& frontiers | Frontiers in Big Data

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Xiaojie Guo,
IBM Research, United States

REVIEWED BY
Junhong Lin,

Massachusetts Institute of Technology,
United States

Yiyue Qian,

University of Notre Dame, United States

*CORRESPONDENCE
Lei Zhang
zhanglei@vt.edu

RECEIVED 07 August 2023
ACCEPTED 20 October 2023
PUBLISHED 17 November 2023

CITATION

Zhang L, Chen Z, Lu C-T and Zhao L (2023) Fast
and adaptive dynamics-on-

graphs to dynamics-of-graphs translation.
Front. Big Data 6:1274135.

doi: 10.3389/fdata.2023.1274135

COPYRIGHT

© 2023 Zhang, Chen, Lu and Zhao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Frontiersin Big Data

TYPE Methods
PUBLISHED 17 November 2023
pol 10.3389/fdata.2023.1274135

Fast and adaptive dynamics-on-
graphs to dynamics-of-graphs
translation

Lei Zhang'*, Zhigian Chen?, Chang-Tien Lu* and Liang Zhao?

!Department of Computer Science, Virginia Tech, Falls Church, VA, United States, 2Department of
Computer Science and Engineering, Mississippi State University, Mississippi, MS, United States,
*Department of Computer Science, Emory University, Atlanta, GA, United States

Numerous networks in the real world change with time, producing dynamic
graphs such as human mobility networks and brain networks. Typically, the
"dynamics on graphs” (e.g., changing node attribute values) are visible, and they
may be connected to and suggestive of the "dynamics of graphs” (e.g., evolution
of the graph topology). Due to two fundamental obstacles, modeling and mapping
between them have not been thoroughly explored: (1) the difficulty of developing
a highly adaptable model without solid hypotheses and (2) the ineffectiveness
and slowness of processing data with varying granularity. To solve these issues,
we offer a novel scalable deep echo-state graph dynamics encoder for networks
with significant temporal duration and dimensions. A novel neural architecture
search (NAS) technique is then proposed and tailored for the deep echo-state
encoder to ensure strong learnability. Extensive experiments on synthetic and
actual application data illustrate the proposed method'’s exceptional effectiveness
and efficiency.

KEYWORDS

graph, ESN, reservoir computing, GNN, NAS

1 Introduction

Graphs are commonly used as universal representations of real-world things, including
social networks, brain functional connections, and molecular topology. Real-world networks
generally exhibit patterns in their dynamics, which may be classed as “dynamics on graphs”
and “dynamics of graphs.” The former stresses the time-evolving patterns of the entities’
activity, which can be proven explicitly through the observable node attributes, whereas the
latter emphasizes the underlying change in the topological structure of the network. Both
forms of dynamics appear in real-world graphs, and it is tremendously advantageous to
understand their linkage and transformation. In social networks, for instance, it is crucial
to investigate how the node-level behaviors might affect time-evolving connectivities (Gao
et al,, 2022). In neuroscience, it is essential to examine how the co-activation of many
neurons increases their physical nerve connections (Ma et al., 2019). In recent years,
a substantial amount of work and knowledge has been devoted to “dynamics graphs,
a mix of “dynamics on graphs,” and “dynamics of graphs.” Dynamic graph embedding
methods, for instance, compute dynamic node embedding by aggregating messages from
nodes’ neighborhoods, which requires the input of both node signals (i.e., dynamics on
graphs) and graph topology (i.e., dynamics of graphs) (Taheri et al., 2019; Pareja et al.,
20205 Sankar et al., 2020). In practice, however, it is typically quite difficult to directly
measure all the edges to immediately perceive the entire graph. Instead, it is considerably
more frequent and economical to deduce the underlying network structure from the node
signals. Therefore, we propose the task that transfers “dynamics on graphs” to “dynamics

01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1274135
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1274135&domain=pdf&date_stamp=2023-11-17
mailto:zhanglei@vt.edu
https://doi.org/10.3389/fdata.2023.1274135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1274135/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al.

of graphs” (in short, “on-to-of” task) to map the two individual
spaces. Existing on-to-of efforts can be divided into two distinct
categories. The first class of approaches discretizes continuous
node signals before implementing message passing on a fully
connected (Pareja et al., 2020; Yang et al., 2021), resulting in a severe
loss of information. The second category encodes full time series
directly into their embeddings and then calculates the correlation
between these embeddings using standard metrics such as cosine
similarity (Hlinka et al., 2013; Tupikina et al., 2016; Kipf et al,,
2018; Graber and Schwing, 2020). However, such metrics usually
imply strong priors and thus cannot adapt to more complicated
on-to-of mappings.

