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Abstract
The relative Novikov conjecture states that the relative higher signatures of manifolds with
boundary are invariant under orientation-preserving homotopy equivalences of pairs. The
relative Baum–Connes assembly encodes information about the relative higher index of
elliptic operators on manifolds with boundary. In this paper, we study the relative Baum–
Connes assembly map for any pair of groups and apply it to solve the relative Novikov
conjecture when the groups satisfy certain geometric conditions.
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1 Introduction

A fundamental problem in topology is the Novikov conjecture which states that the higher
signatures of a closed (i.e. compact without boundary) oriented smooth manifold are invari-
ant under orientation-preserving homotopy equivalences. The Novikov conjecture has been
proved for a large class of manifolds by techniques from noncommutative geometry and geo-
metric group theory. While the Novikov conjecture concerns with closed manifolds, there is
a natural analogue, called the relative Novikov conjecture, for compact oriented manifolds
with boundary. The relative Novikov conjecture states that the relative higher signatures of a
compact oriented smooth manifold with boundary are invariant under orientation-preserving
homotopy equivalences of pairs. The purpose of this article is to develop a C∗-algebraic
approach to the relative Novikov conjecture. In particular, we prove that the relative Novikov
conjecture holds for a compact oriented smooth manifold with boundary if the fundamental
groups of the manifold and its boundary satisfy certain geometric conditions.

Suppose M is a compact orientedmanifold with boundary ∂ M . Let G = π1(∂ M) and� =
π1M denote their fundamental groups.Moreover, let h : G → � be the group homomorphism
induced by the inclusion ∂ M ↪→ M . Suppose EG (resp. E�) is the universal space for proper
G (resp. �) actions. Then h induces a (G, �)-equivariant continuous map from EG to E�,
that is, themap commuteswith the actions ofG and�. One can define a relativeBaum-Connes
assembly map

μmax : K �,G∗ (E�, EG) → K∗(C∗
max (�, G)),

where K �,G∗ (E�, EG) is the relative K -homology for the pair (E�, EG) with respect to
h and C∗

max (�, G) is the maximal relative group C∗-algebra of the pair of groups (G, �)

with respect to h. We show that the injectivity of the above relative Baum–Connes assembly
map μmax implies the relative Novikov conjecture. In general, the injectivity of the relative
Baum–Connes assembly map μmax remains an open question. In this paper, we verify the
injectivity of this relative Baum–Connes assembly map under certain geometric assumptions
on the groups � and ker(h). Here ker(h) = {g ∈ G | h(g) = e}, where e ∈ � is the identity
of �.

Before we state the main results of this paper, let us first introduce the following notion
of group homomorphisms with good kernel property.

Definition 1.1 Let G and � be countable discrete groups.

(1) Ahomomorphismh : G → � hasmaximal goodkernel property if for any subgroupG ′ ⊆
G containing ker(h) with [G ′ : ker(h)] < ∞, the maximal Baum–Connes conjecture
with coefficients holds for G ′.

(2) A homomorphism h : G → � has reduced good kernel property if for any subgroupG ′ ⊆
G containing ker(h)with [G ′ : ker(h)] < ∞, the reduced Baum–Connes conjecture with
coefficients holds for G ′.
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Example 1.2 (1) If ker(h) is a-T-menable, then h has both the maximal and the reduced good
kernel properties.

(2) When ker(h) is word hyperbolic in the sense of Gromov, the map h has the reduced good
kernel property.

To motivate one of our main theorems (Theorem B), we first show the following result.

Theorem A Let h : G → � be a group homomorphism with the maximal good kernel
property. Suppose that � admits a coarse embedding into Hilbert space. Then the maximal
relative assembly map

μmax : K �,G∗ (E�, EG)→K∗(C∗
max (�, G))

is injective.

For example, if the kernel ker(h) is a-T-menable and � admits a coarse embedding into
Hilbert space, then the relative assembly map

μmax : K �,G∗ (E�, EG) → K∗(C∗
max (�, G))

is injective.Wemention thatY.Kubota also proved the abovemaximal strong relativeNovikov
conjecture under slightly stronger assumptions [21]. We thank Y. Kubota for bringing this to
our attention.

There aremany groups such as hyperbolic groupswith property (T) that satisfy the reduced
Baum–Connes conjecture with coefficients, but fail the maximal Baum-Connes conjecture
with coefficients. For such groups, it is more natural to consider a reduced version of the
relative Baum–Connes assembly map. However, the relative reduced group C∗-algebra for a
general group homomorphism h : G → � is not defined, unless one imposes strong restric-
tions on the kernel ker(h), whichwould be restrictive for some applications. To overcome this
difficulty, we instead consider the relative reduced group C∗-algebra C∗

red(�, G,M) with
coefficients in a II1-factor M, which is well-defined for an arbitrary group homomorphism
h : G → �, due to the presence of M. The use of II1-factors is inspired by the work of
Antonini, Azzali and Skandalis [1, 2]. Our first main result of the paper is as follows.

Theorem B Let h : G → � be a group homomorphism with the reduced good kernel property.
Assume that � is coarsely embeddable into Hilbert space. Then the relative Baum–Connes
assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

is injective, where K �,G∗ (E�, EG,M) is the relative K -homology with coefficients inM and
K∗(C∗

red(�, G,M)) is the K -theory of reduced relative group C∗-algebras with coefficients
in M.

As an example, when ker(h) is hyperbolic and the group � admits a coarse embedding
into Hilbert space, the relative Baum–Connes assembly map μred is injective.

For a given compact oriented manifold with boundary (M, ∂ M), let (DM , D∂ M ) be the
associated pair of signature operators. Then the maximal relative Baum–Connes assembly
map μmax maps (DM , D∂ M ) to the maximal relative higher index

Indmax (DM , D∂ M ) ∈ K∗(C∗
max (�, G)).
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Similarly, the reduced relative Baum–Connes assembly map μred maps (DM , D∂ M ) to the
reduced relative higher index

Indred(DM , D∂ M ) ∈ K∗(C∗
red(�, G,M)).

In order to apply the above theorems to the relative Novikov conjecture, we prove the follow-
ing theorem which states that maximal (resp. reduced) relative higher indices of signature
operators are invariant under orientation-preserving homotopy equivalences of pairs.

Theorem C Let M be a compact manifold with boundary ∂ M and N a compact manifold
with boundary ∂ N. Let G = π1(∂ M) = π1(∂ N ) and � = π1M = π1N. Let DM and DN

be the signature operators on M and N, respectively. If there is an orientation-preserving
homotopy equivalence f : (M, ∂ M) → (N , ∂ N ), then

f∗(Indmax (DM , D∂ M )) = Indmax (DN , D∂ N ) ∈ K∗(C∗
max (�, G)),

and

f∗(Indred(DM , D∂ M )) = Indred(DN , D∂ N ) ∈ K∗(C∗
red(�, G,M)),

where for example Indmax (DM , D∂ M ) (resp. Indred(DM , D∂ M )) is the maximal (resp.
reduced) relative higher index of the pair of signature operators (DM , D∂ M ).

Combining Theorems A, B with Theorem C, we have the following theorem on the
relative Novikov conjecture.

Theorem D Let (M, ∂ M) and (N , ∂ N ) be compact oriented smooth manifolds with bound-
ary. Suppose f : (M, ∂ M) → (N , ∂ N ) is an orientation-preserving homotopy equivalence.
Denote G = π1(∂ M) ∼= π1(∂ N ) and � = π1M ∼= π1N. Let h : G → � be the group homo-
morphism induced by the inclusion map ∂ M ↪→ M. If the kernel of h : G → � is hyperbolic
or a-T-menable, and � admits a coarse embedding into Hilbert space, then the relative
Novikov conjecture holds, i.e., the relative higher signatures of (M, ∂ M) and (N , ∂ N ) are
invariant under the homotopy equivalence f .

The paper is organized as follows. In Sect. 2, we formulate the maximal strong relative
Novikov conjecture for a pair of discrete groups (G, �). In section 3, we introduce the
reduced strong relative Novikov conjecture and show the assembly map with a II1-factor is
an isomorphism for a pair of hyperbolic groups. In Sect. 4 and 5, we prove the maximal and
reduced strong relative Novikov conjecture under some geometric assumptions on the group
G,� and the kernel of h : G → �. In Sect. 6, we define the relative higher index for signature
operators on manifolds with boundary, and show that the relative higher indices of signature
operators is invariant under orientation-preserving homotopy equivalences of pairs.

2 The relative Novikov conjecture

In this section,we shall first recall the definitionofRoe algebras and localization algebras, then
introduce the notions of relative Roe algebras and relative localization algebras associated
with a group homomorphism h : G → �. Finally, we construct the maximal relative Baum–
Connes assembly maps.
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2.1 Roe algebras and localization algebras

In this subsection, we recall the notions of Roe algebras and localization algebras for a metric
space Z endowed with a proper G-action (cf. [29, Chapter 4, 5 and 6]).

Let Z be a metric space with a proper G-action by isometries, and A a G-C∗-algebra.
A G-action on a Hausdorff space Z is said to be proper if for every x, y ∈ Z there exist
neighborhood Ux and Uy of x and y respectively such that the set

{
g ∈ G : g · Ux ∩ Uy 
= ∅}

is finite. A G-action is said to be cocompact if the quotient space Z/G is compact.

Definition 2.1 Let H be a Hilbert module over the C∗-algebra A, and ϕ : C0(Z) → B(H)

a ∗-representation, where B(H) is the C∗-algebra of all bounded (adjointable) operators on
H . Let T : H → H be an adjointable operator.

(1) The support of T , denoted by Supp(T ), is defined to be the complement of the set of
all points (x, y) ∈ Z × Z for which there exists f ∈ C0(Z) and g ∈ C0(Z) such that
f · T · g = 0, and f (x) 
= 0 and g(y) 
= 0;

(2) The propagation of the operator T is defined by

propagation(T ) = sup {d(x, y) : (x, y) ∈ Supp(T )} .

An operator T is said to have finite propagation if propagation(T ) < ∞;
(3) The operator T is said to be locally compact if f · T and T · f are in K (H) for all

f ∈ C0(Z), where K (H) is the operator norm closure of all finite rank operators on the
Hilbert module H .

(4) The operator T is said to be G-invariant if g · T = T · g for all g ∈ G.

Let H be a G-Hilbert module over A. A ∗-representation ϕ : C0(Z) → B(H) is covariant
if

ϕ(γ f )v = (γ ϕ( f )γ −1)v

for all γ ∈ G, f ∈ C0(Z) and v ∈ H . The triple (C0(Z), G, H) is called a covariant system.

Definition 2.2 We define the covariant system (C0(Z), G, H) to be admissible if

(1) the G-action on Z is proper and cocompact;
(2) there exists a G-Hilbert module HZ such that

• H is isomorphic to HZ ⊗ A as G-Hilbert modules over A;
• ϕ = ϕ0 ⊗ I for some G-equivariant ∗-homomorphism ϕ0 : C0(Z) → B(HZ )

such that ϕ0( f ) is not in K (HZ ) for any non-zero function f ∈ C0(Z) and ϕ0 is
non-degenerate in the sense that

{ϕ0( f )v : v ∈ HZ , f ∈ C0(Z)}
is dense in HZ ;

• for any finite subgroup F ⊆ G and any F-invariant Borel subset E of Z , there
is Hilbert space HE with trivial F-action such that χE HZ and 	2(F) ⊗ HE are
isomorphic as F-representations.

Definition 2.3 Let (C0(Z), ϕ, H) be an admissible system. The algebraic Roe algebra with
coefficients in A, denoted by C[Z , A]G , is defined to be the algebra of G-invariant locally
compact operators in B(H) with finite propagation. The Roe algebra C∗(Z , A)G is the
operator norm closure of the ∗-algebra C[Z , A]G .
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It is easy to show that the definition of algebraic Roe algebras is independent of the choice
of covariant systems (cf. [29, Proposition 4.5.14]).

