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ABSTRACT Machine learning algorithms have had a profound impact on the field of computer science over
the past few decades. The performance of these algorithms heavily depends on the representations derived
from the data during the learning process. Successful learning processes aim to produce concise, discrete,
meaningful representations that can be effectively applied to various tasks. Recent advancements in deep
learning models have proven to be highly effective in capturing high-dimensional, non-linear, and multi-
modal characteristics. In this work, we provide a comprehensive overview of the current state-of-the-art
in deep representation learning and the principles and developments made in the process of representation
learning. Our study encompasses both supervised and unsupervised methods, including popular techniques
such as autoencoders, self-supervised methods, and deep neural networks. Furthermore, we explore a wide
range of applications, including image recognition and natural language processing. In addition, we discuss
recent trends, key issues, and open challenges in the field. This survey endeavors to make a significant
contribution to the field of deep representation learning, fostering its understanding and facilitating further
advancements.

INDEX TERMS Representation learning, deep learning, feature extraction, transfer learning, natural
language processing, computer vision.

I. INTRODUCTION
In recent years, machine learning [1], [2], [3], [4], [5], [6],
[7], [8] has shown promising capabilities in various fields
of study and application. Representation learning, as a core
component in artificial intelligence is attracting more and
more scientists every day. This interest is mirrored in an
increasing number of papers, publications, and workshops
on representation learning in international conferences and
various influential journals.

Representation learning involves the detection, extraction,
encoding, and decoding of features from raw data, which can
then be used in learning tasks. Its objective is to abstract
features that best represent data, and the algorithms developed
for this purpose are collectively referred to as representation
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learning [9]. The performance of deep learning models relies
heavily on the methods used to represent data. Consequently,
the rapid growth of deep learning has been accompanied by
significant advances in representation learning techniques.
Deep learning owes its success to architectures composed of
multi-layered non-linear modules, each transforming features
into higher-level representations.
Learning representation aims to encode (embed) the

raw input data into lower-dimensional real-valued vectors
(embeddings), ideally disentangling the features that cause
variation in the data distribution. Ideally, these representa-
tions should be robust to small differences or outliers in
the input data, ensuring that temporally or spatially similar
samples fall into close proximity in the representation space.
Deep representation learning methods enable the hierarchical
structuring of descriptive factors, where higher layers capture
more abstract concepts. An ideal high-level representation
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consists of simple and linearly correlated factors [10]. Owing
to the nature of feature extraction in representation learning,
representations can be shared and utilized across different
tasks. Although achieving the characteristics mentioned
above is challenging, the learned representation facilitates
the discovery of latent patterns and trends in data for the
learner, hence enhancing the learning of the multiple tasks
[10]. Based on the application, the raw input data can be
of any type, for instance, texts, images, audio, video, etc.
Given a particular task, such as classification, segmentation,
synthesis, and prediction, the main objective is to update the
parameters of a neural network so that can represent the input
data in a lower dimension.

In the domain of image processing, representation learning
finds applications in visualization [11], regression [12], [13],
[14], interpretation of predictions [15], [16], [17], generating
synthetic data [18], finding and retrieving similar images
[19], [20], image enhancement and denoising [21], [22],
semantic segmentation, and object detection [23], [24], [25].
Challenges in 2D image processing also extend to volumetric
image processing contexts, such as 3D MRI [26] and point
cloud data captured by depth sensors [27].
In the analysis of sequential data, representation learning

plays a crucial role in transferring representations across
domains. This enables the generation of annotations and
captions for images [28], [29], [30] and facilitates post-hoc
interpretation in medical data analysis [31]. By leveraging
learned representations, researchers can bridge the gap
between different data modalities, allowing for more compre-
hensive and meaningful insights.

Natural language processing (NLP) leverages representa-
tion learning approaches across various domains, including
text classification [32], question answering [33], machine
translation [34], [35], [36], electronic health records [37],
financial forecasting [38], chatbots [39], social media anal-
ysis [40], [41] and more. The field of NLP has witnessed an
evolution from early rule-based methods to the application
of statistical learning techniques, enabled by access to
large amounts of data. However, the introduction of deep
learning approaches to NLP in 2012 revolutionized the
field, making neural network-based methods the dominant
approaches [42]. In modern NLP, Word2Vec [43] and GloVe
[44] have emerged as advanced, well-known approaches for
representing words as vectors. Following a breakthrough
in 2017 with attention-based models [45], advanced pre-
trained models, particularly BERT [46], have garnered
significant attention and generated excitement within the
NLP community. These models have showcased exceptional
performance and have become the focal point of current NLP
research and applications.

Linear factor models, such as PCA and ICA, have
been employed as early methods of feature extraction in
representation learning. While these models can be extended
to form more powerful representations, this article focuses
primarily on deep models of representation. For a more
comprehensive discussion on linear factor models, readers

are encouraged to refer to [10] and [47]. The subsequent
sections of this article delve into the prevalent approaches
in deep representation learning, providing insights into their
principles and techniques.
This survey provides a comprehensive overview of the

current state-of-the-art methods and principles in deep
representation learning. While representation learning has
been reviewed in several previous surveys, this work
offers a uniquely comprehensive and up-to-date treatment.
Existing surveys have focused on specific approaches such
as autoencoders [48], [49], generative adversarial networks
[50], and foundation models [51]. Bengio et al. [10],
in their 2013 publication, provided a perspective focused on
disentangling factors of variation. LeCun et al. [9], in their
2015 work, reviewed representation learning, emphasizing
deep learning breakthroughs. It’s essential to consult the
original paper for a detailed understanding of their coverage.
More recent works, such as Zhou et al. [52] and Otter
et al. [53], delivered insightful surveys on representation
learning for computer vision and natural language processing,
respectively. Zhou et al. discuss methods for various video
segmentation tasks, while Otter et al. review developments in
core NLP areas and related applications.
Our work encompasses a broader scope, including

major techniques for both supervised and unsupervised
feature learning. We discuss recent advancements spanning
autoencoders, generative adversarial networks, graph neural
networks, Bayesian deep learning, transformers, and other
critical topics. Additionally, we explore applications across
computer vision, natural language processing, healthcare, and
other domains. This survey aims to connect key concepts in
deep representation learning, tracing progress from founda-
tional methods to cutting-edge techniques. By synthesizing
a wide range of contemporary research into a single source,
we hope to provide valuable insights into this rapidly evolving
field and offer a comprehensive reference for representation
learning distinct from previous works.

II. MULTI LAYER PERCEPTRON
A multi layer perceptron or feedforward neural network is
a stack of multiple layers. Each layer, consists of one linear
transformation and one non-linear activation function. Given
an input vector Ex 2 Rn and weight matrix W 2 Rn⇥m,
transformed vector Ey 2 Rm can be calculated as:

Ey = WT
Ex (1)

The weight matrix W in Eq. 1 consists of m rows Eri 2 Rm

(where 1  i  m). As depicted in Fig. 1, each row Eri can
be thought of as a vector perpendicular to a surface Si in
hyperspace that passes through the origin. Surface Si divides
the n-dimensional space into 3 sub-spaces: three sets of points
residing on the surface and the two sides of it. Each yi in
vector Ey = (y1, y2, . . . , ym), is calculated by the dot product
of row Eri and the input vector Ex. Depending on the relative
positions of the point Ex and surface Si, the value of Ey along
the i-th dimension may be positive, negative, or zero. A bias
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number bi can also be employed to further control the value
of Ey. Essentially, the parameters of the weight (Eri) and bias
(Eb) vectors decide on how the features of the input vector
Ex affect Ey along the i-th dimension in the target space of m
dimensions. The training process, updates these weights and
biases so that they can fit the input data to their corresponding
target values. Thus, the network learns how to distinguish or
generate certain similarities and patterns among the features
of the input data. Each of the parameters of Ey are passed to an
activation function in order to add non-linearity to the output.
In a similar way, an extra layer can be utilized to capture the
patterns and similarities in the output vectors of the previous
layer. Hence, extracting more complex characteristics in the
data. Adding extra layers may increase the capability of
a network in learning representations in exchange for its
computational complexity.

FIGURE 1. An intuitive representation of how the weights of a linear layer
transform from the input space to the output space. Eri , the i -th row of the
weight matrix of the linear layer may be considered as the normal vector
of surface Si , that may affect different input data points in different ways:
a) Points above the surface: Eri · Ex1 > 0. b) Points residing on the surface:
Eri · Ex1 = 0. c) Points that are posed below the surface: Eri · Ex1 < 0. The
result of the product may also be passed through an activation function
to add non-linearity.

III. GENERATIVE MODELS
Generative models are unsupervised methods that aim to
learn and approximate the distribution function from which
the samples of a given unlabeled dataset are generated.
By acquiring knowledge of this approximate generator
function, models gain the ability to generate random samples
that are not originally present in the dataset, yet possess
resemblances to the existing data [54]. Generative models
can be grouped into two categories: energy-based and
function-based models [54]. Energy-based models include
Boltzmann Machines (BM), Restricted Boltzmann Machines
(RBM), and Deep Belief Networks (DBN) [55]. Energy-
based models are probabilistic models that provide informa-
tion about the probability density or mass function without
explicitly determining the normalizing constant, resulting in
un-normalized probabilities. Thesemodels exclusively define
the energy function, which corresponds to the unnormalized
negative log-probability [56]. On the other hand, function-
based models, such as the Auto-Encoder [11], [57] and its

variants and Generative Adversarial Networks (GANs) [58],
learn the mapping function from input to output, enabling the
generation of new samples based on this learned mapping.

A. BOLTZMANN MACHINES
1) BOLTZMANN MACHINE
The Boltzmann Machine is an energy-based model initially
introduced for learning arbitrary probability distributions
over binary vectors [47]. Later, continuous variations of
Boltzmann Machines have been proposed [59].

Given a d-dimensional binary vector x 2 {0, 1}d as input,
the joint probability distribution is defined as:

P(x) =
exp(�E(x))

Z
(2)

where Z is normalization parameter defined as:

Z =

X

x
exp(�E(x)) (3)

ensuring that P(x) forms a probability density. In Equation
2, E(x) represents the energy function defined as:

E(x) = �(xTWx + bT x) (4)

The training process involves maximizing the likelihood
and minimizing the energy function. Boltzmann Machines
exhibit a learning procedure inspired by biological neurons,
where the connection between two neurons strengthens
if they are both excited together and weakens otherwise.
This biologically inspired learning mechanism enhances the
model’s ability to capture dependencies and patterns within
the data.
One popular training algorithm for Boltzmann Machines

is Contrastive Divergence, which provides an efficient
approximation to maximum likelihood training using Gibbs
sampling [56], [60].

2) RESTRICTED BOLTZMANN MACHINE (RBM)
The Restricted Boltzmann Machine limits the connections
among the nodes of a graph to only links between the visible
and hidden neurons. Consequently, there are no connections
among the hidden neurons or the visible ones. The vector of
nodes, denoted as x, can be divided into two subsets: visible
nodes v and hidden nodes h. The energy function for RBM is
given by:

E(v, h) = �bT v� cT h� vTWh (5)

Here, b and c represent the bias weights, and the matrixW
represents the connection weights.
The partition function for RBM, denoted as Z , is defined

as:

Z =

X

v

X

h

e�E(v,h) (6)

RBMs are probabilistic graphical models and serve as
the fundamental building blocks of Deep Belief Networks
(DBNs). However, due to the intractability of the partition
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function Z , training RBMs requires specialized methods such
as Contrastive Divergence [61] and Score Matching [47].

3) DEEP BELIEF NETWORK (DBN)
A Deep Belief Network consists of several RBMs. When
a DBN has only one hidden layer, it can be considered
as an RBM. To train a DBN, an RBM is first trained
using likelihood maximization or contrastive divergence
[47]. Subsequently, another RBM is trained to model the
distribution of the previous layers. By adding more layers,
the variational lower bound of the log-likelihood of the data
increases, enabling the DBN to capture complex patterns and
dependencies.

