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Abstract

The relative Novikov conjecture states that the relative higher signatures of manifolds with
boundary are invariant under orientation-preserving homotopy equivalences of pairs. The
relative Baum—Connes assembly encodes information about the relative higher index of
elliptic operators on manifolds with boundary. In this paper, we study the relative Baum—
Connes assembly map for any pair of groups and apply it to solve the relative Novikov
conjecture when the groups satisfy certain geometric conditions.
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1 Introduction

A fundamental problem in topology is the Novikov conjecture which states that the higher
signatures of a closed (i.e. compact without boundary) oriented smooth manifold are invari-
ant under orientation-preserving homotopy equivalences. The Novikov conjecture has been
proved for a large class of manifolds by techniques from noncommutative geometry and geo-
metric group theory. While the Novikov conjecture concerns with closed manifolds, there is
a natural analogue, called the relative Novikov conjecture, for compact oriented manifolds
with boundary. The relative Novikov conjecture states that the relative higher signatures of a
compact oriented smooth manifold with boundary are invariant under orientation-preserving
homotopy equivalences of pairs. The purpose of this article is to develop a C*-algebraic
approach to the relative Novikov conjecture. In particular, we prove that the relative Novikov
conjecture holds for a compact oriented smooth manifold with boundary if the fundamental
groups of the manifold and its boundary satisfy certain geometric conditions.

Suppose M is a compact oriented manifold with boundary 0M.Let G = w1 (M) and " =
71 M denote their fundamental groups. Moreover, leth: G — I be the group homomorphism
induced by the inclusion aM < M. Suppose EG (resp. ET) is the universal space for proper
G (resp. I') actions. Then % induces a (G, I')-equivariant continuous map from EG to ET,
thatis, the map commutes with the actions of G and I". One can define a relative Baum-Connes
assembly map

Hmax : KL C(ET, EG) = Ku(Cprgy (T, G)),

where K }: ’G(E I', EG) is the relative K-homology for the pair (EI', EG) with respect to
h and C;, (', G) is the maximal relative group C*-algebra of the pair of groups (G, T")
with respect to /.. We show that the injectivity of the above relative Baum—Connes assembly
map [max implies the relative Novikov conjecture. In general, the injectivity of the relative
Baum—Connes assembly map umax remains an open question. In this paper, we verify the
injectivity of this relative Baum—Connes assembly map under certain geometric assumptions
on the groups I" and ker(#). Here ker(h) = {g € G | h(g) = e}, where e € T is the identity
of I'.

Before we state the main results of this paper, let us first introduce the following notion
of group homomorphisms with good kernel property.

Definition 1.1 Let G and I" be countable discrete groups.

(1) Ahomomorphism#%: G — I" has maximal good kernel property if for any subgroup G’ <
G containing ker(k) with [G’ : ker(h)] < oo, the maximal Baum—Connes conjecture
with coefficients holds for G’.

(2) Ahomomorphism# : G — T hasreduced good kernel property if for any subgroup G’ C
G containing ker (k) with [G” : ker(h)] < oo, the reduced Baum—Connes conjecture with
coefficients holds for G'.
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Example 1.2 (1) If ker(h) is a-T-menable, then 4 has both the maximal and the reduced good
kernel properties.

(2) When ker(h) is word hyperbolic in the sense of Gromov, the map / has the reduced good
kernel property.

To motivate one of our main theorems (Theorem B), we first show the following result.

TheoremA Let h : G — T be a group homomorphism with the maximal good kernel
property. Suppose that T admits a coarse embedding into Hilbert space. Then the maximal
relative assembly map

fimax : KDO(ET, EG)— K, (C¥, (T, G))

max
is injective.
For example, if the kernel ker(%) is a-T-menable and I' admits a coarse embedding into
Hilbert space, then the relative assembly map

[max : KDO(ET, EG) — Ky (Cl o (T, G))

max

isinjective. We mention that Y. Kubota also proved the above maximal strong relative Novikov
conjecture under slightly stronger assumptions [21]. We thank Y. Kubota for bringing this to
our attention.

There are many groups such as hyperbolic groups with property (T) that satisfy the reduced
Baum—Connes conjecture with coefficients, but fail the maximal Baum-Connes conjecture
with coefficients. For such groups, it is more natural to consider a reduced version of the
relative Baum—Connes assembly map. However, the relative reduced group C*-algebra for a
general group homomorphism #: G — I is not defined, unless one imposes strong restric-
tions on the kernel ker (%), which would be restrictive for some applications. To overcome this
difficulty, we instead consider the relative reduced group C*-algebra C;, ,(I', G, M) with
coefficients in a II;-factor M, which is well-defined for an arbitrary group homomorphism
h: G — T, due to the presence of M. The use of II;-factors is inspired by the work of
Antonini, Azzali and Skandalis [1, 2]. Our first main result of the paper is as follows.

TheoremB Leth : G — T be a group homomorphism with the reduced good kernel property.
Assume that T is coarsely embeddable into Hilbert space. Then the relative Baum—Connes
assembly map

trea: KI'C(ET, EG, M) — K.(C},,(T, G, M))

is injective, where K{’G (ET, EG, M) isthe relative K -homology with coefficients in M and
Ky (C}, (T, G, M) is the K -theory of reduced relative group C*-algebras with coefficients
in M.

As an example, when ker(#) is hyperbolic and the group I' admits a coarse embedding
into Hilbert space, the relative Baum—Connes assembly map (i,4 1S injective.

For a given compact oriented manifold with boundary (M, dM), let (Dys, Djpr) be the
associated pair of signature operators. Then the maximal relative Baum—Connes assembly
map Umax Mmaps (Dyr, Dypr) to the maximal relative higher index

Indypax (D, Dam) € Ki(Cppoy (T, G)).
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Similarly, the reduced relative Baum—Connes assembly map (g maps (Dys, Dypr) to the
reduced relative higher index

Ind,ea(Dum, Dam) € Ki(Cloy(T, G, M)).

In order to apply the above theorems to the relative Novikov conjecture, we prove the follow-
ing theorem which states that maximal (resp. reduced) relative higher indices of signature
operators are invariant under orientation-preserving homotopy equivalences of pairs.

Theorem C Let M be a compact manifold with boundary 0M and N a compact manifold
with boundary ON. Let G = m1(0M) = 71 (0N) and I’ = mi{M = mN. Let Dy and Dy
be the signature operators on M and N, respectively. If there is an orientation-preserving
homotopy equivalence f: (M,0M) — (N, 0N), then

fe(Indyax (D1, Dap)) = Indpax (D, Dyn) € Ki(Crp (T, G)),
and
fs«(Ind,cq(Dy, Dypr)) = Ind,eq(Dy, Dyn) € Ki(Cry (T, G, M)),

where for example Indy,qx(Dyr, Day) (resp. Indreq(Dar, Day)) is the maximal (resp.
reduced) relative higher index of the pair of signature operators (D, Dypr).

Combining Theorems A, B with Theorem C, we have the following theorem on the
relative Novikov conjecture.

Theorem D Let (M, dM) and (N, dN) be compact oriented smooth manifolds with bound-
ary. Suppose f : (M, dM) — (N, dN) is an orientation-preserving homotopy equivalence.
Denote G = m1(0M) =2 m1(0N) andT = miM Z mN. Let h: G — T be the group homo-
morphism induced by the inclusion map oM — M. If the kernel of h: G — T is hyperbolic
or a-T-menable, and T admits a coarse embedding into Hilbert space, then the relative
Novikov conjecture holds, i.e., the relative higher signatures of (M, dM) and (N,dN) are
invariant under the homotopy equivalence f.

The paper is organized as follows. In Sect.2, we formulate the maximal strong relative
Novikov conjecture for a pair of discrete groups (G, I'). In section 3, we introduce the
reduced strong relative Novikov conjecture and show the assembly map with a II;-factor is
an isomorphism for a pair of hyperbolic groups. In Sect.4 and 5, we prove the maximal and
reduced strong relative Novikov conjecture under some geometric assumptions on the group
G,T and thekernel of h: G — I'.In Sect. 6, we define the relative higher index for signature
operators on manifolds with boundary, and show that the relative higher indices of signature
operators is invariant under orientation-preserving homotopy equivalences of pairs.

2 The relative Novikov conjecture

In this section, we shall first recall the definition of Roe algebras and localization algebras, then
introduce the notions of relative Roe algebras and relative localization algebras associated
with a group homomorphism % : G — T'. Finally, we construct the maximal relative Baum—
Connes assembly maps.
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2.1 Roe algebras and localization algebras

In this subsection, we recall the notions of Roe algebras and localization algebras for a metric
space Z endowed with a proper G-action (cf. [29, Chapter 4, 5 and 6]).

Let Z be a metric space with a proper G-action by isometries, and A a G-C*-algebra.
A G-action on a Hausdorff space Z is said to be proper if for every x, y € Z there exist
neighborhood U, and Uy, of x and y respectively such that the set

lgeG:g-UNU, # 0}
is finite. A G-action is said to be cocompact if the quotient space Z/G is compact.

Definition 2.1 Let H be a Hilbert module over the C*-algebra A, and ¢ : Co(Z) — B(H)
a x-representation, where B(H) is the C*-algebra of all bounded (adjointable) operators on
H.LletT : H— H be an adjointable operator.

(1) The support of T, denoted by Supp(T), is defined to be the complement of the set of
all points (x, y) € Z x Z for which there exists f € Co(Z) and g € Co(Z) such that

f-T-g=0,and f(x) #0and g(y) #0;
(2) The propagation of the operator 7 is defined by

propagation(T’) = sup {d(x, y) : (x, y) € Supp(T)}.
An operator T is said to have finite propagation if propagation(7’) < oo;
(3) The operator T is said to be locally compact if f -7 and T - f are in K(H) for all
f € Co(Z), where K (H) is the operator norm closure of all finite rank operators on the

Hilbert module H.
(4) The operator T is said to be G-invariantif g- T =T - g forall g € G.

Let H be a G-Hilbert module over A. A x-representation ¢ : Co(Z) — B(H) is covariant
if
o(y v = ey Hu
forally € G, f € Co(Z) andv € H. The triple (Co(Z), G, H) is called a covariant system.
Definition 2.2 We define the covariant system (Co(Z), G, H) to be admissible if

(1) the G-action on Z is proper and cocompact;
(2) there exists a G-Hilbert module Hz such that

e H isisomorphic to Hz ® A as G-Hilbert modules over A;

e ¢ = ¢p ® I for some G-equivariant x-homomorphism ¢y : Co(Z) — B(Hz)
such that ¢o(f) is not in K (Hz) for any non-zero function f € Cy(Z) and ¢ is
non-degenerate in the sense that

{oo(flv:ve Hz, f € Co(Z)}

is dense in Hy;

e for any finite subgroup F € G and any F-invariant Borel subset E of Z, there
is Hilbert space Hg with trivial F-action such that yg Hz and 02(F) ® Hg are
isomorphic as F-representations.

