
properties, including the correlation length exponent consistent with saturating the Luck bound, and a universal
activated dynamical scaling with activation exponent ψ ∼= β, finding excellent agreement with the conclusions
of real-space renormalization group calculations.
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I. INTRODUCTION

It is now well established that the competition between
unitary evolution and local measurements in the evolu-
tion of generic quantum many-body systems results in a
dynamical phase transition in the properties of quantum tra-
jectories, commonly termed the measurement-induced phase
transition (MIPT) [1–5]. The hallmark of this inherently
out-of-equilibrium transition is a sharp transformation in the
structure of the wave function (or mixed density matrix) be-
tween an entangling (mixed) and a disentangling (purifying)
phase in the respective limits of low and high measurement
rates [1,2,6–9].

Investigating physical properties of the MIPT has attracted
a great deal of research interest, ranging from revealing
what novel types of phases and phase transitions are pos-
sible [10–16] to understanding the underlying universality
class of the transition [7–9,17–20] and of the entangling
phase [21–23]. These efforts have led to new insights, includ-
ing mapping of the MIPT to classical statistical mechanics
models in the replica limit [7,8] with several interesting rela-
tions for free fermions and the tenfold way [24–29], devising
experimental probes [30,31], and most notably, experimental
studies of random hybrid circuit dynamics in ion-traps [32]
and in superconducting-based quantum processors [33,34].

Akin to static quantum phase transitions, it is important
to understand the stability of the transition with respect to
perturbations. Recent work [15] has shown that the relevance
of quenched randomness can be understood through scaling
theory, in particular, the conventional picture of the Harris cri-
terion ν � 2/d , with ν being the correlation length exponent
and d the spatial dimension. As a result, for the conformally

invariant MIPT [6,35] ν = 1.28(2) for d = 1, and, therefore,
static disorder is a relevant perturbation to the MIPT, which
drives a renormalization group “flow” to a dynamical variant
of the infinite-disorder phase transition, exhibiting ultraslow
activated dynamics (i.e., relaxation times scale as log(t∗) ∼√
L for a system size L) and rare-events-driven Griffiths phe-

nomena. A natural question is whether other dynamical phase
transitions exist between the conformally invariant MIPT and
its flow to infinite randomness.

Immediate candidates are quasiperiodic modulations de-
fined via deterministic yet aperiodic structures. In this setting,
for weak perturbations, the stability of the critical point
with the correlation length exponent ν is determined by the
Luck [36] criterion

ν � 1/d (1 − β ). (1)

Here, β is the wandering exponent, controlling the growth
rate of the geometrical fluctuations with system size, as we
explicitly define below. Conventional QP structures, such
as the Fibonacci chain or an incommensurate cosine poten-
tial (with approximant wave vectors formed out of ratios of
Fibonacci numbers), exhibit bounded fluctuations (β = 0),
which renders the perturbation irrelevant for the MIPT in one
dimension with ν = 1.28(2) [1,2,6], as verified in Ref. [15]
and in Appendix D. By contrast, non-Pisot QP structures
admit nontrivial wandering exponents, β > 0, associated with
unbounded fluctuations and hence can dramatically alter the
above scenario. The fate of the MIPT in the presence of
non-Pisot modulations is an outstanding question.

In this paper, we study the influence of non-Pisot QP
modulations on the MIPT via robust numerical simulations
of one-dimensional random Clifford circuits competing with
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FIG. 1. (a) Luck relevancy boundary. QP modulations are ex-
pected to destabilize the MIPT for β � 0.2. Random disorder with
β = 0.5 has a minimal Luck stability bound of ν = 2. (b) Iterative
construction of a QP chain by the substitution rule B in Appendix A.
0 (1) bits are marked by green (red) circles. (c) Scaling of structural
fluctuations σXSL

as a function of the segment size L, shown in a
log-log scale. Different curves correspond to several QP structures
with varying wandering exponents β and a random disorder (β =
1/2). The displayed Fibonacci line contains only the local maxima.
(d) Hybrid random circuit model. Purple rectangles represent the
brick-wall structure of random two-qubit Clifford gates. Blue circles
depict measurements, performed with probability p. The pattern of
possible measurements is set by the QP structure, as described in the
main text.