The deepest layer of DBNs is characterized by undirected
connections, setting them apart from other deep neural
network architectures [55]. However, it is important to
mention that the term ‘‘DBN’’ is sometimes incorrectly used
to refer to any neural network, which may lead to confusion.

4) OTHER VARIANTS
There are other variants of Boltzmann machines proposed
such as Deep Boltzmann Machines (DBM) [62], Spike
and Slab Restricted Boltzmann Machines (ssRBM) [63],
Convolutional Boltzmann Machines [64]. However, other
generative models such as variational auto encoders and
GANs have proved as viable substitutes for variations and
derivations of Boltzmann machines [58].

B. AUTO-ENCODERS
Autoencoder-based models are considered to be some of
the most robust unsupervised learning models for extracting
effective and discriminating features from a large unlabeled
dataset. The general architecture of an auto-encoder consists
of two components: Encoder: Function f which aims to
transform the inputs x to a latent variable h in lower
dimensions. Decoder: Function g reconstructs the input x̂,
given the latent variable h. The training process involves
updating the weights of the encoder and decoder networks
according to the loss function of the reconstruction:

L(x, x̂) = L
⇣
x, g

�
f (x)

�⌘
(7)

Many variants of auto-encoders have been proposed in the
literature; however, they can be categorized in four major
groups [54].

1) UNDERCOMPLETE AUTOENCODER
In order to make the autoencoder learn the distributions from
the data, the latent variables should have lower dimensions
than the input data. Otherwise, the network would fail to learn
any useful features from the data. This type of autoencoder is
known as undercomplete autoencoder [47].

2) DENOISING AUTOENCODER (DAE)
Denoising Autoencoder corrupts the data by adding stochas-
tic noise reconstructs it back into intact data. Hence, it is

FIGURE 2. General architecture of an auto-encoder. The encoder
transforms input x into the latent vector h: h = f (x). The decoder
reconstructs the input from h: x̂ = g(h).

called denoising autoencoder. As depicted in Fig. 3, the
added noise to the input is the only difference of this method
to the traditional autoencoders. This approach results in better
feature extraction and better generalization in classification
tasks [65]. Also, Several DAEs can be trained locally by
adding noise to their inputs and stacking consecutively to
form a deep architecture called Stacked DAE, with higher
representation capabilities.

FIGURE 3. General architecture of a denoising auto-encoder (DAE).
Adding noise to the input during the training process, results in more
robust learning of the features. Hence, increasing the generalization
ability.

3) SPARSE AUTOENCODERS (SAE)
Sparse representation refers to the technique of decomposing
a data set into a set of overcomplete vectors where only
a small subset of those vectors combine to describe the
data. The overcompleteness of representation can lead to
more expressive basis vectors which can capture complex
structures more effectively. The sparsity puts an additional
constraint on the number of basis vectors present for
decomposing data to basis vectors. Sparse representation
can be formulated as the disentangling of an input signal
into a linear combination of its latent features [66]. The
loss function of a sparse autoencoder includes an additional
sparsity constraint (�(h)) on the latent variables [47]:

L = L
�
x, g(f (x))

�
+ �(h) (8)

Thusmaking the autoencoder to extract features from the data
and represent them in sparse vectors and matrices [67].
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4) VARIATIONAL AUTOENCODER (VAE)
Although this type of autoencoder has the same components
as the traditional autoencoder (Fig. 2), its training process
is based on variational inference [68]. Just as the traditional
autoencoder, the encoder function f is trained to map the
input data to the latent variables z and the decoder function
g is trained to map the latent variables z to the input
data. However, for this autoencoder to work, the latent
variable z is assumed to be Guassian.1 By choosing this
representation, we gain significant control over how the latent
distribution should be modeled, resulting in a smoother and
more continuous latent space. And the loss function for
this training consists of two parameters: First, Kullback-
Leibler(KL) divergence [69] of the output of the encoder f
and Guassian distribution; Thus forcing the encoder to map
the input data to the Gaussian distribution in the latent space.
Second, the reconstruction loss: [70]:

L = D
�
KL(f kN (0, I ))

�
+ L

�
x, g(f (x))

�
(9)

Variational inference is discussed in more details in sec-
tion V-C.

5) CONTRACTIVE AUTOENCODER (CAE)
The main goal in proposing this variant of autoencoder was to
make the features in the activation layer invariant with respect
to small perturbations in the input [71]. The basic autoencoder
may be converted to a contractive autoencoder by adding the
following regularization to its loss function:

kJf (x)k2F =

X

i

X

j

⇣@hj(x)
@xi

⌘2
(10)

where f : Rm ! Rn is a non-linear mapping function
from input space x 2 Rm to the hidden layer h 2 Rn.
The regularization term is the squared value of the first-order
partial derivatives of the hidden values with respect to
the input values. By penalizing the first derivative of the
encoding function, the derivative is forced to maintain lower
values. In this way, the encoding function may learn a
flatter representation. As a result, the encoding function may
become more robust or invariant to small perturbations in the
input.

The loss function of the contractive autoencoder may be
written as:

LCAE =

X

x2X

✓
LR

�
x, g(f (x))

�
+ �kJf (x)k2F

◆
(11)

where X is the dataset of training samples, LR denotes
the reconstruction loss, and � 2 R controls the effect of
contractive loss. The input points get closer in distance when
mapped to the hidden state i.e. they are contracted. This
contraction can be thought as the reason behind robustness
in features.

1Depending on the type of data, this can also be Bernouli.

C. GENERATIVE ADVERSARIAL NETWORKS
Although both Autoencoders and GANs are generative
models, their learning mechanism is different. Autoencoders
are trained to learn hidden representations, where GANs are
designed to generate new data. The most prevalent generative
model utilized in many applications is the GAN architecture
[58]. As depicted in Fig. 4, it resembles a two-player minimax
game where two functions known as the generator G and the
discriminatorD are trained as opponents. The G function tries
to generate fake samples as similar as possible to the real
input data from a noise variable z, and theD function aims to
discriminate the fake and real data apart. The minimax game
can be described with the following objective function:

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)]

+ Ez⇠pz(z)[log
�
1 �D(G(z))

�
] (12)

where x ⇠ pdata denotes the real data sample x with its
distribution pdata. AndD(x) represents the class label that the
discriminator D assigns to the input sample x. For the noise
variable z a prior is assumed as z ⇠ pz(z).
The success of CNNs in image analysis and the capabilities

that GANs provide, has made generative CNNs possible
[72]. Numerous extensions to the original GAN have been
proposed so far [73] such as interpretable representation
learning by information maximizing (InfoGAN) that forces
the model to disentangle and represent features of images
in certain elements of the latent vector [74]. Or Cycle-
Consistent GAN (CycleGAN) that learns characteristics of
an image dataset and translates them into another image
dataset without any dataset of paired images [75]. An inherent
limitation of the original GAN is that it does not have any
control over its output. Conditional Generative Adversarial
Nets [76] incorporate auxiliary inputs such as class labels into
their model to generate the desired output.

FIGURE 4. Generative adversarial network.

D. APPLICATIONS
Generative models provide a powerful framework for learn-
ing and approximating complex data distributions, allowing
for the generation of realistic and novel samples. They have
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shown promise in a wide range of applications, contributing
to advancements in various fields. These models have found
applications in numerous domains, enabling the development
of powerful deep architectures. In the field of NLP, generative
models have been utilized for tasks such as text generation
[77], [78] and machine translation [79]. Notably, the GPT-
3.5 model has demonstrated remarkable performance in
language generation tasks [39].

In image processing, generative models have demonstrated
their effectiveness in various applications. They have been
employed for tasks such as denoising 3D magnetic images
[80], unsupervised image generation [81], image-to-image
translation [75], [82], cross-modality synthesis [83], [84],
data augmentation and anonymization [85], image segmen-
tation [86], [87], super-resolution [73], [88], [89], [90], and
video analysis [91].
Furthermore, generative neural networks and their deriva-

tives have been utilized in combination with deep reinforce-
ment learning algorithms for tasks such as object detection
[92], [93]. They have also been applied in the analysis of
graph data, contributing to advancements in areas like graph
generation [94] and graph representation learning [95].

Overall, generative neural networks have proven to be
versatile tools with applications spanning a wide range of
disciplines, delivering state-of-the-art performance in various
problem domains.

IV. GRAPH NEURAL NETWORKS
The widespread success of deep learning in a myriad of
applications over the past decade is well-documented [35],
[36], [59], [79], [96], [97]. In the evolving landscape of deep
learning research, Graph Neural Networks (GNNs) stand
out as a pivotal advancement for effective data analysis in
non-Euclidean geometries. GNNs have found applications
in diverse real-world contexts, including but not limited
to, biological regulatory networks in genomics [98], [99],
telecommunication infrastructures [100], social interaction
frameworks [101], transportation systems [102], [103], [104],
energy grids [105], [106], [107], electrical circuits [108],
[109], epidemiological spread [110], and neural networks in
the brain [111]. Traditional deep learning architectures like
ConvNets struggle with the irregular, non-Euclidean structure
of graphs, primarily because the varying neighborhood sizes
of graph nodes are incompatible with ConvNets’ fixed-size
kernels. To address this, a plethora of GNN models have
been proposed, leveraging the strengths of deep learning to
capture the inherent complexities of non-Euclidean graphs
[112], [113], [114]

A. BASICS OF GNN
Graph convolution originates from spectral graph theory
which is the study of the properties of a graph in relationship
to the eigenvalues, and eigenvectors of associated graph
matrices [115], [116], [117]. The spectral convolution
methods [112], [113], [114], [118] are the major algorithm
designed as the graph convolution methods, and it is based

on the graph Fourier transform [119], [120]. GCN focus
processing graph signals defined on undirected graphs G =

(V, E,W), where V is a set of n vertexes, E represents edges
and W = [wij] 2 {0, 1}n⇥n is an unweighted adjacency
matrix. A signal x : V ! R defined on the nodes may be
regarded as a vector x 2 Rn. Combinatorial graph Laplacian
[115] is defined as L = D � W 2 Rn⇥n where D is
degree matrix. As L is a real symmetric positive semidefinite
matrix, it has a complete set of orthonormal eigenvectors
and their associated ordered real nonnegative eigenvalues
identified as the frequencies of the graph. The Laplacian
is diagonalized by the Fourier basis U|: L = U3U|
where 3 is the diagonal matrix whose diagonal elements
are the corresponding eigenvalues, i.e., 3ii = �i. The graph
Fourier transform of a signal x 2 Rn is defined as x̂ =

U| x 2 Rn and its inverse as x = U x̂ [119], [120], [121].
To enable the formulation of fundamental operations such as
filtering in the vertex domain, the convolution operator on
graph is defined in the Fourier domain such that f1 ⇤ f2 =

U [(U| f1) � (U| f2)], where � is the element-wise product,
and f1/f2 are two signals defined on vertex domain. It follows
that a vertex signal f2 = x is filtered by spectral signal
f̂1 = U| f1 = g as:

g ⇤x = U
⇥
g(3) �

�
U| f2

�⇤
= Ug(3)U| x.

FIGURE 5. Illustration of graph convolution.

Note that a real symmetric matrix L can be decomposed as
L = U3U�1

= U3U| since U�1
= U|. D. K. Hammond

et al. and Defferrard et al. [114], [122] apply polynomial
approximation on spectral filter g so that:

g ⇤x = Ug(3)U| x

⇡ U
X

k

✓kTk (3̃)U| x (3̃ =
2

�max
3 � IN)

=

X

k

✓kTk (L̃)x (U3k U|
= (U3U|)k )

Kipf et al. [113] simplifies it by applying multiple tricks:

g ⇤x

⇡ ✓0 IN x + ✓1L̃x (expand to 1st order)
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= ✓0 IN x + ✓1(
2

�max
L� IN))x (L̃=

2
�max L� IN))

= ✓0 IN x + ✓1(L� IN))x (�max=2)

= ✓0 IN x � ✓1 D- 12 AD- 12 x (L=IN �D- 12 AD- 12 )

= ✓0(IN +D- 12 AD- 12 )x (✓0=�✓1)

= ✓0(D̃
�

1
2 ÃD̃

�
1
2 )x (renormalization:Ã=A+ IN,

D̃ii=
P

j Aij).

