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The out-of-time-ordered correlator (OTOC) has emerged as an interesting object in both classical and quantum
systems for probing the spatial spread and temporal growth of initially local perturbations in spatially extended
chaotic systems. Here, we study the (classical) OTOC and its “light cone” in the nonlinear Kuramoto-Sivashinsky
(KS) equation, using extensive numerical simulations. We also show that the linearized KS equation exhibits a
qualitatively similar OTOC and light cone, which can be understood via a saddle-point analysis of the linearly
unstable modes. Given the deep connection between the KS (deterministic) and the Kardar-Parisi-Zhang (KPZ,
which is stochastic) equations, we also explore the OTOC in the KPZ equation. While our numerical results in
the KS case are expected to hold in the continuum limit, for the KPZ case it is valid in a discretized version of the
KPZ equation. More broadly, our work unravels the intrinsic interplay between noise/instability, nonlinearity,
and dissipation in partial differential equations (deterministic or stochastic) through the lens of OTOC.
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I. INTRODUCTION

The spatiotemporal spread of perturbations is a topic of
great interest in spatially extended, chaotic systems. The
out-of-time-ordered correlator (OTOC) has been recently pro-
posed as a diagnostic tool to understand the growth (or decay)
of perturbations in such systems. The OTOC captures both
the temporal growth and the spatial spread of an initially
localized perturbation. This quantity has been used in clas-
sical models, in particular, models or systems which involve
a large number of degrees of freedom. In classical systems,
the initial local perturbation can be infinitesimal. For example,
the OTOC has been used to study spreading of perturbations
in a classical spin chain [1], chaos in thermalized fluids [2],
many-body chaos in classical interacting spins on a kagome
lattice [3,4], classical disordered anharmonic chain [5], chaos
and anomalous diffusion across a thermal phase transitions
in 2D XXZ model with anisotropy [6], dynamical regimes
of finite temperature discrete nonlinear Schrodinger chain [7],
driven dissipative Duffing chain [8], low dimensional classical
chaotic systems [9], velocity dependent Lyapunov exponents
in classical chaos [10], power-law models at low temperatures
[11], integrable spin chains including effects of breaking in-
tegrability [12], coupled map lattices [13], and spin chains
with kinetic constraints [14,15]. It is worth noting here that
although the classical OTOC has gained prominence rather
recently, the quantum OTOC is a well-established diagnostic
of chaos in quantum many-body systems and quantum infor-
mation [16-22].
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Despite these extensive studies, the OTOC in continuum
nonintegrable (in the Liouville sense) systems or noninte-
grable partial differential equations has not received much
attention. In addition, much remains to be explored regard-
ing the intrinsic interplay between instability, dissipation, and
nonlinearity. In this context, a natural candidate is the well-
known Kuramoto-Sivashinsky (KS) equation [23,24]. This is
a deterministic equation where there is a rich interplay be-
tween instability and chaos that leads to an emergent noise,
provided there are a sufficient number of unstable modes,
which happens in the limit of large system size [25,26]. On
the other hand, certain aspects, such as scaling, spatiotemporal
correlations, and distributions of height fluctuations of the
well-known Kardar-Parisi-Zhang (KPZ) equation [27-29] are
deeply connected to the KS equation [26,30,31]. This natu-
rally raises the question of the possible connection between
these two models as far as OTOC is concerned.

The content of the paper is as follows. We describe the
models and their properties in Sec. II. We summarize the key
findings of our work in Sec. III. We discuss the results for the
KS equation in Sec. IV. Then we present our results for the
KPZ equation in Sec. V. We conclude with a few remarks in
Sec. VL.

II. MODELS AND PROPERTIES

We will start by discussing some relevant details of the KS
and KPZ equations. The KS equation [23,32] reads
dh=—03h — dth — 1(0:h)?, (1)