Let us now recall the definition of maximal Roe algebras. To define the maximal norm on
the above ∗-algebra C[Z , A]G , we need some basic concepts of metric spaces. Let X ⊂ Z
be a locally finite subspace of a metric space X . The subspace Y is said to be a net of Z if Y
is a locally finite subspace Z and Z = Nr (Y ) = {z ∈ Z : d(z, Y ) ≤ r} for some r . A locally
finite metric space Y is said to have bounded geometry if supy∈Y #BR(y) < ∞, where BR(y)

is the ball of radius R centered at y. We say that a metric space Z has bounded geometry if
Z has a bounded geometry net. The following result can be proved by the similar arguments
in [11, Lemma 3.4].

Lemma 2.4 (cf. [11, Lemma 3.4]) Let G be a countable discrete group, A a G-C∗-algebra,
and Z a proper metric space with bounded geometry endowed with a proper G-action by
isometries. Let (C0(Z), ϕ, H) be an admissible system. Then for each T ∈ C[Z , A]G there
exists a constant C > 0 such that

‖π(T )‖ ≤ C

for any ∗-representation π : C[Z , A]G → B(H ′).

It follows from the above result that the maximal norm on the ∗-algebra C[Z , A]G is
well-defined.

Definition 2.5 The maximal Roe algebra, denoted by C∗
max (Z , A)G , is defined to be the

completion of C[Z , A]G under the maximal norm

‖T ‖max = sup
{
‖π(T )‖ : π : C[Z , A]G → B(H ′) is a ∗ -representation

}
.

Next, we shall recall the concept of localization algebras.

Definition 2.6 (1) The algebraic maximal localization algebra Cmax,L [Z , A]G is defined
to be the ∗-algebra of all uniformly bounded and uniformly continuous functions f :
[0,∞) → C∗

max (Z , A)G such that

propagation( f (t)) → 0, as t → ∞.

The maximal localization algebra C∗
max,L(Z , A)G is defined to be the completion of

Cmax,L [Z , A]G under the norm

‖ f ‖ = sup
t∈[0,∞)

‖ f (t)‖max ,

for all f ∈ Cmax,L [Z , A]G .
(3) The algebraic localization algebra CL [Z , A]G is defined to be the uniformly bounded

and uniformly continuous functions f : [0,∞) → C∗(Z , A)G such that

propagation( f (t)) → 0, as t → ∞.

The localization algebra C∗
L(Z , A)G is defined to be the completion ofCL [Z , A]G under

the norm

‖ f ‖ = sup
t∈[0,∞)

‖ f (t)‖,

for all f ∈ CL [Z , A]G .
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Naturally, we have the evaluation map from the maximal localization algebra to the max-
imal Roe algebra

e : C∗
max,L(Z , A)G → C∗

max (Z , A)G

by

e( f ) = f (0)

for all f ∈ C∗
max,L(Z , A)G . Similarly, we have the evaluation map

e : C∗
L(Z , A)G → C∗(Z , A)G .

These evaluation maps induce homomorphisms

e∗ : K∗(C∗
max,L(Z , A)G) → K∗(C∗

max (Z , A)G)

and

e∗ : K∗(C∗
L(Z , A)G) → K∗(C∗(Z , A)G).

at the level of K -theory.

2.2 Rips complex

In this subsection, we review the definition of Rips complexes of a countable discrete group
�, and the construction of a model of the universal space for proper �-actions by using Rips
complexes.

Let � be any countable discrete group. A proper �-space E� is said to be universal if it is
a metrizable with the quotient space E�/� paracompact and if for every proper metrizable
�-space X with X/� paracompact then there is a �-equivariant continuous map X → E�,
unique up to �-equivariant homotopy.

Let us recall the definition of Rips complexes. For brevity, we assume that the groups we
consider are finitely generated.

Definition 2.7 Let � be a finitely generated group with a word length metric d . Let s ≥ 0.
The Rips complex of � at scale s, denoted Ps(�), is the simplicial complex with vertex set
�, and a subset {γ0, · · · , γn} of � spans a simplex if and only if d(γi , γ j ) ≤ s for all i, j .

Each Rips complex Ps(�) is equipped with the spherical metric. Recall that the spherical
metric is the maximal metric whose restriction to each simplex

{∑n
i=0 ci ti

} ⊂ Ps(�) is the
metric obtained by identifying this simplex with

Sn+ =
{

(t0, t1, · · · , tn) :
n∑

i=0

t2i = 1, ti ≥ 0, ∀ 0 ≤ i ≤ n

}

⊂ R
n+1

by

(c0, c1, · · · , cn) �→
⎛

⎝ c0√∑n
i=0 c2i

,
c1√∑n
i=0 c2i

, · · · ,
cn√∑n
i=0 c2i

⎞

⎠

where Sn+ ⊂ R
n+1 is equipped with the standard Riemannian metric.
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Nowwe define a �-action on Ps(�). For each x =∑γ∈� tγ γ ∈ Ps(�) and g ∈ �, define

g ·
⎛

⎝
∑

γ∈�

tγ γ

⎞

⎠ =
∑

γ∈�

tγ gγ.

It is obvious that this �-action is proper.
Let G and � be finitely generated groups, and h : G → � a group homomorphism.

Assume that S ⊂ G is a finite and symmetric generating subset of G in the sense that S is
finite and g−1 ∈ S for each g ∈ S. One can define a left invariant word length metric dG

on G associated to the generating subset S. In addition, there exists a finite and symmetric
generating subset S′ ⊂ � of � containing h(S). One obtains a left invariant metric d� on
� such that d�(h(g1), h(g2)) ≤ dG(g1, g2) for all g1, g2 in G. For each s > 0, the map h
extends to a continuous map

h : Ps(G) → Ps(�),

by

h

⎛

⎝
∑

γ∈�

tγ γ

⎞

⎠ =
∑

γ∈�

tγ h(γ )

for each
∑

γ∈� tγ γ ∈ Ps(�). Note that

dPs (�)(h(x), h(y)) ≤ dPs (G)(x, y)

for all s > 0 and all x, y ∈ Ps(G).

2.3 Relative Roe algebras and relative localization algebras

In this section, we will define the relative Roe algebra and relative localization algebra
associated with a group homomorphism h : G → �.

Definition 2.8 A C∗-algebra A is called a (G, �)-C∗-algebra if A is a G-C∗-algebra and
�-C∗-algebra simultaneously, and g · a = h(g) · a for all g ∈ G, a ∈ A.

We remark here that a (G, �)-algebra is just a �-algebra in the case when the homomor-
phism h : G → � is injective. If A is a (G, �)-C∗-algebra, the restriction of the G-action to
the subgroup ker(h) ⊆ G is trivial.

There are natural ∗-homomorphisms (cf. [29, Section 6.5])

hmax,s : C∗
max (Ps(G), A)G → C∗

max (Ps(�), A)�

and

hmax,L,s : C∗
max,L(Ps(G), A)G → C∗

max,L(Ps(�), A)�,

If the homomorphism h : G → � has amenable kernel, then h induces a homomor-
phism from C∗

red(G) to C∗
red(�). Indeed, since the trivial representation of ker(h) is weakly

contained in the regular representation of ker(h), by continuity of induction the regular repre-
sentation of G/ ker(h) is weakly contained in the regular representation of G. It follows that
the reducedC∗-algebra of G maps onto the reducedC∗-algebra of h(G) ∼= G/ ker(h). More-
over, the inclusion of h(G) into � induces an injective ∗-homomorphism from C∗

red(h(G))
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intoC∗
red(�). By identifying equivariant Roe algebras with the stabilization of reduced group

C∗-algebras (see Section 5.3 and 6.3 in [29]), we also have ∗-homomorphisms

hred,s : C∗(Ps(G), A)G → C∗(Ps(�), A)�

and

hred,L,s : C∗
L(Ps(G), A)G → C∗

L(Ps(�), A)�

in the reduced cases.
To define relative Roe algebras, we shall recall the concept of the mapping cone associated

to a ∗-homomorphism between C∗-algebras.

Definition 2.9 Given a ∗-homomorphism h : A → B between C∗-algebras A and B, the
mapping cone Ch of h is defined to be

Ch := {(a, f )|a ∈ A, f ∈ C0([0, 1), B), h(a) = f (0)}.
Let i : C0(0, 1) ⊗ B → Ch be the ∗-homomorphism defined by i( f ) = (0, f ) for

all a ∈ C0((0, 1), B), and j : Ch → A the ∗-homomorphism by j(a, f ) = a for all
(a, f ) ∈ Ch , where C0(0, 1) ⊗ B is the suspension of B which can be viewed as the C∗-
algebra of all continuous functions from the open interval (0, 1) to B that vanish at two ends.
The short exact sequence

0 → C0(0, 1) ⊗ B
i−−→ Ch

j−−→ A → 0

induces the following six-term long exact sequence:

K1(B) K0(Ch) K0(A)

K1(A) K1(Ch) K0(B).

With the ∗-homomorphisms between Roe algebras and localization algebras, we can
define the relative Roe algebras and the relative localization algebras as the suspension of
the mapping cones of those ∗-homomorphisms.

Definition 2.10 Let h : G → � be a homomorphism between finitely generated groups and
A a G-�-C∗-algebra. Let s > 0.

(1) The maximal relative Roe algebra C∗
max (Ps(�), Ps(G), A)�,G is defined to be the sus-

pension of the mapping cone associated with the ∗-homomorphism

hmax,s : C∗
max (Ps(G), A)G → C∗

max (Ps(�), A)�.

(2) Themaximal relative localization algebraC∗
max,L (Ps(�), Ps(G), A)�,G is the suspension

of the mapping cone associated with the ∗-homomorphism

hmax,s,L : C∗
max,L(Ps(G), A)G → C∗

max,L(Ps(�), A)�.

We have the following six-term exact sequences:

K1(C∗
max (Ps(�), A)�) K1(C∗

max (Ps(�), Ps(G), A)�,G) K0(C∗
max (Ps(G), A)G)

K1(C∗
max (Ps(G), A)G) K0(C∗

max (Ps(�), Ps(G), A)�,G) K0(C∗
max (Ps(�), A)�),

123
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and

K1(C∗
max,L(Ps(�), A)�) K1(C∗

max,L(Ps(�), Ps(G), A)�,G) K0(C∗
max,L(Ps(G), A)G)

K1(C∗
max,L(Ps(G), A)G) K0(C∗

max,L(Ps(�), Ps(G), A)�,G) K0(C∗
max,L(Ps(�), A)�).

Note that for any r < s, there exist natural inclusions

C∗
max (Pr (�), Pr (G), A)�,G ↪→ C∗

max (Ps(�), Ps(G), A)�,G ,

and

C∗
max,L(Pr (�), Pr (G), A)�,G ↪→ C∗

max,L(Ps(�), Ps(G), A)�,G .

Thus we obtain an inductive system
{
C∗

max,L(Ps(�), Ps(G), A)�,G
}

s∈[0,∞)
. We shall define

the relative K -homology for the pair (G, �) using this inductive system.

Definition 2.11 Given a group homomorphism h : G → � and a (G, �)-C∗-algebra A, the
relative equivariant K -homology with coefficients in A of h : G → � is defined to be the
inductive limit

K �,G∗ (E�, EG, A) := lim
r→∞ K∗(C∗

max,L(Pr (�), Pr (G), A)�,G).

Now we are ready to define the evaluation map from the relative localization algebras to
the relative Roe algebras.