Rewriting the above GCN in matrix form: g✓ ⇤X ⇡

(D̃
�

1
2 ÃD̃

�
1
2 )X2, it leads to symmetric normalized Laplacian

with raw feature. GCN has been analyzed in [123] using
smoothing Laplacian [124], and the updated features (y)
equals to the smoothing Laplacian, i.e., the weighted sum of
itself (xi) and its neighbors (xj): y = (1�� )xi+�

P
j
ãij
di
xj =

xi � � (xi �
P

j
ãij
di
xj),where � is a weight parameter between

the current vertex xi and the features of its neighbors xj, di is
degree of xi, and y is the smoothed Laplacian. Rewriting in
matrix form, the smoothing Laplacian is:

Y = x � � D̃
�1

L̃x

= (IN �D̃
�1

L̃)x (� = 1)

= (IN �D̃
�1

(D̃ � Ã))x (L̃ = D̃ � Ã)

= D̃
�1

Ãx.

The above formula is random walk normalized Laplacian as
a counterpart of symmetric normalized Laplacian. Therefore,
GCN can be treated as a first-order Laplacian smoothing
which averages neighbors of each vertex.

B. TAXONOMY OF GNN
As many surveys on GNN state [118], [125], [126], [127],
[128], [129], GCNs can be classified into two major cate-
gories based on the operation type. Therefore, we introduce
a taxonomy of GNN in the following two perspectives.

C. SPECTRAL-BASED GNN
This group of GCN highly relies on spectral graph analysis
and approximation theory. Spectral-based GNN models
analyzes the weight-adjusting function (i.e., filter function)
on eigenvalues of graph matrices, which corresponds to
adjusting the weights assigned to frequency components
(eigenvectors). Many of Spectral-based GNN models are
equivalent to low-pass filters [94]. Based on the type of
filter function, there are linear filtering [113], [130], [131],
polynomial filtering [122], [132], [133], [134], [135], and
rational filtering [94], [136], [137], [138]. Beyond that,
[139] adaptively learns the center of spectral filter. Closely,
[140] proposed a high-low-pass filter based on p-Laplacian.
References [141], [142], and [143] revisit the spectral graph
convolutional filter and make theoretical analyze. Optionally,
one can choose graphwavelet tomodel spectrum of each node
[144], [145], [146], [147].

D. SPATIAL-BASED GNN
Nowadays, there are more emerging GNNs using spatial
operations. Based on the spatial operation, they can be
categorized into three groups: local aggregation which
only combine direct neighbors [130], [131], [148], [149],
[150], higher order aggregation which involves second order
or higher orders of neighbors [114], [122], [133], [134],
[135], [151], and dual-directional aggregation that propagates
information in both forward and backward directions [94],
[136], [137], [138], [152], [153], [154].

E. APPLICATIONS
Graph neural networks have been applied in numerous
domains such as physics, chemistry, biology, computer
vision, NLP, intelligent transportation, social networks
[118], [125], [126], [127], [128], [155]. To model physical
objects, DeepMind [156] provides a toolkit to generalize
the operations on graphs, including manipulating structured
knowledge and producing structured behaviors, and [157]
simulates fluids, rigid solids, and deformable materials.
Treating chemical structure as a graph [158], [159], [160],
[161] represent molecular structure, and [162], [163], [164]
model protein interfaces. Further, [165] predict the chemical
reaction and retrosynthesis. In computer vision, question-
specific interactions are modeled as graphs in visual question
answering [166], [167]. Similar to physics applications,
human interaction with humans could be represented by
their connections [168], [169], [170], [171]. Reference [172]
model the relationship among word and document as a
graph, while [173] and [174] characterize the syntactic
relations as a dependency tree. Predicting traffic flow is a
fundamental problem in urban computing, and transportation
network can be modeled as a spatiotemporal graph [175],
[176], [177], [178]. Functional MRI (fMRI) is a graph data
where brain regions are connected by functional correlation
[179], [180]. Reference [181] employs a graph convolutional
network to localize eloquent cortex in brain tumor patients,
[182] integrates structural and functional MRIs using Graph
Convolutional Networks to do Autism Classification, and
[183] applies graph convolutional networks to classify
mental imagery states of healthy subjects by only using
functional connectivity. To go beyond rs-fMRI and model
both functional dependency among brain regions and the
temporal dynamics of brain activity, spatio-temporal graph
convolutional networks (ST-GCN) are applied to formulate
functional connectivity networks in the format of spatio-
temporal graphs, which can be also applied in physcial flows
[102], [184], [185].

V. BAYESIAN DEEP LEARNING AND VARIATIONAL
INFERENCE
Bayesian networks are statistical methodology that combines
standard networks with Bayesian inference. Following the
Bayes rule (Eq. 13), the random variables of a problem can
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be represented as a directed acyclic graph known asBayesian
Network or belief network [47].

Let z = {z1, z2, . . . , zN }, and x = {x1, x2, . . . , xM }

denote the latent variables and the observations respectively.
The latent variables facilitate the representation of the
observations’ distribution. Given a prior distribution p(z) over
the latent variables, the Bayesian model maps the latent
variables to the observations by the likelihood function p(x|z).
Thus producing the joint distribution of the latent variables
and observations:

p(z,x) = p(x|z)p(z) = p(z|x)p(x) (13)

In Bayesian models, inference involves in calculating the the
posterior distribution which is the conditional distribution
of the latent variables given the observations:

p(z|x) =
p(z,x)
p(x)

(14)

The marginal density of the observations p(x) is called
evidence which is calculated by integration over latent
variables:

p(x) =

Z
p(x,z)dz (15)

A. HIDDEN MARKOV MODEL
Hidden Markov Model (HMM) is a probabilistic Bayesian
network architecture [186] that approximate the likelihood of
distributions in a sequence of observations [187]. As opposed
to Bayesian networks, these networks are undirected and
can be cyclic. The family of HMMs, including the Hidden
Semi-Markov Model (HSMM), are widely used to identify
patterns in sequential data of time varying and non-time
varying nature [188]. They are well suited for sequencing
time series problems with a linear degree of growth over
data patterns [189]. A generalized HMM is composed of a
state model of Markov process zt , linked to an observation
model P(xt |zt ), which contains the observations xt of the state
model.

While HMMs are considered agnostic of the duration
of the states, the HSMMs can take the duration of each
state into consideration [190], which makes HSMMs suitable
for prognosis [191], [192]. Neither HMM nor HSMM can
capture the inter-dependencies of observations in temporal
data, which is a key factor in determining the state of the
system. To overcome this shortcoming, one can use the
Auto-Regressive HiddenMarkovModel (ARHMM) which
accounts for the inter-dependencies between consecutive
observations to model longer time series [193], [194], [195]
HMMS can loose their efficiency when dealing with dis-

tributed state representations. The Factorial HMM (FHMM)
is an extension of HMM that aims at addressing this problem
by using several independent layers of state structure HMMs.
These layers are free to evolve irrespective of the other layers,
allowing observations at any given time to be dependent on
the value of all states at that time [196].

Due to exponential time complexity of this integration,
its computation is intractable. Thereupon, the posterior
distribution cannot be calculated directly. Rather, it is
approximated [68]. There are two major methods of posterior
approximation:

• Sampling based: Markov Chain Monte Carlo (MCMC)
methods are often able to approximate the true and
unbiased posterior through sampling, although they
are slow and computationally demanding on large and
complex datasets with high dimensions.

• Optimization based: approaches for Variational Infer-
ence (VI) tend to converge much faster though they may
provide over-simplified approximations.

The following subsections explain each of these
approaches on these topics due to their importance.

B. MARKOV CHAIN MONTE CARLO
Monte Carlo estimation is a method for approximating the
expectation of random variables where their expectation
may involve intractable integrations as in Eq. 15. Markov
Chain Monte Carlo, Metropolis-Hastings (MH) sampling,
Gibbs sampling, and their parallel and scalable variations are
instances of MCMC estimations [197].

Although the basic Monte Carlo algorithm requires the
samples to be independent and identically distributed (i.i.d),
obtaining such samples my be computationally intensive in
practice. Nonetheless, the sample generation process can
still be facilitated by satisfying some properties as described
below [198]:

1) MARKOV PROPERTY
Given the past and present states, the probability of transition
to the future states relies on the present state only. Mathemat-
ically speaking, a Markov chain is a sequence of random
variables X1,X2, . . . ,Xn representing states, that hold the
following property:

P(Xn+1 = x|Xn = xn,Xn�1 = xn�1, . . . ,X1 = x1)
= P(Xn+1 = x|Xn = xn) (16)

2) TIME-HOMOGENEITY
A stochastic process that the probability of transition is
independent of the index n, is time-homogeneous.

3) STATIONARY DISTRIBUTION
A probability distribution of a Markov chain represented
as a row vector ⇡ that is invariant by matrix of transition
probabilities K.

⇡ = ⇡K (17)

4) IRREDUCIBLITY
A Markov chain is irreducible if in a discrete state space,
it can go from any state x to any other state y in a finite number
of transitions. In mathematical terms, given that:

K(x,y) = P(Xn+1 = y|Xn = x) (18)
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where K is a matrix, there exist an integer n such
that Kn

(x,y) > 0.
A stationary distribution of a chain is unique if it has

stationary distribution and it is irreducible. Considering
a Markov chain with a unique stationary distribution ⇡ ,
according to the law of large numbers [198], the expectation
value of a function f (x) over ⇡ can be approximated by
calculating the mean of the outputs from the Markov chain:

E⇡ [f (x)] =

Z
f (x)⇡ (x)dx = lim

n!1

1
n

nX

i=1

f (xi) (19)

For a more detailed explanation on MCMCs, the readers
may consult [197], [198].

C. VARIATIONAL INFERENCE (VI)
Variational Inference (VI) is of high importance in modern
machine learning architectures. Regularization through vari-
ational droput [199], [200], representing model uncertainty
in classification tasks and reinforcement learning [201], are
a few of scenarios in which variational inference is utilized.
The core idea in VI is to find an approximate distribution
function which is simpler than the true posterior and its
Kullback-Liebler divergence [69] from the true posterior is
as lowest as possible [202].

The problem changes to the search for a candidate density
function qc(x) among a specified family of distributions D
such that it best resembles the true posterior function:

qc(z) = argmin
q(z)2D

KL(q(z)kp(z|x)) (20)

The Eq. 20 may be optimized indirectly through maximiza-
tion of the variational objective function ELBO(q):

ELBO(q) = E[log p(x|z)] � KL (q(z)||p(z)) (21)

where ELBO(q) is called evidence lower bound function.
The KL(q(z)||p(z)) encourages the density function q(z)
to get closer to the prior function. And the expected
likelihood E[log p(x|z)] encourages preference of latent
variable configurations that better explain the observed data.
The Eq. 21 may be rewritten as follows:

log p(x) = KL(q(z)||p(z|x)) + ELBO(q) (22)

The value of the left hand side (log-evidence) is constant and
the KL(.) � 0. As a result, ELBO(q) is the lower-bound of
evidence.

There are numerous extensions and proposed approaches
for variational inference in the literature such as Expectation
Propagation (EP) [203] and stochastic gradient optimization
[197]. For a more detailed and comprehensive review, the
readers are encouraged to consult [68], [202].

D. APPLICATIONS
Bayesian models and Variational Inference techniques have
demonstrated their versatility and effectiveness in various
domains. The Bayesian inference plays a crucial role in calcu-
lations across disciplines, including personalized advertising

recommendation systems in healthcare applications [197],
research in astronomy [204], and search engines [205].
In the fields of Physics and Chemistry, these models are

utilized to simulate physical objects such as fluids, rigid
solids, and deformable materials [157].