where h(x,t) is a height profile defined on x € [0, L] with
periodic boundary conditions. The KS equation embodies an
intriguing interplay of instability, dissipation, and nonlinearity
represented by the first, second, and third term, respectively,
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in the right hand side of Eq. (1) [26,30]. The KS equation ap-
pears in various physical contexts, such as propagation of
waves in dissipative media [23,32], flame front propagation
[24,33], diffusion-induced chemical turbulence [34], irregular
flow of liquid film down a vertical plane [35-37], model
system with intrinsic stochasticity [38], dynamical systems
[39.,40], and phase turbulence [41,42], to name a few. Besides
its importance in modeling diverse physical phenomena, the
1D KS equation has an interesting connection with the 1D
KPZ equation [27], a typical model under the KPZ universal-
ity class [28,29,43]. Numerical and theoretical investigations
[26,30,31,44-46] suggest that the long-time and large-length
properties of the KS equation correspond to those of the KPZ
equation. This deep connection is rooted in the unstable long-
wavelength modes and the spatiotemporal chaos in the KS
equation, which are responsible for generating an effective
“noise.”
The 1D KPZ equation is given by

dh = 32h+ gd:h)* +n, 2)

where h(x, t) is the fluctuating and growing height field, g is
the strength of nonlinearity, and 7 is the Gaussian white noise
with strength one:

(n(x, N, 1)) = 28(x —x)s(t —1'). 3)

Note that the parameter g is taken to be g = 8 for numerical
convenience. However, by suitably scaling the space, time,
and the height field, the parameter g can also be set to one
in Eq. (2) [47].

In this paper we study how localized perturbations behave
in these two models [Eqgs. (1) and (2)] using OTOC as a
well-suited diagnostic. The OTOC involves both the spatial
spread as well as the temporal growth (or decay) of the ini-
tially localized perturbation. The procedure to compute the
classical OTOC is as follows. We initially consider two copies
of the height profile: h,(x, t;), the original copy and h,(x, t;),
the perturbed copy which is generated from the original copy
by introducing an infinitesimal local perturbation (¢) at initial
time t;. We then define their difference v (x, t) as

1
YO 0) = Hm =y (x ti+1) = ho(x, 1 +1)), 120, (4)
e—=0 €

where A, and h, are numerically computed using Eq. (1) or
Eq. (2), and in the case of KPZ, the two are subject to precisely
the same noise 1(x, t). Then the OTOC, denoted as D(x, t), is
defined in terms of i in the following manner:

D(x, 1) == ([Y(x,1)]), ®)

where (-) is average over different initial conditions. It is to be
noted that several works about classical OTOCSs define D(x, t)
by instead averaging the square of 1. This quantity D(x, ¢) can
be plotted as a “heat map” and it encodes the spatial spread
and temporal growth or decay of the initial perturbation.
The former can be characterized by the butterfly velocity, and
the latter by the finite-time Lyapunov exponent (FTLE) and
by the velocity-dependent Lyapunov exponent (VDLE).

III. SUMMARY OF FINDINGS

The key findings of our investigation are as follows.
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FIG. 1. Plots of (a) the heatmap for the OTOC, and (b) FTLE
without the nonlinear part in the KS equation in Eq. (1). The emer-
gence of a sharp light cone and nonzero Lyapunov exponent even in
the linear model is rooted in the unstable long-wavelength modes.
Note that the heat map is for log,, D and the location of the initial
perturbation is at x = L/2 (center). Here, we have used L = 400 and
N =2048.

(i) For the KS equation, we observe a sharp light-cone in
the OTOC even in the linearized case (Fig. 1), i.e., neglecting
the term —(d,4)?/2 in Eq. (1), demonstrating that chaos due
to nonlinearity is not needed to produce such a ballistically
spreading OTOC. We compute the exact expression of OTOC
in this case and unravel the interplay between unstable modes
and dissipation. Using the method of steepest descent, we ex-
tract the values of butterfly velocity and Lyapunov exponents.
We then use extensive numerical simulations to compute the
OTOC of the fully nonlinear (Fig. 3) KS equation Eq. (1). The
velocity-dependent Lyapunov exponents have been studied in
both the linear and the fully nonlinear KS equation (Fig. 4).