This study focuses on the on-to-of task, which cannot be
effectively addressed by existing solutions due to the following
challenges: (1) Difficulty in jointly extracting features from
node dynamics while learning the dynamic relationships in a
graph. The challenge necessitates that transformation patterns be
considered in both time and graph dimensions. Moreover, these
two dimensions are not independent, necessitating the need for
a framework that can facilitate the combined evolution of node
and edge dynamics. (2) Absence of an effective and scalable
framework for graph dynamics encoding over a continuous
long time duration with a high sampling rate. The inference
of dynamic graph topology necessitates fine-grained, long-term
knowledge on graph dynamics. Existing efforts for dynamic
network embedding and representation learning are unable to
efficiently manage extended time series of node attribute data.
(3) Dilemma between learnability and efficiency of models.
Modeling the complex mapping between node and edge dynamics
demands models with a high capacity for learning. Compared to
optimizing a model fitted to specific data, optimizing a highly
flexible, highly learnable model is typically time-consuming.

To address the above challenges, we present a novel framework
based on echo-state network (ESN) and neural architecture search
(NAS). Specifically, a deep echo-state network is proposed to
efficiently encode the continuous time series of node attributes
into dynamic edge embeddings. The architecture of the ESN is
automatically tuned by NAS in a self-supervised manner. The
application of the ESN makes the framework extremely efficient
and scalable when dealing with continuous node signals. The NAS
module enables the framework to be adaptive to varying data with
minimum priors and ensures good results. The contributions of this
study are as follows: (1) Propose the first NAS method for ESN. To
efficiently encode the continuous node signals, we propose to use
ESN as the the encoder and tune its architecture with NAS methods.
To the best of our knowledge, this is the first work that defines the
search space of ESN and optimizes its architectures automatically
for downstream tasks. (2) Design a novel generic framework
for mapping between “dynamics on graphs” and “dynamics of
graphs”. Different from existing studies, the proposed framework is
generic and does not depend on specific mapping priors. We show
that ESN and NAS complement each other and fit the problem
well. First, ESN is efficient and scalable but suffers from low
performance. Second, NAS makes the model adaptive to target data
but is expensive to train for large regular. The combination of NAS
and ESN yields a good balance between scalability and performance
and is well suited for the generic “dynamics on graphs” and

Frontiersin Big Data

10.3389/fdata.2023.1274135

“dynamics of graphs” translation task. (3) Conduct extensive
experiments for performance and efficiency evaluations. The
proposed method was evaluated on both synthetic and real-
world application data. The results demonstrate that the proposed
approach runs significantly more efficiently and exhibits better
performance than the baseline methods.

2 Related work

2.1 "Dynamics on graphs” and “dynamics
of graphs”

The studies on graph structure learning (GSL) and dynamic
graph embedding studies are the most relevant to “dynamics on
graphs” and “dynamics of graphs.” The graph topology learning
strategies in GSL can be classified into metric-based, neural
approaches, and direct approaches (Zhu et al., 2021). Most existing
studies are metric-based (Du et al., 2012; Hlinka et al., 2013;
Graber and Schwing, 2020) which rely on strong priors of the
graph definition. The direct approaches are not related to the on-
to-of task because the optimization for an extra downstream task
is needed. The neural approaches can be used for the generic
on-to-of task. Only recently, several neural approaches have been
proposed for dynamic graph data and dynamic graph topology
(Graber and Schwing, 2020; Rossi et al., 2020). These research
have a greater emphasis on strengthening the graph neural network
module and solely use conventional 2D-CNNs or RNNs to encode
continuous graph signals. Furthermore, the GSL modules highly
rely on ad-hoc heuristic models that are designed under strong
priors. For example, Tupikina et al. (2016) assumed that the graph
is a temporal correlation matrix; Graber and Schwing (2020) tried
to recover the underlying physical interaction relationship with
temporal dependencies; Hlinka et al. (2013) focused on inferring
entropy graphs; Kipfetal. (2018) assumed a static graph is the cause
of the dynamics; Du et al. (2012) tried to recover the maximum
likelihood diffusion graph of cascades of events. Unlike previous
research, our proposed framework is designed to be highly adaptive
and does not rely on pre-processing or the usually unknown on-to-
of mapping mechanism.

2.2 Echo-state networks

Reservoir computing is a computational paradigm suited for
temporal/sequential data processing (Verstraeten et al, 2007;
Lukogevicius and Jaeger, 2009). Though different implementations
of reservoir computing exist in studies (Tino and DorfIner, 2001;
Maass et al., 2002), the echo state network (ESN) is the most widely
known model, with a strong theoretical ground (e.g., Gallicchio and
Micheli, 2011; Manjunath and Jaeger, 2013; Massar and Massar,
2013; Tino, 2018) and plenty of successful applications reported
in studies (Bacciu et al., 2014; Crisostomi et al., 2015; Palumbo
et al., 2016). In recent years, ESNs have been applied to static
graph data (Gallicchio and Micheli, 2020) and even with extensions
to dynamic graphs where only the node labels change over time
(Tortorella and Micheli, 2021). ESNs have not been used for the

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al.

more complicated on-to-of task where two types of dynamics exist.
While it is well known that regular neural networks™ architecture
plays a vital role in their performance, the effect of the ESNs’
architecture still remains unclear. The pioneering studies of deep
ESN has been discussed in Gallicchio and Micheli (2017). While
deep ESNs have shown potential on efficiently processing temporal
data, the initialization of deep ESNGs is still underexplored (Jaeger,
2002). Pre-training schemes such as PSO were used to alter the
ESN topology manually in a trial-and-error manner (Chouikhi
etal, 2017). Our study is different from this line of research, as we
first propose to initialize the echo-state network automatically with
neural architecture search.