For each (a, f ) ∈ C∗
max,L(Ps(�), Ps(G), A)�,G , we can view a as a continuous

path (a(t))t∈[0,∞) in C∗
max,L(Ps(G), A)G and view f as a collection of continuous paths

( fr (t))r∈[0,1],t∈[0,∞) in C∗
max,L(Ps(�), A)� . By the definition of mapping cones, for each s

we have a natural evaluation map

e : C∗
max,L(Ps(�), Ps(G), A)�,G → C∗

max (Ps(�), Ps(G), A)�,G

defined by

e(a, f ) = (a(0), f (0)),

for all (a, f ) ∈ C∗
max,L(Pr (�), Pr (G), A)�,G . Passing to inductive limit, we have a homo-

morphism

e∗ : K �,G∗ (E�, EG, A) → lim
s→∞ K∗(C∗

max (Ps(�), Ps(G), A)�,G).

Similarly,we candefine the reduced relativeRoe algebras and relative localization algebras
in the case when the kernel of the homomorphism h : G → � is amenable.

Definition 2.12 Let h : G → � be a homomorphism between finitely generated groups with
ker(h) amenable and A a (G, �)-C∗-algebra. Let s > 0.

(1) The relative Roe algebra, C∗(Ps(�), Ps(G), A)�,G , is defined to be the suspension of
the mapping cone of the ∗-homomorphism

hred,s : C∗(Ps(G), A)G → C∗(Ps(�), A)�.

(2) The relative localization algebra, C∗
L(Ps(�), Ps(G), A)�,G , to be the suspension of the

mapping cone of the ∗-homomorphism

hred,s,L : C∗
L(Ps(G), A)G → C∗

L(Ps(�), A)�.
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Wehave defined the relative K -homology groups usingmaximal localization algebras.We
can also consider the reduced relative localization algebras when the group homomorphism
h : G → � has amenable kernel. In fact, these two relative K -homology groups coincide.
Following the same arguments in the proof of [31, Theorem3.2], the K -theory of themaximal
localization algebra is identical with the K -theory of the reduced localization algebra. It
follows from the five lemma that

K∗(C∗
L(Ps(�), Ps(G), A)�,G) ∼= K∗(C∗

max,L(Ps(�), Ps(G), A)�,G).

As a result, we have that

K �,G∗ (E�, EG, A) = lim
s→∞ K∗(C∗

L(Ps(�), Ps(G), A)�,G),

when h : G → � has amenable kernel. Moreover, in this case, we also have the evaluation
map

e : C∗
L(Ps(�), Pr (G), A)�,G → C∗(Ps(�), Ps(G), A)�,G

defined by

e(a, f ) = (a(0), f (0)),

for all (a, f ) ∈ C∗
L(Ps(�), Ps(G), A)�,G , which induces the homomorphism

e∗ : K �,G∗ (E�, EG, A) → lim
s→∞ K∗(C∗(Ps(�), Ps(G), A)�,G),

Let C∗
max (G, A) and C∗

red(G, A) be the maximal and reduced C∗-crossed product of G
and A, respectively. Then h : G → � induces a ∗-homomorphism

hmax : C∗
max (G, A) → C∗

max (�, A).

If h has amenable kernel, then h induces a ∗-homomorphism

h : C∗
red(G, A) → C∗

red(�, A).

We define C∗
max (G, �, A) to be the suspension of the mapping cone of hmax , and we call it

the maximal relative group C*-algebra of (G, �) with coefficients in A. If the kernel of h is
amenable, then we can likewise define the reduced relative group C∗-algebra C∗

red(G, �, A).
We have

C∗
max (Ps(�), Ps(G), A)�,G ∼= C∗

max (�, G, A) ⊗ K

for each s > 0, where K is the algebra of compact operators on Hilbert space. If the homo-
morphism h : G → � has amenable kernel, we have that

C∗
red(Ps(�), Ps(G), A)�,G ∼= C∗

red(�, G, A) ⊗ K ,

for each s > 0.

Definition 2.13 (1) The maximal relative Baum-Connes assembly map

μmax : K �,G∗ (E�, EG, A) → K∗(C∗
max (�, G, A))

is defined to be the homomorphism

e∗ : lim
s→∞ K∗(C∗

max,L(Ps(�), Ps(G), A)�,G) → lim
s→∞ K∗(C∗

max (Ps(�), Ps(G), A)�,G).
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(2) When the homomorphism h : G → � has amenable kernel, the reduced relative Baum-
Connes assembly map

μred : K �,G∗ (E�, EG, A) → K∗(C∗
red(�, G, A)),

is defined to be the homomorphism

e∗ : lim
s→∞ K∗(C∗

L(Ps(�), Ps(G), A)�,G) → lim
s→∞ K∗(C∗(Ps(�), Ps(G), A)�,G).

Let us state the maximal and reduced strong relative Novikov conjectures.

Conjecture 2.14 (Maximal strong relative Novikov conjecture) Let h : G → � be a group
homomorphism between countable discrete groups G and �, and A a (G, �)-C∗-algebra.
The maximal relative Baum–Connes assembly map

μmax : K �,G∗ (E�, EG, A) → K∗(C∗
max (�, G, A))

is injective.

We can also define a reduced analogue of the above conjecture. Since the reduced relative
group C∗-algebra is not defined for general homomorphisms between groups, we shall state
the reduced version of the conjecture under the extra assumption that the group homomor-
phism h : G → � has amenable kernel.

Conjecture 2.15 (Reduced strong relative Novikov conjecture) Let h : G → � be a group
homomorphism between countable discrete groups G and � and A a (G, �)-C∗-algebra.
When the homomorphism h : G → � has amenable kernel, the reduced relative Baum–
Connes assembly map

μred : K �,G∗ (E�, EG) → K∗(C∗
red(�, G))

is injective.

In Sect. 3, we shall define a reduced strong relative Novikov conjecture for all group
homomorphisms with the help of II1-factors.

When the group G is trivial, it follows from the five lemma that the injectivity of the
relative assembly map is equivalent to the injectivity of the following (absolute) assembly
map

μred : K �∗ (E�) → K∗(C∗
red(�)).

The injectivity of μred is the usual strong Novikov conjecture, which has been verified for a
large class of groups [3, 6–8, 19, 22, 25, 32–34].

3 Relative Baum–Connes conjecture

In this section, we shall introduce a reduced relative Baum–Connes assembly map for all
group homomorphisms h : G → � between countable discrete groups with the help of II1-
factors. We show that this relative Baum–Connes assembly map is an isomorphism when
both G and � are hyperbolic groups.
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3.1 Relative reduced assemblymap

It is known that for any countable discrete group G, there exists a II1-factor M such that
there is a trace-preserving embedding φ : C∗

red(G) ↪→ M. Indeed, every group G can be
viewed as a subgroup of an ICC group1 G ′ whose group von Neumann algebra L(G ′) is a
II1-factor. We can take M = L(G ′).

Now we shall use the embedding φ to define the reduced relative assembly map. Let us
equip M with the trivial actions of G and �. Denote by M⊗M the von Neumann tensor
product ofM andM. It is well known thatM⊗M is still a II1-factor whenM is a II1-factor.
For any group homomorphism h : G → �, we define a ∗-homomorphism from C∗

red(G,M)

to C∗
red(�,M⊗M) as follows.

Lemma 3.1 Let h : G → � be any group homomorphism between countable discrete groups
and M a II1-factor endowed with a trace-preserving embedding φ : C∗

red(G) → M. Then
there exists a ∗-homomorphism

hred,M : C∗
red(G,M) → C∗

red(�,M⊗M)

by

hred,M
(∑

agg
)

=
∑(

ag ⊗ φ(g)
)

h(g)

for all
∑

agg ∈ C∗
red(G,M), where the actions of G and � on M are trivial.

Proof Given a group homomorphism h : G → �, we consider the map

G
h1−→ G × �

defined by

h1(g) = (g, h(g)),

for all g ∈ G. Notice that h1 is injective, thus h1 induces a ∗-homomorphism

h1
red : C∗

red(G,M) → C∗
red(G × �,M).

Therefore, we have that

C∗
red(G,M)

h1red−→ C∗
red(G × �,M)

∼=−→ C∗
red(G) ⊗ C∗

red(�,M)

φ⊗id−→ M ⊗ C∗
red(�,M)

∼=−→ C∗
red(�,M ⊗ M),

↪→ C∗
red(�,M⊗M)

where the last map is the inclusion induced by the inclusion from the C∗-tensor product
M⊗M into the von Neumann tensor productM⊗M. The composition of the above maps
gives the map hred,M. ��

1 A group is said to be an ICC group, or to have the infinite conjugacy class property, if the conjugacy class
of every element but the identity element is infinite.
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We denote by Chred,M the mapping cone of the map hred,M : C∗
red(G,M) →

C∗
red(�,M⊗M).

Definition 3.2 Define the relative group C∗-algebra with coefficients in the II1-factor M to
be

C∗
red(�, G,M) = C0(R) ⊗ Chred,M .

Remark 3.3 It is known that K0(M) = R and K1(M) = 0 for any II1-factorM. If the group
G is amenable, then the group C∗-algebra C∗

red(G) is nuclear. By Künneth’s formula for
K -theory of operator algebras, we have that

K∗(C∗
red(G,M)) ∼= K∗(C∗

red(G)) ⊗ R.

Now let us introduce the relative K-homology with coefficients in a II1-factor. Fol-
lowing the construction of the ∗-homomorphism between localization algebras, we have
a ∗-homomorphism

hL,M : C∗
L(Ps(G),M)G → C∗

L(Ps(�),M⊗M)�.

Let ChL,M be the mapping cone of the ∗-homomorphism hL,M. For each s > 0, we define
the relative localization algebra with coefficients in M to be

C∗
L(Ps(�), Ps(G),M)�,G = C0(R) ⊗ ChL,M .

For each s > 0, there is a natural evaluation map

e : C∗
L(Ps(�), Ps(G),M)�,G → C∗(Ps(�), Ps(G),M)�,G .

For all r < s, we have the following commutative diagram

K∗(C∗
L(Pr (�), Pr (G),M)�,G) K∗(C∗(Pr (�), Pr (G),M)�,G) K∗(C∗

red(�, G,M))

K∗(C∗
L(Ps(�), Ps(G),M)�,G) K∗(C∗(Ps(�), Ps(G),M)�,G) K∗(C∗

red(�, G,M))

e∗ ∼=

e∗ ∼=

Thanks to this compactibility we can define the relative K -homology and the relative assem-
bly map with coefficients in M as the following inductive limits.

Definition 3.4 The relative equivariant K-homology with coefficients in M is defined as the
inductive limit

K �,G∗ (E�, EG,M) := lim
s→∞ K∗(C∗

L(Ps(�), Ps(G),M)�,G).

Definition 3.5 The reduced relative Baum-Connes assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

is defined to be the inductive limit of the homomorphisms

e∗ : K∗(C∗
L(Ps(�), Ps(G),M)�,G) → K∗(C∗(Ps(�), Ps(G),M)�,G).

Conjecture 3.6 (Reduced strong relative Novikov conjecture) Assume that h : G → � is
a homomorphism between countable discrete groups G and �. Let M be a II1-factor such
that there exists a trace-preserving embedding φ : C∗

red(G) → M. The reduced relative
Baum-Connes assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

is injective.
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Conjecture 3.7 (Relative Baum–Connes conjecture) Assume that h : G → � is a homomor-
phism between countable discrete groups G and �. Let M be a II1-factor such that there
exists a trace-preserving embedding φ : C∗

red(G) → M. The reduced relative Baum-Connes
assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

is an isomorphism.