(ii) We investigate the OTOC in the 1D KPZ equa-
tion (Fig. 5) using the discretization scheme provided in
Ref. [48]. Following this numerical discretization scheme,
we observe a conventional light cone in the OTOC for the
KPZ equation. It is important to note that, even though
certain statistical properties (such as scaling, spatiotemporal
correlations, and height distributions) related to the 1D KPZ
equation are correctly reproduced by the method in Ref. [48],
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FIG. 2. A schematic diagram of the deformed contour needed to
perform the integration in Eq. (17). The red dots show the three roots
for an arbitrary chosen sample value of v = /2 for the saddle point
analysis. The method in Ref. [54] is adapted here.
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FIG. 3. The plots of (a) the OTOC and (b) the Lyapunov ex-
ponent for the fully nonlinear KS equation in Eq. (6) with L =
400, N = 2048 and 500 independent simulations (see Appendix A
for details regarding numerical methods). It is worth noting that the
value of the butterfly velocity is quite close to the value obtained in
the case of linear KS equation. However, the Lyapunov exponents are
markedly different and we find that the nonlinear terms substantially
reduce the maximum Lyapunov exponent. Similar to Fig. 1, here the
heat map is also for log,, D and location of initial perturbation is at
x = L/2 (center). Perturbation was added at 7; = 1000.

the chaotic behavior that we have characterized using the
OTOC is expected to be true only for the discretized KPZ
equation [49].

IV. RESULTS FOR THE KURAMOTO-SIVASHINSKY
EQUATION

To study the OTOC in the KS equation, we focus on ¥ (x, t)
given in Eq. (4). The KS equation in Eq. (1) in the limit of
infinitesimally small perturbation (¢ — 0) reads

Wy = =3y — Iy — d,h, . (6)

Equation (6) is a linear equation in i with coefficients dic-
tated by the evolution of the height field A,(x,t) evolving
according to Eq. (1). We choose the following initial condition
for iy where the two copies of the height profiles differ only
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FIG. 4. The plots of the velocity-dependent Lyapunov exponents
(VDLE) A(v) for (a) the linear and (b) the fully nonlinear KS equa-
tion in Eq. (1) for L = 4000 (N = 8192) and L = 400 (N = 2048),
respectively. Note that in (a), the expression for A(v) is taken from
Eq. (29). One can notice good agreement between analytical com-
putation and direct numerics in (a). In (b), the black dashed line
represents a suitable fit for the VDLE in the fully nonlinear KS
equation.
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FIG. 5. (Left) The OTOC for the KPZ equation [see Eq. (2)
and Eq. (4)] for g = 8 using the Lam-Shin finite-difference method
(see Appendix B for details) with L = 512, € = 1075, N = 512 with
w = 4. Total number of independent simulations is 14 900. Note
that the heat map is for log,, D, and location of initial perturbation
is at x = L/2 (center). Perturbation was added at 7; = 500. (Right)
Behavior of the OTOC D(x, t) in Eq. (5) as a function of x for various
time snapshots r = 5, 10, 20, 40. Both the left and the right moving
fronts show a ballistic propagation. The slowdown from exponential
temporal growth during the time window ¢t = 20 to + = 40 can be
attributed to the finiteness of €.

near x = L/2 (center) at ¢ = 0 in the following manner:

_(x——L/zf]

w?

¥ (x,0) = exp [ (7
where 0 < w < L determines the width of the Gaussian per-
turbation. We set this width to be w = 1 for studying OTOC
in the KS equation.

The lateral extent of the light cone given by Eq. (5) gives
the spatial spread of the initial perturbation, thereby yielding
the butterfly velocity v, which characterizes the speed with
which the boundary of the light cone, defined by D(x, ) = 1,
moves. On the other hand to understand the temporal growth
or decay at some fixed spatial point x, we define the finite-time
Lyapunov exponent (FTLE) as

Ad() = In D(x, t).

(®)
The velocity-dependent Lyapunov exponent (VDLE) can
be defined as
fim MPE=VED A L) =A@, ©)
t—00 t t—00
For these systems, the maximal Lyapunov exponent is
A(v = 0). It is interesting to note that VDLE has been also
defined in a slightly different manner in the literature (such as
in Refs. [50-52]) where it is often referred to as convective
Lyapunov exponent. In Ref. [50], the perturbation at time ¢
is integrated over an interval of fixed length (equal to the
spatial extent of the initial perturbation). Thus, the perturba-
tion may be considered as coarse grained. But, in the case of
OTOC discussed in Ref. [1], the approach is to consider the
average of the absolute value of the perturbation over differ-
ent initial conditions instead of coarse graining. Both these
quantities, albeit different, are likely to encode the essential
aspects of spatiotemporal chaos. However, we use the defini-
tion in Eq. (9) in this study even though alternate definitions
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might also unravel the essential characteristics of Lyapunov
exponents.