3 Problem definitions

In this section, basic concepts and problem definitions
are introduced.

Definition 3.1 (Dynamics on graphs). In a graph with V nodes,
the dynamics on graph are defined as the multivariate time
series sensed continuously on all the nodes denoted as S =
(M, 8@, ... s}, where S is the node signal for node .

Definition 3.2 (Dynamics of graphs). For a graph with a maximum
number of V nodes, the dynamics of graphs is an ordered sequence
of separate weighted graphs A = {A;, A3, -+, A}, where Ay €
RV*V corresponds to an incidence matrix weighted or adjacency
matrix.

In reality, it is usually very difficult to directly measure all the
edges in order to sense the whole graph directly. Instead, it is much
more efficient and common to sense the node signals on the nodes
to infer the underlying graph structure. We propose the problem
which maps the “dynamics on graphs" to “dynamics of graphs" (in
short, the on-to-of problem) for mapping the two spaces.

Definition 3.3 (The on-to-of task). We assume that the dynamics
on graphs data S and dynamics of graph A are all evenly segmented:
S={8,8,,Suh A={A, A, -, Ay}, where the Ay is the
ground truth underlying dynamics of graphs in the k—th segment
of dynamics on graphs, i.e., Sx. The on-to-of task is to infer a
function to map between S and A: F: S — A.

For convenience, we denote S = {S1,S;,---,S,,} for m time
series, and § = {S(l),S(Z), o ,S(V)} for V nodes. S;:) is the i—th
node’s k—th time series segment. Sfj) can be further defined as
discrete time series with length I: S;{i) = {sg’)l, 5;;,)2’ . 5}3}.

It is important to note that the on-to-of task is different from
most of the dynamic graph studies because only the node signals
are used as input, and the graph structure is the output. In most
dynamic graph studies, the graph structure must be used as well
in a graph neural network (Pareja et al., 2020; Yang et al.,, 2021).
The on-to-of task is also different from the more commonly studied
GSL problem (Zhu et al., 2021) where the evolving graph topology
(i.e., dynamics of graphs) is optimized toward optimizing other
downstream tasks (Graber and Schwing, 2020). In the on-to-of task,
though, recovering the dynamic graph topology is the task itself.

Frontiersin Big Data

10.3389/fdata.2023.1274135

4 Methodology

To solve the on-to-of task and address the challenges, we
propose a new adaptive deep echo-state framework for graph
dynamics transformation in this section. The adaptive deep echo-
state framework (AD-ESN) mainly includes three modules as
demonstrated in Figure I. To solve the challenge of lacking
scalability, we extend echo state network (ESNs) and propose a deep
ESN-based graph dynamics encoder (module (D in Figure 1). In
order to improve the performance and make the model adaptive,
we propose a novel idea of using NAS on ESNs (module 3) in
Figure 1). This solution not only solves the challenge of lacking
model assumptions for the on-to-of task but also remedies the
shortage of vanilla ESNs that the performance is poor. ESN and
NAS together enable us to learn meaningful representations of
arbitrary node signals in a graph. We used an attention-based
dynamic graph topology decoder (module @ in Figure 1) for
mapping the node embeddings to edge labels as detailed in Section
4.2. While NAS is a powerful technique, it can also be extremely
slow, which does not match our original intention of proposing an
efficient on-to-of task solver. We solved this issue by proposing a
surrogate loss and using a gradient-based optimization algorithm
which is much faster to solve.

4.1 Efficient continuous time node signal
encoding

We propose an adaptive deep ESN-based encoder for learning
the representation of the dynamics of graphs. The input data are
non-linearly embedded into a higher dimensional feature space,
where the original problem is more likely to be solved linearly
according to Cover’s Theorem (Cover, 1965). With proper settings,
the dependencies of our ESN-based graph dynamics encoder on the
initial conditions are progressively lost, and the state of the network
asymptotically depends only on the driving input signal.

The ESN-based encoder can be considered as a RNN where all
of the weights are randomized and untrained. As shown in Figure 2,
there are input weight, internal weight, and output weight. On the
left side of the figure, each timestamp in the input time series is
considered as an input node. W™ e R¥R is the weight that
maps each input node with d-dimensional signal to the internal
reservoir neurons. Every time a new timestamp Sg) is fed in, the
reservoir neurons are affected by not only the input data but also
the current state of all the neurons in the ESN. Similarly, the output
weight W) connects the state of the reservoir neurons to the
outputs. The dynamics of the ESN can be represented as r; =
o(Wri—1 + W(i")sf)t), where o is a non-linear activation function,
ry is the current state of the ESN reservoir at time f, W e RR¥R jg
the weight among the R reservoir neurons (shown in Figure 2). The
architecture of the ESN-based encoder is tuned by NAS as detailed
in Section 4.3 and Section 4.4.