Remark 3.8 (1) We remark that the definition of the reduced Baum–Connes assembly map
for h : G → � does not depend on the choice of the trace-preserving embedding φ :
C∗

red(G) → M. Note that every Rips complex Pd(G) can be express as a finite union
Pd(G) = ∪i G · Xi where each Xi is a precompact and open subset of Pd(G) which is
Fi -invariant for some finite subgroup Fi of G, and gXi ∩ Xi = ∅ for all g ∈ G − Fi . We
have that

K∗(C∗
L(G · Xi ,M)G) ∼= K∗(C∗

L(Xi ,M)Fi )

∼= K∗(C∗(Xi ,M)Fi )

∼= K∗(C∗(Xi )
Fi ) ⊗ R

∼= K∗(C∗
L(Xi )

Fi ) ⊗ R

∼= K∗(C∗
L(G · Xi ,M)G) ⊗ R.

The first and the last equality follow from the definition of the localization algebras.
The second and the fourth equality follow from the Baum–Connes conjecture for finite
groups and the third equality follows from the Künneth formula for K -theory of operator
algebras. It follows from the six-term exact sequence for the K -theory of localization
algebras and the five lemma that

K G∗ (EG,M) ∼= K G∗ (EG) ⊗ R.

Therefore, the definition of K -homology K �,G∗ (E�, EG,M) does not depend on the
choice of the II1-factor M by the five lemma.

(2) Let BG and B� be the classifying space for G and �, respectively. There is a natural
map

h : BG → B�

induced by the group homomorphism h : G → �. The injectivity of the reduced relative
Baum-Connes assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

implies that the relative assembly map

μred : K∗(B�, BG) ⊗ R → K∗(C∗
red(�, G,M))

is injective, the latter of which we shall now review.
Now, let us define the relative K -homology group K∗(BG, B�). Following the construc-
tion in Sect. 2.3, we can construct ∗-homomorphisms

hL : C∗
L(BG) → C∗

L(B�),
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and

hL : C∗
M,L(BG,M) → C∗

L(B�,M⊗M),

induced by the continuous map h : BG → B�. Define the relative K -homology group
K∗(BG, B�) to be the K -theory of the suspension of the mapping cone associated to
the ∗-homomorphism

hL : C∗
L(BG) → C∗

L(B�).

By the five lemma, the relative K -homology group K∗(BG, B�) ⊗ R is equivalent to
the K -theory of the suspension of the mapping cone associated to the ∗-homomorphism

hM,L : C∗
L(BG,M) → C∗

L(B�,M⊗M).

Following the constructions in [4], we have the relative local index map

σ�,G : K∗(B�, BG) ⊗ R → K �,G∗ (E�, EG,M).

By theConnes–Chern character [4], we know that the K∗(BG)⊗R is a direct summand of
the K -homology group K G∗ (EG,M). Furthermore, we have the commutative diagram

K∗+1(BG) ⊗ R K G∗+1(EG,M)

K∗+1(B�) ⊗ R K �∗+1(E�,M⊗M)

K∗+1(B�, BG) ⊗ R K �,G
∗+1(E�, EG,M)

K∗(BG) ⊗ R K G∗ (EG,M)

K∗(B�) ⊗ R K �∗ (E�,M⊗M).

σG

σ�

σ�,G

σG

σ�

Note that the left and right vertical sequences are exact and the horizontal maps preserve
the direct summands. As a consequence of diagram chasing, the relative local index map

σ�,G : K∗(B�, BG) ⊗ R → K �,G∗ (E�, EG,M)

is injective. Alternatively, following [2, Theorem 5.4], for any group G, one can define a
natural left inverse of σG , denoted by tG : K G∗ (EG,M) → K∗(BG) ⊗ R, from which
follows the injectivity of the relative local index map σ�,G .
In summary, we have the composition

K∗(B�, BG) ⊗ R K �,G∗ (E�, EG,M) K∗(C∗
red(�, G,M))

σ�,G μred

which we still call the relative assembly map. For simplicity, we also denote it by
μred . As a result, the injectivity of the reduced relative Baum–Connes assembly map
μred : K �,G∗ (E�, EG,M) → K∗(C∗

red(�, G,M)) implies that the relative assembly
map

μred : K∗(B�, G) ⊗ R → K∗(C∗
red(�, G,M))

is injective.
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(3) Similarly, there is also the maximal relative assembly map

μmax : K∗(B�, BG) ⊗ R → K∗(C∗
max (�, G)) ⊗ R,

defined by the composition

K∗(B�, BG) ⊗ R K �,G∗ (E�, EG,M) K∗(C∗
max (�, G,M))

σ�,G μmax

As a result, the injectivity of the maximal relative Baum–Connes assembly map
μmax : K �,G∗ (E�, EG,M) → K∗(C∗

max (�, G)) implies the injectivity of μmax :
K∗(B�, BG) ⊗ R → K∗(C∗

max (�, G)) ⊗ R.

3.2 Relative Baum–Connes conjecture for hyperbolic groups

We will conclude this subsection by showing that any pair of hyperbolic groups (G, �)

satisfies the relative Baum–Connes conjecture with coefficients in a II1-factor M.

Definition 3.9 (Gromov [12]) Let G be a finitely generated group equipped with a left invari-
ant word length metric. The group G is said to be hyperbolic if there exists a constant δ > 0
such that each geodesic triangle is δ-thin in the sense that for any x, y, z ∈ G, the geodesic,
denoted by [x, y], joining x and y, is contained the δ-neighborhood of the union of other two
geodesics [x, z] and [y, z].

Lafforgue showed that the Baum–Connes conjecture with coefficients holds for all hyper-
bolic groups [22].

Theorem 3.10 ([22]) Let G be a hyperbolic group and A any G-C∗-algebra. Then the Baum–
Connes conjecture with coefficients in A holds for G, i.e. the Baum–Connes assembly map

μ : K G∗ (EG, A) → K∗(C∗
red(G, A))

is an isomorphism.

Combining Lafforgue’s theorem ( [22]) with the six-term K -theory exact sequence, we
show that the relative Baum–Connes conjecture with coefficients in a II1 factor holds for a
pair of hyperbolic groups.

Proposition 3.11 Let G and � be hyperbolic groups, and h : G → � a group homomorphism.
Let φ : C∗

red(G) → M be a trace-preserving embedding of C∗
red(G) into a II1-factor M.

Then the relative Baum–Connes conjecture with coefficients in M holds for h : G → �, i.e.,
the reduced relative Baum–Connes assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

is an isomorphism.
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Proof We have the following commutative diagram:

K G∗+1(EG,M) K∗+1(C∗
red(G,M))

K �∗+1(E�,M⊗M) K∗+1(C∗
red(�,M⊗M))

K �,G
∗+1(E�, EG,M) K∗+1(C∗

red(�, G,M))

K G∗ (EG,M) K∗(C∗
red(G,M))

K �∗ (E�,M⊗M) K∗(C∗
red(�,M⊗M)).

μG

∼=

μ�

∼=

μred

μG

∼=

μ�

∼=

By Theorem 3.10, the assembly maps μG and μ� are isomorphic. It follows from the five
lemma that the relative assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

is an isomorphism. This finishes the proof. ��
Using the same arguments above, we can generalize Proposition 3.11 to the following

result.

Proposition 3.12 Let G and � be any discrete groups and h : G → � a group homomor-
phism. Let φ : C∗

red(G) ↪→ M be a trace preserving embedding of C∗
red(G) into a II1-factor

M. Assume that the Baum–Connes conjecture holds for G and �. Then the relative Baum–
Connes conjecture with coefficients in M holds for h : G → �.

4 A relative Bott periodicity

In this section, we shall prove a Bott periodicity for the relative Roe algebras associated with
a pair of groups (G, �) with � coarsely embeddable into Hilbert space.

4.1 C∗-algebras associated with Hilbert spaces

Let E be a separable, infinite-dimensional Euclidean space. For any finite-dimensional, affine
subspace Ea , denote by E0

a the finite-dimensional linear subspace of E consisting of differ-
ences of elements in Ea . Let C(Ea) be the Z2-graded C∗-algebra of continuous functions
from Ea to the complexified Clifford algebra of E0

a vanishing at infinity. A Z2-grading on
C(Ea) is induced from the even and odd parts of Cliff(E0

a).
Let S be the Z2-graded C∗-algebra of all continuous functions on R vanishing at infinity,

where S is graded according to odd and even functions. Let A(Ea) be the graded tensor
product S⊗̂C(Ea).

For a pair of finite-dimensional, affine subspaces Ea and Eb with Ea ⊂ Eb, there exists
a decomposition

Eb = E0
ba ⊕ Ea,
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where E0
ba is the orthogonal complement of E0

a in E0
b . For each element vb ∈ Eb, there exists

a unique decomposition vb = vba + va , for some vba ∈ E0
ba and va ∈ Ea .

For each function h ∈ C(Ea), we can extend it to a function on Eb via h̃(vb) = h(va),
for all vb = vba + va . The decomposition Eb = E0

ba ⊕ Ea gives rise to a Clifford algebra
valued function, denoted by Cba : Eb → Cliff(E0

b) on Eb which maps vb ∈ Eb to vba ∈
E0

ba ⊂ Cliff(E0
b).

Denote by X : S → S the operator of multiplication by x on R. Note that X is a degree
one, essentially selfadjoint, unbounded multiplier of S with domain the compactly supported
functions in S.

Definition 4.1 ([15])

(1) Let Ea ⊂ Eb be a pair of finite-dimensional, affine subspaces of E . One can define a
homomorphism

βba : A(Ea) → A(Eb)

by

βba( f ⊗̂h) = f (X⊗̂1 + 1⊗̂Cba)(1⊗̂h̃)

for all f ∈ S, h ∈ C(Ea).
(2) We define a C∗-algebra

A(E) := lim−→A(Ea),

where the direct limit is over all finite-dimensional affine subspaces.

Given any discrete group �, S is equipped with trivial �-action. If � acts on the Euclidean
space E by linear isometries, then the �-action on E induces a �-action on the C∗-algebra
A(E). Note that A({0}) = S. For each f ∈ S, let βt ( f ) = ft (X⊗̂1 + 1⊗̂C) for every
t ∈ [1,∞), where ft (x) = f (x/t).

We define the Bott map

β∗ : K∗(C∗
max (�,S)) → K∗(C∗

max (�,A(E)))

to be the homomorphism induced by the asymptotic morphism

βt : C∗
max (�,S) → C∗

max (�,A(E))

given by f �→ βt ( f ) for each t ∈ [1,∞). The following result is due to Higson–Kasparov–
Trout [15].

Theorem 4.2 (Infinite-dimensionalBott periodicity [15])Let� be a countable discrete group,
E an infinite-dimensional Euclidean space with a �-action by linear isometries. Then the
Bott map

β∗ : K∗(C∗
max (�,S)) → K∗(C∗

max (�,A(E)))

is an isomorphism.
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4.2 0-C∗-algebras associated with coarse embeddings into Hilbert space

In the rest of this section, we shall define a proper �-C∗-algebra associated to a coarse
embedding of � into Hilbert space. Let us recall that a �-C∗-algebra A is said to be proper if
there exists a locally compact �-space Y with a proper �-action such that C0(Y ) is contained
in the center of themultiplier algebra of A andC0(Y )A is dense in A under the norm topology.

In order to define the proper�-C∗-algebra, we will generalize the construction of Higson–
Kasparov–Trout [15] to the case of continuousfields. The following construction is essentially
due to Kasparov–Yu [20], Skandalis–Tu–Yu [25], and Tu [27].

Suppose ϕ : � → H is a coarse embedding into Hilbert space. For each γ ∈ �, we define
a bounded function fγ : � → C by

fγ (y) = ‖ϕ(y) − ϕ(yγ )‖

for all y ∈ �. The function f� is bounded since ϕ is a coarse embedding.
Let 	∞(γ ) be the C∗-algebra of all bounded complex-valued functions on � and c0(�) ⊂

	∞(�) the C∗-subalgebra consisting of all functions vanishing at infinity. We define a �-
action on 	∞(�) by (γ · f )(y) = f (yγ ) for all f ∈ 	∞(�) and x, γ ∈ �.