local projective measurements. Remarkably, we find that
tuning the wandering exponent β renders QP a relevant per-
turbation in the RG sense and stabilizes a broad family of
infinite QP fixed points [see Fig. 1(a)]. We numerically char-
acterize the critical properties of this emergent transition and
find that the correlation length exponent saturates the Luck
bound. The dynamics follow a diverging dynamical exponent
z → ∞ with an activated scaling form governed solely by the
wandering exponent β. As a result, our work demonstrates
how the MIPT universality class can be tuned to produce a
range of entanglement scaling properties.

II. NON-PISOT STRUCTURES
AND UNIVERSAL BEHAVIOR

We begin our discussion with a brief review of non-Pisot
QP structures and the associated critical behavior in static
statistical mechanics models (see Appendix A for further de-
tails). For concreteness, we generate binary QP structures by
iteratively applying substitution rules that replace each 0 (1)
with a predefined binary string.

More explicitly, initializing our bit string with a single
bit 0, at each step, we substitute every bit 0\1 with the bit
strings �0\1, e.g., see Fig. 1(b). The substitution rules encoded
in �0\1 uniquely determine the resulting QP structure, and
for our needs, a crucial property is the wandering exponent
β [36], defined as follows: For each contiguous segment of
digits SL of length L, we write XSL = ∑

i∈SL xi, with xi being
the digit at position i. The standard deviation of XSL scales as

σXSL
∼ Ldβ (up to subleading corrections), where averaging is

carried out over all segments SL, belonging to infinitely large
QP bit strings.

For randomly drawn bits, the standard random walk dif-
fusive scaling gives β = 1/2. The Fibonacci chain has a
vanishing wandering exponent, β = 0, and hence admits
bounded fluctuations. By contrast, non-Pisot structures define
a family of QP chains with nontrivial wandering exponents
β > 0 and unbounded fluctuations [36–39], as depicted in
Fig. 1(c). As mentioned, this allows pushing the wandering
exponent beyond the stability of the conformally invariant
MIPT, 1/(1 − β ) > ν ≈ 1.28.

To understand the resulting critical properties for theMIPT,
we follow a similar line of reasoning as outlined for the ran-
dom case [15]. By employing the replica trick in the limit of
an infinite on-site Hilbert space dimension, Refs. [7,8,40] have
established a mapping between hybrid random circuit dynam-
ics and the statistical mechanics of a static two-dimensional,
SQ!-symmetric classical Potts model, with SQ! being the per-
mutation group of Q! elements and Q being the number of
replicas. In this picture, the MIPT transition corresponds to
the standard order-disorder transition of the Potts model in
the replica limit Q → 1. In particular, volume and area-law
phases are identified with the ferromagnetic and paramagnetic
phases of the Potts model, respectively.

Introducing quenched QP modulations with unbounded
fluctuations to the measurement probabilities translates to
coupling constant modulations of the dual quantum Potts
model. Importantly, we can still carry out a real-space renor-
malization group (RSRG) analysis for any replica index that
can be analytically continued to the physical replica limit [15].
This establishes an equivalence with the low-energy proper-
ties of the quantum Potts chain with QP modulated couplings.

Applying the QP variant of the RSRG treatment to our
problem shows that, at the critical point of an infinite QP
type [36,38,39,41,42], the long-time dynamical relaxation rate
t∗ has an activated space-time scaling form,

log(t∗) ∼ Lψ, (2)

for the chain length L and a universal activation exponent
ψ . For infinite QP fixed points, it has been found that ψ =
β [38,39], whereas for the infinite randomness fixed point
ψ = 1/2 [43,44].