For a time series segment with length I, we denote R as the
ESN’s reservoir, and x,(:) as the representation of the k-th time
series segment of node i. x]((i) can be calculated as the final hidden
representation in the ESN that can be computed recursively as

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135
@ Encoder
LA AN o< |Ho—
—_— _’ ?
Node Embedding i
Node Signal 1 Node Signal m .?:q . & @ Decoder Edge Label S
@ @ |nodc Embedding j
\X K
?@O ... @ NAS Oig(j% ESN Architecture
Random ESN Architectures \> O\X
FIGURE 1

Adaptive deep echo-state framework for the on-to-of task.

input weight

W W

internal weight

output weight
W(out)

|
| >
o
8 lle.
S(l)jl.
0
S 'j,l.

input layer

FIGURE 2
Echo state network. The architecture of the reservoir is optimized with NAS.

R reservoir neurons

Reservoir

0

X j,l.
@

X j,Z.
@

X j,l.

output layer

shown in Eq. (1):

) = w8y = weue (wrl) | + winiy)
: o U (1)
= W("“t)o(W(I(Wr](g_2 + W(’")s]i”)l_l) + W(’”)sg’)l).

One of the most essential features in ESN that we utilize is that
the input weight WU and internal weight W are randomized and
will not be optimized during the training process. Only the output
weight W) will be trained on the labeled data. The feature that
W and W are not trained makes ESNs efficient and scalable. At
the same time, ESNs suffer from poor performance compared with
similar modern recurrent neural networks that are optimized with
backpropagation through time (BPTT).

In conclusion, the ESN does not learn the representation of
the input time series. It is directly applied to the sequential input
data and maps the input into a high-dimensional space. While
ESN is efficient, tuning its initial state is highly dependant on
domain experts’ experiences. It is highly desired if ESNs can be
automatically tuned before its trained on the labeled data.

Frontiersin Big Data 04

4.2 Dynamic graph topology decoding

The proposed attention-based dynamic graph topology
decoder aims to infer time-evolving edge features or connectivities,
ensuring that the on-to-of task inference is scalable and general
without bias. Within the k-th time series segment, the dynamics

1 (2 (V)
{x; - ,x. 7} on
V nodes. We define the attention coeflicients between node i and

on graphs now are represented as X

node j as the edge label (dynamics of graphs) we try to infer:
ekij = a(x}(c'),xg)
weights. As there is already a shared learnable linear transformation

), where a is the attention mechanism with shared

layer Wy, in the ESN before getting the embeddings, an external
linear transformation is omitted before using the attention
mechanism. In practice, the attention a is implemented as a
single head GAT (Velickovic¢ et al., 2018) (denoted as function g)
parameterized with W@ defined on a fully connected graph. Now,
we can express the on-to-of task as Ay ;; =) (S,(:), S,E’)) =
(W(ou[),w((x))
expl(o (@ WD R(SD) weu R (sP)))
Y v exp(o (gWEOR(SY) W R(S()))

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al.

4.3 The neural architectures of echo-state
networks

Given a class of neural networks, the first step of NAS is to
define the search space. Take CNN models as an example. The size
and number of the convolution kernels, the number of clusters,
and the choice of activation functions in most CNN models are
all hand-crafted. NAS is the process that optimizes the neural
network architecture automatically such that it performs best on
the data after training. On ESNS, it is easy to see that by carefully
assigning the connectivity represented as the weights in W™ and
W, regardless of the weights, the ESN can become deep-layered
architectures (Gallicchio et al., 2018).

As no NAS studies have been proposed for ESNs, we propose
ESN architecture search, the first attempt of using NAS on ESNs
for graph dynamics learning. The goal is to automatically learn
the ESN architecture so that it will achieve a good performance in
downstream tasks.

The following is the search space that we define for ESNG.

Definition 4.1 (The search space of echo-state networks). The
search space of echo-state networks is defined as follows:

e The connectivity from the input to ESN’s reservoir neurons
A € RR ywhere AT = (0,1} A\ = (W[3£ 0] ¢

o The connectivity between ESN’s reservoir neurons A € RR*R
where Ai,j = {0, 1}.A,‘,j = [Wi,j # 0].

For simplicity, we denote AR — [A(i”),A] as the ESN’s
architecture. The choice of activation functions and the number
of reservoir nodes are also hyperparameters in the search space
but can be set according to general rules (will be discussed in
Section 5.2.

4.4 Deep-echo-state architecture
optimization

A rigorous optimization loss function for optimizing AD-ESN
can be expressed as follows:

AR — arg min LWux W& 4y
A

LD, W, 4) = 337 B oo yio) (S S — Agigl,

O<k<m i#j
where [W("”’)*, W(G)*] = argmin E(W("”t), W(G),A),
[Wlou) W(G)]

)
here, Fytoun yic) 4y represents the graph topology decoder with a
fixed ESN architecture A.

However, the loss in Eq. (2) is extremely expensive to solve as
it requires doing the bi-level optimization on the original on-to-of
task. One common practice in NAS studies is to propose a surrogate
loss that is much easier to solve. Inspired by self-supervised

1 Please note that A represents the graph structure of ESNs, while A

represents the graph structure of the target graphs (dynamics of graphs).