Let X ′ be the spectrum of the commutative�-invariantC∗-subalgebra of 	∞(�) generated
by all constant functions, c0(�) functions and all functions fγ as defined above together with
their translations by group elements of �. Then X ′ admits a right action of � induced by the
�-action on C(X ′) where C(X ′) can be viewed as a �-invariant C∗-subalgebra of 	∞(�).

Note that � is a dense subset of X ′. For each γ ∈ �, the function fγ : � → R extends to a
continuous function ϕ′(·, γ ) : X ′ → C by the definition of X ′. One can define a continuous
function ϕ′ : X ′ × � → C by continuously extending the function

ϕ′(y, γ ) = fγ (y)

for all x, γ ∈ �, where the space X ′ × � is equipped with product topology.
The continuous function ϕ′ on X ′ × � is a proper, continuous, conditionally negative

definite function in the sense that it satisfies

(1) ϕ′(x, e) = 0 for all x ∈ X , where e ∈ � is the identity element;
(2) ϕ′(xg, g−1) = ϕ(x, g) for all x ∈ X and g ∈ �;
(3)
∑n

i=0 ti t jϕ
′(xgi , g−1

i g j ) ≤ 0 for all {ti }n
i=1 ⊂ R with

∑n
i=1 = 0, gi ∈ � and x ∈ X ;

(4) ϕ′ : X ′ × � → C is proper in the sense that every preimage of a compact subset of C is
compact.

We say that the �-action on X ′ is a-T-menable if there exists a proper, continuous, condi-
tionally negative definite function on X ′ × �.

Let X be the space of probability measures on X ′. It is a convex and compact topological
space endowed with the weak-∗ topology. The space X admits a �-action induced by the
�-action on X ′. We define a continuous function on X × � by

ϕ(m, γ ) =
∫

X ′
ϕ′(y, γ )dm(y)

for all m ∈ X .
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For each pair (m, g) ∈ X × �, we have that

ϕ(mg, g−1) =
∫

X ′
ϕ′(y, γ −1)d(mg)

=
∫

X ′
ϕ′(yg, γ −1)dm

=
∫

X ′
ϕ′(y, γ )dm(y)

= ϕ(m, g).

Note that ϕ(x, e) = 0 for all x ∈ X . By the definition of the function ϕ and the properties
of ϕ′, we have that the continuous function ϕ is a proper, and conditionally negative definite
function. Note that the �-space X satisfies the following

(1) for each finite subgroup F ⊆ G, X is F-contractible;
(2) the �-action is a-T-menable.

Now, we are ready to construct a continuous field of Hilbert spaces using the action of �

on the space X . Let us first recall the definition of continuous fields of Hilbert spaces over
a compact space. Let

(Hx
)

x∈X be a family of Banach spaces. Denote H = ⊔x∈X Hx . A
section of the bundle H is a function s : X → H satisfying s(x) ∈ Hx for all x ∈ X .

Definition 4.3 Let X be a compact space. A continuous field of Banach spaces over X is a
family of Banach spaces

(Hx
)

x∈X with a set of sections �(X ,H), such that

(1) the set �(X ,H) is a linear subspace of the direct product
∏

x∈X Hx :
(2) for every x ∈ X , the set {s(x) : s ∈ �(X ,H)} is dense in Hx ;
(3) for every s ∈ �(X ,H), the function x �→ ‖s(x)‖ is a continuous function on X ;
(4) let s : X → H be a section, i.e. s(x) ∈ Hx , for all x ∈ X . If for every x ∈ X , and every

ε > 0, there exists a section s′ ∈ �(X ,H) such that ‖s(y)− s′(y)‖ < ε for all y in some
neighborhood of x , then s ∈ �(X ,H).

If every fiber Hx is a Hilbert space, we say
(Hx
)

x∈X is a continuous field of Hilbert
spaces over X . If every fiber is a C∗-algebra and the collection of sections is closed under
the ∗-operation and the multiplication, the continuous field is called a continuous field of
C∗-algebras.

Let ϕ : X × � → R be a continuous, proper conditionally negative definite function. We
can define a continuous field of Hilbert spaces as follows.

Consider a linear subspace

C0
c (�) :=

⎧
⎨

⎩
f ∈ Cc(�) :

∑

g∈�

f (g) = 0

⎫
⎬

⎭
⊂ Cc(�).

For each x ∈ X , we define a sesqui-linear form

〈ξ, η〉x = −1

2

∑

g,g′∈�

ξ(g)η(g′)ϕ(xg−1, gg′),

for all ξ, η ∈ C0
c (�). Since ϕ is of conditionally negative definite type, the form above is

positive semidefinite and so one can quotient out by the zero subspace and complete to get
a Hilbert space Hx . Following the arguments in [10], we have a continuous field of Hilbert
spaces (Hx )x∈X .

123



45 Page 22 of 38 J. Deng et al.

Since each fiber of the continuous field is a Hilbert space, we can define a C∗-algebra
A(Hx ) associated with each fiber Hx following the construction in Sect. 4.1. Furthermore,
by the first author’s construction in [10], one obtains a C∗-algebra with proper �-action.

Theorem 4.4 ([10]) Let
(A(Hx )

)
x∈X be the collection of C∗-algebras defined above.

(1) There exists a structure of a continuous field of C∗-algebras for the bundle
(A(Hx )

)
x∈X .

(2) Let A(X) be the C∗-algebra generated by all the continuous sections over the continuous
field. Then there exists a proper �-action on the A(X).

We also define a G-action on A(X) by

g · a = h(g) · a

for all g ∈ G and a ∈ A(X). Then we obtain a G-�-C∗-algebra A(X). We can view S as a
G-�-algebra with trivial G-action and �-action.

Next, we shall discuss about the K -theory of A(X). Indeed, the computation of its K -
theory plays a crucial role in the proof of the relative Novikov conjecture.

For each x ∈ X , we have the asymptotic morphism

βx,t : S → A(Hx ),

for t ∈ [1,∞). Accordingly, we have an asymptotic morphism

βt : S → A(X)

defined by

βt ( f )(x) = βx,t ( f )

for all f ∈ S and t ∈ [1,∞). Following the arguments in [15], we can define asymptotic
morphisms

βt : C∗
red(�,S) → C∗

red(�,A(X))

and

βt : C∗
max (�,S) → C∗

max (�,A(X)),

for all t ∈ [1,∞).
In order to define the asymptoticmorphisms between localization algebras, we shall define

the asymptotic morphisms between Roe algebras. For each element T = (Tx,y
)

x,y∈Zs
∈

C[Ps(G)]G⊗̂S, we define a Zs-by-Zs-matrix

(βt (T ))x,y = Tx,y⊗̂βx,t ( f )

for each t ∈ [1,∞) and all x, y ∈ Zs . It is obvious that βt (T ) is an element in
C[Ps(G),A(X)]G . As a result, we can define asymptotic morphisms

βt : C[Ps(G)]G⊗̂S → C[Ps(G),A(X)]G .

and

βt : C[Ps(�)]�⊗̂S → C[Ps(�),A(X)]�,

for all t ∈ [1,∞). Similarly, we define asymptotic morphisms

βL,t : Cmax,L [Ps(G)]G⊗̂S → Cmax,L [Ps(G),A(X)]G .
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and

βL,t : Cmax,L [Ps(�)]�⊗̂S → Cmax,L [Ps(�),A(X)]�,

for t ∈ [1,∞). Moreover, the above asymptotic morphism between algebraic Roe algebras
and localization algebras induce the following asymptotic morphisms:

(1) βt : C∗
max (Ps(G))G⊗̂S → C∗

max (Ps(G),A(X))G ;
(2) βt : C∗

max (Ps(�))�⊗̂S → C∗
max (Ps(�),A(X))� ;

(3) βL,t : C∗
max,L(Ps(G))G⊗̂S → C∗

max,L(Ps(G),A(X))G ;

(4) βL,t : C∗
max,L(Ps(�))�⊗̂S → C∗

max,L(Ps(�),A(X))� ,

for all t ∈ [1,∞).
Since the group actions of G and � on S are trivial, we have that

C∗
max (Ps(G))G⊗̂S ∼= C∗

max (G,S) ⊗ K,

C∗
max (Ps(�))�⊗̂S ∼= C∗

max (�,S) ⊗ K,

C∗
max,L(Ps(G))G⊗̂S ∼= C∗

max,L(G,S) ⊗ K,

and

C∗
max,L(Ps(�))�⊗̂S ∼= C∗

max,L(�,S) ⊗ K,

where K is the algebra of compact operators on a separable infinite dimensional Hilbert
space.

As a consequence of the Mayer–Vietoris sequence and the five lemma, we have the fol-
lowing Bott periodicity.

Proposition 4.5 For each s > 0, the maps

βL,∗ : K∗(C∗
max,L(Ps(G),S)G) → K∗(C∗

max,L(Ps(G),A(X))G)

and

βL,∗ : K∗(C∗
max,L(Ps(�),S)�) → K∗(C∗

max,L(Ps(�),A(X))�)

induced by the asymptotic morphisms (βL,t )t∈[1,∞) on K -theory are isomorphisms.

By the definition of the above asymptotic morphisms, the following diagram

C∗
max (Ps(G),S)G C∗

max (Ps(G),A(X))G

C∗
max (Ps(�),S)� C∗

max (Ps(�),A(X))�

βt

βt

asymptotically commutes. As a result, we obtain an asymptotic morphism between relative
Roe algebras

βt : C∗
max (Ps(�), Ps(G),S)�,G → C∗

max (Ps(�), Ps(G),A(X))�,G

for all t ∈ [1,∞) and s > 0. Similarly, the asymptotic morphism (βt : S → A(X))t∈[1,∞)

also induces an asymptotic morphism between relative localization algebras

βL,t : C∗
max,L(Ps(�), Ps(G),S)�,G → C∗

max,L(Ps(�), Ps(G),A(X))�,G ,

for t ∈ [1,∞). Therefore, we have a homomorphism

βL,∗ : K∗(C∗
max,L(Ps(�), Ps(G),S)�,G) → K∗(C∗

max,L(Ps(�), Ps(G),A(X))�,G)
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induced by the asymptotic morphism above on K -theory. Passing to inductive limits, we have
the relative Bott map

β
�,G
L,∗ : K �,G∗ (E�, EG,S) → K �,G∗ (E�, EG,A(X)).

We shall prove the following relative Bott periodicity.

Proposition 4.6 (Relative Bott periodicity) The relative Bott map

β
�,G
L,∗ : K �,G∗ (E�, EG,S) → K �,G∗ (E�, EG,A(X))

induced by the asymptotic morphism between relative localization algebras is an isomor-
phism.

Proof We have the following commutative diagram:

K G∗+1(EG,S) K G∗+1(EG,A(X))

K �∗+1(E�,S) K �∗+1(E�,A(X))

K �,G
∗+1(E�, EG,S) K �,G

∗+1(E�, EG,A(X))

K G∗ (EG,S) K G∗ (EG,A(X))

K �∗ (E�,S) K �∗ (E�,A(X)).

βG
L,∗
∼=

β�
L,∗
∼=

β
G,�
L,∗

βG
L,∗
∼=

β�
L,∗
∼=

Since the Bott maps βG
L,∗ and β�

L,∗ are isomorphic, it follows from the five lemma that the
map

β
�,G
L,∗ : K �,G∗ (E�, EG,S) → K �,G∗ (E�, EG,A(X))

is an isomorphism. ��

5 The proofs of themain results

In this section,we shall prove themaximal strong relativeNovikov conjecture and the reduced
strong relative Novikov conjecture with coefficients in a II1-factor for a pair of groups (G, �)

under certain assumptions on the geometry of � and the kernel of the homomorphism h :
G → �.