Definition 2.3 Let (Co(Z), ¢, H) be an admissible system. The algebraic Roe algebra with
coefficients in A, denoted by C[Z, A]9, is defined to be the algebra of G-invariant locally
compact operators in B(H) with finite propagation. The Roe algebra C*(Z, A)Y is the
operator norm closure of the x-algebra C[Z, A]C.
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It is easy to show that the definition of algebraic Roe algebras is independent of the choice
of covariant systems (cf. [29, Proposition 4.5.14]).

Let us now recall the definition of maximal Roe algebras. To define the maximal norm on
the above s-algebra C[Z, A1, we need some basic concepts of metric spaces. Let X C Z
be a locally finite subspace of a metric space X. The subspace Y is said to be anetof Z if Y
is a locally finite subspace Z and Z = N, (Y) ={z € Z : d(z,Y) < r} for some r. A locally
finite metric space Y is said to have bounded geometry if sup, .y #Br(y) < 00, where Br(y)
is the ball of radius R centered at y. We say that a metric space Z has bounded geometry if
Z has a bounded geometry net. The following result can be proved by the similar arguments
in [11, Lemma 3.4].

Lemma 2.4 (cf. [11, Lemma 3.4]) Let G be a countable discrete group, A a G-C*-algebra,
and Z a proper metric space with bounded geometry endowed with a proper G-action by
isometries. Let (Co(Z), ¢, H) be an admissible system. Then for each T € C[Z, A1C there
exists a constant C > 0 such that

Izl = C
for any x-representation w : C[Z, Al° —> B(H).

It follows from the above result that the maximal norm on the x-algebra C[Z, A]C is
well-defined.

Definition 2.5 The maximal Roe algebra, denoted by C; . (Z, A)G, is defined to be the
completion of C[Z, A]° under the maximal norm

1T lmax = sup i |7 (T)| : 7 : C[Z, Al° — B(H')isa = -representation} )

Next, we shall recall the concept of localization algebras.

Definition 2.6 (1) The algebraic maximal localization algebra C,4x,1.[Z, A1¢ is defined
to be the x-algebra of all uniformly bounded and uniformly continuous functions f :
[0, 00) — Ci,.(Z, A)Y such that
propagation(f(¢)) — 0, as t — oo.
The maximal localization algebra C , (Z, A)Y is defined to be the completion of
Chax.LIZ, A]° under the norm

/Il = sup : I () Imax

t€(0,00

forall f € Cpax.L[Z, A)°.
(3) The algebraic localization algebra C;[Z, A1€ is defined to be the uniformly bounded
and uniformly continuous functions f : [0, 0c0) — C*(Z, A)% such that

propagation(f(t)) — 0, as t — oo.

The localization algebra C (Z, A)Y is defined to be the completion of C; [Z, A]° under
the norm

IAl="sup [LfF@OI,

t€[0,00)

forall f € Cr[Z, AlC.
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Naturally, we have the evaluation map from the maximal localization algebra to the max-
imal Roe algebra

e: Cho 1 (Z, A — Ch (2, AF
by
e(f)= [
forall f € C;, a.L(Z, A)S . Similarly, we have the evaluation map

e:Ci(Z, A - C*(Z, A)C.
These evaluation maps induce homomorphisms

et Ku(Chon 1 (Z, 1)) — Ku(Clhy (2, A)

max

and
st Ko(CH(Z, A)Y) — K (C*(Z, A)).

at the level of K-theory.

2.2 Rips complex

In this subsection, we review the definition of Rips complexes of a countable discrete group
I", and the construction of a model of the universal space for proper I"-actions by using Rips
complexes.

Let I" be any countable discrete group. A proper I'-space ET is said to be universal if it is
a metrizable with the quotient space EI"/ I paracompact and if for every proper metrizable
I'-space X with X/ I" paracompact then there is a I"-equivariant continuous map X — ET,
unique up to I'-equivariant homotopy.

Let us recall the definition of Rips complexes. For brevity, we assume that the groups we
consider are finitely generated.

Definition 2.7 Let I" be a finitely generated group with a word length metric d. Let s > 0.
The Rips complex of T at scale s, denoted Ps(I"), is the simplicial complex with vertex set
', and a subset {yp, - - - , ¥} of " spans a simplex if and only if d(y;, y;) < s forall i, j.

Each Rips complex P;(I") is equipped with the spherical metric. Recall that the spherical
metric is the maximal metric whose restriction to each simplex {Z:‘l:o Ci t,-} C Py(I") is the
metric obtained by identifying this simplex with

n
Siz{(to,zl,---,tn):Ztl?:l,t,-zo, V0§i§n} C R
i=0

by

Cn

co cq
\/ZLO ¢ \/Z?:O ¢ Vv 2Zi=o ¢

where §7 C R"*! is equipped with the standard Riemannian metric.

(co, 1,5 cn) >
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Now we define a '-action on Py(T"). Foreachx = ) tyy € Py(I")and g € T, define

yell

g [Donv] =D ner

yel yell

It is obvious that this I"-action is proper.

Let G and I" be finitely generated groups, and 4 : G — I' a group homomorphism.
Assume that S C G is a finite and symmetric generating subset of G in the sense that S is
finite and g~! € S for each g € S. One can define a left invariant word length metric dg
on G associated to the generating subset S. In addition, there exists a finite and symmetric
generating subset S’ C T of T" containing /(S). One obtains a left invariant metric dr on
I such that dr(h(g1), h(g2)) < dc(g1, g2) for all g1, g> in G. For each s > 0, the map &
extends to a continuous map

h: P(G) — Pg(I),

by
DI EDILAID
yell yel
for each Zyer t,y € Py(I"). Note that

dp,ry(h(x), h(y)) < dp,G)(x, y)
foralls > Oand all x, y € Ps(G).

2.3 Relative Roe algebras and relative localization algebras

In this section, we will define the relative Roe algebra and relative localization algebra
associated with a group homomorphism % : G — T.

Definition 2.8 A C*-algebra A is called a (G, I')-C*-algebra if A is a G-C*-algebra and
I'-C*-algebra simultaneously, and g - a = h(g) -a forall g € G, a € A.

We remark here that a (G, I")-algebra is just a I'-algebra in the case when the homomor-
phism & : G — T is injective. If A is a (G, I')-C*-algebra, the restriction of the G-action to
the subgroup ker(h) € G is trivial.

There are natural x-homomorphisms (cf. [29, Section 6.5])

Bmax,s : Chrar (Ps(G), A — Cpr, (Po(T), A)F
and
Rmax,Ls : Chhay 1 (Ps(G), A)¢ — Cpio (Po(D), AT,

If the homomorphism % : G — T has amenable kernel, then / induces a homomor-
phism from C7, ;,(G) to C}', ,(T"). Indeed, since the trivial representation of ker (/) is weakly
contained in the regular representation of ker (%), by continuity of induction the regular repre-
sentation of G/ ker(h) is weakly contained in the regular representation of G. It follows that
the reduced C*-algebra of G maps onto the reduced C*-algebra of 1(G) = G/ ker(h). More-
over, the inclusion of 4(G) into I induces an injective *x-homomorphism from C ;" Lqa(1(G))
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into C, ,(I"). By identifying equivariant Roe algebras with the stabilization of reduced group
C*-algebras (see Section 5.3 and 6.3 in [29]), we also have x-homomorphisms

hreds : C*(Py(G), A)® — C*(Py(T), A"
and
hredas : Cr(Ps(G), A)Y — C(Py(I), A)F

in the reduced cases.
To define relative Roe algebras, we shall recall the concept of the mapping cone associated
to a x-homomorphism between C*-algebras.

Definition 2.9 Given a x-homomorphism 4 : A — B between C*-algebras A and B, the
mapping cone Cy, of h is defined to be

Cn:={(a, flla € A, f € Co([0, 1), B), h(a) = f(0)}.

Leti : Co(0,1) ® B — Cj be the x-homomorphism defined by i(f) = (0, f) for
all a € Cyp((0,1),B), and j : C;, — A the x-homomorphism by j(a, f) = a for all
(a, f) € Cp, where Cy(0, 1) ® B is the suspension of B which can be viewed as the C*-
algebra of all continuous functions from the open interval (0, 1) to B that vanish at two ends.
The short exact sequence

0> Co(0,)®B - Cp > A0
induces the following six-term long exact sequence:

K1(B) — Ko(Cp) — Ko(A)

T l

K1(A) <— K1(Cp) <— Ko(B).

With the x-homomorphisms between Roe algebras and localization algebras, we can
define the relative Roe algebras and the relative localization algebras as the suspension of
the mapping cones of those x-homomorphisms.

Definition 2.10 Let 4 : G — I be a homomorphism between finitely generated groups and
A a G-T'-C*-algebra. Let s > 0.

e maximal relative Roe algebra s , Py s 7 18 defined to be the sus-
(1) Th imal relative R lgebra C* _(Py("), Ps(G), A)T-C is defined to be th

max
pension of the mapping cone associated with the x-homomorphism

Bmax,s : Chhax (Ps(G), A — C  (Py(D), AL

max
(2) The maximal relative localization algebra C;; ax.L (Py (D), Ps(G), A)T-C isthe suspension
of the mapping cone associated with the x-homomorphism

Rimax.s,L * Chax 1 (Ps(G), A — Cph o 1 (P(D), AT

max,

We have the following six-term exact sequences:

K1 (C o (Ps(T), AT — K1 (C} o (P(T), Py(G), ATC) — Ko(Ciy (Ps(G), A)Y)

max max max

T !

K1 (C} e (Ps(G), A)O) = Ko(Cipr (Ps(T), Py(G), AYTO) < Ko(Cipr (Ps(T), A)D),

max max max
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and
Ki(Cpppe L (Ps (D), AN = Ki(C}, max.L(Ps (), Ps(G), A%y — Ko(Cy . L(P(G), A)Y)

T l

Ki(Cyr o 1 (Ps(G), A)P) = Ko(Cpr\,  (Ps(D), Ps(G), A)TC) 4= Ko(Cpi . | (Ps(D), D).
Note that for any r < s, there exist natural inclusions

(P-(D), Pr(G), A" — Cz . (Py(D), Py(G), A™C,

max max
and
Chan.r (Pr(D), Pr(G), AC — C o (Py(D), Py(G), A)C.
Thus we obtain an inductive system { max. (Ps(D), Ps(G), A G}ve[o )" We shall define

the relative K-homology for the pair (G, I') using this inductive system.