Frontiersin Big Data

10.3389/fdata.2023.1274135

learning, instead of optimizing the ESN for the empirical loss in Eq.
(2), we decouple the ESN-based encoder and the graph topology
decoder, then define a surrogate loss function for the prediction
performance of the ESN-based encoder. Given the time series data
,s:n} sampled from the whole data S, the NAS
problem with the surrogate loss is defined in Eq. (3).

' J /
S = {s],85 -

AR — arg min L (WPt 7).
A

LW, A) = 37 [Riya(Sy.) = st WO =)

O<t<m—1

argmin Ly(W, AR,
w

where the previous W) is replaced with W®®_ Differing from
weud wiered) transforms the internal states of the ESN reservoir
into a representation that shares the same dimensionality as the
time series data. R/, , denotes the surrogate reservoir with W as
the output weight and A as the architecture. Unlike R, R’ functions
as a reservoir that acts as a self-regression function. The rationale
behind this surrogate loss aligns with NRI (Kipf et al, 2018):
effective architectures enable accurate forecasting. To efficiently
address the problem in Eq. (3), we employ the reparameterization
trick and sample ESN graph connections using Gumbel-Softmax.
For each data batch, the ESN architecture is sampled based on
the continuous A®), The optimization of the ESN’s prediction
weight W is achieved through regular backpropagation. The
optimization of the ESN’s architecture parameter AR follows a
simple heuristic, optimizing the validation loss by assuming that
the current W is identical to W) Once the optimization is
completed, to establish the discrete topology in the ESN, we retain
the edge labels (presence or absence) by applying a threshold A.
Additional details regarding the NAS process can be found in the
Supplementary material. The outlined procedures are described in
Algorithm 1.

The time complexity of our ESN-based encoder module is
O(RI), where R is the number of internal reservoir neurons and [
is the length of the time series. Before our method, the standard
way of handling time series data with recurrent neural networks is
BPTT (backpropagation through time), which is O(R?I) (Williams
and Zipser, 1995). The time complexity of the graph topology
decoder can be expressed as O(V?). This is attributed to the
pairwise computation of node hidden feature vectors which is
inevitable. There is also a NAS module in our framework that takes
time, while a vanilla RNN model does not require it. However,
the NAS is meant to automate the fine-turning process that was
originally performed by humans, which normally takes a longer
time. Furthermore, our proposed NAS process is independent of
the supervised-learning process and only runs on small sampled
unlabelled data.

5 Experiments
5.1 Datasets

The proposed AD-ESN framework and baseline methods are
tested on five datasets including two synthetic and three real-world

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al.

1: initialize A® in continuous space

2: while Early stopping criterion is not met do

3: for e in epoch do

4 for minibatch in training and validation data

do

5: //Sample discrete ESN according to AR

6: AR ~ Gumbel(0,1)

7: Initialize W@ and W according to AW

8: // Update the ESN’s predict weights on the
training set

9: W =W — nwVwLy(W,AR)

10: // Update the ESN’s topology parameters AR
on the validation set

11: AR = A®) _ AR VA(R)EMI(W,A(R))

12: end for

13: end for

14: end while

Algorithm 1. Bi-level optimization for the encoder’s architecture.

datasets: Syn-Coupled (Kipf et al., 2018) is a physical simulated
dataset for phase-coupled oscillators. Each node is an oscillator
that is coupled with its neighbors according to a dynamic graph.
Syn-Chaotic is another physical simulated dataset. Each node is
defined as a chaotic time series. The ground truth dynamic graphs
are defined as real-time correlation graphs. Brain is a real-world
brain fMRI data. The dynamic graphs represent the functional
connectivity between brain regions. The node signals represent the
BOLD (blood oxygenation level dependent) time series in each of
the brain regions. Social (Gao et al,, 2019) is a real-world social
media dataset. The node signals are forum users’ activities. The
dynamic graphs are users accumulated transition graphs. Protein
(Anand and Huang, 2018) is a real-world protein folding data.
The node signals contain the amino acids’ 3-dimensional dynamic
coordinates. The dynamic graphs are the protein’s connectivity
during the folding process. For Syn-Chaotic, Forum, and Brain
datasets, the edges have dynamic weights, such that the “dynamics
of graphs” are represented as affinity matrices. We evaluate the
results with average MAE and RMSE. For Syn-Coupled and Protein
datasets, the “dynamics of graphs” are represented as adjacency

TABLE 1 Performance comparison.

Dynamic edge binary classification

10.3389/fdata.2023.1274135

matrices. The results are evaluated with accuracy (Acc) following
(Kipfetal., 2018). We also report the recall (sensitivity) rate as it is
important for the model to have fewer false negatives, i.e., discover
the edge if it exists. More detailed data descriptions can be found in
Supplementary material.

5.2 Experiment settings

All the models are trained with the ADAM optimization
80% of the data
are used as the training set, 10% for testing, and 10%

algorithm. For each of the datasets,

for validation. The architecture of the ESN is optimized
on 10% of the training data with a gradient-based NAS
algorithm. For an input of size d, to remember 7 time
points in the past, the number of ESN nodes is set as
d x v (Lukogevitius, 2012). The randomly generated ESN
weights are normalized to meet a standard called echo state
property (ESP). More implementation details can be found in
Supplementary material.