5.1 Themaximal strong relative Novikov conjecture

Let us first prove the maximal strong relative Novikov conjecture for the following pairs of
groups (G, �).

Theorem 5.1 Let G and � be finitely generated groups and h : G → � a group homomor-
phism with the maximal good kernel property (cf. Definition 1.1). Assume that � admits a
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coarse embedding into Hilbert space. Then the maximal strong Novikov conjecture holds for
(G, �), i.e. the maximal relative assembly map

μmax : K �,G∗ (E�, EG) → K∗(C∗
max (�, G))

is injective.

In particular, if the group � admits a coarse embedding into Hilbert space and ker(h) is
a-T-menable, it follows from Theorem 5.1 that the maximal strong Novikov conjecture holds
for (G, �), i.e. the maximal relative assembly map

μmax : K �,G∗ (E�, EG) → K∗(C∗
max (�, G))

is an isomorphism. The special case where both G and � are a-T-menable was proved by the
second author in [26].

Proof of Theorem 5.1 For each s > 0, we have the asymptotically commutative diagram:

C∗
L(Ps(�), Ps(G),S)�,G C∗

max (�, G,S)

C∗
L(Ps(�), Ps(G),A(X))�,G C∗

max (�, G,A(X)).

Passing to inductive limits gives rise to the following commutative diagram:

K �,G∗ (E�, EG,S) K∗(C∗
max (�, G,S))

K �,G∗ (E�, EG,A(X)) K∗(C∗
max (�, G,A(X))).

μmax

β
�,G
L,∗ β∗

μ
A(X)
max

Since β
�,G
L,∗ is an isomorphism by Proposition 4.6, it suffice to show that the relative assembly

map with coefficients in A(X)

μA(X)
max : K �,G∗ (E�, EG,A(X)) → K∗(C∗

max (�, G,A(X)))

is an isomorphism.
Consider the commutative diagram:

K G∗+1(EG,A(X))
μ
A(X)
G

K∗+1(C∗
max (G,A(X)))

K �∗+1(E�,A(X))
μ
A(X)
�

K∗+1(C∗
max (�,A(X)))

K �,G
∗+1(E�, EG,A(X))

μ
A(X)
max

K∗+1(C∗
max (�, G,A(X)))

K G∗ (EG,A(X))
μ
A(X)
G

K∗(C∗
max (G,A(X)))

K �∗ (E�,A(X))
μ
A(X)
�

K∗(C∗
max (�,A(X))).
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Since A(X) is a proper �-C∗-algebra, then we have that the assembly map

μ
A(X)
� : K �∗ (E�,A(X)) → K∗(C∗

max (�,A(X)))

is an isomorphism. We will use the five lemma to prove that the assembly map μ
A(X)
max is an

isomorphism. For this purpose, we shall show that the assembly map

μ
A(X)
G : K G∗ (EG,A(X)) → K∗(C∗

max (G,A(X)))

is an isomorphism. We remark here that although the action of G on A(X) is not proper,
we can prove that the assembly map μ

A(X)
G is an isomorphism using the cutting-and-pasting

method.
Since A(X) is a proper �-algebra, it is also an h(G)-proper algebra. We can express the

algebra as a direct limit

A(X) = lim−→ Aα,

where eachAα is an ideal ofA(X), and a proper h(G)-C∗-algebra over a proper, cocompact
and locally compactHausdorff h(G)-spaceWα . It suffices to prove that themaximal assembly
map

μmax : K G∗ (EG,Aα) −→ K∗(C∗
max (G,Aα))

is an isomorphism.
Let F ⊂ h(G) be a finite subgroup, and Y a F-space. Denote Y ×F h(G) to be the quotient

space of the product space Y ×h(G) over the F-action by γ ·(y, g) = (γ y, γ g) for all γ ∈ F ,
(y, g) ∈ Y × h(G). If Y ⊂ Wα is a F-invariant subset such that gY ∩ Y = ∅ for each g /∈ F ,
then we can view Y ×F h(G) as the subset h(G) · Y of Y via the map [(y, g)] �→ gy for all
[(y, g)] ∈ Y ×F h(G).

Since the locally compact space Wα is h(G)-proper and cocompact, it is a finite union of
the form

Wα =
n⋃

i

Yi ×Fi h(G),

where each Fi is a finite subgroup of h(G), and Yi is a precompact Fi -space for 1 ≤ i ≤ n.
For each i , denote by B = C0(Yi ×Fi h(G)) · Aα the proper h(G)-C∗-subalgebra of

Aα . Let B0 = C0(Yi ) · Aα . The C∗-algebra B is equipped with a G-action by lifting the
h(G)-action on B and B0 is equipped with an h−1(Fi )-action by lifting the Fi -action on B0.
Note that

C∗
max (G, B) ∼= C∗

max (h
−1(Fi ), B0) ⊗ K ,

where K is the algebra of compact operators. As a result, we have the following commutative
diagram

K G∗ (EG, B) K∗(C∗
max (G, B))

K h−1(Fi )∗ (E(h−1(Fi )), B0) K∗(C∗
max (h

−1(Fi ), B0)).

∼= ∼=

Since h : G → � has the maximal good kernel property, and [h−1(Fi ) : ker(h)] < ∞, the
bottom map is isomorphic. Therefore, the assembly map

μ : K G∗ (EG, B) → K∗(C∗
max (G, B))
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is an isomorphism. It follows from the Mayer–Vietoris sequence and the five lemma that the
assembly map

μ
Aα

G : K G∗ (EG,Aα) → K∗(C∗
max (G,Aα)

is an isomorphism. Passing to the inductive limit, we have that the assembly map

μ
A(X)
G : K G∗ (E�,A(X)) → K∗(C∗

max (G,A(X))

is isomorphic. As a result,

μA(X)
max : K �,G∗ (E�, EG,A(X)) → K∗(C∗

max (�, G,A(X)))

is an isomorphism. Therefore, the relative assembly map

μmax : K �,G∗ (E�, EG) → K∗(C∗
max (�, G))

is injective. This finishes the proof. ��

5.2 The reduced strong relative Novikov conjecture

In this subsection, we shall prove the reduced strong relative Novikov conjecture with coef-
ficients in a II1-factor M for the following pairs of groups (G, �).

Theorem 5.2 Let h : G → � be a group homomorphism with the reduced good kernel
property (cf. Definition 1.1). Let φ : C∗

red(G) ↪→ M be a trace-preserving embedding.
Assume that � admits a coarse embedding into Hilbert space. Then the reduced strong
relative Novikov conjecture holds for h : G → �, i.e., the reduced relative assembly map

μred : K �,G∗ (E�, EG,M) → K∗(C∗
red(�, G,M))

is injective.

As an example, when the group � is coarsely embeddable into Hilbert space and ker(h) is
a subgroup of a hyperbolic group, the reduced strong relative Novikov conjecture holds for
h : G → �.

The proof of Theorem 5.2 is similar to that of Theorem 5.1. Let A(X) be the proper
�-algebra defined in Sect. 4.2. We have the Bott asymptotic morphism

βt : S → A(X),

for all t ∈ [1,∞). It induces asymptotic morphisms

βt : C∗
red(�, G,S ⊗ M) → C∗

red(�, G,A(X) ⊗ M)

and

βt : C∗
L(Ps(�), Ps(G),S ⊗ M)�,G → C∗

L(Ps(�), Ps(G),A(X) ⊗ M)�,G ,

for all t ∈ [1,∞). The latter induces the following Bott map

β
�,G
L,∗ : K �,G∗ (E�, EG,S ⊗ M) → K �,G∗ (E�, EG,A(X) ⊗ M).
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Proposition 5.3 The Bott map

β
�,G
L,∗ : K �,G∗ (E�, EG,S ⊗ M) → K �,G∗ (E�, EG,A(X) ⊗ M)

is an isomorphism.

Since the proof of the above result follows from the same arguments in its maximal analogue
(Proposition 4.6), we omit its proof.

Proof of Theorem 5.2 Consider the commutative diagram:

K �,G∗ (E�, EG,S ⊗ M) K∗(C∗
red(�, G,S ⊗ M))

K �,G∗ (E�, EG,A(X) ⊗ M) K∗(C∗
red(�, G,A(X) ⊗ M)).

β
�,G
L,∗

μred

β∗
μ
A(X)
red

Since β
�,G
L,∗ is an isomorphism, to prove that the relative assembly map μred is injective,

it suffices to show that μ
A(X)
red is isomorphic. Indeed, it can be proved by the same cutting-

and-pasting method used in the proof of Theorem 5.1. We have the following commutative
diagram:

K G∗+1(EG,A(X) ⊗ M) K∗+1(C∗
red(G,A(X) ⊗ M))

K �∗+1(E�,A(X) ⊗ M⊗M) K∗+1(C∗
red(�,A(X) ⊗ M⊗M))

K �,G
∗+1(E�, EG,A(X) ⊗ M) K∗+1(C∗

red(�, G,A(X) ⊗ M))

K G∗ (EG,A(X) ⊗ M) K∗(C∗
red(G,A(X) ⊗ M))

K �∗ (E�,A(X) ⊗ M⊗M) K∗(C∗
red(�,A(X) ⊗ M⊗M)).

μ
A(X)
G

μ
A(X)
�

μ
A(X)
red

μ
A(X)
G

μ
A(X)
�

By the five lemma, we have that μA(X)
red is an isomorphism. This finishes the proof. ��

6 Applications to the relative Novikov conjecture

In this section, we shall discuss an application of the maximal (reduced) strong relative
Novikov conjecture to the relative Novikov conjecture regarding the homotopy invariance
of relative higher signatures of manifolds with boundary. We shall first construct the relative
higher indices of signature operators on compact manifolds with boundary. Then we will
show that the relative higher indices for signature operators are invariant under orientation-
preserving homotopy equivalences of manifolds with boundary as pairs. We refer the reader
to [9, 17, 18, 23, 28] for some related discussions on the relative index theory on manifolds
with boundary and its connection to secondary index theoretic invariants.

Let M be anoriented compact smoothmanifoldwith boundary ∂ M . Supposeπ1(∂ M) = G
and π1(M) = �. Let

h : G → �
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be the natural homomorphism induced by the inclusion of ∂ M into M .
In [5], Chang, Weinberger and the fourth author defined a relative higher index

Ind(DM , D∂ M ) ∈ K O∗(C∗
max (�, G))

for Dirac operators (DM , D∂ M ) on spin manifolds with boundary. Here the group
K O∗(C∗

max (�, G)) is the K O-theory of the maximal relative group C∗-algebra associated
with the group homomorphism h : G → �. They applied their relative higher index to detect
the existence of positive scalar curvaturemetrics onmanifoldswith boundary and furthermore
non-compact manifolds.

We shall define an analogous relative higher index for signature operators on manifolds
with boundary. The same construction below can be used to define both the maximal relative
higher index and the reduced relative higher index (with coefficients in a II1-factor M) for
signature operators. For simplicity, we shall only work out the details for themaximal relative
higher index.

We only carry out the details of the even dimensional case; the odd case is similar. Assume
that M is an even dimensional manifold with boundary and D is the signature operator on
M . Define

M∞ = M
⋃

∂ M

(∂ M × [0,∞))

to be the manifold obtained by attaching an infinity cylinder to M . Let D∞ be the signature
operator on M∞. Let M̃∞ be the universal cover of M∞ and D̃∞ the lifting of D∞ on M̃∞.
Since M̃∞ is a complete manifold (without boundary), a standard construction of higher
indices for elliptic operators on complete manifolds (cf. [29, Section 8.3]) gives the higher
index

Indmax (D̃∞) = [p] ∈ K0(C
∗
max (M̃∞)�),

where p is an idempotent in the matrix algebra of the unitization of C∗(M̃∞)� . By the
definition of the higher index (see [29]), we can choose p so that its propagation is as small
as we want.