The above mapping has direct implications for the scaling
of the steady-state long-time bipartite entanglement entropy.
We note that within the statistical mechanics picture, the en-
tanglement entropy is proportional to the free energy cost of
a boundary domain wall, which translates into the expected
scaling relation S ∼ Lβ , in analogy with the random case with
β = 1/2 [15]. In the following, we test the above predictions,
derived in the replica limit, with numerically exact simula-
tions of the physically relevant cases of qubits under hybrid
random Clifford circuit dynamics.

III. QP MODULATED QUANTUM CIRCUITS
AND OBSERVABLES

We consider one-dimensional hybrid quantum circuits of
linear size L. The dynamics alternates between unitary evolu-
tion generated by random two-qubit Clifford gates and local
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projective measurements in the computational (z) basis [see
Fig. 1(d)]. Crucially, the measurement rate p(x) is static but
position dependent following a non-Pisot QP structure in real
space. The measurement probability at site i is then defined as
p(i) = p if xi = 1 and p(i) = 0 otherwise. Throughout the pa-
per, we consider periodic boundary conditions. Since the QP
segments are not periodic (in the system size), the boundary
hosts a defect and could be an additional source of finite-size
effects.

Similarly to the uniform case, the measurement rate p
serves as a tuning parameter that controls the relative strength
of the measurement process compared to the unitary dy-
namics. Expectation values are evaluated by the combined
ensemble averaging over random circuits and QP structure
realizations. To that end, we initially generate a long non-
Pisot QP bit string at the order of 108 digits, from which
we randomly cut contiguous segments of length L digits. The
presented value of p is normalized by the measurement gates
density (see Appendix A).

To investigate physical properties differentiating the dis-
tinct phases and probe the putative critical properties, we
define the following observables. As is standard, the bipartite
von-Neumann entanglement entropy S(A) for a pure wave
function |ψ〉 and a segment A is obtained by tracing over
the complementary set of sites AC . This allows defining
the reduced density matrix ρA := TrAC |ψ〉〈ψ | from which
we evaluate the associated entanglement entropy S(A) :=
−TrA[ρA log2 ρA].

To eliminate subleading finite-size scaling effects, it is
beneficial to inspect the behavior of the tripartite mutual in-
formation [9], defined as

I3(A,B,C) := S(A) + S(B) + S(C) − S(A ∪ B)

− S(A ∪C) − S(B ∪C) + S(A ∪ B ∪C), (3)

where we consider a partition of the chain into adjacent
segments A, B, and C of size L/4. This combination pre-
cisely cancels out the boundary contributions in the area-law
phase and turns negative with the linear scaling I3 ∼ L in the
volume-law phase. To extract critical properties, we consider
P[I3 = 0] instead of 〈I3〉 due to the broad distribution of the
latter. Following the above argument, P[I3 = 0] is expected
to approach unity in the area-law phase and vanish in the
volume-law phase.

Lastly, we investigate the dynamics of an ancilla qubit,
initialized in a Bell state with a qubit located at the middle of
the chain. We carry out a random unitary evolution (without
measurements) for a duration of T = 2L, which entangles
the ancilla qubit with the rest of the system. Following that,
we employ the full hybrid dynamics defined above. We then
assess the purification time at which the ancilla qubit disen-
tangles from the chain, as can be probed via the entanglement
entropy SQ.

IV. NUMERICAL RESULTS AND SCALING PROPERTIES

We focus on a non-Pisot QP structure with β = 0.385,
defined by the substitution rule, 0 �→ 01011 and 1 �→ 0, la-
beled by B in Appendix A. Our first task is to determine the
critical measurement rate pc in the presence of non-Pisot QP

FIG. 2. Curve collapse analysis of (a) P[I3 = 0] and (b) S/Lβ ,
using the scaling variable y = (p− pc )L1/ν , for pc = 0.169(2) and
ν = 1.62. Insets depict the data prior to scaling. Different curves
corresponding to collapses of different system sizes. The data shown
here and in Fig. 3 are for the non-Pisot structure B in Appendix A.

modulations. With that goal in mind, we track the evolution of
P[I3 = 0] as a function of the measurement rate, shown in the
inset of Fig. 2(a). We observe that P[I3 = 0] vanishes deep in
the volume-law phase, for p → 0, and in the complementary
limit, p → 1, it approaches unity as expected in the area-law
phase.