To show AD-ESN’s strengths in terms of adaptability and
scalability, we compare it with two baselines: LSTM-Att utilizes
LSTM as encoder and GAT as decoder. ESN adopts vanilla ESN as
encoder and GAT as decoder. Additionally, we compare AD-ESN
with two recent SOTA approaches for graph inference: NRI (Kipf
et al., 2018) uncovers the relation graph by learning a variational
auto-encoder (VAE). dNRI (Graber and Schwing, 2020) is similar
with NRI but encodes the temporal dependence with LSTM. At
last, two simple comparison methods are also used: Pre-step simply
determines the relations between nodes as the previous status in
the last segment. Siamese (Mueller and Thyagarajan, 2016) encodes
the time series with LSTM and decode the graph dynamics with a
siamese feed-forward neural network.

5.3 Performance and adaptability analysis

Table 1 summarizes the results of all the models on all the
datasets. We observed that AD-ESN achieves overall the best
performance on all five datasets with different data scales and

Dynamic edge weight estimation

Datasets Syn-Coupled-1 Syn-Coupled-2 Protein Syn-Chaotic Forum Brain
Metrics Acc Recall Acc Recall Acc Recall RMSE MAE RMSE MAE RMSE MAE
Pre-step 51.2 72,5 47.7 70.3 64.5 68.7 0.036 0.033 033 0.067 0.8 0505
LSTM-Att 51.4 625 51.7 499 53.3 453 0.036 0.033 0.26 0.047 - -
Siamese 66.2 14.6 532 1.3 50.0 473 0.039 0.035 0.26 0.052 - -
ESN 50.0 48.6 50.4 483 50.0 424 0.031 0.03 0.49 0.091 0.93 0.562
NRI 94.6 91.5 49.9 33.5 49.9 482 0.029 0.026 0.43 0.075 - -
dNRI 94.4 91.4 56 33.7 56.3 62.6 0.029 0.026 0.49 0.088 - -
AD-ESN 922 90.9 74.4 83.6 67.8 71.4 0.029 0.026 0.26 0.05 0.67 0.442

“-” denotes that the model is not trainable on our hardware. The best performance is indicated by the use of bold numbers.

Frontiersin Big Data

06

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al.

10.3389/fdata.2023.1274135

Ground
Truth

Graphs

Predicted
Graphs

FIGURE 3
Visualization of graphs. Darkness of the edges reflects their weights.

underlying priors, which indicates the exceptional adaptability
of AD-ESN over the baselines. Specifically, AD-ESN surpasses
ESN in all tasks, highlighting the efficacy of neural architecture
searches. Some of the baseline models can perform well on a
restricted set of tasks but fall short on others, which means
they are much more sensitive to datasets. For simulated coupled
oscillator data, we first tested all the methods on a sampled
dataset with the same initialization circumstances as NRI (Syn-
Coupled-1) (Kipf et al.,, 2018), then another dataset with a different
configuration (Syn-Coupled-2). It can be seen that NRI and
dNRI perform better than AD-ESN on Syn-Coupled-1 but fails
miserably on Syn-Coupled-2 when the hyperparameters are not
fine-tuned. Our proposed AD-ESN architecture, on the other
hand, performs slightly worse than NRI and dNRI on Syn-
Coupled-1 but significantly better than all the rest comparison
approaches. This serves as a noteworthy illustration showcasing
both the capabilities and limitations of our proposed AD-ESN
framework. In the case of a dataset such as Syn-Coupled-1,
for which existing methods (e.g., NRI) have been specifically
designed and optimized, AD-ESN may not necessarily surpass
these established methods. Nevertheless, its notable strength lies
in its adaptability across a diverse array of datasets, consistently
delivering satisfactory performance even when other methods
prove ineffective. On the remaining datasets, our proposed AD-
ESN consistently outperforms the other methods. Only two of
the ESN-based algorithms are scalable to be trained on the Brain
dataset since the time-series of nodes are excessively long. The
predicted graphs using AD-ESN are compared to the ground truth
graphs from the Syn-Chaotic dataset in Figure 3. The adaptability
of AD-ESN is enabled by the proposed deep-echo-state graph
dynamics encoder which is automatically altered with NAS in a
self-supervised manner.

Frontiersin Big Data

TABLE 2 GPU usage test results.

Model L D Node# BS GPUmemory
LSTM-Att 500 100 50 128 8,893 MB
AD-ESN 500 100 50 128 6,425 MB
LSTM-Att 1000 10 50 128 6,581 MB
AD-ESN 1000 10 50 128 1,647 MB
LSTM-Att 5000 1 50 128 N/A
LSTM-Att 5000 1 50 132 7464 MB
AD-ESN 5000 1 50 128 2227 MB

L, Time Series Length; D, Input dimension; BS, Batch size. N/A means the GPU memory is
not enough for this setting. The best performance is indicated by the use of bold numbers.