By leveraging Bayesian models, researchers have made
significant strides in computer vision tasks, particularly in the
field of semantic segmentation [206].

The impact of Bayesian models is also evident in the
domain of robotics. Its application has been pivotal in tasks
such as robot perception, enabling machines to understand
and interpret their environment accurately. Additionally,
it has facilitated advancements in motion planning, allowing
robots to navigate complex and dynamic environments [207],
[208], [209].

VI. CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNN) are the prevalent
approach in extracting features from image data. Though
several variants of CNNs have been proposed, they all
share pretty much the same basic components: convolution,
pooling, and fully-connected layers.

1) CONVOLUTION LAYER
Extracts features from a given input layer and stores them
on several feature maps which make up the higher layer.
Each convolution layer has several feature extractors called
kernels(filters) that each of them correspond to a single
feature map. Every single neuron of the feature map
corresponds to a group of neighboring neurons from the input
layer referred to by neuron’s receptive field. Each kernel is
used to calculate the convolution over all of the possible
receptive fields of the input layer. The convolution value is
then passed through a non-linear activation function such as
tanh(.) or sigmoid or ReLU [210] to add non-linearity to the
representation.

The feature value zli,j,k , at location (i,j) of the k�th feature
map of layer l can be calculated as:

zli,j,k = wkl � xli,j + blk (23)

where xli,j represents the receptive field of neuron zli,j,k
in the input layer. And the symbol � represents the
discrete convolution i.e. the sum of elements of Hadamard
product(element-wise) of the two matrices. The activation of
each feature can be obtained from the Eq. 24 [211].

ali,j,k = f (zli,j,k ) (24)

where f refers to the activation function.

2) POOLING LAYER
The next step after convolution is reducing the size of
the shared feature map. Various pooling operations are
proposed; though the average pooling and max pooling
are typically used [212]. The pooling operation can be
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represented mathematically as:

ylm,n,k = pool({8alk 2 Vm,n}) (25)

The neuron ylm,n,k at location (m,n) of the k�th pooled
feature map of layer l would be calculated from a set of
neighboring neurons Vm,n on the convolution feature map
passed through the pooling function pool. One of the main
advantages of the convolutions over other architectures are
having the shift-invariance. A small displacement(rotation,
translation) of the input wouldn’t change the output dramati-
cally. The main characteristic comes from sharing the kernels
and pooling layers.

3) FULLY-CONNECTED LAYER
After several convolutional and pooling layers, that perform
as feature extractors, typically a few fully-connected layers
(MLPs as discussed in section II) are added in order to
perform high-level reasoning given the extracted features
[213]. For classification tasks the fully-connected network
takes in all the neurons from the previous layers as input
and provide an output of classes followed by a softmax
function. Given a dataset of N pairs of inputs and outputs
{(x1, y1), (x2, y2), . . . , (xN , yN )}, and the weights and biases
of the whole network denoted by ✓ , the total classification
error of the network can be calculated by the following loss
function:

L =
1
N

NX

i=1

`(✓; yi, ŷi) (26)

where ŷi denotes the class label calculated by the network
and yi is the true value of the class label. The training process
of the network would involve the global minimization of
loss function. The model’s parameters ✓ can be updated
using Stochastic Gradient Descent (SGD) [214] that is a
common method for training CNNs, although various other
optimization methods and loss functions have been proposed.
Additionally, the fully-connected layers and the final layer
of CNN may be replaced by some other types of networks
or models. Also, numerous variants of CNNs and additional
components are proposed in the literature [215], [216], [217],
[218]. The readers can consult [212] for a comprehensive
introduction to the CNNs.
Fig 6 provides an abstract depiction of the structure and

components of a CNN as described above.

FIGURE 6. Abstract structure of convolutional neural networks.

A. APPLICATIONS
CNN and its extensions can be seen in almost all of the state
of the art methods of deep representation learning. It has
demonstrated competitive capabilities in numerous super-
vised and unsupervised tasks on 2D/3D images and point
cloud data [27] such as image retrieval [219], segmentation
[23], [220], [221], registration [24], object detection [222],
[223], and data augmentation [85], [224]. It has also been
applied to sequential data to extract longitudinal patterns of
signals [225], [226], i.e. applicable to 1D data as well. CNNs,
also empower reinforcement learning algorithms [227] and
may be utilized to analyze graph data [127], [228] as will be
discussed in section IV.

Fig 7 showcasing the evolution of CNN models over
the years. The progression highlights key milestones and
breakthrough models that have significantly impacted deep
representation learning.

VII. WORD REPRESENTATION LEARNING
Representing words numerically is a crucial component of
natural language processing, as it forms the foundation for
employing Artificial Neural Networks (ANN) in NLP tasks.
The simplest way to represent a word in a computer-readable
format is through a one-hot vector, where each word is
assigned a dimension in a vector equal to the size of the
vocabulary [234]. The main flaw in this approach is that
it neglects the semantic relatedness between words. Vector
space model [235] is one of the first methods of representing
words mathematically that made it possible to calculate
similarity between documents in the field of Information
Retrieval.

More recently, word embeddings have emerged as a
method for learning low-dimensional vector representations
of words from text corpora, capturing the semantic and
contextual information of words [236], [237].

Word embeddings will not only present the semantic
meanings of the word but also may show the word-context
information. We can view language model as a tool which
represents a sequence of words’ probability distribution based
on training data [238]. Language models, such as those
based on neural networks, learn the joint probability function
of word sequences in a corpus [238], [239]. One of the
earliest neural language models proposed by Bengio et al.
[239] aimed to address the challenge of learning the joint
probability function for word sequences due to the curse
of dimensionality. They introduced a method that estimates
distributed representations for each word, allowing the model
to learn about exponentially many semantically neighboring
sentences. In their model, the learned distributed encoding of
each word is fed into the last unit (softmax) to predict the
probabilities for incoming words. Other research works have
also explored word embeddings in prediction models [240],
[241], [242]. Later on, as one of the most popular approaches,
Word2vec [43] has proposed two methods: Continuous Bag
of Words (CBOW) and Skip-Gram (SG) [44], [243].
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FIGURE 7. A general timeline for some of the most important CNN-Based models in history. [229], [230], [231], [232], [233].

In CBOW, the model predicts the middle word given
the distributed representations of its context (or surrounding
words), while SG predicts the context words given the center
word. To address the computational burden of these methods,
negative sampling was proposed [244]. Negative sampling
involves using a random subsample of frequent words instead
of the entire training set to calculate the denominator of the
softmax equation.
The cross-entropy loss function is H (p, q) =

�
P

x2X p(x)log
q(x) in this model.

P( out | center ) =
exp

�
uTout vcenter

�
P

w2V exp
�
uTwvcenter

� (27)

As another influential approach Glove [44] captures the
difference between a pair of words as ratio of co-occurence
probabilities for target words with selected context word.
Later on, FastText [245] built upon the ‘‘Glove’’ and
‘‘Word2Vec’’ to mitigate their shortcoming in handling
out-of-vocabulary(OOV) [246], [247]. FastText builds word
representations by considering subword information. It rep-
resents each word as a bag of character n-grams and utilizes
these subword representations to generate word embeddings.
This approach addresses the challenge of handling OOV
words, as it can capture the meaning of unseen words based
on their character compositions [245].

A. APPLICATIONS
In language modeling, word embeddings are used to capture
the semantic meaning and contextual information of words.
Using these embeddings, the model is capable of performing
tasks such as machine translation [45], [248], sentiment

analysis [249], [250], and named entity recognition [251],
[252].
Word embeddings are being used in information retrieval

applications, making it possible to calculate word similarity
accurately and rank documents more effectively. Recent
advances in this area include models such as SBERT
(Sentence-BERT) [253] and CLIP (Contrastive Language-
Image Pretraining) [254], due to their ability to enhance
semantic understanding and cross-modal retrieval using
contextual embeddings.
In question answering, word embeddings are a key

component in models like GPT (Generative Pre-trained
Transformer) [255] and T5 (Text-to-Text Transfer Trans-
former) [256], incorporating language generation capabilities
and doing well on benchmark datasets.
Moreover, word embeddings are used in text classification

tasks, including sentiment analysis, topic classification.
Recent models such as ULMFiT (Universal Language Model
Fine-tuning) [257] and RoBERTa (Robustly Optimized
BERT Pretraining Approach) [258] show superior results by
fine-tuning large pretrained language models.

In addition, word embeddings are employed in document
summarization [259], [260], document clustering [261],
[262], and text generation [263], [264].

VIII. SEQUENTIAL REPRESENTATION LEARNING
In many real-world applications, data often exhibit a
sequential nature, where the order of elements in a sequence
holds valuable information. Examples of such sequential
data include sentences in NLP tasks [265] and medical
records in healthcare research [266], [267]. In order to
effectively capture and represent the underlying patterns in
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these sequences, it is crucial to employ architectures that can
handle inputs of varying lengths and capture the dependencies
between data points.

Recurrent Neural Networks (RNNs) [57] have emerged
as a popular choice for sequential representation learning
due to their ability to address these requirements. RNNs are
designed to process sequences by sharing parameters across
different steps [47], allowing them to handle inputs with
varying lengths. This characteristic enables RNNs to handle
sequential data more effectively than traditional feedforward
neural networks.

RNNs capture dependencies between data points. These
models are capable of considering the historical context when
processing each element in a sequence by maintaining an
internal state or memory. Thememory component of RNNs is
essential for capturing the sequential patterns present in data,
as it enables them to model relationships and dependencies
between elements over time.

A. RECURRENT NEURAL NETWORK
The general architecture of a recurrent neural network is
composed of cells with hidden states. In mathematical terms,
hidden units ht store the state of the model that depends on
the state at previous time step ht�1 and the input of the current
time step xt :

h(t) = fa(Wh(t�1),Ux(t) + b) (28)

where the matrices U ,W are weight matrices and b is bias
vector, and fa represents the activation function. The same set
of model parameters is used for calculation of ht for any of
the elements in a sequence of inputs (x1, x2, . . . , xn). In this
way, the parameters are shared across the input elements. For
supervised tasks such as classification, the hidden unit ht is
mapped to the output variables yt via the weight matrix V :

ŷt = softmax(Vht + c) (29)

c is the bias vector. Due to the recursive nature of
Eq. (28), the unfolded computational graph for a given
input sequence, can be displayed as a regular neural
network.

RNNs can be trained by back-propagation [47] as if it
is calculated for the unfolded computational graph. Two of
the most important problems with RNNs are vanishing and
exploding gradients. The longer the input sequence, the more
gradient values are multiplied together, which may cause it
to converge to zero, or exponentially gets large. Either way,
the RNN fails to learn anything. Various methods have been
proposed to facilitate training RNNs on longer sequences.
For instance, skip connections [268] let the information flow
from a farther past to the present state. Another method,
is incorporation of leaky units [269] in order to keep track
of the older states of hidden layers by linear self-connections.
Nonetheless, the problem of learning long-term dependencies
is yet to be resolved completely.

B. LONG SHORT-TERM MEMORY (LSTM)
The most prominent architecture for learning from sequential
data, is Long Short-Term Memory that combines various
strategies for handling longer dependencies [270]. In LSTM,
tuning of the hyper-parameters is a part of the learning
procedure. The general architecture of an LSTM cell contains
separate gates that control the information flow across the
time steps of sequences:

1) INPUT GATE
Controls whether the input is accumulated into the hidden
state.

it = � (Wxi · xt +Whi · ht�1 + bi) (30)

where:

it is the input gate at time step t,
xt is the current input at time step t,
ht�1 is the previous hidden state at time step t � 1,
Wxi is the weight matrix for the input connections,
Whi is the weight matrix for the hidden state connections,
bi is the bias term for the input gate,
� is the sigmoid activation function.