Furthermore, we find that curves of the universal amplitude
P[I3 = 0] corresponding to an increasing set of linear system
sizes cross at a single point, indicating a continuous transition.
This allows us to carry out a curve collapse analysis using the
ansatz P[I3 = 0] ∼ g[(p− pc)L1/ν]. In our fitting procedure,
we utilize the Luck stability criterion to impose a lower bound
on ν � 1/d (1 − β ) ≈ 1.626. We obtained consistent results
without the bound. This gives our numerical estimate for
the critical measurement rate pc = 0.169(2) and ν = 1.6(1),
shown in Fig. 2(a), leading to an excellent curve collapse.
Interestingly, our numerical findings suggest that ν precisely
saturates the Luck bound.

To further corroborate the above results, we investigate the
critical properties of the saturated half-cut bipartite entangle-
ment entropy, S(L/2), obtained at long times. Following the
above scaling arguments, we consider the scaling hypothesis

S(L/2, t → ∞) ∼ Lβ f ((p− pc)L
1/ν ), (4)

and hence the ratio S/Lβ is predicted to have a vanishing scal-
ing dimension, as depicted at the inset of Fig 2(b). Indeed, we
identify a crossing of curves corresponding to different system
sizes at the same critical measurement rate pc = 0.1700(3).
This key result provides numerical support for the entan-
glement entropy scaling predictions. Moreover, the scaling
variable y = (p− pc)L1/ν yields an excellent curve collapse,
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FIG. 3. (a) Logarithm of the saturation time t∗ of the half-cut
entanglement entropy, S(L/2), at criticality versus Lβ . The dashed
red curve is a linear fit. The inset shows the saturation time extraction
method. Crosses represent t∗ for each system size L. (b) Activated
dynamics scaling of the ancilla order parameter, SQ(t,L), at criti-
cality. Different curves correspond to different system sizes. Curve
collapse is obtained via the scaling variable log(t )/Lβ . See Ap-
pendix A for the uncertainty calculation.

with ν = 1.65(2), in agreement with our previous estimate
using a different observable.

Next, we turn to study critical dynamical properties. To test
the predicted activated scaling behavior, Eq. (2), at criticality
(p = pc), we estimate the saturation time t∗ at which S(L/2, t )
reaches its late time value [15] [see the inset of Fig. 3(a)]. To
highlight the activated scaling form, in Fig. 3(a), we depict
log(t∗) as a function of Lβ . The resulting linear dependence
at large L values precisely agrees with the dynamical scaling
ansatz.

Motivated by the above result, we further inspect the
universal dynamics through the evolution of the ancilla or-
der parameter, SQ(t,L), at pc [9,30], shown in the inset of
Fig. 3(b). Conveniently, SQ admits a vanishing scaling dimen-
sion and hence should follow the scaling form

SQ(t,L) ∼ f [log(t )/Lβ]. (5)

To test the above functional dependence, in Fig. 3(b), we plot
the temporal axis using the scaled variable log(t )/Lβ , and we
indeed observe the expected curve collapse for sufficiently
large L.

Away from the critical point, activated scaling in random
systems is typically associated with power-law space-time
scaling, characterized by a varying dynamical exponent due
to Griffiths singularities [43,45]. The underlying mechanism
for this effect is rare events, which are not expected in deter-
ministic structures such as QPmodulations. Indeed, within the

available system sizes, our numerical results likely indicate
the absence of a similar effect for the studied QP modulations,
as we describe in Appendix E, though we do see the appear-
ance of a crossover at finite time that cuts off the relaxation
time log[t∗(p)] ∼ ξψ ∼ |p− pc|−νψ .