Definition 2.11 Given a group homomorphism 2: G — I" and a (G, I')-C*-algebra A, the
relative equivariant K-homology with coefficients in A of 7: G — T is defined to be the
inductive limit

K;C(ETEG, A) = lim Ki(Cpyp 1 (Pr(D), P(G), A)).

max,L

Now we are ready to define the evaluation map from the relative localization algebras to
the relative Roe algebras.

For each (a, f) € C:;mx’L(PS ), Ps(G), A)F’G, we can view a as a continuous
path (a(t));e[0,00) N C:mx,L(Ps (G), A)C and view f as a collection of continuous paths
(fr(D)ref0.11.1€[0.00) 1N C:wx,L(PS (I"), A)T. By the definition of mapping cones, for each s
we have a natural evaluation map

(Py(I), Py(G), ATC

max

e Chap L (Ps(D), Pi(G), ATC — C},
defined by
ea, ) = (a(0), £(0)),

for all (a, f) € C;jmx‘L(P, (), P-(G), A)TC. Passing to inductive limit, we have a homo-
morphism

«: KPO(ED EG, A) — lim K. (Cphy (P(D), Po(G), A)").

max

Similarly, we can define the reduced relative Roe algebras and relative localization algebras
in the case when the kernel of the homomorphism %z : G — T is amenable.

Definition 2.12 Lets : G — T" be a homomorphism between finitely generated groups with
ker(k) amenable and A a (G, I')-C*-algebra. Let s > 0.

(1) The relative Roe algebra, C*(P;(I"), Ps(G), A)G | is defined to be the suspension of
the mapping cone of the x-homomorphism

hrea.s : C*(Py(G), A)Y — C*(Py(I), A)'.

(2) The relative localization algebra, C7 (Ps(I"), Ps(G), A)TC 10 be the suspension of the
mapping cone of the *-homomorphism

hreas.t s Ci(Ps(G), A)® — C(Py(I), A)L.
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We have defined the relative K -homology groups using maximal localization algebras. We
can also consider the reduced relative localization algebras when the group homomorphism
h : G — T has amenable kernel. In fact, these two relative K-homology groups coincide.
Following the same arguments in the proof of [31, Theorem 3.2], the K -theory of the maximal
localization algebra is identical with the K-theory of the reduced localization algebra. It
follows from the five lemma that

K. (C}(Py(D), Py(G), ATC) = Ko (Clhy 1 (P5(D), P(G), A)T9).

max,

As a result, we have that
Ky O(ET EG. A) = lim K.(CL(P,(I). Py(G), H)"9),
when / : G — T has amenable kernel. Moreover, in this case, we also have the evaluation
map
e: Ci(Py(D), Pr(G), AT — C*(Py(I), Py(G), A)"C
defined by

e(a, ) = (a(0), f(0)),
for all (a, f) € C} (Py(I"), Ps(G), A)TG | which induces the homomorphism

e KU O(ET EG, A) — lim K, (C*(Py()., Py(G), A)™9),

Let C;, (G, A) and C},;(G, A) be the maximal and reduced C*-crossed product of G

max (4
and A, respectively. Then #: G — I induces a x-homomorphism

Bmax = Ly (G, A) — CE (T, A).

max

If 4 has amenable kernel, then 4 induces a *-homomorphism
h: C:‘ed(G, A) —> C;ked(F, A).

We define C}, (G, T', A) to be the suspension of the mapping cone of /1,4, and we call it

the maximal relative group C*-algebra of (G, I') with coefficients in A. If the kernel of # is
amenable, then we can likewise define the reduced relative group C*-algebra C}, ;(G, T, A).
We have

C;;;ax(PS(F)v P (G), A)F’G ~ C*

max

TG, A®K

for each s > 0, where K is the algebra of compact operators on Hilbert space. If the homo-
morphism 4 : G — I' has amenable kernel, we have that

Cr (Ps(D), Ps(G), ATC = CF, (I, G, A) ® K,
for each s > 0.
Definition 2.13 (1) The maximal relative Baum-Connes assembly map
Mmax : KL O(ET EG, A) = Ku(Cpo (T, G, A))
is defined to be the homomorphism

ex: lim Ky(Cpyp f (Ps(D), Pi(G), A)T9) = lim Ki(Cpa (Po(D), P(G), A)TO).

max, max
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(2) When the homomorphism / : G — I' has amenable kernel, the reduced relative Baum-
Connes assembly map

prea : Ky O (ET EG, A) — Ki(Clpy(T', G, A)),
is defined to be the homomorphism

et lim K. (Ci(Py(T), Py(G), ATC) — lim K,(C*(Py(T), Py(G), A)"C).
§—>00 §—> 00
Let us state the maximal and reduced strong relative Novikov conjectures.

Conjecture 2.14 (Maximal strong relative Novikov conjecture) Let h : G — T be a group
homomorphism between countable discrete groups G and T, and A a (G, T')-C*-algebra.
The maximal relative Baum—Connes assembly map

tmax : KL'O(ET, EG, A) — Ki(C}y (T, G, A))

max
is injective.

We can also define a reduced analogue of the above conjecture. Since the reduced relative
group C*-algebra is not defined for general homomorphisms between groups, we shall state
the reduced version of the conjecture under the extra assumption that the group homomor-
phism 2 : G — T has amenable kernel.

Conjecture 2.15 (Reduced strong relative Novikov conjecture) Let h : G — I be a group
homomorphism between countable discrete groups G and T’ and A a (G, T')-C*-algebra.
When the homomorphism h : G — T has amenable kernel, the reduced relative Baum—
Connes assembly map

Hrea : K{C(ET, EG) — Ki(Clypy (T, G))
is injective.
In Sect.3, we shall define a reduced strong relative Novikov conjecture for all group
homomorphisms with the help of II;-factors.
When the group G is trivial, it follows from the five lemma that the injectivity of the

relative assembly map is equivalent to the injectivity of the following (absolute) assembly
map

Ired : KL (ET) = Ky (Ch ().

The injectivity of (4,4 is the usual strong Novikov conjecture, which has been verified for a
large class of groups [3, 6-8, 19, 22, 25, 32-34].

3 Relative Baum-Connes conjecture
In this section, we shall introduce a reduced relative Baum—Connes assembly map for all
group homomorphisms #: G — T" between countable discrete groups with the help of II; -

factors. We show that this relative Baum—Connes assembly map is an isomorphism when
both G and I' are hyperbolic groups.
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3.1 Relative reduced assembly map

It is known that for any countable discrete group G, there exists a II-factor M such that
there is a trace-preserving embedding ¢ C’,;(G) — M. Indeed, every group G can be
viewed as a subgroup of an ICC group' G’ whose group von Neumann algebra L(G’) is a
1, -factor. We can take M = L(G’).

Now we shall use the embedding ¢ to define the reduced relative assembly map. Let us
equip M with the trivial actions of G and I'. Denote by M®M the von Neumann tensor
product of M and M. It is well known that M® M is still a IT; -factor when M is a IT; -factor.
For any group homomorphism 2 : G — T, we define a x-homomorphism from C}, ;(G, M)
to C), (T, M®M) as follows.

Lemma3.1 Leth : G — I be any group homomorphism between countable discrete groups
and M a Ily-factor endowed with a trace-preserving embedding ¢ : C,;(G) — M. Then
there exists a x-homomorphism

hred.m t Clog(G. M) = Cfy (D, MBM)
by

hreamn (Y agg) = Y (ag © 6()) h(g)
forall y_agg € C¥, (G, M), where the actions of G and T’ on M are trivial.

Proof Given a group homomorphism 4 : G — I', we consider the map

G LI> GxT
defined by
h'(g) = (8. h(9)).
for all g € G. Notice that k! is injective, thus 1! induces a x-homomorphism
hlyy: CEy(G, M) — CF (G x T, M).
Therefore, we have that

r(d

red(G M) red(G x T, M)

—> CF,,(G) ® CFy(T, M)

P Moy, M)

=5 (T M M),
= Clq(T, MOM)

where the last map is the inclusion induced by the inclusion from the C*-tensor product
M ® M into the von Neumann tensor product M®M. The composition of the above maps
gives the map 7,04, M. ]

LA group is said to be an ICC group, or to have the infinite conjugacy class property, if the conjugacy class
of every element but the identity element is infinite.
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We denote by Cp
Cz, (T, MBM).

Definition 3.2 Define the relative group C*-algebra with coefficients in the II;-factor M to
be

rear the mapping cone of the map hyeam : C),;(G, M) —

Cry(T, G, M) = Co(R) ® Ch,py pq-

Remark 3.3 1t is known that Ko(M) = R and K| (M) = 0 for any II;-factor M. If the group
G is amenable, then the group C*-algebra C;,,(G) is nuclear. By Kiinneth’s formula for
K -theory of operator algebras, we have that

Ku(Cly(G. M) = Ko (CLy(G)) ® R.

Now let us introduce the relative K-homology with coefficients in a II;-factor. Fol-
lowing the construction of the x-homomorphism between localization algebras, we have
a x-homomorphism

hp i CE(P(G), M)C — C(Py(T), MBM).

Let Cp, ,, be the mapping cone of the *-homomorphism /1 aq. For each s > 0, we define
the relative localization algebra with coefficients in M to be

Ci(Py(D), Py(G), M)"C = Co(R) @ Ci, o,
For each s > 0, there is a natural evaluation map
e: C;(Py(D), Ps(G), M)TC — C*(Py(), Py(G), M)TC.

For all r < s, we have the following commutative diagram

K+ (Cy (P (D), Pr(G), M)TC) &5 K (C*(P,(T), Pr(G), M)TO) 5 K.(CFy(T, G, M)

l l H

K. (CE(Py(D), Py(G), M)TG) &5 K, (CH(Py(T), Py(G), M)TG) 5 K.(CE (T, G, M))

Thanks to this compactibility we can define the relative K-homology and the relative assem-
bly map with coefficients in M as the following inductive limits.

Definition 3.4 The relative equivariant K-homology with coefficients in M is defined as the
inductive limit

Ky C(ET EG, M) = lim K.(CL(P,(I), Py(G), M)"©).
Definition 3.5 The reduced relative Baum-Connes assembly map
trea : KLUO(ET, EG, M) = K.(Clpy(T, G, M)
is defined to be the inductive limit of the homomorphisms
et Ko(CH(Py(D), Py(G), M)TC) — K, (C*(Py(D), P(G), M)TO).