Denote M̃ to be the universal covering space of M and we can view M̃ as a subspace of
M̃∞. Let χ be the characteristic function of the subspace M̃ of M̃∞. Consider the invertible
element

u = e2π i(χ pχ) ∈ (C∗
max (M̃)�

)+ ∼= (C∗
max (�) ⊗ K(H)

)+
.

Denote by (∂ M)� the space of the restriction of the covering space M̃ on ∂ M ⊆ M . The
space (∂ M)� is a manifold equipped with a proper and cocompact �-action. Let

[u] ∈ K∗(C∗
max (�))

be the higher index of the signature operator D̃∂ M on (∂ M)� .
Note that there is an integer n0 such that

∣∣∣∣∣
exp(2π i x) −

n0∑

k=0

(2π i x)k

k!

∣∣∣∣∣
≤ 1

1000
,

for all x ∈ R. Denote

ϕ(x) =
n0∑

k=0

(2π i x)k

k! . (6.1)
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We define v = ϕ(2π i(χ pχ)) in the matrix algebra of
(
C∗

max (M̃)�
)+

.
By [29, Proposition 3.2.4], we can choose p so that its propagation is arbitrarily small.

Therefore, the operator χ pχ is an idempotent away from a small tubular neighborhood of
(∂ M)� . By a standard finite propagation argument, we have that away from a small tubular
neighborhood of (∂ M)� , the operator v is very close (in operator norm) to 1. Consequently,
v restricts to an invertible element in the matrix algebra of

(
C∗

max ((∂M)� × (−ε, 0))�
)+ ∼=(

C∗
max (�) ⊗ K(H)

)+ for some ε > 0. Here the constant ε depends on the propagation of p.
We shall repeat the above construction on the complete manifold ∂ M × R. Note that

the product space (∂ M)� × R is a �-covering space of ∂ M × R. Denote by D(∂ M)�×R the
signature operator on (∂ M)� × R. We denote the higher index of D(∂ M)�×R by

[p′] = Indmax (D(∂ M)�×R) ∈ K0(C
∗
max ((∂M)� × R)�),

where p′ is an idempotent in the matrix algebra of
(
C∗

max ((∂M)� × R)�
)+

with small propa-
gation. Let χ ′ be the characteristic function of the subspace (∂ M)� ×(−∞, 0] in (∂ M)� ×R.
Define

u′ = e2π i(χ ′ p′χ ′).

By a similar argument as above, we have that

(1) v′ = ϕ(2π i(χ ′ p′χ ′)) is invertible in thematrix algebra of
(
C∗

max ((∂M)� × (−∞, 0])�)+;
(2) away from a small tubular neighborhood of (∂ M)� × {0}, the operator v′ is close (in

operator norm) to 1.

Similar as before, the element v′ restricts to an invertible element in
(
C∗

max ((∂M)� × (−ε, 0))�
)+ ∼= (C∗

max (�) ⊗ K(H)
)+

.

By construction, we have

v′ = v.

Now we also repeat the above construction for the covering space ∂̃ M × R → ∂ M × R

where ∂̃ M is the universal covering space of ∂ M . Denote D∂̃ M×R
the signature operator on

∂̃ M × R. Let

[p′′] = Indmax (D∂̃ M×R
) ∈ K0(C

∗
max (∂̃ M × R)G)

be the higher index of the signature operator D∂̃ M×R
on ∂̃ M ×R. Let χ ′′ is the characteristic

function of the subspace ∂̃ M × (−∞, 0] in ∂̃ M × R. Define

v′′ = e2π i(χ ′′ p′′χ ′′), (6.2)

which by the same argument above restricts to an invertible element in the matrix algebra of

(
C∗

max (∂̃ M × [−ε, 0])G
)+ ∼= (C∗

max (G) ⊗ K(H)
)+

.

By the functoriality of the higher index, we have that

hmax (v
′′) = v′,
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where hmax : C∗
max (∂̃ M × [−ε, 0])G → C∗

max (∂̃ M × [−ε, 0])� is induced by the natural
maps as follows:

∂̃ M × R (∂ M)� × R

∂ M × R ∂ M × R.

h

Consider the path of invertibles

v(t) = ϕ(2π i(tχ pχ)), t ∈ [0, 1].
We obtain a path joining v and λ in the matrix algebra of (C∗

max (M̃)�)+, where λ is a constant
very close to 1. By connecting λ to 1 by the linear path (1 − s)λ + s, we have the following
result.

Lemma 6.1 v is homotopic to 1 through a continuous path of invertible elements in the matrix
algebra of (C∗

max (M̃)�)+.

Now, we are ready to define the relative higher index for the signature operators
(DM , D∂ M ) on the pair (M, ∂ M). Let hmax : C∗

max (G) → C∗
max (�) be the homomor-

phism induced by the homomorphism h : G → �. Denote by Chmax ⊗id the suspension of
the cone associated with the homomorphism

hmax ⊗ id : C∗
max (G) ⊗ K(H) → C∗

max (�) ⊗ K(H).

Clearly, we have

Chmax ⊗id ∼= C∗
max (�, G),

where C∗
max (�, G) is the suspension of the cone of the homomorphism

hmax : C∗
max (G) ⊗ K(H) → C∗

max (�) ⊗ K(H).

Definition 6.2 Let M be an even-dimensional compact orientedmanifoldwith boundary ∂ M .
Define the relative higher index of the signature operators (DM , D∂ M ) on (M, ∂ M) to be

Indmax (DM , D∂ M ) = [(v′′, f )] ∈ K0(C
∗
max (�, G)),

where v′′ is defined in line (6.2) and f is the continuous path of invertible elements given by
Lemma 6.1.

When the boundary ∂ M is empty, this relative higher index is precisely the higher index of
the signature operator on M .

We consider the function ϕs(t) = ϕ(t/(s + 1)) on R for each s ≥ 0. Replacing the
function ϕ with ϕs in the definition of relative higher index, we obtain a continuous path
of representatives of Indmax (DM , D∂ M ) whose propagations approach 0 as s → ∞. This
continuous path of representatives defines the local relative index

[DM , D∂ M ] ∈ K �,G∗ (E�, EG),

such that

μmax ([DM , D∂ M ]) = Indmax (DM , D∂ M ),

where μmax : K �,G(E�, EG) → K∗(C∗
max (�, G)) is the maximal relative assembly map.

123



45 Page 32 of 38 J. Deng et al.

We shall show that the relative higher index is invariant under orientation preserving
homotopy equivalence. Before that, let us recall the homotopy invariance of higher signatures
for closed manifolds following the approach of Higson-Roe [13], cf. [30, Section 8]. The
same approach works simultaneously for the case of reduced group C∗-algebras and the
case of maximal group C∗-algebras. Therefore, in the following review of the homotopy
invariance of higher signature, we shall not specify which C∗ completion we are using.

Let X and Y be two closed oriented smooth manifolds of dimension n. We will only
discuss the even dimensional case; the odd dimensional case is completely similar (cf. [30,
Section 8]). We denote the de Rham complex of differential forms on X by

�0(X)
d−−→ �1(X)

d−−→ · · · d−−→ �n(X)

whose L2-completion is

�0
L2(X)

d−−→ �1
L2(X)

d−−→ · · · d−−→ �n
L2(X). (6.3)

Let T = ∗X : �k
L2(X) → �n−k

L2 (X) be the Hodge star operator on X , which is defined
by

〈T α, β〉 =
∫

X
α ∧ β

where β is the complex conjugation of β. The Hodge star operator T satisfies the following
properties:

(1) T ∗α = (−1)k(n−k)T α, ∀α ∈ �k
L2(X);

(2) T dα + (−1)kd∗T α = 0 for any smooth α ∈ �k(X);
(3) T 2α = (−1)nk+kα for any α ∈ �k

L2(X).

We consider the dual complex of (6.3)

�n
L2(X)

d∗−−→ �n−1
L2 (X)

d∗−−→ · · · d∗−−→ �0
L2(X),

where d∗ is the adjoint of d . With the above duality operator T , we get a Hilbert–Poincaré
complex in the sense of [13, Definition 3.1]. Define S = i k(k−1)+m T , where m = n

2 . It
follows from properties (1) and (3) above that S is a self-adjoint involution. Furthermore,
d +d∗ + S and d +d∗ − S are invertible [13, Lemma 3.5]. Now in the even dimensional case,
the signature of the above Hilbert–Poincaré complex is defined to be the formal difference
[P+] − [P−] of the positive projections of d + d∗ + S and d + d∗ − S. Here a positive
projection of a self-adjoint invertible operator is defined to be the spectral projection of the
operator on the positive part of the spectrum.

Let f : X → Y be an orientation preserving homotopy equivalence. We denote the
induced pullback map on differential forms by f ∗ : �∗(Y ) → �∗(X). In general, f ∗ does
not extend to a bounded linear map between the spaces of L2-forms�∗

L2(N ) and�∗
L2(M). In

order to fix this issue, we need the following construction due to Hilsum and Skandalis [16].
First, suppose φ : X → Y is a submersion between two closed manifolds. It is easy to see
that φ∗ extends to a bounded linear operator from �∗

L2(Y ) to �∗
L2(X). Now let ι : Y → R

n

be an embedding. Suppose U is a tubular neighborhood of Y in R
n and π : U → Y is the

associated projection. Without loss of generality, we assume ι(Y )+B
n ⊂ U , whereBn is the

unit ball of Rn . Let p : X × B
n → Y be the submersion defined by p(x, t) = π( f (x) + t).

Furthermore, let ω be a volume form on Bn whose integral is 1. Then the formula

α →
∫

Bn
p∗α ∧ ω
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defines a morphism of chain complexes A : �∗(Y ) → �∗(X) where
∫
Bn denotes fiberwise

integration alongBn . It is easy to see that A extends to a bounded linear operator from�∗
L2(Y )

to �∗
L2(X). We shall still denote this extension by A : �∗

L2(Y ) → �∗
L2(X).

Now a routine calculation shows that A is a homotopy equivalence between the two
complexes (�∗

L2(Y ), dY ) and (�∗
L2(X), dX ) such that AT A∗ is chain homotopy equivalent

to T ′, where T (resp. T ′) is the Hodge star operator on Y (resp. X ). It follows that the operator

S =
(

0 AT
T A∗ 0

)

together with the chain complex (�∗
L2(X)⊕�∗

L2(Y ), dX ⊕ dY ) gives rise to an (unbounded)
Hilbert-Poincaré complex.

Higson andRoe showed that the signature of this Hilbert-Poincaré complex coincides with
the formal difference Ind(D̃X ) − Ind(D̃Y ) of the higher signature indices of X and Y [14,
Theorem 5.5]. On the other hand, observe that, for each t ∈ [0, 1], the following operator

St =
(

0 eiπ t AT
e−iπ t T A∗ 0

)

also defines a duality operator for the chain complex (�∗
L2(X) ⊕ �∗

L2(Y ), dX ⊕ dY ). If we
let

B =
(

dX + d∗
X

dY + d∗
Y

)
,

then the positive projection [(P+)t ] of B + St forms a continuous path of projections for
t ∈ [0, 1]. Note that S1 = −S0 = S. Therefore, we see that [P+] = [(P+)0] is connected to
[P−] = [(P+)1] via a continuous path of projections. It follows that

Ind(D̃X ) − Ind(D̃Y ) = [P+] − [P−] = 0.

This shows that the higher signature is invariant under orientation preserving homotopy
equivalence.We remark that the above discussion of homotopy invariance of higher signature
works for both reduced group C∗-algebras and maximal group C∗-algebras.

Now we show that the relative higher index is invariant under orientation-preserving
homotopy equivalences of pairs.