We performed the above analysis for several additional
values of β (see Appendixes C and D). We found that β

values satisfying the Luck criterion maintain the same critical
properties of the pristine MIPT. On the other hand, when the
Luck criterion was violated, we identified the same universal
behavior presented above, which is characterized by an ac-
tivated dynamical scaling and saturation of the Luck bound,
only with a modified β.

V. DISCUSSION AND SUMMARY

We uncovered an infinite-QP criticality driven by non-Pisot
QP modulations of the MIPT. Remarkably, relevant wander-
ing exponents, as defined by the Luck criterion, stabilize a
broad family of critical points whose scaling properties are
controlled solely by the corresponding β values; namely,
we obtain ν = 1/(1 − β ), spatial entanglement grows like
S ∼ Lβ, and the activation exponent ψ = β. This observation
affords a rather nontrivial generalization of the random case
precisely given by β = 1/2, studied in Ref. [9]. Another in-
teresting aspect is the equivalent influence of QP modulations
in the low-energy properties of the static quantum Potts and
the long-time evolution of the hybrid circuit dynamics. This
linkage further supports the utility of the replica trick rep-
resentation of MIPT in predicting out-of-equilibrium critical
properties [7,8,40].

Looking to the future, the wandering exponent can also be
tailored in random systems by introducing correlations [46].
Contrasting its effect with the QP case presented in our work
would be interesting. Another research direction is exploring
a generalized phase diagram resulting from the competition
between QP modulations and quenched random disorder. In
particular, based on the above scaling arguments, for β < 1/2,
quenched disorder is expected to overwhelm QP and induce
a flow to an infinite-disorder fixed point, while for β > 1/2,
QP is expected to remain stable. We leave these outstanding
questions to future studies.
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APPENDIX A: SUBSTITUTION RULE
GENERATION OF QP STRUCTURES

For simplicity, we consider binary substitution rules that
map each digit to a finite-length bit string, explicitly defined
by

0 �→ �0,

1 �→ �1. (A1)

The QP structure is constructed via a recursive application of
the above substitution rule. In practice, we generate QP arrays
of the order of 108 bits. Specific realizations are contiguous
segments whose initial index is drawn uniformly. The substi-
tution rules studied in this work are summarized in Table I.

Some geometrical properties of the QP structure can then
be computed from the characteristic matrix of �,

M� :=
(
#0�0 #0�1

#1�0 #1�1

)
, (A2)

where #0�1 counts the number of 0’s in the substitution rule
of 1, and similarly for all other cases. The largest eigenvalue
of M�, λ1, determines the asymptotic inflation factor per sub-
stitution. Its corresponding eigenvector is proportional to the
digit densities. In the main text, we use this information to
normalize the QP modulated measurement rate, such that it
directly compares to the uniform hybrid circuit.

The second-largest eigenvalue λ2 controls the digit den-
sity fluctuations. In particular, when |λ2| < 1 fluctuations are
bounded, while for |λ2| > 1 they diverge as a power-law with
a wandering exponent β [37],

σ [XSL ] ∼ G

(
logL

log λ1

)
Lβ, β = ln |λ2|

ln λ1
. (A3)

Here G is a log-periodic function.
For the most part, the log-periodic function

G[log(L)/ log(λ1)] has little effect on scaling properties
such that the simpler form σ [XSL ] ∼ Lβ provides an
excellent approximation. However, we observed that the
critical dynamics of the ancilla order parameter exhibit
log-periodic modulations. To estimate this effect, we consider

TABLE I. Substitution rules and corresponding properties of the
QP chains considered in this work.