Conjecture 3.6 (Reduced strong relative Novikov conjecture) Assume that h : G — T is
a homomorphism between countable discrete groups G and I'. Let M be a 11;-factor such
that there exists a trace-preserving embedding ¢ : C}, (G) — M. The reduced relative
Baum-Connes assembly map

tred : KDO(ET, EG, M) — K.(C},,(T', G, M))

is injective.

@ Springer



K-theory of relative group... Page 150f38 45

Conjecture 3.7 (Relative Baum—Connes conjecture) Assume that h : G — T is a homomor-
phism between countable discrete groups G and T'. Let M be a 111-factor such that there
exists a trace-preserving embedding ¢ : C},,(G) — M. The reduced relative Baum-Connes
assembly map

frea : KDO(ET, EG, M) — Ky (C},y(T, G, M))

is an isomorphism.

Remark 3.8 (1) We remark that the definition of the reduced Baum—Connes assembly map

@)

for h: G — T does not depend on the choice of the trace-preserving embedding ¢ :
C’,;(G) — M. Note that every Rips complex P;(G) can be express as a finite union
P;(G) = U;G - X; where each X; is a precompact and open subset of P;(G) which is
F;-invariant for some finite subgroup F; of G,and gX; N X; = @ forallg € G — F;. We
have that
K.(CL(G - Xi, M)Y) = Ko (CL(Xi, M)T)

= Ku(C* (X1, M)

= K(C* (X)) ®R

=K (CI(XD") O R

= K.(C1(G - Xi, M)P) @R,
The first and the last equality follow from the definition of the localization algebras.
The second and the fourth equality follow from the Baum—Connes conjecture for finite
groups and the third equality follows from the Kiinneth formula for K -theory of operator

algebras. It follows from the six-term exact sequence for the K-theory of localization
algebras and the five lemma that

KS(EG, M) = KS(EG) ® R.

Therefore, the definition of K-homology K*r ’G@F, EG, M) does not depend on the
choice of the II;-factor M by the five lemma.

Let BG and BT be the classifying space for G and I', respectively. There is a natural
map

h:BG — BT

induced by the group homomorphism /2 : G — I'. The injectivity of the reduced relative
Baum-Connes assembly map

lred : KLO(ET, EG, M) — Ky(C},y(T, G, M))

(4
implies that the relative assembly map
lred : K«(BT, BG) ® R — K. (C%,,(T, G, M))

is injective, the latter of which we shall now review.
Now, let us define the relative K -homology group K. (BG, BT"). Following the construc-
tion in Sect. 2.3, we can construct s-homomorphisms

hr : C;(BG) - C;(BT),
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and
hr : CT\A,L(BG, M) — C} (BT, M®M),

induced by the continuous map h : BG — BT . Define the relative K-homology group
K.(BG, BT") to be the K-theory of the suspension of the mapping cone associated to
the *-homomorphism

hr : C:(BG) — C%(BI).

By the five lemma, the relative K-homology group K.(BG, BI') ® R is equivalent to
the K -theory of the suspension of the mapping cone associated to the x-homomorphism

ham : CL(BG, M) — Cj (BT, MQM).
Following the constructions in [4], we have the relative local index map
or.¢ : K«(BT', BG) ® R — KI'6(ET, EG, M).
By the Connes—Chern character [4], we know that the K, (BG)®R is a direct summand of

the K -homology group K¢ (EG, M). Furthermore, we have the commutative diagram

K.t1(BG) @R —— K, | (EG, M)

| !

Kir1(BT) ®@ R —— KL | (ET, M®M)

) l

K.1(BT, BG) @R =% KIS (ET, EG, M)

| !

K.(BG)®@R —2%— KCG(EG, M)

| l

K.(BI)®@R —— KI'(ET, M®M).

Note that the left and right vertical sequences are exact and the horizontal maps preserve
the direct summands. As a consequence of diagram chasing, the relative local index map

or : K«(BT,BG)®R — K["°(ET, EG, M)

is injective. Alternatively, following [2, Theorem 5.4], for any group G, one can define a
natural left inverse of o, denoted by 7¢ : Kf (EG, M) - K.(BG) ® R, from which
follows the injectivity of the relative local index map or .

In summary, we have the composition

K.(BT,BG)®R % K["C(ET, EG, M) ™4 K.(C*,(T, G, M))

which we still call the relative assembly map. For simplicity, we also denote it by
Ired- As a result, the injectivity of the reduced relative Baum—Connes assembly map
fred : KiC(ET, EG, M) — K4(C% (T, G, M)) implies that the relative assembly
map

Ired : K«(BT, G) ® R — K. (C;,4(T, G, M))

red

is injective.
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(3) Similarly, there is also the maximal relative assembly map

Hmax : K«(BI', BG) @ R — K*(C* T,G) ®R,

max

defined by the composition

K.«(BT, BG) @R % K[ "C(ET, EG, M) " K,(Clu (T, G, M)

As a result, the injectivity of the maximal relative Baum—Connes assembly map
timax © KLC(ET,EG, M) — K. (C} . (T, G)) implies the injectivity of fmax :
K«(BT,BG)®@R — K.(C}_ (I',G)) Q@ R.

max

3.2 Relative Baum-Connes conjecture for hyperbolic groups

We will conclude this subsection by showing that any pair of hyperbolic groups (G, I')
satisfies the relative Baum—Connes conjecture with coefficients in a II;-factor M.

Definition 3.9 (Gromov [12]) Let G be a finitely generated group equipped with a left invari-
ant word length metric. The group G is said to be hyperbolic if there exists a constant § > 0
such that each geodesic triangle is §-thin in the sense that for any x, y, z € G, the geodesic,
denoted by [x, y], joining x and y, is contained the §-neighborhood of the union of other two
geodesics [x, z] and [y, z].

Lafforgue showed that the Baum—Connes conjecture with coefficients holds for all hyper-
bolic groups [22].

Theorem 3.10 ([22]) Let G be a hyperbolic group and A any G-C*-algebra. Then the Baum—
Connes conjecture with coefficients in A holds for G, i.e. the Baum—Connes assembly map

w:KS(EG, A) — K.(C}, (G, A))
is an isomorphism.

Combining Lafforgue’s theorem ( [22]) with the six-term K-theory exact sequence, we
show that the relative Baum—Connes conjecture with coefficients in a II; factor holds for a
pair of hyperbolic groups.

Proposition 3.11 Let G and I" be hyperbolic groups, andh: G — T a group homomorphism.
Let ¢: C}, ,(G) — M be a trace-preserving embedding of C},,(G) into a Il;-factor M.
Then the relative Baum—Connes conjecture with coefficients in M holds forh: G — T, i.e.,
the reduced relative Baum—Connes assembly map

tred : KNO(ET, EG, M) = K.(C},,(T, G, M)

is an isomorphism.
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Proof We have the following commutative diagram:

(EG, M) —"Z— Ky41(Cly(G, M)

| l

KL (ED, MBM) -5 Kai1(CF,y (D, MBM))

L l

K S(ET EG, M) % Koy1 (Cly(T, G, M)

l l

KS(EG, M) —"5— K.(C?, (G, M)

*+1

l l

KL(ET, MBM) —Z— Ki(CJ,y(T, MOM)).

By Theorem 3.10, the assembly maps g and pr are isomorphic. It follows from the five
lemma that the relative assembly map

tred : KDO(ET, EG, M) — K+ (Cly(T. G, M)
is an isomorphism. This finishes the proof. O

Using the same arguments above, we can generalize Proposition 3.11 to the following
result.

Proposition 3.12 Let G and T be any discrete groups and h: G — T a group homomor-
phism. Let ¢ : C}, (G) < M be a trace preserving embedding of C}, ;(G) into a Il -factor
M. Assume that the Baum—Connes conjecture holds for G and I". Then the relative Baum—
Connes conjecture with coefficients in M holds for h: G — T.

4 A relative Bott periodicity

In this section, we shall prove a Bott periodicity for the relative Roe algebras associated with
a pair of groups (G, I') with I' coarsely embeddable into Hilbert space.

4.1 C*-algebras associated with Hilbert spaces

Let E be a separable, infinite-dimensional Euclidean space. For any finite-dimensional, affine
subspace E,, denote by E? the finite-dimensional linear subspace of E consisting of differ-
ences of elements in E,. Let C(E,) be the Z;-graded C*-algebra of continuous functions
from E, to the complexified Clifford algebra of Eg vanishing at infinity. A Z;-grading on
C(E,) is induced from the even and odd parts of Cliff(Eg).

Let S be the Z;-graded C*-algebra of all continuous functions on R vanishing at infinity,
where S is graded according to odd and even functions. Let A(E,) be the graded tensor
product S®C(E,).

For a pair of finite-dimensional, affine subspaces E, and Ej; with E, C Ejp, there exists
a decomposition

Ep=E) ®E,,
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where Ega is the orthogonal complement of E¥ in E}? For each element v, € Ej, there exists
a unique decomposition vy = Vpq + Vg4, for some vp, € El?a and v, € E,.

For each function & € C(E,), we can extend it to a function on Ep via h(vp) = h(vy),
for all vy = vp,s + v,. The decomposition Ej, = Ega @ E, gives rise to a Clifford algebra
valued function, denoted by Cp, : Ep — Cliff(E(b)) on E;, which maps vp € Ep to vp, €
Ejp, C CIiff(E).

Denote by X : S — S the operator of multiplication by x on R. Note that X is a degree
one, essentially selfadjoint, unbounded multiplier of S with domain the compactly supported
functions in S.

Definition 4.1 ([15])

(1) Let E, C E}, be a pair of finite-dimensional, affine subspaces of E. One can define a
homomorphism

Bba 1 A(Eq) — A(Ep)
by
Bra(f®h) = f(X®1 + 1&Cpqa)(1Qh)

forall f € S,h € C(E,).
(2) We define a C*-algebra

A(E) = lim A(E,),
where the direct limit is over all finite-dimensional affine subspaces.

Given any discrete group I', S is equipped with trivial I"-action. If I" acts on the Euclidean
space E by linear isometries, then the I'-action on E induces a I'-action on the C*-algebra
A(E). Note that A({0}) = S. For each f € S, let B;(f) = f;(X®1 + 1&®C) for every
t € [1,00), where f;(x) = f(x/t).

We define the Bott map

Bs : Ki(Cpyr (T, 8)) = Ki(Cpp (T, A(E)))

max

to be the homomorphism induced by the asymptotic morphism
/3t : C;;ax(r’ S) g C;;ax(rﬁ A(E))

given by f — B;(f) foreacht € [1, 0o). The following result is due to Higson—Kasparov—
Trout [15].