Before presenting the extensive numerical results of Eq. (6)
which will give the OTOC for the fully nonlinear KS equa-
tion, we will first present some results for the linearized KS
equation. This is equivalent to studying Eq. (6) without the
last term. A saddle-point analysis of the late time behavior
can be done for this linearized model. A study of instabilities
in linearized partial differential equations is mathematically
tractable [53], and turns out to be instructive as we discuss
below.

In the Fourier space, ignoring the last term in Eq. (6), the
wavenumber-k mode Y (¢) obeys

Uk, = 1, Vi, (10)

where

r, =k —ki and Yy, =

N
1 kL
) NZW(%—L,I)e L CR))
m=0
with k, = 2wn/L,n € Z. The solution of Eq. (10) is easily
found to be

Ui (t) = Y (0) exp (r1). (12)

Note that the Fourier modes grow if r;, > 0. Thus, the modes
satisfying 0 < k> < 1 grow with time. For a discretized sys-
tem with N equispaced gridpoints, in the real space, the
difference ¥r(x, t) is

N

Y(x, 1) ~ Yo(0) +2 ) e Re[y, (0)e™],  (13)

n=1

where we recall that k, = 27n/L are the modes in the dis-
cretized system.

In the Fourier space, the initial condition for v (x, ¢) given
in Eq. (7) becomes

InLiﬂ
¥, (0) = f E (14)
Then, the solution at time # > 0 is given by [using Eq. (13)]
N/2
Yx, 1)~ —— Z e , (15)
n=—N/2

where ¥ =x — L/2. Thus,
given by

the corresponding OTOC is

w7 N/2 e
D(x,t) ~ - 1+2260s(kx)e‘” l . (16)

n=1

Note that Eq. (16) is exact and plotted in Fig. 1. We note from
Fig. 1 that the butterfly velocity turns out to be v, &~ 1.6 and
the maximum Lyapunov exponent is A & 0.25. Interestingly,
these values can be extracted by analytical analysis of Eq. (16)
via the method of steepest descent which we will present
below.

We convert the sum in Eq. (16) into an integration which
yields

w oo 1g(k) —KPw?/4
D(x,t) = ﬁ dk e e . (17
)

We consider the function in the exponent of the integrand
of Eq. (17),

g(k) = ik)tz + (k2 — k). (18)

The first and second derivatives of g(k) are respectively
given by

gk) = z— + 2k — 4k,  g'(k) =2 — 12k>. (19)
Setting ¢'(k) = 0 and solving for k, we find three saddle
points:

k() = L(—w’"lz(v)wL ;> m=1,2,3
m - ﬁ 3 a)m_lz(l}) ’ - il 0
(20
where

—1+iV3 J v [v2 1

= d =, — —+ —= (21
1) 3 and z(v) \/2ﬁ+ 8—i—27()
with v =%/r. Note that the real parts of k, and k;

have opposite signs but the same absolute values, whereas
the imaginary parts of these solutions are the same. These
three roots are shown in Fig. 2 for an arbitrary chosen sample
value of v = +/2. We deform our integral to pass through the
two saddle points at k = k», k3. We need to evaluate g’ (k) at
these points:

1 974 — 1 ..
g'(k) = <2+3z +—il < ) k =k, ks,

V32
(22)

where z is given in Eq. (21) and we omit the argument v for
the sake of brevity. We adopt the procedure in Ref. [54] for
the method of steepest descent to evaluate D(x, t) in Eq. (17).
Recall that we have two stationary points (k», k3) along the
contour as observed above and the value of D(x, t) in the limit
of long time is the sum of the contributions from these points.

To reduce our problem to a form adaptable to the procedure
in Ref. [54], note that

iy [ 1 1 1

8 2>—[ﬁ<w2‘3—m)‘5(“’2‘m)
! ! ' 23
‘z(‘”‘mﬂ' @9

Also, it is easy to see that the directions of steepest descent for
k, are given by

1 o 3n

0, = —EArg[g (k)] + - (24)
where our notation is such that an angle 6 = 0 corresponds
to the positive real axis. We deform our contour (Fig. 2) at
k, along the direction dictated by 6, given in Eq. (24). From
Eq. (24), it turns out that 6, lies in the fourth quardrant,
117 /6 < 6, < 2m. Similarly, the contour at I% is deformed
as per 63 given by