Theorem 6.3 The higher index Indmax (DM , D∂ M ) is a homotopy invariant, that is, if
φ : (M, ∂ M) → (N , ∂ N ) is an orientation-preserving homotopy equivalence between two
compact oriented manifolds with boundary, then

φ∗(Indmax (DM , D∂ M )) = Indmax (DN , D∂ N ) ∈ K∗(C∗
max (�, G))

and

φ∗(Indred(DM , D∂ M )) = Indred(DN , D∂ N ) ∈ K∗(C∗
red(�, G,M)).

Proof The sameproof belowworks for both themaximal relative higher index and the reduced
relative higher index (with coefficients in a II1-factorM). For simplicity, we shall only give
the details for the maximal case. Also, we shall only prove the even dimensional case. The
odd dimensional case is completely similar.

Let us write

Indmax (DM , D∂ M ) = [v′′
0 , f0] ∈ K0(C

∗
max (�, G))
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and

Indmax (DN , D∂ N ) = [v′′
1 , f1] ∈ K0(C

∗
max (�, G)),

where v′′
i and fi are given as in Definition 6.2. We shall show that (v′′

0 , f0) is homotopic to

(v′′
1 , f1) in the matrix algebra of

(
C∗

max (G, �) ⊗ K)+.
The homotopy equivalence φ : M → N induces an equivariant homotopy equivalence

φ̃ : M̃ → Ñ .

Denote by DM∞ and DN∞ the signature operators on M∞ and N∞, respectively.
By the homotopy invariance of higher signatures (cf. the discussion before the theorem),

we have a continuous path of idempotents (pt )t∈[0.1] in the matrix algebra of
(
C∗

max (Ñ )�
)+

connecting φ∗(p0) and p1.
Define a path of invertibles

vt = ϕ(2π i(χ ptχ))

in the matrix algebra of
(
C∗

max (Ñ )�
)+ ∼= (C∗

max (�) ⊗ K
)+

, where χ be the characteristic
function of the subspace Ñ in Ñ∞ and ϕ is the function given in line (6.1).

The homotopy equivalence φ : (M, ∂ M) → (N , ∂ N ) also induces a�-equivariant homo-
topy equivalence

φ�
∂ × id : (∂ M)� × R → (∂ N )� × R,

where (∂ M)� (resp. (∂ N )�) is the restriction of the covering space M̃ → M (resp. Ñ → N )
over ∂ M (resp. ∂ N ). Let D(∂ M)�×R and D(∂ N )�×R be the signature operator on (∂ M)� ×R

and (∂ N )� × R respectively. Similarly (cf. [30, Section 8] ), there exists a continuous path
of idempotents

(
p′

t

)
t∈[0.1] connecting (φ�

∂ )∗(p′
0) and p′

1, where [p′
0] = Indmax (D(∂ M)�×R)

and [p′
1] = Indmax (D(∂ N )�×R). As a result, we obtain a path of invertibles

v′
t = ϕ(2π i(χ ′ p′

tχ
′)),

for all t ∈ [0, 1] in the matrix algebra of (C∗
max ((∂ N )� × [−ε, 0])�)+ ∼= (C∗

max (�) ⊗ K )+
for some constant ε > 0, where χ ′ be the characteristic function of the subspace (∂ N )� ×
(−∞, 0] in (∂ N )� × R. Since the paths pt and p′

t are constructed using the same formula,
we have by construction that

v′
t = vt ,

for all t ∈ [0, 1].
The homotopy equivalence φ : (M, ∂ M) → (N , ∂ N ) also induces a G-equivariant

homotopy equivalence

φ̃∂ : ∂̃ M × R −→ ∂̃ N × R,

where ∂̃ M (resp. ∂̃ N ) is the universal covering space of ∂ M (resp. ∂ N ). Similarly, there
is a continuous path of idempotents

(
p′′

t

)
t∈[0,1] in the matrix algebra of C∗

max (∂̃ N × R)G

connecting (φ̃∂ )∗(p′′
0 ) and p′′

1 , where [p′′
0 ] = Indmax (D∂̃ M×R

) and [p′′
1 ] = Indmax (D∂̃ N×R

).
Hence we obtain a path of invertibles

v′′
t = ϕ(2π i(χ ′′ p′′

t χ ′′))

in the matrix algebra of C∗
max (∂̃ M × (−ε, 0])G ∼= C∗

max (G) ⊗ K for some constant ε > 0,
where χ ′′ be the characteristic function of the subspace ∂̃ N × (−∞, 0] in ∂̃ N × R.
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By the definitions of v′
t and v′′

t , we have that

hmax (v
′′
t ) = v′

t , (6.4)

for all t ∈ [0, 1], where hmax : C∗
max (G) → C∗

max (�) is the ∗-homomorphism induced by
h : G = π1(∂ N ) → � = π1(N ).

For eachfixed t ∈ [0, 1], let { ft (s)}s∈[0,1] be the path constructed out of vt as inLemma6.1.
In particular, ft (0) = vt and ft (1) = 1 for all t ∈ [0, 1]. Consequently, we have a continuous
path {(v′′

t , ft )}t∈[0,1] connecting (v′′
0 , f0) and (v′′

1 , f1). As a result, we have that

φ∗(Indmax (DM , D∂ M )) = Indmax (DN , D∂ N ).

��
Remark 6.4 The analogue of the equality (6.4) for the reduced case requires a bit more care.
Recall that, in the reduced case, we have used the map (cf. Lemma 3.1)

hred,M : C∗
red(G,M) → C∗

red(�,M⊗M)

in place of hmax : C∗
max (G) → C∗

max (�). First observe that v′′
t has finite propagation, hence

hred,M(v′′
t ) makes sense. A priori we do not have hred,M(v′′

t ) = v′
t , as the definition of

the map hred,M involves an extra trace-preserving map φ : C∗
red(G) ↪→ M. However, if we

enlarge M by its matrix algebra Mk(C) ⊗ M if necessary, there exists a unitary U acting
on C0(∂̃ M) ⊗ M such that U intertwines the two actions α ⊗ φ and α ⊗ idM of G on
C0(∂̃ M)⊗M, where α is the usual action of G on C0(∂̃ M) by translation and φ is the action
of G onM induced by the trace-preserving map φ : C∗

red(G) ↪→ M. Roughly speaking, the
existence of such a unitary U follows from the fact that the bundle (∂̃ M) ×G (Mk(C) ⊗M)

over ∂ M is trivial whenever k is sufficiently large. See for example [1, Lemma 3.4] for more
details. In particular, it follows that

U
(
hred,M(v′′

t )
)

U∗ = v′
t . (6.5)

Note that conjugation by a unitary induces the identity map on K -theory. With the equality
(6.4) replaced by the above modified equality (6.5), the rest of the argument for the reduced
case is the same as the maximal case.

We would like to point out that the invariance of relative higher signatures was also dealt
with in [17] for PL manifolds by a different method.

At the end of this section, let us show that the maximal (reduced) strong relative Novikov
conjecture together with Theorem 6.3 implies the relative Novikov conjecture regarding the
homotopy invariance of relative higher signatures of manifolds with boundary. Let us focus
only on the maximal case, since the reduced case is completely analogous.

Let (M, ∂ M) be a compact oriented manifold with boundary. Let ψM : M → B� (resp.
ψ∂ M : ∂ M → BG) be the classifying map associated with the universal covering space. Let
LM be the L-class of M and L∂ M the L-class of the boundary ∂ M , respectively. For each
element (ξ, η) ∈ H∗(B�, BG), one can define a relative index pairing as follows:

〈(DM , D∂ M ), (ξ, η)〉 =
∫

M
LM ∪ ψ∗

M (ξ) −
∫

∂ M
L∂ M ∪ ψ∗

∂ M (η), (6.6)

where H∗(BG, B�) is the relative group cohomology for the group homomorphism h :
G → � and (DM , D∂ M ) is the signature operator of (M, ∂ M). The right hand side of the
above equation is usually referred to as a relative higher signature of (M, ∂ M). We refer the
reader to [24] for more details on relative index pairings.
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Conjecture 6.5 (Relative Novikov conjecture) All relative higher signatures are invariant
under orientation-preserving homotopy equivalences of pairs. More precisely, assume that
φ : (M, ∂ M) → (N , ∂ N ) is an orientation-preserving homotopy equivalence of pairs, then
∫

M
LM ∪ ψ∗

M (ξ) −
∫

∂ M
L∂ M ∪ ψ∗

∂ M (η) =
∫

N
LN ∪ ψ∗

N (ξ) −
∫

∂ N
L∂ N ∪ ψ∗

∂ N (η) (6.7)

for all (ξ, η) ∈ H∗(B�, BG), where ψN : N → B� and ψ∂ N : ∂ N → BG are continuous
maps such that the following diagram commutes:

(M, ∂ M) (N , ∂ N )

(B�, BG)

φ

(ψM ,ψ∂ M ) (ψN ,ψ∂ N )

There is a relative Connes–Chern character map

Ch : K∗(B�, BG) ⊗ C → H∗(B�, BG) ⊗ C.

It is known that the relative Connes–Chern character Ch is an isomorphism, cf. [4]. The
pairing in line (6.6) can be viewed as the natural pairing

H∗(B�, BG) ⊗ C × H∗(B�, BG) ⊗ C → C.

It follows that, if the two K -homology classes φ∗([DM , D∂ M ]) and [DN , D∂ N ]) coincide in
K∗(B�, BG)⊗C, then the equality (6.7) holds, hence proves the relative Novikov conjecture
in this case. However, by Theorem 6.3, we have that

φ∗(Indmax (DM , D∂ M )) = Indmax (DN , D∂ N ) ∈ K∗(C∗
max (�, G)).

Now if the maximal strong relative Novikov conjecture (Conjecture 2.14) holds for h : G →
�, that is,

μmax : K �,G∗ (E�, EG) → K∗(C∗
max (�, G))

is injective, then it follows that

K∗(B�, BG) ⊗ C → K �,G∗ (E�, EG) ⊗ C
μmax−−−−→ K∗(C∗

max (�, G)) ⊗ C

is injective, since the natural homomorphism K∗(B�, BG) ⊗ C → K �,G∗ (E�, EG) ⊗ C is
always injective. Since we have

μmax (φ∗([DM , D∂ M ])) = φ∗(Indmax (DM , D∂ M ))

and

μmax ([DN , D∂ N ]) = Indmax (DN , D∂ N ),

it follows that

φ∗([DM , D∂ M ]) = [DN , D∂ N ] ∈ K∗(B�, BG) ⊗ C.

Therefore, this shows that themaximal strong relativeNovikov conjecture implies the relative
Novikov conjecture. The implication that the relative Novikov conjecture follows from the
reduced strong relative Novikov conjecture is similar. We omit the details.
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Remark 6.6 In [23], Leichtnam–Lott–Piazza defined a higher index for signature operators
on manifolds with boundary, under certain invertibility assumptions of the signature operator
on the boundary. We point out that the relative higher index of signature operators defined
in the current paper is generally different from the higher index of Leichtnam–Lott–Piazza.
While the construction of the higher index by Leichtnam, Lott and Piazza requires an invert-
ibility condition of the signature operator on the boundary, the relative higher index in our
paper is always defined without any invertiblity condition on the boundary. On the other
hand, the higher index of Leichtnam, Lott and Piazza lies in K∗(C∗

red(�)) instead of the
K -theory of the relative group C∗-algebra, due to the extra invertibility condition on the
boundary. The two (relative) higher indices are related as follows. Let us assume the invert-
ibility condition on the boundary as in [23] so that the higher index of Leichtnam–Lott–Piazza
is defined. Then the image of Leichtnam–Lott–Piazza’s higher index under the boundarymap
K∗(C∗

red(�,M⊗M)) → K∗(C∗
red(�, G,M)) coincides with our relative higher index for

the pair (M, ∂ M).
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