Theorem 4.2 (Infinite-dimensional Bott periodicity [15]) Let I be a countable discrete group,
E an infinite-dimensional Euclidean space with a T-action by linear isometries. Then the
Bott map

Bs : Ki(Crgr (T, 8)) = Ki(C (T, A(E)))

max max

is an isomorphism.
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4.2 I'-C*-algebras associated with coarse embeddings into Hilbert space

In the rest of this section, we shall define a proper I'-C*-algebra associated to a coarse
embedding of I into Hilbert space. Let us recall that a I'-C*-algebra A is said to be proper if
there exists a locally compact I'-space Y with a proper I'-action such that Cy(Y') is contained
in the center of the multiplier algebra of A and Co(Y)A is dense in A under the norm topology.

In order to define the proper I'-C*-algebra, we will generalize the construction of Higson—
Kasparov-Trout [15] to the case of continuous fields. The following construction is essentially
due to Kasparov—Yu [20], Skandalis—Tu-Yu [25], and Tu [27].

Suppose ¢ : I' — H is a coarse embedding into Hilbert space. For each y € I', we define
a bounded function f, : I' — C by

fy ) = lle) =yl

for all y € I'. The function fT is bounded since ¢ is a coarse embedding.

Let £°°(y) be the C*-algebra of all bounded complex-valued functions on I' and ¢o(I") C
£%°(T") the C*-subalgebra consisting of all functions vanishing at infinity. We define a I'-
action on £°(T") by (y - f)(y) = f(yy) forall f € £*°(") and x, y € T.

Let X’ be the spectrum of the commutative I"-invariant C*-subalgebra of £°°(I") generated
by all constant functions, co(I") functions and all functions f, as defined above together with
their translations by group elements of I". Then X’ admits a right action of T" induced by the
[M-action on C(X’) where C(X’) can be viewed as a I'-invariant C*-subalgebra of £°°(T").

Note that I is a dense subset of X". For each y € T, the function f, : ' — Rextends to a
continuous function ¢'(+, ) : X’ — C by the definition of X’. One can define a continuous
function ¢’ : X’ x I' — C by continuously extending the function

o'y, y) = fr(»)

for all x, y € ', where the space X’ x I is equipped with product topology.
The continuous function ¢’ on X’ x I' is a proper, continuous, conditionally negative
definite function in the sense that it satisfies

(1) ¢'(x,e) =0forall x € X, where e € I' is the identity element;

) ¢'(xg, 87 ) =, g forallx e Xand g € T;

(3) Y otiti¢ (xgi, g 'gj) < Oforall {}'_, C Rwith 3/, =0,g € Mandx € X;

4) ¢’ : X' x I' = C is proper in the sense that every preimage of a compact subset of C is
compact.

We say that the ['-action on X’ is a-T-menable if there exists a proper, continuous, condi-
tionally negative definite function on X’ x I,
Let X be the space of probability measures on X’. It is a convex and compact topological

space endowed with the weak-* topology. The space X admits a I"-action induced by the
[-action on X’. We define a continuous function on X x [ by

o) = [ ¢ pime)

forallm € X.

@ Springer



K-theory of relative group... Page210f38 45

For each pair (m, g) € X x I', we have that
¢(mg,g‘1)=/ ¢ (v, y Hd(mg)
X/
= / ¢ (yg. vy Hdm
X/

= / @' (v, y)dm(y)
X/

=¢(m, g).

Note that ¢(x, e) = 0 for all x € X. By the definition of the function ¢ and the properties
of ¢’, we have that the continuous function ¢ is a proper, and conditionally negative definite
function. Note that the I'-space X satisfies the following

(1) for each finite subgroup F C G, X is F-contractible;
(2) the I'-action is a-T-menable.

Now, we are ready to construct a continuous field of Hilbert spaces using the action of I
on the space X. Let us first recall the definition of continuous fields of Hilbert spaces over
a compact space. Let (Hx)xeX be a family of Banach spaces. Denote H = | |, .y Hx. A
section of the bundle  is a function s : X — H satisfying s(x) € Hy forall x € X.

Definition 4.3 Let X be a compact space. A continuous field of Banach spaces over X is a
family of Banach spaces (Hx)x ex with a set of sections ® (X, H), such that

(1) the set ©(X, H) is a linear subspace of the direct product [ [,y H,:

(2) forevery x € X, the set {s(x) : s € ®(X, H)} is dense in Hy;

(3) forevery s € ®(X, H), the function x — ||s(x)|| is a continuous function on X;

(4) lets : X — H be asection, i.e. s(x) € H,, for all x € X. If for every x € X, and every
€ > 0, there exists a section s’ € © (X, H) such that ||s(y) —s’(y)|| < € forall y in some
neighborhood of x, then s € ®(X, H).

If every fiber H, is a Hilbert space, we say (Hx)x <x s a continuous field of Hilbert
spaces over X. If every fiber is a C*-algebra and the collection of sections is closed under
the x-operation and the multiplication, the continuous field is called a continuous field of
C*-algebras.

Let g : X x I' — R be a continuous, proper conditionally negative definite function. We
can define a continuous field of Hilbert spaces as follows.

Consider a linear subspace

Ay :=1feCD): )y f(e) =0t C Ce(D).

gel
For each x € X, we define a sesqui-linear form
1 —
) =—5 D E@n@Hetg™ g,
g.g'el

forall &,7n € C?(I‘). Since ¢ is of conditionally negative definite type, the form above is
positive semidefinite and so one can quotient out by the zero subspace and complete to get
a Hilbert space H,. Following the arguments in [10], we have a continuous field of Hilbert
spaces (M) ex-
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Since each fiber of the continuous field is a Hilbert space, we can define a C*-algebra
A(H,) associated with each fiber H, following the construction in Sect.4.1. Furthermore,
by the first author’s construction in [10], one obtains a C*-algebra with proper I-action.

Theorem 4.4 ([10]) Let (A(HX))xeX be the collection of C*-algebras defined above.

(1) There exists a structure of a continuous field of C*-algebras for the bundle (A(Hx))x ex
(2) Let A(X) be the C*-algebra generated by all the continuous sections over the continuous
field. Then there exists a proper I -action on the A(X).

We also define a G-action on A(X) by

g-a=h(g)-a

forall g € G and a € A(X). Then we obtain a G-I'-C*-algebra A(X). We can view S as a
G-I"-algebra with trivial G-action and I"-action.

Next, we shall discuss about the K-theory of A(X). Indeed, the computation of its K -
theory plays a crucial role in the proof of the relative Novikov conjecture.

For each x € X, we have the asymptotic morphism

Byt S = A(Hy),
fort € [1, 00). Accordingly, we have an asymptotic morphism
Br: S —> AX)
defined by
B (f)(x) = B (f)

for all f € Sandr € [1, 00). Following the arguments in [15], we can define asymptotic
morphisms

B : Ch (T, S) — CF, (T, AX))

red
and
ﬁt : C:mx(r’ 8) - C:/lax(l—‘7 A(X))a

forall 7 € [1, 00).
In order to define the asymptotic morphisms between localization algebras, we shall define
the asymptotic morphisms between Roe algebras. For each element T = (T,C,y €

C[P;(G)I°®S, we define a Z;-by-Z-matrix
(B(T))y.y = Try®Br.s (f)

for each t € [l1,00) and all x,y € Z;. It is obvious that B;(T) is an element in
C[P(G), A(X)]C. As a result, we can define asymptotic morphisms

B : CIP(G)I°®S — C[P(G), A(X)]°.

)x,yeZ.y

and
B : CIP(D)]'®S — C[P(T), A1,
for all t € [1, 0o). Similarly, we define asymptotic morphisms

Brt : Coax L[Ps(G)SB®S — Coax L[Ps(G), AX)]C.
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and
Bt Coar LIPS(D"®S — Coar [Py (1), AT,
for ¢t € [1, 0c0). Moreover, the above asymptotic morphism between algebraic Roe algebras
and localization algebras induce the following asymptotic morphisms:
(1) B : Cran (P(G)ORS — Cpry (P(G), AX)) Y

(2) Br: Cogx(Ps (F))F®$ = Cor (P (D), ACX)T;

3) Br:: ,TW L(Ps(G)OBS — Crr | (Ps(G), AX)Y;

@) BLi: Cpg L (PDNTRS — Cprfpo y (P(D), AT

forall t € [1, 00).

Since the group actions of G and I" on S are trivial, we have that

max(PS(G)) ®S Cmax(G 8) ® IC
Chax(PMN'®S = C1, (T, S) ® K,
Clhe.1 (PH(G)OBS = Cy 1 (G, S) ® K,

and

L(P'®S =l (DS ®K,

max max,

where K is the algebra of compact operators on a separable infinite dimensional Hilbert
space.

As a consequence of the Mayer—Vietoris sequence and the five lemma, we have the fol-
lowing Bott periodicity.

Proposition 4.5 For each s > 0, the maps
BLox t Ka(Chhy 1 (Ps(G), 8)C) = Ki(Chh. 1 (Ps(G), AX))
and

BLs : Ki(Crhge f (Ps(D), ) > Ko(Ch e (P(T), AX))

max,L

induced by the asymptotic morphisms (BL t)ie[1,00) on K-theory are isomorphisms.

By the definition of the above asymptotic morphisms, the following diagram

C2 1 (P(G), 8)0 L5 5. (P(G), AX))C

! !

(PD), 8" P € (P(D). ACK)T

max max

asymptotically commutes. As a result, we obtain an asymptotic morphism between relative
Roe algebras

Br i Chax (Ps(D), Py(G), N0 — CF . (Py(D), P(G), AX)"C

forall # € [1, 00) and s > 0. Similarly, the asymptotic morphism (8 : & — A(X))e[1,00)
also induces an asymptotic morphism between relative localization algebras

BLi t Chax. L (Ps(D), Ps(G), )G — Ch o (Py(T), P(G), AX)™C,
for ¢t € [1, 00). Therefore, we have a homomorphism

BLs: Ki(Cliy 1 (P(D), Po(G), $)"F) — K. (C

max, max,

L(Ps(D), Ps(G), A(X)T©)
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induced by the asymptotic morphism above on K -theory. Passing to inductive limits, we have
the relative Bott map

BIG: KIG(ET, EG, S) — KI["O(ET, EG, A(X)).

We shall prove the following relative Bott periodicity.

Proposition 4.6 (Relative Bott periodicity) The relative Bott map
B¢ KI'O(ET, EG, S) - KI'O(ET, EG, A(X))

induced by the asymptotic morphism between relative localization algebras is an isomor-
phism.

Proof We have the following commutative diagram:

BY .
KC (EG,S) —=— KC (EG, A(X))

! !