5.4 Scalability analysis

Table 2 shows a comparison of LSTM-Att and AD-ESN models’
GPU RAM usage on synthetic data. The hidden dimensions of both
models are the same. The LSTM-Att model utilizes more RAM
than the AD-ESN model when used to process long time series.
The advantage increases when the time series data become longer
because RNN-based models (e.g., LSTM, GRU) require memory to
store the gradients for each timestamp backpropagation, whereas
ESNs do not. A training time comparison between models
employing the ESN-based encoder and its LSTM-based counterpart
(LSTM-Att) is shown in Figure 4. The number of parameters in
the two models is fixed to be the same to make a fair comparison.
The training cost of the NAS process is negligible compared with
the actual training time due to the efficient gradient-based bi-level
optimization and the surrogate loss. While the ESN-based encoder
is only one component of the whole framework, the training time

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al.

10.3389/fdata.2023.1274135

50

-5 8000 5
o O 40
Q. Q.
@ (5]
= 6000 =
g g 30
Q [
g 4000 g
= o1
j=2} j=2)
£ =
c c
@ 2000 S
[S 10
IS [

° 0

3 10 30 100 300 1000 50 100 200
Number of nodes
FIGURE 4

Scalibility Analysis. The ESN encoder makes the framework much more efficient and scalable.

Length of the time series

1mo —*— AD-ESN

=
g —=— LSTM-Att
D_J.ZDOU
@
T 10000
Q.
GE) 8000
j=2}
£ 6000
£
E 4000
=
2000
400 800 1600 10 30 100 300 1000

Input dimension

of the whole AD-ESN framework is much shorter in all scenarios,
especially when the length of time series increases, which coincides
with the time complexity analysis in Section 4.4.

6 Conclusion

This research has focused on solving the generic “dynamics
on graphs” to the “dynamics of graphs” translation tasks without
knowing what type of mapping was employed. To do so, we
have proposed a generic ESN-based framework with NAS that can
automatically tune its architecture based on the input continuous
node signal data in a self-supervised manner. To the best of
knowledge, this is the first study that combines ESN and NAS.
This combination enables the framework to achieve a compelling
trade-off between the efficiency and neural architecture flexibility.
Experiment results attest that our AD-ESN framework can
successfully uncover the underlying on-to-of mappings on different
types of data. The employment of ESN and NAS has been proven to
be surprisingly effective and makes the framework highly versatile
and scalable.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

LZhao, and ZC conceived of the presented idea. LZhan
designed the model and conducted the experiments. LZhao

References

Anand, N, and Huang, P.-S. (2018). “Generative modeling for protein structures,”
in Proceedings of the 32nd International Conference on Neural Information Processing
Systems (Red Hook, NY: Curran Associates Inc.), 7505-7516.

Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., and Micheli, A. (2014).
An experimental characterization of reservoir computing in ambient assisted living
applications. Neural Comp. Applicat. 24, 1451-1464. doi: 10.1007/s00521-013-1364-4

Frontiersin Big Data

provided datasets and problem definition, and contributed the
domain knowledge. ZC and C-TL offered the feedback on the
proposed method and writing. All authors contributed to the article
and approved the submitted version.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.
1274135/full#supplementary-material

Chouikhi, N., Ammar, B., Rokbani, N., and Alimi, A. M. (2017). Pso-based analysis
of echo state network parameters for time series forecasting. Appl. Soft Comput. 55,
211-225. doi: 10.1016/j.as0c.2017.01.049

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE trans. Elect. Comp. 3,
326-334. doi: 10.1109/PGEC.1965.264137

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/articles/10.3389/fdata.2023.1274135/full#supplementary-material
https://doi.org/10.1007/s00521-013-1364-4
https://doi.org/10.1016/j.asoc.2017.01.049
https://doi.org/10.1109/PGEC.1965.264137
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al.

Crisostomi, E., Gallicchio, C., Micheli, A., Raugi, M., and Tucci, M. (2015).
Prediction of the italian electricity price for smart grid applications. Neurocomputing
170, 286-295. doi: 10.1016/j.neucom.2015.02.089

Du, N, Song, L, Yuan, M. and Smola, A. (2012). Learning networks of
heterogeneous influence. Adv. Neural Inf. Process. Syst. 25:2780-2788.

Gallicchio, C., and Micheli, A. (2011). Architectural and markovian factors of echo
state networks. Neural Netw. 24, 440-456. doi: 10.1016/j.neunet.2011.02.002

Gallicchio, C., and Micheli, A. (2017). Deep echo state network (deepesn): a brief
survey. arXiv.