Substitution Wandering Measurement
Label rule exponent density

Fibonacci

{
0 �→ 01
1 �→ 0

0.0 0.382

A

{
0 �→ 11
1 �→ 1100

0.180 0.618

B

{
0 �→ 01011
1 �→ 00

0.385 0.451

C

{
0 �→ 011
1 �→ 01000

0.450 0.414

FIG. 4. The log-periodic function G, Eq. (A3), associated with
the substitution rule B, Table I, with β = 0.385. The log-periodicity
(orange curve) agrees well with the theoretical prediction log λ1 ≈
log(1 + √

7).

a generalized scaling function in Eq. (5) in the main
text that takes into account the full form of geometrical
fluctuations, including the log-periodic modulations,
SQ ∼ f ( log(t )/{G[log(L)/ log(λ1)]Lβ}). G is nowhere
differentiable [37] and hence cannot be written in a closed
form. Instead, we model G as a source of uncertainty in the
scaling variable (horizontal axis) of Fig. 3(b) in the main text.
By examining its functional dependence of L (see Fig. 4),
we can provide a rough bound of 0.44 < G < 0.5, which
we translate to an uncertainty region, δx ≈ 0.06x, where
x = log(t )/(0.47Lβ ). This reasoning is used in our horizontal
error estimates in Eq. (5) in the main text.

APPENDIX B: I3 ANALYSIS

In this section, we provide a detailed analysis of the scal-
ing properties of the tripartite mutual information I3. First,
we examine the full distribution P[I3]. In Fig. 5(a), we fix
L = 256, and depict P[I3] for several values of p. In the area-
law phase, p > pc, the distribution is localized about 0. For
the complementary limit, p < pc, in the volume-law phase,
the distribution progressively broadens and attains a finite
mean value. These observations are exemplified in Figs. 5(b)
and 5(c). The above trend is evident as we increase the system
size.

Next, we consider the critical properties of 〈I3〉, which
can, in principle, admit a nontrivial dimension, leading to the
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FIG. 5. Distribution of I3 for (a) a system of size L = 256 and
different values of p. (b) Different system sizes in the volume-law
phase, p ≈ 0.153. (c) Different system sizes in the area-law phase,
p ≈ 0.189.

scaling ansatz

I3 ∼ Lη f [(p− pc)L
1/ν]. (B1)

In our curve collapse analysis, we fix pc = 0.17, as com-
puted using a different observable, and consider ν and η as
unknowns in our fitting procedure. This gives an excellent
curve collapse with our numerical estimate of η = 0.34(2)
and ν = 1.64(5) (see Fig. 6).

APPENDIX C: LUCK-RELEVANT QP MODULATIONS

In this section, we repeat the analysis carried out in the
main text for a different substitution rule (C in Table I)

FIG. 6. Curve collapse analysis of 〈I3〉, with pc fixed according
to previous analysis, yielding ν = 1.64(5) and η = 0.34(2). The
inset shows data prior to scaling.

FIG. 7. Critical finite-size scaling analysis of the substitution rule
C, Table I, with β = 0.450. Curve collapse analysis of (a) P[I3 = 0]
and (b) S/Lβ using the scaling variable (p− pc )L1/ν . In panel (c), we
demonstrate the activated dynamical scaling of the saturation time
t∗. Similarly to the substitution rule B, we find a linear dependence
(dashed red line) between log(t∗) and Lβ .

characterized by the wandering exponent β ≈ 0.450. The cor-
responding Luck bound is ν � 1.82, and hence it presents a
relevant perturbation for the MIPT. Specifically, in Fig. 7, we
present a curve collapse analysis of P[I3 = 0]. This yields
pc = 0.169(8) and ν = 1.8(5), which, importantly, saturates
the lower bound set by the Luck criterion. Furthermore, the
predicted universal amplitude S/Lβ displays a curve collapse
using pc = 0.174(1) and ν = 1.84(7), in agreement with the
previous estimate. Lastly, we investigate critical dynamics
by tracking the evolution of the saturation time at pc as a
function of system size [see Fig. 7(a)]. Indeed, we observe the
predicted activated scaling with ψ = β for sufficiently large
system sizes. The above results are fully consistent with the
ones obtained for substitution rule B, in the main text, only
with a different wandering exponent.