BL«
KT (ET,S) — = KT, | (ET, A(X))

l l

KDS(ET EG,S) —5 K, S(ET, EG, A(X))

! !

'8 *
KS(EG,8) ——— KS(EG, A(X))

l l

KL (ET,S) KL (ET, A(X)).

RI==

R|=a

=
==

Jk

IR

Since the Bott maps ﬂf . and ﬂ{ , are isomorphic, it follows from the five lemma that the
map

B KIC(ET, EG,S) — K[ (ET, EG, A(X))

is an isomorphism. O

5 The proofs of the main results

In this section, we shall prove the maximal strong relative Novikov conjecture and the reduced
strong relative Novikov conjecture with coefficients in a II -factor for a pair of groups (G, I')
under certain assumptions on the geometry of I and the kernel of the homomorphism # :
G—T.

5.1 The maximal strong relative Novikov conjecture

Let us first prove the maximal strong relative Novikov conjecture for the following pairs of
groups (G, I').

Theorem 5.1 Let G and T be finitely generated groups and h : G — T a group homomor-
phism with the maximal good kernel property (cf. Definition 1.1). Assume that T admits a
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coarse embedding into Hilbert space. Then the maximal strong Novikov conjecture holds for
(G, TN), i.e. the maximal relative assembly map

[max : Ki C(ET, EG) — K. (C o (T, G))

max
is injective.
In particular, if the group I' admits a coarse embedding into Hilbert space and ker(h) is

a-T-menable, it follows from Theorem 5.1 that the maximal strong Novikov conjecture holds
for (G, I'), i.e. the maximal relative assembly map

[max : KiC(ET, EG) — K.(C o (T, G))

max

is an isomorphism. The special case where both G and I' are a-T-menable was proved by the
second author in [26].

Proof of Theorem 5.1 For each s > 0, we have the asymptotically commutative diagram:

Cy (Pe(I), Pi(G), SN0 ———— Crix(T,G,S)

l l

C}(Ps(D), Ps(G), AX)N"C — Cprpr (T, G, AX)).

max

Passing to inductive limits gives rise to the following commutative diagram:

KiC(ET,EG,8) — 5 K.(Ct, (T, G,S))

max

1se 1p-
.G L)
K7 (ET, EG, A(X)) — K«(C;.x (T, G, A(X))).

max

Since ﬂ{f is an isomorphism by Proposition 4.6, it suffice to show that the relative assembly
map with coefficients in A(X)

AX) . KIG(ED, EG, A(X)) = Ku(Clor (T, G, A(X)))

/’Lmax : max

is an isomorphism.
Consider the commutative diagram:

A(X)

KS. (EG, A(X)) te K1 (Clyor (G, AX)))
M.lf\(x)

KL, (ET. A(X)) Ko 1(C (T, A(X)))

A
/Lma(x )

KDC(ET EG, A(X)) — 3 Ko 1(Chi (T, G, AX)))

LA(x)

KO(EG, A(X)) fo Ko (Clh (G, AX)))
M.sz\(X)

KT (ET, A(X)) Ku(Cl g (T, ACX))).
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Since A(X) is a proper I'-C*-algebra, then we have that the assembly map

pit X KD(ED, AX) — Ka(CE, (T, AX)))

is an isomorphism. We will use the five lemma to prove that the assembly map uﬁéf) is an

isomorphism. For this purpose, we shall show that the assembly map
g™ KEEG, AXD) > KilCpyan (G, AX)))

is an isomorphism. We remark here that although the action of G on .A(X) is not proper,
we can prove that the assembly map M“é(x) is an isomorphism using the cutting-and-pasting
method.

Since A(X) is a proper I'-algebra, it is also an #(G)-proper algebra. We can express the

algebra as a direct limit
A(X) = lim Aq,

where each Ay, is an ideal of A(X), and a proper /4 (G)-C*-algebra over a proper, cocompact
and locally compact Hausdorff 7 (G)-space Wy, . It suffices to prove that the maximal assembly
map

tmax : KE(EG, Ay) —> Ku(Ch (G, Ay))

max
is an isomorphism.

Let F C h(G) be afinite subgroup, and Y a F'-space. Denote Y x r h(G) to be the quotient
space of the product space Y x h(G) over the F-actionby y -(y, g) = (yy, yg) forally € F,
(v,8) € Y xh(G).If Y C W, is a F-invariant subset such that g¥Y NY = J foreach g ¢ F,
then we can view Y x g h(G) as the subset #(G) - Y of Y via the map [(y, g)] — gy for all

[(y. @)1 €Y xF h(G).
Since the locally compact space W, is h(G)-proper and cocompact, it is a finite union of
the form

n
Wo = JYi xF, h(G).
i

where each F; is a finite subgroup of 4(G), and Y; is a precompact F;-space for 1 <i < n.

For each i, denote by B = Co(Y; xf, h(G)) - A, the proper 1(G)-C*-subalgebra of
Ay. Let By = Co(Y;) - Ay. The C*-algebra B is equipped with a G-action by lifting the
h(G)-action on B and By is equipped with an h~L(F;)-action by lifting the F;-action on By.
Note that

Ci (G, B)=Ch. (h'(F),By) ® K,

max

where K is the algebra of compact operators. As a result, we have the following commutative
diagram

KZ(EG, B) ——————— K«(C},i (G, B))
WYED (g =1 (F x  =U(F,
K (E(h™(F})), Bo) — K (C,,0, (W™ (Fi), Bo))-
Since i : G — T has the maximal good kernel property, and [~ (F;) : ker(h)] < oo, the
bottom map is isomorphic. Therefore, the assembly map

n: KE(EG, B) — K.(C}y, (G, B))

max
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is an isomorphism. It follows from the Mayer—Vietoris sequence and the five lemma that the
assembly map

15 KS(EG, Ay) = Ki(Clor (G, Ag)

max

is an isomorphism. Passing to the inductive limit, we have that the assembly map

ME‘;\(X) . KE(ER A(X)) — K. (Ck . (G, A(X))

max

is isomorphic. As a result,
AX) . KIG(ED, EG, A(X)) = Ku(Clor (T, G, A(X)))

/“Lmax ° max

is an isomorphism. Therefore, the relative assembly map
tmax + KO (ET, EG) = Ki(Cprgy (T, G))

max

is injective. This finishes the proof. O

5.2 The reduced strong relative Novikov conjecture

In this subsection, we shall prove the reduced strong relative Novikov conjecture with coef-
ficients in a II;-factor M for the following pairs of groups (G, I').

Theorem5.2 Let h: G — T be a group homomorphism with the reduced good kernel
property (cf. Definition 1.1). Let ¢ : C}, ,(G) < M be a trace-preserving embedding.
Assume that T' admits a coarse embedding into Hilbert space. Then the reduced strong
relative Novikov conjecture holds for h: G — T, i.e., the reduced relative assembly map

Wrea : K *O(ET, EG, M) — Ki(Cloy(T', G, M)
is injective.
As an example, when the group I" is coarsely embeddable into Hilbert space and ker(h) is
a subgroup of a hyperbolic group, the reduced strong relative Novikov conjecture holds for
h: G —>T.

The proof of Theorem 5.2 is similar to that of Theorem 5.1. Let A(X) be the proper
I'-algebra defined in Sect.4.2. We have the Bott asymptotic morphism

B : S — AX),
for all ¢ € [1, 0o). It induces asymptotic morphisms
B :ChyT,G,S®M)— Ch, (T, G, AX) @ M)
and
Bi 1 CL(Py(I), P5(G), § @ M)TC — CJ(Py(I), P5(G), AX) ® M)™C,
for all t € [1, oo). The latter induces the following Bott map

IO KDO(ET, EG, 8 ® M) - KI'C(ET, EG, A(X) ® M).
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Proposition 5.3 The Bott map
pr¢ KIG(ET, EG.S ® M) — K['C(ET. EG, A(X) ® M)
is an isomorphism.

Since the proof of the above result follows from the same arguments in its maximal analogue
(Proposition 4.6), we omit its proof.

Proof of Theorem 5.2 Consider the commutative diagram:

KI'C(ET,EG, 8 ® M) — s K.(C* (T, G, 5 ® M)

(4

e 1p
r,G M:LE\;X)
KI'O(ET, EG, A(X) @ M) "% K, (C, (T, G, A(X) @ M)).

red

Since ﬁ{f is an isomorphism, to prove that the relative assembly map .4 is injective,

it suffices to show that ;L;tfix) is isomorphic. Indeed, it can be proved by the same cutting-

and-pasting method used in the proof of Theorem 5.1. We have the following commutative
diagram:

AX)
KG(EG, AX) @ M) —%— Koy 1(Chy(G, AX) ® M))

l a0 l

KT, (ET, AX) @ MBM) s Kyt (Cy (T, ACX) @ MBM))

L aeo |

KDS(ED, EG, A(X) @ M) ™0 Ky 1 (CLy (T, G, ACX) ® M)

l Ao l

KE(EG, A(X) ® M) —-5—5 K.(CLy(G, AX) @ M)

. . l

KT (ET, A(X) ® MBM) T K (CF, (T, AX) ® MBM)).

By the five lemma, we have that u;tfix) is an isomorphism. This finishes the proof. O

6 Applications to the relative Novikov conjecture

In this section, we shall discuss an application of the maximal (reduced) strong relative
Novikov conjecture to the relative Novikov conjecture regarding the homotopy invariance
of relative higher signatures of manifolds with boundary. We shall first construct the relative
higher indices of signature operators on compact manifolds with boundary. Then we will
show that the relative higher indices for signature operators are invariant under orientation-
preserving homotopy equivalences of manifolds with boundary as pairs. We refer the reader
to [9, 17, 18, 23, 28] for some related discussions on the relative index theory on manifolds
with boundary and its connection to secondary index theoretic invariants.

Let M be an oriented compact smooth manifold with boundary d M. Suppose r1 (IM) = G
and 7 (M) =T . Let

h:G—T
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be the natural homomorphism induced by the inclusion of M into M.
In [5], Chang, Weinberger and the fourth author defined a relative higher index
Ind(Dy, Dym) € K 04(Cy 0 (T, G))

max

for Dirac operators (Dys, Dyp) on spin manifolds with boundary. Here the group
K 0.(C} (T, G)) is the K O-theory of the maximal relative group C*-algebra associated
with the group homomorphism #: G — I'. They applied their relative higher index to detect
the existence of positive scalar curvature metrics on manifolds with boundary and furthermore
non-compact manifolds.