The sigmoid activation function is defined as:

� (x) =
1

1 + e�x
(31)

The input gate it determines the relevance of the current
input xt and its impact on updating the hidden state ht . A value
close to 0 for it indicates that the current input is ignored,
while a value close to 1 indicates that the current input has a
significant impact on the hidden state update.
By incorporating the input gate, LSTM networks can

selectively accumulate relevant information from the current
input and previous hidden state, enabling them to capture
long-term dependencies and effectively learn from sequential
data.

2) FORGET GATE
Controls the amount of effect that the previous state has on
the current state. Whenever this gate lets information flow
in completely, it acts as a skip-connection [268]. Otherwise,
similar to leaky units, it keeps track of previous hidden states
with a linear coefficient.

ft = � (Wxf · xt +Whf · ht�1 + bf ) (32)

where:

ft is the forget gate at time step t,
xt is the current input at time step t,
ht�1 is the previous hidden state at time step t � 1,
Wxf is the weight matrix for the input connections,
Whf is the weight matrix for the hidden state connections,

137632 VOLUME 11, 2023



A. Payandeh et al.: Deep Representation Learning

bf is the bias term for the forget gate,
� is the sigmoid activation function.

3) OUTPUT GATE
The output gate ot controls whether the output of the LSTM
cell should be stopped or allowed to propagate further.
It regulates the flow of information from the hidden state to
the output of the LSTM cell.

ot = � (Wxo · xt +Who · ht�1 + bo) (33)

where:

ot is the output gate at time step t,
xt is the current input at time step t,
ht�1 is the previous hidden state at time step t � 1,
Wxo is the weight matrix for the input connections,
Who is the weight matrix for the hidden state connections,
bo is the bias term for the output gate,
� is the sigmoid activation function.

C. GATED RECURRENT UNIT (GRU)
Another variant of recurrent neural network that addresses
long-term dependencies through gating mechanisms is the
Gate Recurrent Unit (GRU) [271]. The GRU architecture is
simpler compared to LSTM, resulting in fewer parameters
within a GRU cell. GRU cells consist of two types of gates:

1) UPDATE GATE
Controls the weights of interpolation of the current state and
the candidate state in order to update the hidden state.

zt = � (Wxz · xt +Whz · ht�1 + bz) (34)

where:

zt is the update gate at time step t,
xt is the current input at time step t,
ht�1 is the previous hidden state at time step t � 1,
Wxz is the weight matrix for the input connections,
Whz is the weight matrix for the hidden state connections,
bz is the bias term for the update gate,
� is the sigmoid activation function.

The update gate zt controls the weights used for interpolat-
ing between the current state and the candidate state in order
to update the hidden state. A value close to 0 for zt indicates
that the current state is mostly updated based on the candidate
state, while a value close to 1 indicates that the current state
is mostly retained from the previous hidden state.

By incorporating the update gate, GRU networks can
selectively update and retain relevant information from both
the current input and the previous hidden state, enabling them
to capture and utilize long-term dependencies effectively.

2) RESET GATE
Makes the hidden state forget the past dependencies.

rt = � (Wxr · xt +Whr · ht�1 + br ) (35)

where:

rt is the reset gate at time step t,
xt is the current input at time step t,
ht�1 is the previous hidden state at time step t � 1,
Wxr is the weight matrix for the input connections,
Whr is the weight matrix for the hidden state connections,
br is the bias term for the reset gate,
� is the sigmoid activation function.

The reset gate rt controls the degree to which the
hidden state should forget past dependencies. By selectively
resetting the hidden state based on the reset gate, the GRU
can adjust the influence of previous states on the current
state.
All the gates in variants of the gated recurrent neural

networks, are controlled by linear neural networks. Training
the recurrent neural network as a whole, also trains and
updates the weights of the gate controller networks.

D. APPLICATIONS
There are myriad problems and use cases for the RNNs.
Instances are: analysis and embedding of texts and medical
reports to be combined with medical images [272], real-
time denoising of medical video [273], classification of
electroenephalogram (EEG) data [274], generating captions
for images [28], [29], [30], [275], biomedical image segmen-
tation [276], semantic segmentation of unstructured 3D point
clouds [277], [278]. Other examples of RNN applications are
predictive maintenance [279], prediction and classification of
ICU outcomes [31], [280], [281].
In table 1, we have presented a summary of a few of the

most important applications of RNNs, LSTMs, and GRUs
with or without attention.

IX. ATTENTION-BASED MODELS
In deep learning, attention-based models have emerged as
a powerful paradigm, providing breakthroughs to various
domains by focusing selectively on relevant information.
These models have gained significant popularity in NLP,
where they have revolutionized tasks such as machine
translation, sentiment analysis, and text summarization.
By dynamically assigning different weights to different
parts of the input sequence, attention mechanisms allow the
models to capture dependencies and relationships effectively
[45], [336]. As a result, not only are the predictions
more accurate but they are also more interpretable since
the important aspects of the input are highlighted [337].
Attention-based encoder-decoder models are innovated to
solve the shortcomings of RNN, LSTM, and GRU, which
were fairly known as the state-of-the-art approacehes.
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TABLE 1. General usecases for RNN, LSTM, and GRU with or without attention in different areas.

A. LEARNING TO ALIGN AND TRANSLATE
The first Encode-decoder model with an attentionmechanism
was proposed by [34] in 2015 as a novel architecture
to improve the performance of neural machine translation
models. The key contribution of Bahdanau et al. [34] was the
introduction of an attention mechanism in the decoder part,
which involved calculating the weighted sum of the hidden
states of the input. Unlike the basic encoder-decoder model
that utilizes a single fixed-length vector, Bahdanau et al.
extended this approach by encoding variable-length vectors.
During the decoding process, the attention mechanism allows
for selective focus on relevant parts of the input.
As illustrated in the Fig 8, the ct is what is added to this

model as attention. So, the st = f (st�1, yt�1, ct ) output of the
decoder will be based on the ct =

P
↵tt 0ht which is defined

as weighted attention where

↵tt 0 =
exp(ett 0 )P
T
exp(etT )

(36)

and ett 0 is called alignment score. In other words, ↵tt 0 is called
amount of attention yt (the output in time step t) pay to xt

0

.
There are different options to calculate the alignment score,
and it is one of the parameters can be trained, but in general,
it is based on align(hi, s0).

The model proposed by Bahdanau et al. introduced
a groundbreaking approach that served as a source of
inspiration for subsequent state-of-the-art models. Nonethe-
less, it exhibited limitations inherent to conventional
encoder-decoder recurrent models and did not possess
parallel computing capabilities.

B. TRANSFORMERS
Despite the notable contribution made by Bahdanau et al.
[34] in introducing attention for RNN-based models, this

FIGURE 8. Based on the current target state ht and all source states hs,
the model determines an alignment weight vector at time step t . A global
context vector ct is then computed as the weighted average over all the
source states [34].

model is still challenging to train because of the long
gradient path, specifically for long data sequences. The
introduction of Transformers [45] brought about a significant
breakthrough by making use of the power of attention
within the context of the input sequence. Transformers
overcome the two main drawbacks of LSTM-based models:
1. parallel computing capability and 2. the problem of
long gradient paths. The model architecture is based on
a stack of multiple encoder-decoder layers, each sharing
the same structure. The input first undergoes an ‘‘input
embedding’’ layer to transform one-hot token representations
into word vectors. After positional encoding, the result
is fed into the encoder. The core component of the
encoder and decoder blocks is a multi-headed self-attention
mechanism (Q,K ,V ), followed by point-wise feed-forward
networks.
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Self-attention structure:
To estimate the relevance of each element in a given series to
all others, self-alignment is employed. The process involves
the following steps:
Step 1: Randomly generate WQ, WK , WV weights and
calculate:
Queries = Xk (embedding) ⇤WQ
Key = Xk (embedding) ⇤WK
Value = Xk (embedding) ⇤WV

(Where X 2 RT⇥dm , WQ 2 RD⇥DQ ,WK 2 RD⇥DK ,WV 2 RD⇥DV )

Step 2: Calculate the z-score for each input by applying
row-wise softmax on the scores obtained from the pairwise
multiplication of queries and keys:

Z (Q,K ,V ) = Softmax(
Q.KT
p
dK

).V (37)

Next, concatenate the z-scores, initialize a new weight
matrix, and multiply it by the z-scores. Finally, feed the result
to a fully connected neural network (FCNN).

One common operation is to apply another set of
feed-forward layers to the Z scores, often referred to as
the ‘‘point-wise feed-forward network’’ (FFN). This step
allows for additional nonlinear transformations and feature
extraction.

After the FFN, the outputs can be passed to subsequent
layers of the transformer, which may involve stacking
multiple encoder-decoder layers or performing additional
attention mechanisms. This hierarchical structure enables
capturing complex dependencies and relationships among the
input elements.

C. EXTRA LARGE TRANSFORMERS
Transformers have become indispensable to the modern deep
learning stack by significantly impacting several fields. This
has made it the center of focus and caused a overwhelming
number of model variants proposing basic enhancements
to mitigate a widely known concern with self-attention:
its quadratic time and memory complexity [338]. These
two drawbacks can pose significant challenges to model
scalability in many settings. To overcome this limitation,
researchers have explored various approaches, which can be
categorized in several ways [339]. Some of these approaches
include:

1) RECURRENCE
One of the most well-known extensions to the vanilla
Transformer model is Transformer-XL [340]. It employs a
segment-level recurrence mechanism that connects multiple
adjacent blocks. This model introduces two key ideas.
Firstly, by using segment-level recurrence, hidden states from
the previous batch can be cached and reused. Secondly,
it introduces a novel positional encoding scheme that enables
temporal coherence.

As an extension to the block-wise approach, Transformer-
XL splits the input into small non-overlapping subsequences
known as blocks [341]. Although it exhibits impressive

performance compared to the vanilla transformer, this model
lacks the ability to maintain long-term dependencies and
discards past activations as it progresses through the blocks.
Specifically, Transformer-XL propagates gradients across the
current segment, caches them, processes the second segment
using the memory from the first segment (without gradients
for the first segment), moves on to the third segment, and
discards the gradient information from the first window.
Consequently, this can be seen as a form of truncated
back-propagation through time (BPTT).
The distinctive aspect of this model, which sets it apart

from others, lies in its relative positional encoding scheme
that ensures temporal coherence. The relative positional
encoding encodes distances on edges rather than nodes.
While previous work on relative positional encoding existed
[342], Transformer-XL introduces two additional features:
a global content and location bias, and the replacement of
trainable positional embeddings with sinusoid embeddings.
Their results demonstrate that Transformer-XL outperforms
vanilla Transformers even without the use of a recurrence
mechanism. Compressive Transformer [343] is another
model which can be classified as a recurrence approach.

2) REDUCED DIMENSSIONS/ KERNELS/ LOW- RANK
METHODS
The ‘‘Transformers are RNNs’’ [344] introduces the concept
of utilizing a kernel function �(X ) = elu(xi) + 1 instead
of softmax to map the attention matrix to its approximation.
The function is applied on ‘Keys’ and ‘Queries,’ lowering
their dimension. Q(N⇥D).kT (D⇥N ) and avoid computing the
N ⇥ N matrix. Linformer [345] and Synthesizer [346] are
other models based on this approach.

3) SPARSE ATTENTION
The Longformer model, introduced in the paper [347],
achieves linear complexity of O(n) by employing a global
memory technique and drawing analogies to convolutional
neural networks (CNNs). To reduce dimensions, a combi-
nation of sliding window and global attention techniques
is applied to each Query. Longformer, along with Bigbird
[348], ETC [349], and SWIN Transformer [350], falls into
the same category of models that utilize sparse attention
techniques. On the other hand, Image Transformer [343]
and Axial Transformer [351] are other examples of extended
sparse attention works that primarily focus on vision data.

D. PRE-TRAINED MODELS
Pre-trainedmodels are neural networks that have been trained
on large-scale corpora and are designed to be capable
of transfer and fine-tuning for various downstream tasks.
Word embeddings as a base that enabled us to utilize
machine learning for processing natural language can be
viewed as pioneers of widely used pre-rained representations.
Word2vec [43], and Glove [44], which we discussed earlier,
are among the most famous models learning a constant
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embedding for each word in vector space. In what follows,
we will try to pinpoint the most famous and important
pre-trained models that retain contextual representations,
which those mentioned earlier are incapable of.