APPENDIX D: LUCK-IRRELEVANT QP MODULATIONS

The Luck bound suggests that QP modulations are irrel-
evant for sufficiently small wandering exponents, β < 0.2.
However, this bound is derived for weak modulations. Binary
QP patterns, following sharp modulation, are generally not a
weak perturbation. Therefore, their effect should be studied
numerically. To that end, below, we analyze two additional
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FIG. 8. Finite-size scaling analysis of substitution rule A, with
the irrelevant β = 0.180. Curve collapse analysis of (a) P[I3 = 0]
and (b) 〈I3〉. Insets show the data prior to scaling.

QP structures. The first follows the substitution rule A in
Table I, with a finite wandering exponent β = 0.180 that is
Harris-Luck irrelevant. The second is the substitution rule
generated by the Fibonacci chain, which has bounded fluc-
tuations (Table I).

We begin our analysis with β = 0.180. Our curve col-
lapse results of P[I3 = 0] and 〈I3〉 yield pc = 0.1686(2), ν =
1.31(3) and pc = 0.1708(2), ν = 1.324(9) with a vanishing
scaling dimension η = 0, respectively (see Fig. 8). The result-
ing ν value conforms with the unperturbed MIPT, suggesting
the irrelevance of this structure.

In addition, the critical dynamics appears to follow the
relativistic scaling of the unperturbed MIPT. In particular, we
find an approximate linear growth of saturation time with
the lattice size, with the dynamical exponent z ≈ 1.091(8)
[see Fig. 9(a)]. The small deviation from the relativistic re-
sult, z = 1, is likely due to finite-size effects. Moreover, in
Fig. 9(b), we estimate z in the vicinity of the critical regime
using both the saturation time (in the volume-law phase) and
the ancilla purification time (in the area-law phase). We, in-
deed, find that z remains bounded and approximately equals
unity.

Finally, we study the effect of binary Fibonacci chain mod-
ulations. The smooth (cosine) modulations were shown to be
irrelevant in Ref. [15]. The corresponding curve collapse anal-
ysis provides the estimates pc = 1.6314(9) and ν = 1.29(2)

FIG. 9. (a) The saturation time t∗ at criticality versus the system
size. A fit to the power-law form t∗ ∼ Lz gives z = 1.091(8) in agree-
ment with the relativistic scaling of the MIPT. (b) The dynamical
exponent z, as determined by the saturation time t∗ and the ancilla
purification time, as a function of the measurement rate p in the
vicinity of the critical point pc. The inset focuses on the critical
regime.

FIG. 10. Finite-size scaling analysis of the Fibonacci chain.
Curve collapse analysis of (a) P[I3 = 0] and (b) 〈I3〉. Insets show
the data prior to scaling.
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FIG. 11. The saturation time t∗ displays a linear (dashed red line)
growth with L.

for P[I3 = 0] [see Fig. 10(a)]. Our curve collapse analysis
of I3 yields pc = 0.16440(8), ν = 1.264(7), and η = 0 [see
Fig. 10(b)]. The dynamical exponents fully agree with rela-
tivistic scaling, as obtained by fitting the saturation growth
with a system size that gives z = 1.050(5) in Fig. 11. From
the above results, we can conclude that binary Fibonacci chain
modulations are irrelevant at the MIPT.

APPENDIX E: RARE REGIONS AND GRIFFITHS EFFECT

As mentioned in the main text, for infinite disorder tran-
sitions, activated dynamical scaling is typically accompanied
by Griffiths singularities [15,45,47] with a varying dynami-
cal exponent that progressively diverges upon the approach
to criticality. The underlying mechanism is local atypical
disorder configurations that belong to the opposite global
phase of matter. While the probability of realizing such rare
events is exponentially suppressed with the chain length (for
some arbitrary c), w ∼ e−cL, it competes with the exponen-
tially small energy splitting between distinct ordered ground
states in order-disorder transitions. This competition results
in power-law singularities away from criticality, in particular,
a critical divergence of the dynamical exponent 1/z ∼ |p−
pc|Lψν [43,48], with ν being the correlation length exponent
and ψ the activation exponent.