We shall define an analogous relative higher index for signature operators on manifolds
with boundary. The same construction below can be used to define both the maximal relative
higher index and the reduced relative higher index (with coefficients in a II;-factor M) for
signature operators. For simplicity, we shall only work out the details for the maximal relative
higher index.

We only carry out the details of the even dimensional case; the odd case is similar. Assume
that M is an even dimensional manifold with boundary and D is the signature operator on
M. Define

Mo =M U(aM x [0, 00))
oM

to be the manifold obtained by attaching an infinity cylinder to M. Let Do, be the signature
operator on M. Let ]\700 be the universal cover of M, and 1300 the lifting of Dy, on A7100.
Since AN/IOO is a complete manifold (without boundary), a standard construction of higher
indices for elliptic operators on complete manifolds (cf. [29, Section 8.3]) gives the higher
index

Indyax (Doo) = [p] € Ko(Crx (Moc)").

max

where p is an idempotent in the matrix algebra of the unitization of C *(1\7Ioo)r. By the
definition of the higher index (see [29]), we can choose p so that its propagation is as small
as we want.

Denote M to be the universal covering space of M and we can view M asa subspace of
Moo. Let x be the characteristic function of the subspace M of Moo. Consider the invertible
element

u=eXor0 ¢ (cx, (D) = (kL (D) @ K(H)) .

Denote by (0 M)r the space of the restriction of the covering space M on M < M. The
space (0 M)r is a manifold equipped with a proper and cocompact I"-action. Let

[ul € Ky (Cpye (1))

max

be the higher index of the signature operator 53 pmon (0M)r.
Note that there is an integer n¢ such that
no . k
2 1
exp(2rix) — Z (2mix) <

k=0

k! ~ 1000’

for all x € R. Denote
no

2mix)k
p(x) = Z( ”k’,x) : (6.1)
k=0 :

@ Springer



45 Page300f38 J.Deng et al.

We define v = ¢(2i(x px)) in the matrix algebra of (C}; (M) )

By [29, Proposition 3.2.4], we can choose p so that its propagation is arbitrarily small.
Therefore, the operator x px is an idempotent away from a small tubular neighborhood of
(dM)r. By a standard finite propagation argument, we have that away from a small tubular
neighborhood of (d M)r, the operator v is very close (in operator norm) to 1. Consequently,
v restricts to an invertible element in the matrix algebra of (C, ( max ((OM)r x (—¢, O))F)

( (D) @ K(H )) for some € > 0. Here the constant € depends on the propagation of p.

We shall repeat the above construction on the complete manifold 9M x R. Note that
the product space (dM)r x R is a I'-covering space of 9M x R. Denote by D). xr the
signature operator on (0 M)r x R. We denote the higher index of Dy xr by

('] = Indpax (Daanyr xR) € Ko(Cllige (OM)r x R)T),

where p’ is an idempotent in the matrix algebra of (C};, (0M)r x R) ) with small propa-
gation. Let x’ be the characteristic function of the subspace (3 M) x (—o0, 0]in (dM)r x R.
Define

. o,
u = 2P

By a similar argument as above, we have that
(1) v/ = @Q2mi(x'p’x"))isinvertible in the matrix algebra of (C, . (0M)r x ( 00, 0]) )

(2) away from a small tubular neighborhood of (dM)r x {0}, the operator v’ is close (in
operator norm) to 1.

Similar as before, the element v’ restricts to an invertible element in
(Clhax (@M1 x (—e,0DT) " = (Ch (D) @ K(HD) T
By construction, we have
v =.

Now we also repeat the above construction for the covering space IM xR —> dM x R
where dM is the universal covering space of d M. Denote Dj3;,r the signature operator on
oM x R. Let

[P//] = Indmax(DdeR) € Ko(Cmax(aM X R)G)

be the higher index of the 51gnature operator D33, Djixr 0N M x R. Let x " is the characteristic
function of the subspace M x (—00,0] in dM x R. Define

"o

v = 2P x ) (6.2)
which by the same argument above restricts to an invertible element in the matrix algebra of
(Can @ x (=€, 009) " = (G (G) @ K(HD) "
By the functoriality of the higher index, we have that

hmax(v//) = U/s

@ Springer



K-theory of relative group... Page310f38 45

(8M><[ €, 0D —> C*

max

where hyayx: Crr oy (BM x [—€, 0D is induced by the natural

maps as follows:
M xR -5 GM)r xR

| |

OM xR —— oM x R.

Consider the path of invertibles

v(r) = @Qui(tyxpx)).t €0, 1].

We obtain a path joining v and A in the matrix algebra of (C}', . (M M)T)t, where A is a constant
very close to 1. By connecting A to 1 by the linear path (1 — s)A 4 s, we have the following
result.

Lemma 6.1 v is homotopic to 1 through a continuous path of invertible elements in the matrix
algebra of (C¥,, (M)T)*.

max

Now, we are ready to define the relative higher index for the signature operators
(Dum, Dyy) on the pair (M, dM). Let hyayx @ Cy (G) — Cri (') be the homomor-
phism induced by the homomorphism 4 : G — T'. Denote by Cj,,,.®iq the suspension of
the cone associated with the homomorphism

hmax ®id 2 Cpy (G) @ K(H) — Cpyr (T) @ K(H).
Clearly, we have

Chpax®id = Cryar (T G),
(T, G) is the suspension of the cone of the homomorphism

hmax = Cpax (G) ® K(H) — C (D) ® K(H).

*
where C;, ..

Definition 6.2 Let M be an even-dimensional compact oriented manifold with boundary d M.
Define the relative higher index of the signature operators (Djs, Daps) on (M, M) to be

ndyax(Dy, Dam) = [(V", )] € Ko(Cppr (T, G)),

where v” is defined in line (6.2) and f is the continuous path of invertible elements given by
Lemma 6.1.

When the boundary d M is empty, this relative higher index is precisely the higher index of
the signature operator on M.

We consider the function ¢s(t) = ¢(t/(s + 1)) on R for each s > 0. Replacing the
function ¢ with ¢; in the definition of relative higher index, we obtain a continuous path
of representatives of Ind,,,x (D, Dyyr) whose propagations approach 0 as s — oo. This
continuous path of representatives defines the local relative index

(D, Daml € Ky "C(ET, EG),
such that
Hmax([Dym, Dam]) = Indpax (Dy, Dam),
where fpax : KTC(ET, EG) — K. (C*

ax (I, G)) is the maximal relative assembly map.
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We shall show that the relative higher index is invariant under orientation preserving
homotopy equivalence. Before that, let us recall the homotopy invariance of higher signatures
for closed manifolds following the approach of Higson-Roe [13], cf. [30, Section 8]. The
same approach works simultaneously for the case of reduced group C*-algebras and the
case of maximal group C*-algebras. Therefore, in the following review of the homotopy
invariance of higher signature, we shall not specify which C* completion we are using.

Let X and Y be two closed oriented smooth manifolds of dimension n. We will only
discuss the even dimensional case; the odd dimensional case is completely similar (cf. [30,
Section 8]). We denote the de Rham complex of differential forms on X by

Qx5 olx) L L orx
whose L2-completion is

d d d
Q0,(X) = QLX) = - = Q1L(X). (6.3)
Let T = xx : Q]Iiz X)) — ngk(X) be the Hodge star operator on X, which is defined
by

(Ta,ﬂ):/xoz/\ﬁ

where B is the complex conjugation of 8. The Hodge star operator T satisfies the following
properties:
(1) T*a = (=D O Ta, Va € F,(X);

(2) Tda + (—1)*d*Ta = 0 for any smooth o € QK(X);
(3) T?a = (—1)"**q forany o € QF, (X).

We consider the dual complex of (6.3)
d* _ d* d*
QLX) — Q) QL (0,

where d* is the adjoint of d. With the above duality operator 7', we get a Hilbert—Poincaré
complex in the sense of [13, Definition 3.1]. Define § = jKk=Dtmp where m = % It
follows from properties (1) and (3) above that S is a self-adjoint involution. Furthermore,
d—+d*+ S andd +d* — S are invertible [ 13, Lemma 3.5]. Now in the even dimensional case,
the signature of the above Hilbert—Poincaré complex is defined to be the formal difference
[P4+] — [P-] of the positive projections of d + d* + S and d + d* — S. Here a positive
projection of a self-adjoint invertible operator is defined to be the spectral projection of the
operator on the positive part of the spectrum.

Let f : X — Y be an orientation preserving homotopy equivalence. We denote the
induced pullback map on differential forms by f* : Q*(Y) — Q*(X). In general, f* does
not extend to a bounded linear map between the spaces of L2-forms Q’ZQ (N) and sz (M).In
order to fix this issue, we need the following construction due to Hilsum and Skandalis [16].
First, suppose ¢ : X — Y is a submersion between two closed manifolds. It is easy to see
that ¢* extends to a bounded linear operator from €27, (Y) to Q7,(X). Now let¢ : ¥ — R”"
be an embedding. Suppose U is a tubular neighborhood of Y in R* and 7 : U — Y is the
associated projection. Without loss of generality, we assume ¢(Y) +B" C U, where B" is the
unit ball of R”. Let p : X x B" — Y be the submersion defined by p(x, t) = w(f(x) +1).
Furthermore, let @ be a volume form on B"” whose integral is 1. Then the formula

a— planw
Bn
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defines a morphism of chain complexes A : Q*(Y) — Q*(X) where fB,, denotes fiberwise
integration along B". It is easy to see that A extends to a bounded linear operator from €27, ()
to Q7,(X). We shall still denote this extension by A : Q7,(Y) — Q7,(X).

Now a routine calculation shows that A is a homotopy equivalence between the two
complexes (Q’Z2 (Y), dy) and (SZ’Z2 (X), dx) such that AT A* is chain homotopy equivalent
to T', where T (resp. T') is the Hodge star operator on Y (resp. X). It follows that the operator

0 AT
§= (TA* 0 )
together with the chain complex (sz X)® sz (Y), dx @ dy) gives rise to an (unbounded)
Hilbert-Poincaré complex.
Higson and Roe showed that the signature of this Hilbert-Poincaré complex coincides with

the formal difference Ind(ﬁx) — Ind(5y) of the higher signature indices of X and Y [14,
Theorem 5.5]. On the other hand, observe that, for each ¢ € [0, 1], the following operator

0 AT
Se=\ gmimip 0

also defines a duality operator for the chain complex (Q:2 X))o Q’iz (Y), dx & dy). If we
let

B— dx + dy ).
dy+dY

then the positive projection [(Py);] of B + S; forms a continuous path of projections for
t € [0, 1]. Note that S; = —Sp = S. Therefore, we see that [P ] = [(P4+)o] is connected to
[P_] = [(P+)1] via a continuous path of projections. It follows that

Ind(Dy) — Ind(Dy) = [P+] — [P_] = 0.