1 "o b4
05 = —SArglg (k)] + = (25)
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and using Eq. (25), it turns out that 65 lies in the first quadrant,
0 < 6, < /6. We need to integrate along these directions and
add the contributions. Therefore, adapting Ref. [54] we find
that the contribution from the saddle point &, is given by

V2
11g" (k)

while the contribution from k3 is the complex conjugate of
this. Combining the contributions, we get the following result:

2427
tlg" (k)|

The velocity-dependent Lyapunov exponent is then given by
the exponential growth (or decay) of this with time:

M(v) = Re[g(ko)]. (28)

Using Eq. (23), A(v) in Eq. (28) takes the form

2 vz v

M) =>qp 2V
W=+t % 7274 T evae

1

+1 (29)

1 1
+ 108 72 * 648z% 6

where we recall that z(v) is given by Eq. (21). Although
Eq. (29) is rather cumbersome, it turns out that A(v = 0) =
0.25, which is the maximal Lyapunov exponent. The butterfly
velocity can be extracted by solving for A(v,) = 0. It turns out
that the butterfly velocity v, extracted in this way is v, ~ 1.62.
Therefore, the Lyapunov exponent and butterfly velocity ex-
tracted are in good agreement with the numerically obtained
values.

Since we see from these analytical calculations that D(x, t)
goes as ~ ¢ we thus obtain a “light-cone” behavior for
this OTOC that is qualitatively the same as is seen in many-
body chaos. But this is appearing in a linear equation due to
its linear instability.

Having discussed the saddle-point analysis and the linear
KS equation, we now present results for the fully nonlinear
KS equation using extensive numerics. As shown in Fig. 3,
we observe a distinct light cone in the heatmap of the OTOC
and also temporal growth in chaos unravelled by the finite-
time Lyapunov exponent. Interestingly, we find the value
of the butterfly velocity (v, ~ 1.50) is changed very little
when nonlinearity is included. On the other hand, remark-
ably, the maximum Lyapunov exponent A(v = 0) shows a
large decrease when nonlinearity is included. In the linear
KS equation, A(v = 0) is set by the most unstable linear
modes. However, in the nonlinear case, the interaction term
strongly couples all the linear modes; apparently this causes
the maximum Lyapunov exponent to be more like an average
over many of the linear modes, and thus much smaller than
that of the most unstable linear mode. This behavior is in
contrast to adding a nonlinearity to a linearly stable system,
where the nonlinearity causes chaos and thus an increase of
the maximum Lyapunov exponent. We also show the velocity-
dependent Lyapunov exponent both for the linear and fully
nonlinear KS equation in Fig. 4.

It is important to recall that there have been studies [31]
showing deep connection between the KS and KPZ equations.

Dz(x, t) — €i92+tg(122)7(/€%w2/4)’ (26)

D(x, 1) = Re[¢Hebk)=Euwi /by - (27)

In particular, Tracy-Widom and Baik-Rains distributions,
which were observed for the 1D KPZ equation earlier [55],
were also shown to occur in the KS equation. One naturally
wonders whether there is such a connection in the OTOC
as well. We next discuss the OTOC and related quantities in
the KPZ equation under a lattice discretization and numerical
scheme given in Ref. [48].

V. RESULTS FOR THE KARDAR-PARISI-ZHANG
EQUATION

For the KPZ case, the equation obeyed by the difference
field ¥ given in Eq. (4) (in the limit of infinitesimally small
perturbation) is

WY = 32y + 280,V dch,, (30)

where we recall that A, is the original height field satisfy-
ing the KPZ equation given in Eq. (2). Note that although
Eq. (30) is linear in v, the presence of the stochastic field
ho(x,t) is what gives rise to sharp light cones and related
features, of course assuming the numerical discretization. In
order to study the OTOC for the KPZ equation, we em-
ploy the Lam-Shin finite difference method [48] and we
resort to the method of two copies in Eq. (4). We describe
the Lam-Shin finite-difference method in Appendix B. In
Fig. 5, using extensive numerics, we present results for the
light cone which is characterized by a butterfly velocity
vp ~ 4.8 and FTLE A = 0.32 for nonlinearity strength g =
8. As mentioned earlier, our results are valid only in the
discretized KPZ equation and will not hold in the strictly con-
tinuum KPZ equation [49]. Therefore, despite the established
deep connections in the long time and large system size limit
between the continuum KS and continuum KPZ equation, it
is important to keep in mind that certain quantities such as
OTOC are expected to be strikingly different.