Reference [352] from 2015 is one of the earliest
instances of supervised sequence learning using LSTMs that
pre-trained an entire language model for use in various
classification tasks. ELMO [353], a deep contextualized word
representation, is analogous to the earlier one; however,
it is bidirectional. CoVE [354] is another recurrent model
in this category that has demonstrated good performance.
GPT1 [355] is a Transformer-based pre-trained model that
was trained on a large book corpus dataset to learn a
universal representation, enabling transfer with minimal
adaptation. ‘‘Deep Bidirectional Transformers for Language
Understanding ’’ - BERT [46], a well-known turning point
in the NLP area (perhaps also the entire ML stack), trains
left context and right context at the same time rather than
doing individually and concatenating at the end. Since BERT
accesses information from both directions, it masks out K%
of the input sequence to prevent the model from simply
copying the input. XLNet [356], RoBERTa [357], ERNIE
[358], and ELECTRA [359] are variations of the BERT
model.’’

All the mentioned models have proven effective in NLP
studies. These successful observations within the NLP
space inspired researchers to apply a similar approach to
other domains. [345] has shown that pre-trained models’
success is not limited to transformer-based ones. They have
demonstrated their pre-trained convolution seq2seq model
can beat pre-trained Transformers in machine translation,
language modeling, and abstractive summarization. Vision
Transformer(ViT) [360] is one of all the foremost recent
pre-trained models that helps transfer learning in image
classification tasks. Thismodel has shown outstanding results
in training a pure transformer applied directly to sequences
of image patches. ResNet50 [361], a pretrained CNN-based
model which allows training networks with up to 1000 layers.
ResNet50 consists of a succession of convolutional layers
with different kernel settings. References [362], [363], [364],
and [365] are all trained on the vast number of datasets
for various image classification transfer learning usage
categories.

While these models have shown excellent results, the range
of pre-trained models is not restricted to the mentioned.
One is to precisely study and examine different models and
approaches to search out their dataset’s best andmost efficient
model.

Language models (LMs) are computational models with
the capacity to comprehend and generate human language.
Language models have the impressive ability to calculate
the likelihood of word sequences or generate new text
based on given input [366]. Researchers find that scaling
pretrained-language models such as BERT can lead to an
improved model capacity [367]. Recent years have witnessed
incredible progress in pre-training of large language models

(LLMs) like GPT-4 [368], PaLM2 [369], LLaMA 2 [370],
which have proven extremely effective for transfer learning
in NLP. While concerns remain around bias, safety, and
environmental impact [371], [372], the application [373],
[374] of LLMs continues to rapidly advance. Though the
eventual impacts remain speculative, LLMs have already
catalyzed a revolution in representation learning.

E. RECURRENT CELL TO RESCUE
With the availability of GPUs as a powerful computation
tool in the machine learning toolkit, LSTM (Long Short-
Term Memory) emerged as a practical approach in numerous
sequence-based machine learning models. With the intro-
duction of word embeddings in 2013, LSTM and other
RNN-based models have been widely dominant in sequence
learning problems. After presenting transformers with their
All-to-all comparison mechanism and their performance on
transfer learning tasks, they became the SOTA model and
dominated the deep learning space.

1) RNN VS. TRANSFORMER
While transformers can grasp the context and be used more
efficiently for transferring knowledge to tasks with limited
supervision by pre-trained models, these benefits come with
quadratic memory and time complexity of O(N 2) [344].
Most of the current pre-trained transformer-based models do
only accept 512 numbers of the input sequence. IndRNN
model [375] has shown the ability to process sequences over
5000 time steps. The LegendreMemoryUnit [376] is based on
recurrent architecture and can be implemented by a spiking
neural network [377], which can maintain the dependencies
across 100,000 time steps. Apart from computation cost,
[378] by Facebook shows that the accuracy gap between
Bert-based [46] pre-trained models versus vanilla LSTM
for a massive corpus of data is less than 1%. Henceforth,
a competitive accuracy result is achievable by training a
simple LSTM when many training examples are available.
They also show that reusing the pre-trained token embeddings
learned in BERT can significantly improve the LSTM
model’s accuracy. Reference [379] shows that standard
transformers are not as efficient as RNN-based models for
reinforcement learning tasks. [A-13] has investigated the
performance of Transformer and RNN in speech application
and shows both have the same performance in text-to-speech
tasks and slightly better performance by Transformer in the
automatic speech recognition task.
On the other hand, [379] shows that their attention-based

model can outperform the state-of-the-art in terms of
precision, time, and memory requirements for satellite image
time series. Reference [380] has compared LSTM perfor-
mance with transformers in their proposed Frozen Pretrained
Transformer model as part of their paper. They evaluate a
diverse set of classification tasks to investigate the ability to
learn representations for predictive learning across various
modalities and show that transformers perform better. Ref-
erence [381] has proposed an improved-Transformer-based
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comment generation method that extracts both the text and
structure information from the program code. They show that
their model outperforms the regular Transformer and classi-
cal recurrent models. Reference [382] is a transformer-based
transcoder network for end-to-end speech-to-speech transla-
tion that surpasses all the SOTA models in natural speech-to-
speech translation tasks. Reference [383] has introduced an
AttentiveConvolutional Transformer which takes advantage
of Transformer and CNN for text classification tasks. Their
experiment reveals that ACT can outperform RNN-based
models evaluated on three different datasets.

2) COMBINING RECURRENT AND ATTENTION
R-Transformer [384] inherits the Transformers’ architecture
and is adding what they call ‘‘Local RNN’’ to capture
sequential information in data. The main improvement
proposed is defining a sequence window to capture the
sequential information and sliding the Local RNN over the
whole time series to get the global sequential information
[385]. This approach is similar to 1-D CNN; however,
CNN ignores the sequential information of positions. Also,
the Transformer’s positional embedding that mitigates this
problem is limited to a specific sequence length. Henceforth,
they have proposed a ‘Local RNN’ model that can efficiently
do parallel computation of several short sequences to
capture the local structure’s global long-term dependency
by applying a multi-head attention mechanism. This model
has replaced the Transformers’ position embeddings with
multiple local RNNs, which can outperform the simple
recurrent approaches such as GRU, LSTM, convolutional
[386], and regular Transformer. Reference [381] has pro-
posed a modified LSTM cell to mitigate the similarity
between hidden representations learned by LSTM across
different time steps in which attention weights cannot
carry much meaning. They propose two approaches: first,
by orthogonalizing the hidden state at time t with the
mean of previous states, they ensure low conicity between
hidden states. The second is a loss function in which a joint
probability for the ground truth class and input sentences is
used and also minimizes the conicity between the hidden
states. These mutations provide a more precise ranking of
hidden states, are better indicative of words important for the
model’s predictions, and correlate better with gradient-based
attribution methods.

While we have mentioned works in which LSTM outper-
forms Transformers and vice versa, one should study the
proper approach based on the dataset, accessible computation
resources, and so forth.

F. APPLICATIONS
A wide range of transformer models and variants have been
applied in various domains, demonstrating their versatility
and effectiveness. We discuss some of these models’ notable
applications.

In machine translation, models like Transformer [45]have
surpassed traditional recurrent neural network-based models,
achieving state-of-the-art performance. Several models have
demonstrated the ability to understand context and generate
accurate answers for question answering tasks, including
BERT [387] and GPT4 [368]. Various transformer models
have demonstrated excellent performance in classifying
sentiment in text, such as BERT and XLNet. Moreover,
transformer-basedmodels, such as BART [388] and T5 [256],
have been successfully applied to the summarization of
lengthy documents and articles.
In the field of computer vision, transformers have made

significant contributions. In image classification, Vision
Transformer (ViT) [389] applies transformers and achieves
competitive performance against convolutional neural net-
works (CNNs) on benchmark datasets. For object detection,
DETR (DEtection TRansformer) [390] is a transformer-based
model that directly predicts object bounding boxes and class
labels. The use of transformer models has also been applied
to image generation tasks, such as the VQ-VAE-2 model
[391], which combines transformers with vector quantization
to generate high-quality images. Additionally, transformers
have been used in generative models such as DALL-E
[392], which enables the generation of images from textual
descriptions.
In robotics, transformers allow capturing long-range

dependencies and global context, leading to improved
perception capabilities [393], [394]. In robot planning [395],
[396], transformers have been utilized for motion planning
and task planning, leveraging their ability to capture complex
spatial and temporal dependencies [397], [398]. Transformers
have also been employed in robot control, learning policies
and generating appropriate actions [399], [400], [401].
As illustrated in Fig 9, we have tried to show some of

the best and most famous sequence to sequence models,
including the recent transformer-based models with different
applications.

X. TRANSFER LEARNING
Many of the advancements in machine learning techniques
make a huge improvement over the existing benchmarks.
There are, however, some assumptions and challenges that
make it difficult to apply the methods to real-world situations.
In many cases, the assumption is that the trained model will
be tested on the same feature distribution as the training stage.
This assumption usually does not hold as the environment
changes. In addition, many promising results are obtained
by training models with large datasets. These pre-requisites
makes it very challenging to adapt to many different tasks.
For many applications, acquiring large amounts of data can
be costly, time-consuming or even impossible. The absence
of data for specific tasks may not be the only challenge;
Massive data collection poses a huge privacy problem in
many healthcare and medical applications [403]. In other
cases, annotating the data would require an expert and could
be expensive, such as low-resource languages [404].
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FIGURE 9. A general timeline for some of the most important sequence models in history, including pretrained ones. [402].

Transfer learning aims to alleviate the mentioned prob-
lems. Generally, transfer learning refers to when a learner
wants to improve the performance on the target domain by
transferring knowledge from the source domain. It derives
from the human intuitive ability to share knowledge across
different domains and tasks. For example, learning a language
might help you learn the second one if there’s some relation in
between. The term itself is very general and there have been
many extensions to it in recent years.

Transfer learning enables machine learning models to
be retrained and reuse their previously learned knowledge.
A general definition of the problem is divided into two
components: Domain and Task [405].

The Domain is defined as D = {� ,P(X )}, with �

representing the feature space, and P(X ) for each X =

{x1, . . . , xn} 2 � denoting the marginal probability over
the feature space. In cases where different domains are
encountered, the source domain DS and the target domain
DT can assume different feature space ormarginal probability
distributions [405].

Given a specific domain D = {� ,P(X )}, Task is
represented by T = {y, f (x)}, where y is the feature space
and f (x) = P(Y |X ) denotes the function that can be learned
from the training data to predict the target, in a supervised
manner from the labeled data xi, yi, where xi 2 X and yi 2 Y .
In cases where no labels are considered for the data, as is the
case for unsupervised algorithms, y can be a latent variable
such as the cluster number, or a variable that is produced by

an unsupervised algorithm (e.g., the reduced dimensions of
the original data) [405]. In light of both the domain D and the
task T being defined as tuples, four transfer learning scenarios
can be arise.
The first scenario is when the source and target domain are

different Xs 6= Yt . A good example of this is, in the computer
vision community, where the source task is an image of a
humans, but the target task is an image of an objects. A similar
example can be found in NLP when it comes to cross-lingual
adaptation.
The second scenario happens when P(Xs) 6= P(Xt ),

the marginal probability distributions of source and target
domain are different. This scenario is generally known as
domain adaptation. An example could a detection problem
where the source and target has different kind of cars.
The third occurs when Ys 6= Yt , the label spaces between

the two tasks are different. For example, consider a detection
problemwhere the source task considers the detection of cars,
while the target task considers animals.
The last is when P(Ys|Xs) 6= P(Yt |Xt ), the conditional

probability distributions of the source and target tasks are
different. The imbalancness of data between source and target
tasks is a very common example.
A number of surveys have been conducted to categorize

the available methods [405], [406], [407]. In [406] the avail-
able methods are categorized into three different sections,
transductive, inductive, and unsupervised transfer learning.
In [407] the available methods are categorized in more detail
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based on the data or model perspectives. Although this
categorization could give some insights, there aremany newer
methods that cannot fit in those categories or belong to more
than one, zero-shot transfer learning [408], reinforcement
transfer learning [409], and online transfer learning [410] are
among these methods.