This shows that the higher signature is invariant under orientation preserving homotopy
equivalence. We remark that the above discussion of homotopy invariance of higher signature
works for both reduced group C*-algebras and maximal group C*-algebras.

Now we show that the relative higher index is invariant under orientation-preserving
homotopy equivalences of pairs.

Theorem 6.3 The higher index Ind,, . (Dyr, Day) is a homotopy invariant, that is, if
¢:(M,dM) — (N, dN) is an orientation-preserving homotopy equivalence between two
compact oriented manifolds with boundary, then

¢«(Indyax (Dy, Dym)) = Indmax (D, Dyn) € Ki(Cy (T, G))

max

and
¢+« (Ind,eq(Dpr, Dypr)) = Indreq (D, Dyn) € Ki(Croy(T, G, M)).

Proof The same proof below works for both the maximal relative higher index and the reduced
relative higher index (with coefficients in a II; -factor M). For simplicity, we shall only give
the details for the maximal case. Also, we shall only prove the even dimensional case. The
odd dimensional case is completely similar.

Let us write

Ind;nax (D, D8M) = [U(/)/, fO] € KO(C;:W(I‘, G))
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and

ndyax (DN, Dyn) = [V], fi] € Ko(Cpp (T, G)),

where v "and f; are given as in Definition 6.2. We shall show that (v(, fo) is homotopic to

(v, f1) in the matrix algebra of (C%,.(G,T) @ K)™.
The homotopy equivalence ¢ : M — N induces an equivariant homotopy equivalence

¢: M — N.
Denote by Dy, and Dy, the signature operators on My, and N, respectively.
By the homotopy invariance of higher signatures (cf. the discussion before the theorem)
we have a continuous path of idempotents (p;);¢[o.1; in the matrix algebra of (Chax (N) )

connecting ¢4 (po) and p;.
Define a path of invertibles

vy = @Qri(x pix))

in the matrix algebra of (C ( ax (N ) ) ( () ® K ) where x be the characteristic
function of the subspace N in Ny and ¢ is the function given in line (6.1).

The homotopy equivalence ¢ : (M, 9M) — (N, dN) also induces a I"-equivariant homo-
topy equivalence

o) xid: (3M)r x R — (ON)r x R,

where (0 M)r (resp. (0 N)r) is the restriction of the covering space M- M (resp. N-—>N )
over dM (resp. dN). Let D(ypr)-xr and D) xR be the signature operator on (dM)r x R
and (ON)r x R respectively. Similarly (cf. [30, Section 8] ), there exists a continuous path
of idempotents (P;),e[o.” connecting (qbg)*(p(’)) and p{, where [p(] = Indyax (D@pr)rxR)
and [ p/l] = Indjnax (D3N xR)- As a result, we obtain a path of invertibles

v = eQi(x'pix)),

for all # € [0, 1] in the matrix algebra of (Cr . (ON)r x [—€,0]) M+ >~ (Cha(M® K)*t
for some constant € > 0, where x’ be the characteristic function of the subspace (dN)r x
(—00,0]in (N)r x R. Since the paths p; and p; are constructed using the same formula,
we have by construction that

’
Vy = Uy,

forallr € [0, 1].
The homotopy equivalence ¢ : (M,dM) — (N,dN) also induces a G-equivariant
homotopy equivalence

¢a BMX]R—>8NX]R

where dM (resp. aN ) is the universal covering space of dM (resp. dN). Slmllarly, there
is a continuous path of idempotents (p;’) re(0.1] in the matrix algebra of C (AN x R)C

connecting (53)*(1)6’) and p/, where [p(j] = Indynax (Dgiz ) and [p]] = Indpax (D5 )
Hence we obtain a path of invertibles

max

"o n

v =Qmi(x"p/x"))

in the matrlx algebra of C}\ (OM x (—€,0])¢ = Cpax(G) ® K for some constant € > 0,
where x” be the characteristic function of the subspace N x (—o0, 0] in N x R.
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By the definitions of v, and v;’, we have that
hmax (v;/) = Ul/, (64)

for all t € [0, 1], where hpqy @ C}ly i (G) — Cpi . (') is the x-homomorphism induced by
h:G=m(ON) - I =m1(N).

Foreachfixedt e [0, 1],1et{ f; (s)}se[0,1] be the path constructed out of v, asin Lemma6.1.
In particular, f;(0) = v; and f;(1) = 1 forall¢ € [0, 1]. Consequently, we have a continuous
path {(v/, fi)}ref0,1] connecting (v, fo) and (v{, f1). As a result, we have that

(b*(Indmax(DM» DSM)) = Indmax(DN7 DaN)~

m}

Remark 6.4 The analogue of the equality (6.4) for the reduced case requires a bit more care.
Recall that, in the reduced case, we have used the map (cf. Lemma 3.1)

hred,,/\/l: C;ked(G7 M) — C:gd(r‘! M@M)

in place of hyqx: Cph . (G) — Crk (). First observe that v;’ has finite propagation, hence
hreda, m(v)) makes sense. A priori we do not have fi,.q a1(v)) = v}, as the definition of
the map /1,04, pm involves an extra trace-preserving map ¢: C,,(G) — M. However, if we
enlarge M by its matrix algebra M, (C) ® M if necessary, there exists a unitary U acting
on Co(ﬁ/l ) ® M such that U intertwines the two actions @ ® ¢ and o ® idxq of G on
Co(ﬁl ) ® M, where « is the usual action of G on Co(ﬁl ) by translation and ¢ is the action
of G on M induced by the trace-preserving map ¢: C;,,(G) <= M. Roughly speaking, the
existence of such a unitary U follows from the fact that the bundle (A M) x g (M (C) @ M)
over d M is trivial whenever k is sufficiently large. See for example [1, Lemma 3.4] for more
details. In particular, it follows that

U (hrea, m])) U* = v;. (6.5)

Note that conjugation by a unitary induces the identity map on K -theory. With the equality
(6.4) replaced by the above modified equality (6.5), the rest of the argument for the reduced
case is the same as the maximal case.

We would like to point out that the invariance of relative higher signatures was also dealt
with in [17] for PL manifolds by a different method.

At the end of this section, let us show that the maximal (reduced) strong relative Novikov
conjecture together with Theorem 6.3 implies the relative Novikov conjecture regarding the
homotopy invariance of relative higher signatures of manifolds with boundary. Let us focus
only on the maximal case, since the reduced case is completely analogous.

Let (M, 9 M) be a compact oriented manifold with boundary. Let vy : M — BT (resp.
Yam: OM — BG) be the classifying map associated with the universal covering space. Let
Ly be the L-class of M and Ly the L-class of the boundary d M, respectively. For each
element (¢, n) € H*(BT', BG), one can define a relative index pairing as follows:

((Dm, Dyp), (5, m) = / Ly Uy (§) —/ Lam Uiy (), (6.6)
M oM

where H*(BG, BT) is the relative group cohomology for the group homomorphism # :
G — T and (Dy, Dypr) is the signature operator of (M, dM). The right hand side of the
above equation is usually referred to as a relative higher signature of (M, d M). We refer the
reader to [24] for more details on relative index pairings.
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Conjecture 6.5 (Relative Novikov conjecture) All relative higher signatures are invariant
under orientation-preserving homotopy equivalences of pairs. More precisely, assume that
¢: (M,0M) — (N, ON) is an orientation-preserving homotopy equivalence of pairs, then

/CMU%CI(&)—/ EaMUllng(n)=/ ENUW;Q(S)—/ Lyn Uiy () (6.7)
M oM N aN

for all (§,n) € H*(BT, BG), where Yy : N — BT and yyn: N — BG are continuous
maps such that the following diagram commutes:

(M, 9M) ¢ (N.dN)

(‘//MJ//(%( /(llfzvﬂllazv)

BT, BG)

There is a relative Connes—Chern character map
Ch: K.(BI', BG)  C - H,(BT', BG) ® C.

It is known that the relative Connes—Chern character Ch is an isomorphism, cf. [4]. The
pairing in line (6.6) can be viewed as the natural pairing

H.(BT, BG)® C x H*(BT", BG) ® C — C.

It follows that, if the two K-homology classes ¢.([Dyr, Day]) and [Dy, Dyn]) coincide in
K.« (BT, BG)®C, then the equality (6.7) holds, hence proves the relative Novikov conjecture
in this case. However, by Theorem 6.3, we have that

¢« (Indypax (Dpr, Dypr)) = Indpax (Dn, Dyn) € K*(C,’;M(F, G)).

Now if the maximal strong relative Novikov conjecture (Conjecture 2.14) holds for h: G —
I, that is,

tmax: Ky O (ET, EG) — K.(Cph, (T, G))
is injective, then it follows that

K.(BT,BG)® C — KI'G(ET, EG) ® C 2“5 K, (C*,.(I,G)) ® C

max

is injective, since the natural homomorphism K, (BT, BG) ® C — K}:’G(EF, EG)®Cis
always injective. Since we have

Mmax (@« ([Dm, Dam 1)) = ¢s(Indpmax(Dur, Dam))
and
Hmax([Dn, Dayn]) = Indpax (DN, Dan),
it follows that
¢«([Dy, Dym]1) = [Dy, Dyn] € K«(BT', BG) ® C.

Therefore, this shows that the maximal strong relative Novikov conjecture implies the relative
Novikov conjecture. The implication that the relative Novikov conjecture follows from the
reduced strong relative Novikov conjecture is similar. We omit the details.
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Remark 6.6 In [23], Leichtnam-Lott-Piazza defined a higher index for signature operators
on manifolds with boundary, under certain invertibility assumptions of the signature operator
on the boundary. We point out that the relative higher index of signature operators defined
in the current paper is generally different from the higher index of Leichtnam-Lott-Piazza.
While the construction of the higher index by Leichtnam, Lott and Piazza requires an invert-
ibility condition of the signature operator on the boundary, the relative higher index in our
paper is always defined without any invertiblity condition on the boundary. On the other
hand, the higher index of Leichtnam, Lott and Piazza lies in K*(C;"e 4(I) instead of the
K -theory of the relative group C*-algebra, due to the extra invertibility condition on the
boundary. The two (relative) higher indices are related as follows. Let us assume the invert-
ibility condition on the boundary as in [23] so that the higher index of Leichtnam-Lott—Piazza
is defined. Then the image of Leichtnam-Lott—Piazza’s higher index under the boundary map
K.(Ck (T, MRM)) — K. (C}, (T, G, M)) coincides with our relative higher index for
the pair (M, 0M).
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