VI. CONCLUSIONS AND OUTLOOK

We have studied the spatiotemporal spread of an initial
localized perturbation using the OTOC in the 1D Kuramoto-
Sivashinsky (KS) equation. This is a deterministic nonlinear
differential equation with unstable long-wavelength modes
whose steady-state chaos is stabilized by nonlinear terms. Via
extensive numerical simulations we have characterized spatial
spread and temporal growth of initial localized perturbations
in the KS equation in the continuum limit. We provide an
analytical insight for the linearized KS equation which has a
unique property of hosting a well-defined light-cone structure
even in the linear regime. The role of the unstable long-
wavelength modes in the linearized KS equation has been
understood by a saddle-point analysis. We also provide results
for the KPZ equation under a numerical discretization scheme
described in Ref. [48]. However, in the truly continuum limit,
the KPZ equation is not expected to show spatiotemporal
chaos [49]. The positive largest Lyapunov exponent in the
KS equation has the linearly unstable long-wavelength modes
as its source, while for the (discretized) KPZ equation there
are no linearly unstable modes and the chaos appears to be
“sourced” at the scale of the numerical discretization.
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Our work demonstrates that the KS equation is an excellent
platform for studying chaos in spatially continuum systems.
It will be interesting to explore spatiotemporal chaos in mul-
ticomponent systems [56—-63] where one can study chaos in
different species. Given that many physical systems fall into
the 1D KPZ universality class [28,29,43,64,65], our findings
should hold for such systems of both experimental and theo-
retical interest.
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APPENDIX A: NUMERICAL METHOD
FOR THE KS EQUATION

We describe here the numerical techniques used in the
direct numerical simulation (DNS) of the 1D KS equation.
We use the pseudospectral method which is well-known in
fluid dynamics [66]. The two equations of interest are

dho = —37h, — 3h, — 1(B:h,)?, (A1)

8tw = _8x2¢ - 3;‘1# — 0ch, 3x1//,

where h,(x, t) is the original copy of the KS model and ¥ (x, t)
is defined as

(A2)

1
Yix, 1) = lm = (hp(xs ti 1) = ho(x, ti +1), 12 0.
e—>0 €

(A3)
First we take the Fourier transform of Eqs. (Al) and (A2),
such that the equations are

Do = (K> — kHho — Fe(30:ho)?), (A4)

ik = (K2 — k) — Fi(@ch, 0:1), (AS5)

where Fi(-) is the Fourier transform corresponding to the
wavenumber k such that h, = Fi(h,) and Y, = Fr(¥).
The Fourier transforms are easily computed numerically using
the fast Fourier transform (FFT). The inverse transform is also
easy to perform using inverse FFT (IFFT). We compute the
nonlinear terms in real space by transforming back to real
space using IFFT, and then return to Fourier space using FFT.

We carry out the time evolution of Egs. (A4) and (AS)
using the exponential time-differencing fourth order Runge-
Kutta method (ETDRK4) [67,68] in our simulation. The
ETDRK4 and its application to the 1D KS equation is dis-
cussed in detail in Ref. [67]. Reference [68] studies a slightly
modified version of the ETDRK4 which we adapt in our
simulation. Here we note that we evolve only Eq. (A4) up
to time #;(>> 1). Then we start evolving Eq. (AS5) along with
Eq. (A4).

APPENDIX B: NUMERICAL METHOD
FOR THE KPZ EQUATION

Here we discuss the numerical method we employ for
solving the KPZ equation. The Lam-Shin method [48] is a
finite-difference technique where central difference is used for
the second-derivative term and the nonlinear term is handled
with a modified difference term adapted for the 1D KPZ
equation. The height profile 4, at the nth grid point (assuming
periodic boundary conditions) satisfies

dh,
dt

=Gy +gNu + &, (BI)

where
Cn = hn+l + hn—l - Zhna
Nn = %[(hnﬂ - hn)2 + (thrl - hn)(hn - hnfl) (B2)
+ (hn - hnfl)z]-
Note that here we set Ax =L/N to 1 [48]. Thus the
height 4, in the Lam-Shin numerical scheme is directly cou-
pled only to the nearest neighbors. With this discretization

shown in Eq. (B1), we use Euler-Maruyama method for time
marching [48,69].
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