Several sub-categories of transfer learning can be consid-
ered for each of these main categories based on the nature
of the knowledge transfer. In the following subsection, the
most prominent sub-categories of transfer learning will be
discussed.

1) INSTANCE-BASED:
Despite differences in the source and the target domains,
an instance based transfer learning, such as TrAdaBoost [411]
or Bi-weighting Domain Adaptation (BIW) [412], adjusts the
weights used for a subset of the source instances that are
similar to the target domain, to predict the target instances.
Since similarity of the selected source instance to those of the
target domain play a crucial role in instance based transfer
learning, a filter is used to remove dissimilar instances that
would otherwise mislead the algorithm [405], [413], [414],
[415], [416], [417].

2) FEATURE-BASED
Determining the common denominator between related tasks
would allow for defining a representative feature that would
apply to all domains and reduce differences between them.
In this case, the common feature attempts to identify
some partial overlap between the defined tasks. Having a
representative feature among different tasks would also allow
for a reduction in the overall error [405], [418], [419], [420].
While the source and target domains may have differences
between them in their original data space, it is likely that the
two would exhibit similarities in a transformed data space.
Mapping-based deep transfer learning techniques, such as
Transfer Component Analysis [421], create a union between
the source and target domain instances by applying amapping
between the two and transforming them into a new data space
based on their similarity so that they can be used for deep nets
[417], [422].

3) NETWORK-BASED
Different models derived from related tasks can have many
similarities and differences. Similar models often have
knowledge about the model parameters or the behavior
of hyperparameters shared between the individual models.
In such cases, it is possible to create a learning algorithm
that infers the model parameters and the distributions of
its hyperparameters by examining the prior distributions of
several other tasks [405], [423], [424]. Similar to the learning
and inference process followed by the human brain, where the
trained brain cells can ad-hoc to other brain cells in related
tasks, the network-based approach aims at using an already
trained neural network as part of a much more extensive deep

neural network. This approach trains the subnet on its relevant
domain data, and the resulting pre-trained network is trans-
ferred to a larger deep net [423], [425], [426]. A few examples
of network-based deep transfer learning approaches include
ResNet, VGG, Inception, and LeNet, which can extract a
versatile set of features in the network’s front layers [417].

4) RELATIONAL KNOWLEDGE-BASED
There are several instances, such as the social network data,
where the data are not independent and identically distributed
(IID). Relational domains allow for the handling of this
scenario. In a relational domain, each entry is represented by
multiple relations, not just a single identifier [427]. Unlike
other methods discussed before, the cross-domain relational
knowledge transfer algorithms, such as TAMAR, use the
Markov Logic Networks (MLNs) to transfer the relational
knowledge without requiring each data point to be IID [405],
[428], [429].

5) ADVERSARIAL-BASED
Built on the strong foundation of the GANs, the
adversarial-based approaches to transfer learning use a
generator challenged by a discriminator to identify the
transferable representations. A representation is considered
transferable when it discriminates between the different
components of the main learning task but does not
discriminate the source domain from the target domain
[417]. Most approaches use a single domain discriminator
to align the source and target distributions, or use multiple
discriminators to align subdomains [430], [431], [432], [433].

There is no unified approach where one can use Transfer
learning. A very common transfer learning approach is when
your target domain does not have sufficient training data. The
model first pre-trains on the source data and then fine-tunes
on the target data.Manywell-known architectures in different
communities are being used for related downstream tasks.
In NLP, Bert [387], Word2vec [434], and ERNIE [435] are
the famous models where a lot of downstream tasks can
learn their specific related task with the shared knowledge
backbone. Similarly, in the Vision community, Resnet [436],
Vision Transformers [437] and ConvNeXt [438] could be
used. Also in Speech,Wav2Vec [439], DeepSpeech [440] and
HuBERT [441] are among famous models. It is important
to note that there are different levels of fine-tuning. With
enough data in the target domain, fine-tuning can also alter
the entire backbone representation. In many applications,
however, this can be done partially (the last few layers)
or just for the task-specific heads without changing the
backbone representation. The mentioned models these are
expected to be general enough so that they can be used for
many downstream processes. For instance, Resnet trained to
classify images into 1000 different categories. If the model
knows to classify cars, the knowledge can be used to detect
airplanes or even a different task like semantic segmentation
[442].
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Other common ways of transfer are when the task is the
same, but the domain changes. A helpful example might be
applying the knowledge gained from the simulation data to
real-world data [443]. In many applications like robotics, and
computer vision, acquiring simulation data is very easy and
straightforward.

The goal of transfer learning is to adapt the knowledge
learned in one domain to another but closely related one.
Many recent papers [444], [445] suggested that using
pre-trained models and fine-tuning might not be the optimal
approach. It is therefore important to know why and what
to transfer. Another issue with pre-training solutions is
the accumulation of parameters in each sub-task. These
networks can have millions or even billions of parameters
[445], it is then very impractical to fine-tune the backbone
representation for every downstream task. Consider an
application where the model should use the representation to
do sentiment analysis along with entity recognition. If one
wants to fine-tune a separate backbone for every downstream
task, it would be very memory inefficient. Multitask Learning
[446] aims to learn a shared representation for multiple
related tasks which can be generalized across all tasks.
As opposed to creating an instance of the backbone for each
task, the representation is being shared across multiple tasks
to improve efficiency [447].

There are also instances where transfer learning occurs in
the feature space; instead of transferring the representation
to the new task, a related but fixed representation can be
used. In this case, the main representation remains intact
and a small network learns the representation specific to
the target task. Having common latent features acts as a
bridge for knowledge transfer. In [448] the authors trained
a lightweight CNNmodule on top of a generic representation
called mid-level representation. In comparison to training a
complex CNN module which also learns the representations,
they achieved superior performance in terms of accuracy,
efficiency, and generalization with the method.

A. APPLICATIONS
As mentioned, the use of transfer learning does not follow
any conventional approach. Therefore, one should precisely
study examples of how researchers can use transfer learning
in their problems.

When it comes to medical applications, both privacy and
expert labeling are key issues that make data availability
difficult. In [449], [450], [451], and [452] the authors try to
transfer the knowledge learned from the pre-trained models,
Resnet [453] or ALexNet [454] trained on ImageNet, and
transfer it for different tasks like Brain Tumor Segmentation,
3d medical image analysis and Alzheimer. Reference [455]
found that due to the mismatch in learned features between
the natural image, e.g., ImageNet, and medical images the
transferring is ineffective and they propose an in-domain
transferring approach to alleviate the issue.

There was a great deal of success with transfer learning in
the field of NLP. Several reasons exist for this, but largely

it is because it is easy to access the large corpus of texts.
It is inherent for pre-trainedmodels to generalize across many
domains due to the millions or billions of text data that
they are trained on [46], [456], [457], [458], [459]. These
representations can be transferred in different areas such as
sentiment analysis [460], [461], [462], Question Answering
[463], [464], [465], and Cross-lingual knowledge transfer
[460], [466], [467].
There are many speech recognition applications that are

similar to NLP because of the nature of language. These
applications are discussed in [468], [469], [470], and [471]

The progress of transfer learning in various domains have
motivated researchers to adapt explored approaches for time
series datasets [472]. For time-series tasks, transfer learning
applications range from classification [473], anomaly detec-
tion [474], [475] to forecasting [476], [477].
Transfer learning has also been applied to various fields,

ranging from text classification [478], [479], [480], spam
email and intrusion detection [481], [482], [483], [484],
recommendation systems [485], [486], [487], [488], [489],
[490], [491], [492], [493], [494], biology and gene expression
modeling [495], [496], to image and video concept classifi-
cation [497], [498], [499], [500], human activity recognition
[501], [502], [503]. While these fields are vastly different,
they all benefit from the core functionalities of transfer
learning, in applying the knowledge gained under controlled
settings or similar domains, to new areas that may otherwise
lack this knowledge.

B. CHALLENGES
Despite many successes in the area of transfer learning,
some challenges still remain. This section discusses current
challenges and possible improvements.

1) NEGATIVE TRANSFER
One of the earliest challenges discovered in transfer learning
is called negative transfer learning. The term describes when
the transfer results in a reduction in performance. One of the
reasons could be the interference with previous knowledge
[504] or the dissimilarity between the domains [444], [445]
could be one of the reasons. There might be some cases where
the transfer does not degrade, but doesn’t make full use of its
potential to obtain a representative feature. In [504] has been
shown that contrastive pre-training on the same domain may
be more effective than attempting to transfer knowledge from
another domain. Similarly, in [505] the study was conducted
to explore which tasks will gain from sharing knowledge and
whichwill suffer from negative transfer and should be learned
in a separate model. In [506] the authors proposes a formal
definition of negative transfer and analyzes three key aspects,
as well as a model for filtering out unrelated source data.

2) MEASURING KNOWLEDGE GAIN
The concept of transfer learning enables remarkable gains in
learning new tasks. However, it’s difficult to quantify how
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much knowledge is transferred. Amechanism for quantifying
transfer in transfer learning is essential for understanding
the quality of transfer and its viability. In addition to the
available evaluation metrics, we need to assess the gener-
alizability/robustness of the models, especially in situations
where class sets are different between problems [507]. There
was an attempt in [506], [508], and [509] to formulate the
problem so that transfer learning related gains could be
quantified.

3) SCALABILITY AND INTERPRETABILITY
Although many works demonstrate the ability of tasks to
be transferred and their effectiveness, there is no guideline
on how and what should be transferred. It has been shown
that transfer learning can be effective only when there is a
direct relationship between source and target; however, there
have been many instances where transfer learning has failed
despite the assumption of reletivity. Furthermore, as pre-
trained models are becoming more widespread, with millions
or billions of papameters, it would not be feasible to try all of
the available methods to see which transfer could be helpful.
Moreover, this requires a tremendous amount of computation,
resulting in a large carbon footprint [510], [511]. It is critical
that models are interpretable not only for their task, but also
in terms of their ability to be transferred to other tasks. This
work [512] defines the interpretable features that will be
able to explain the relationship between the source and target
domain in a transfer learning task.

4) CROSS-MODAL TRANSFER
In general, transfer learning is used when the source and
target domains have the same modalities or input sizes.
However, in many scenarios, this assumption could present
a problem in adopting knowledge. Our ability to transfer
knowledge from different modalities is crucial, since many
tasks in our daily lives require information from multiple
sources (perception and text or speech). One of the most
recent studies, Bert [513] and ViLBert [514], attempts to
transfer knowledge between text and image data. Addition-
ally, we should be able to transfer knowledge regardless of
the difference between input sizes in the source and target
domain. An example could be transferring knowledge from
2D to 3D datasets [515], [516].

5) HOW TO BUILD TRANSFERABLE MODELS
The development of neural networks and deep learning
models often requires significant architecture engineering.
In addition, these models are engineered to outperform the
existing models on the target dataset. As a result of the
performance gain, the model’s ability to generalize is usually
degraded. We should be able to build models that enable
transferability and reduce the dataset bias. As shown in [517],
deep features eventually transition from general to specific
along the network, which make the feature transferability
drops significantly in higher layers. Works in [509], [517],

[518], [519], [520], and [521] try to build the model with the
focus of the transferability across domains.

XI. NEURAL RADIANCE FIELDS
A. DEFINITION AND APPLICATIONS
Several contributions in computer graphics have had a major
impact on deep learning techniques to represent scenes
and shapes with neural networks. A particular aim of the
computer vision community is to represent objects and scenes
in a photo-realistic manner using novel views. It enables a
wide range of applications including cinema-graph [522],
[523], video enhancement [524], [525], virtual reality [526],
video stabilization [527], [528] and to name a few.