FIG. 12. The distribution of n := XSL/L, for various segments of
length L, for the substitution rule B.

FIG. 13. (a) Log of the probability of finding a segment of length
L with density lower than a cutoff of aρ0, with a = 0.92, PL[ρ <

0.92ρ0], for the substitution rule B (green line) and random disorder
(red line). (b) Behavior of the distribution tails, PL[ρ < 0.92ρ0].
The main panel (inset) displays data for the substitution rule B
(random disorder). Different curves correspond to different numbers
of samples. (c) Lattice size above which PL[ρ < 0.92ρ0] identically
vanishes as a function of the cutoff a.

Returning to our case, in the following, we investigate
whether the non-Pisot QP structures, studied in this work,
support Griffiths singularities. To that end, we examine the
probability density of rare events in these modulations. In
Fig. 12, we display the measurement gates density distri-
bution P[n = ρ], with n := XSL/L for an increasing set of
system sizes L. The distribution is centered on the mean
density, ρ0 = 0.451, for structure B, Table I. Importantly, for
each system size, we observe a sharp drop, above which the
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FIG. 14. (a) The effective dynamical exponents z, defined by a
power-law fit for the substitution rule B as a function of the measure-
ment rate across the MIPT. The typical time in the volume-law phase
is the entanglement entropy saturation time, and in the area-law
phase the typical time is the ancilla qubit purification time. The fit
considers only system sizes L � 64. (b) The ancilla qubit purifica-
tion time as a function of the chain length L for the measurement
rate p = 0.212 on a log-log scale. The red (green) dashed line is a
power-law fit to the data points L � 64 (L � 160), used to extract
the effective dynamical exponent z for that range of L.

probability density identically vanishes. This indicates the
absence of long tails associated with rare events.

To further quantify the above picture, we follow Ref. [46]
by defining the cutoff density aρ0, with 0 < a < 1. We then
compute the probability for the density of an L-long segment
ρ to be smaller than the cutoff, PL[ρ < aρ0]. For random
disorder, it is expected to decay exponentially, PL[ρ < aρ0] ∼
exp(−bL), for a positive b that depends on the cutoff. In
Fig. 13(a), we take a = 0.92 and find that PL[ρ < aρ0] de-
cays in the QP case faster than exponentially. In addition, in
Fig. 13(b), we show that PL[ρ < aρ0] identically vanishes for
L � 180, indicating that (at least for the number of samples
considered) such rare events do not occur. The dependence of
the maximal L value above which PL[ρ < aρ0] vanishes on a
is presented in Fig. 13(c).

From the above reasoning, due to the absence of rare
events, it is likely that Griffiths singularities do not play a
role in the QP structures considered in this work. Numer-
ically, we have found a moderate increase in the value of
the effective dynamical exponent z upon the approach to
criticality [see Fig. 14(a)]. We assume a power-law relation
of t ∼ Lz and fit the entanglement entropy saturation time
in the volume-law phase and the ancilla qubit purification
time in the area-law phase. In our fit, we consider chain
lengths L � 64. In proximity to the critical point, when the
correlation length is comparable to or larger than the chain
length, the scaling behavior is controlled by the critical fan.
In Fig. 14(b), we exemplify this crossover effect by fixing
p = 0.212 > pc and plotting the ancilla purification time as a
function of the chain length L. Assuming the same power-law
scaling form, we extract the dynamical exponent z for a short
[L � 64 with (p− pc)L1/ν < 0.6] versus a long [L � 160
with (p− pc)L1/ν > 0.9] chain. We indeed find that z flows
from 0.92 to 0.58 as we move away from the critical fan at
longer chains. It would be interesting to study the precise
scaling across the critical fan in future work.
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