The task involves the collection of multiple images from
different viewpoints of a real world scene, and the objective
is to generate a photo-realistic image of such a novel view
in the same scene. Many advancements have been made,
one of the most common is to predict a 3D discrete volume
representation using a neural network [529] and then render
novel views using this representation. Usually these models
take in the images and pass them through a 3D CNN model
[530], then the model outputs the RGBA 3D volume [531],
[532], [533]. Even though these models are very effective for
rendering, they don’t scale since each scene requires a lot of
storage. A new approach to scene representation has emerged
in recent years, in which the neural network represents the
scene itself. In this case, the model takes in the X ,Y ,Z
location and outputs the shape representation [534], [535],
[536], [537]. The output of these models could be distance
to the surface [534], occupancy [535], or a combination of
color, and distance [536], [537]. As the shape itself is a
neural networkmodel, it is difficult to optimize it for different
renderings. However, the key advantage is the shapes are
compressed by the neural network which makes it very
efficient in terms of memory. Nerf [538] combines these ideas
into a single architecture. Given the spatial location X ,Y ,Z
and viewing direction ✓, �, a simple fully connected outputs
the color r, g, b and opacity � of the specified input location
and direction.

A very high level explanation of Nerfs could be think
of as function that can map the the 3D location(x) and ray
direction(d) to the color(r, g, b) and volume density(� ).

F(x,d) = (r, g, b, � )

During the training stage, given a set of image from
different views(well-known camera poses) an MLP is trained
to optimize it weights.
In order to generate a realistic photo, we have to

hypothetically place the camera(having the position) and
point it to a specific direction.
Consider from the camera we shoot a ray and we want to

sample from the NeRF along the way. There might be a lot
of free space, but eventually the ray should collide with the
surface of the object. The summation along the ray should
represent the pixel’s color at the specific location and viewing
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direction. In other words, the pixel value in image space is the
weighted combination of these output values as below.

C ⇡

NX

i=1

Ti↵ici (38)

where Ti, can be think of as weights, is the accumulated
product of all of the values behind it:

Ti =

i�1Y

j=1

�
1 � ↵j

�
(39)

where ↵i is:

↵i = 1 � e��i�ti (40)

In the end, we can put all the pixels together to generate the
image. The whole process, including the ray shooting, is fully
differentiable, and can be trained using the total squared error:

min
✓

X

i

krenderi (F✓ ) � Iik2 (41)

where i representing the ray and the loss minimizing the error
between the rendered value from the network, F✓ , and the I
is the actual pixel value.

B. CHALLENGES
In spite of the many improvements and astounding qual-
ity of rendering, the original Nerf paper left out many
aspects.

One of the main assumptions in the original Nerf paper
was static scenes. For many applications, including AR/VR,
video game renderings, objects in the scenes are not static.
The ability to render objects with respect to time along with
the novel views are essential in my applications. There are
some works attempting to solve the problem and change
the original formulation for dynamic scenes and non-rigid
objects [539], [540], [541], [542].

The other limitation is slow training and rendering. During
the training phase, the model needs to qeury every pixel in
the image. That results about 150 to 200 million queries for
a one megapixel image [538], also, inference takes around
30 sec/frame. In order to solve the training issue, [543]
proposes to use the depth data, which makes the network to
need less number of views during training. Other network
properties and optimizations can be change to speed-up
the training issue [544], [545]. Inference also needs to be
real-time for many rendering applications. Many works try
to address the issue in different aspects; changing the scene
representation to voxel base [546], [547], separate models
for foreground and background [548] or other network
improvements [541], [549], [550], [551].
A key feature of the representation for real-world scenarios

is the ability to generalize across many cases. In contrast,
the original Nerf trained an MLP for every scene. Every
time a new scene is added, the MLP should be retrained
from scratch. Several works have explored the possibility of

generalizing and sharing the representation across multiple
categories or at least within the category [552], [553], [554],
[555].
For the scope to be widened to other possible applications,

we need control over the renderings in different scenarios.
The control over the camera position and direction was
examined in the original Nerf paper. Some works attempted
to control, edit, and condition it in terms of materials
[556], [557], color [554], [558], object placement [559]
and [560], facial attributes [561], [562] or text-guided
editing [563].

XII. THE CHALLENGES OF REPRESENTATION LEARNING
Numerous challenges shall be addressed while learning
representations from the data. The following section will
provide a brief discussion on the most prominent challenges
faced in the deep representation learning.

A. INTERPRETABILITY
There is a fine distinction between explainability and
interpretability of a system. An explanation can be defined
as any piece of information that helps the user understand
the model’s behavior and the process that it goes through
to make the decision. Explanations can give insights on
the role of each attribute in the overall performance of the
system, or rules that determine the expected outcome, i.e.,
when a condition is met [564]. Interpretability, however,
is considered as a human’s ability to predict what the
model result would be, based on the decision flow that the
model follows [565]. A highly interpretable ML model is
an easily comprehensible one, but the deep neural networks
miss this aspect. Despite the promising performance of deep
neural networks in various applications, the inherent lack of
transparency in the process by which a deep neural network
provides an output is still a major challenge. This black-box
nature may render them useless in several applications, such
as in situations where high degree of safety [566], security
[567], fairness and ethicality [568], or reliability [17], [281],
[569], [570], [571] are critical.
Therefore, design and implementation of problem-specific

methods of interpretability and explainability is necessary
[572]. Although the conventional methods of learning
from data, such as decision trees, linear models, or self-
organization maps [573], may provide visual explainability
[15], deep neural network require post-hoc methods of
interpretation. From a trained model, the underlying repre-
sentation of the input data, may be extracted and presented
in understandable formats for the end-users. Examples of
post-hoc approaches are [15]: sentences generated as expla-
nations [15], visualizations [574], explanation by examples
[575]. Granted that, the post-hoc approaches provide another
representation of the captured features, they do not directly
reveal the exact causal connections and correlations at the
model parameters level [15]. Nonetheless, it increases the
reliability of the deep models.
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B. SCALABILITY
Scalability is an essential and challenging aspect of many rep-
resentation learning models, partly because getting models
to maintain the quality and scale up to real-world appli-
cations relies on several different factors, including high-
performance computing, optimized workloads distribution,
managing a large distributed infrastructure, and Generaliza-
tion of the algorithm [576], [577], [578]. Reference [579] has
classified big-datamachine learning approaches based on dis-
tributed or non-distributed fashion. In general, the scalability
of representation learning models faces multiple dimensions
and significant technical challenges: 1) availability of large
amount of data 2) scaling the model size 3) scaling the
number of models and/or computing machines 4)computing
resources that can support the computational demands [577],
[578], [580].
The huge amount of data can be accessed from a variety

of sources, including internet clicks, user-generated content,
business transactions, social media, sensor networks, etc
[581]. Despite the growing pervasiveness level of big data,
there are still challenges to accessing a high-quality training
set. Data sharing agreements, violation of privacy [582],
[583], noise problem [584], [585], poor data quality(fit
for purpose) [586], imbalance of data [587], and lack of
annotated datasets are number of challenges businesses face
seeking raw data. Oversampling, undersampling, dynamic
sampling [588] for imbalanced data, Surrogate Loss, Data
Cleaning, finding distribution in solving the problem of
learning from noisy labels for noisy data sets, and active
learning [589] for lack of annotated data are a number of
methods have been proposed to alleviate these problems.
Model scalability is one of the other concerns in which tasks
may exhibit very high dimensionality. To efficiently handle
this requirement, different approaches are proposed that
cover the last two significant technical challenges mentioned
earlier: using multiple machines in a cluster to improve the
computing power (scaling out) [590] or using more powerful
graphics processing units. Another crucial challenge is
managing a large distributed infrastructure that hosts several
deep learning models trained with a large amount of data.
Over the last decade, there have been several types of
research done in the area of high-performance computing
to alleviate open research problems in infrastructure and
hardware, Parallelization Methods, Optimizations for Data
Parallelism, Scheduling and Elasticity, Data Management
[576], [591], [592], [593], [594], [595]. While building large
clusters of computing nodes may face several problems,
such as communication bottlenecks, on the other hand,
attempts to accelerate the performance of GPUs capable
of implementing energy-efficient DL execution run across
several major hurdles [595], [596]. Though we are able to
train extremely large neural networks, they may optimize for
a single outcome, and several challenges still remain

In addition, model pruning techniques [597] can help
improve scalability by reducing model size and com-
putational requirements. Pruning removes redundant or

non-critical connections in neural networks to obtain a
smaller, efficient model that maintains accuracy. This helps
address hardware constraints and improves inference speed.
Some of the most important pruning techniques include:
Structured Pruning [598], which focuses on removing
entire structured sections like layers or channels, producing
more regular, hardware-friendly architectures; Unstructured
Pruning [599], which removes individual weights from the
network, leaving the overall architecture unchanged but
with sparser connections; and Magnitude-based Pruning
[600], a method where weights below a specified magnitude
threshold are pruned, offering an optimal balance between
simplicity and efficacy.

C. SECURITY, ROBUSTNESS, ADVERSARIAL ATTACKS
Machine learning is becoming more widely used, resulting
in security and reliability concerns. Running these AI
workflows for real-world applications may be vulnerable
to adversarial attacks. AI models are developed under
carefully controlled conditions for optimal performance.
However, these conditions are rarely maintained in real-
world scenarios. These changes could be both incidental or
intentional adversity, both could result in a wrong prediction.
Efficacy in detecting and detecting adversarial threats is
referred to as adversarial robustness. A major challenge
in robustness is the non-interpretability of many advanced
models’ representations. In [601] the authors show that
there’s a positive connections between model interpretability
and adversarial robustness. In some cases [602], [603],
[604], researchers attempt to interpret the results, but they
usually pick examples and show the correlation between
the representations and semantic concepts. However, such
a relationship may not exist in general [605], [606]. The
discontinuity of the representation first introduced in [607],
where deep neural networks can be misclassified by adding
imperceptible, non-random noise to inputs. For a more
detailed discussion of different types of attacks, readers
can refer to [608] and [609]. It is worth mentioning that
Research on adversarial perturbations and attack techniques
is primarily carried out in image classification [610], [611],
[612], the same behavior is also seen in NLP [613], [614],
speech recognition [615], [616], [617], and time-series
analysis [618], [619]. For the systems based on biometrics
verification [620], [621], [622], an adversarial attack could
compromise its security. The use of biometrics in establishing
a person’s identity has become increasingly common in legal
and administrative tasks [623]. The goal of representation
learning is to find a (non-linear) representation of features
f : X ! Z fro from input spaceX to feature spaceZ so that f
retains relevant information regarding the target task Y while
hiding sensitive attributes [624]. Despite all the proposed
defenses, deep learning algorithms still remain vulnerable to
security attacks, as proposed defenses are only able to defend
against the attacks they were designed to defend against
[625]. In addition to the lack of universally robust algorithms,
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there is no unified metric by which to evaluate the robustness
and resilience of the algorithms.

XIII. CONCLUSION
In this survey, we have explored the importance of deep rep-
resentation learning in achieving competitive performances
in state-of-the-art architectures. The methods of representing
data serve as the foundation for the proposed techniques,
making it crucial to understand the major approaches for
learning representations. Since many of the state-of-the-art
architectures rely on variants of neural networks to achieve
competitive performances, the methods of representing data
can be considered as the building blocks of the proposed
methods. To achieve competitive performance in deep neural
network architectures, it is essential to understand the major
methods for learning representations. Our objective was to
present each topic in a concise manner, while also providing
detailed references and real-world applications to facilitate
a deeper understanding for interested readers. As deep
representation learning continues to be an active area of
research, it holds great potential for impacting a wide range
of applications. It is worth noting that the field of deep
representation learning is dynamic and constantly evolving.
As new advancements are made, further research may
uncover more efficient and effective methods for learning
representations from data.
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