Gallicchio, C., and Micheli, A. (2020). Fast and deep graph neural networks. Proc.
Int. AAAI Conf. Weblogs. Soc. Media 34, 3898-3905. doi: 10.1609/aaai.v34i04.5803

Gallicchio, C., Micheli, A., and Pedrelli, L. (2018). Design of deep echo state
networks. Neural Netw. 108, 33-47. doi: 10.1016/j.neunet.2018.08.002

Gao, Y., Chowdhury, T., Wu, L., and Zhao, L. (2022). Modeling health stage
development of patients with dynamic attributed graphs in online health communities.
IEEE Trans. Knowl. Data Eng. 35, 1831-1843. doi: 10.1109/TKDE.2022.3144083

Gao, Y., Wu, L., Homayoun, H., and Zhao, L. (2019). “Dyngraph2seq: Dynamic-
graph-to-sequence interpretable learning for health stage prediction in online health
forums,” in 2019 IEEE International Conference on Data Mining (ICDM) (Washington,
DC: IEEE Computer Society Press), 1042-1047.

Graber, C., and Schwing, A. G. (2020). “Dynamic neural relational inference,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Silver Spring, MD: IEEE Computer Society), 8513-8522.

Hlinka, J., Hartman, D., Vejmelka, M., Runge, J., Marwan, N., Kurths, J., et al.
(2013). Reliability of inference of directed climate networks using conditional mutual
information. Entropy 15, 2023-2045. doi: 10.3390/e15062023

Jaeger, H. (2002). “Short term memory in echo state networks. gmd-report 152,
in GMD-German National Research Institute for Computer Science (2002). Princeton:
Citeseer.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). “Neural
relational inference for interacting systems,” in International Conference on Machine
Learning (Cambridge MA: JMLR), 2688-2697.

Lukosevic¢ius, M. (2012). “A practical guide to applying echo state networks,” in
Neural Networks: Tricks of the Trade. Cham: Springer, 659-686.

Lukogevic¢ius, M., and Jaeger, H. (2009). Reservoir computing approaches
to recurrent neural network training. Comp. Sci. Rev. 3, 127-149.
doi: 10.1016/j.cosrev.2009.03.005

Ma, G., Ahmed, N. K., Willke, T. L., Sengupta, D., Cole, M. W., Turk-Browne, N.
B., etal. (2019). “Deep graph similarity learning for brain data analysis,” in CIKM 2019
(New York, NY: Association for Computing Machinery), 2743-2751.

Maass, W., Natschlager, T., and Markram, H. (2002). Real-time computing without
stable states: a new framework for neural computation based on perturbations. Neural
Comput. 14, 2531-2560. doi: 10.1162/089976602760407955

Manjunath, G., and Jaeger, H. (2013). Echo state property linked to an input:
exploring a fundamental characteristic of recurrent neural networks. Neural Comput.
25, 671-696. doi: 10.1162/NECO_a_00411

Frontiersin Big Data

09

10.3389/fdata.2023.1274135

Massar, M., and Massar, S. (2013). Mean-field theory of echo state networks. Phys.
Rev. E 87, 042809. doi: 10.1103/PhysRevE.87.042809

Mueller, J., and Thyagarajan, A. (2016). “Siamese recurrent architectures for
learning sentence similarity,” in Thirtieth AAAI Conference on Artificial Intelligence
(Palo Alto, CA: AAAI Press).

Palumbo, F., Gallicchio, C., Pucci, and Micheli, A. (2016). Human
activity recognition using multisensor data fusion based on reservoir
computing. J. Ambient Intell. Smart Environ. 8, 87-107. doi: 10.3233/AIS-
160372

R,

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., et al.
(2020). Evolvegen: evolving graph convolutional networks for dynamic graphs. Proc
Int AAAI Conf Weblogs Soc Media 34, 5363-5370. doi: 10.1609/aaai.v34i04.5984

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., and Bronstein, M.
(2020). “Temporal graph networks for deep learning on dynamic graphs,” in ICML
2020 Workshop on Graph Representation Learning.

Sankar, A., Wu, Y., Gou, L., Zhang, W., and Yang, H. (2020). “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,” in Proceedings
of the 13th International Conference on Web Search and Data Mining, 519-527.

Taheri, A., Gimpel, K., and Berger-Wolf, T. (2019). “Learning to represent the
evolution of dynamic graphs with recurrent models,” in Companion proceedings of
the 2019 World Wide Web Conference (New York, NY: Association for Computing
Machinery), 301-307.

Tino, P. (2018). Asymptotic fisher memory of randomized linear symmetric echo
state networks. Neurocomputing 298, 4-8. doi: 10.1016/j.neucom.2017.11.076

Tino, P., and Dorffner, G. (2001). Predicting the future of discrete
sequences from fractal representations of the past. Mach. Learn. 45, 187-217.
doi: 10.1023/A:1010972803901

Tortorella, D., and Micheli, A. (2021). Dynamic graph echo state networks. arXiv.
99-104. doi: 10.14428/esann/2021.ES2021-70

Tupikina, L., Molkenthin, N., Lépez, C., Herndndez-Garcia, E., Marwan,
N., and Kurths, J. (2016). Correlation networks from flows. The case of
forced and time-dependent advection-diffusion dynamics. PloS ONE 11, e0153703.
doi: 10.1371/journal.pone.0153703

Velickovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P.,, and Bengio,
Y. (2018). “Graph Attention Networks,” in International Conference on Learning
Representations.

Verstraeten, D., Schrauwen, B., dHaene, M., and Stroobandt, D. (2007). An
experimental unification of reservoir computing methods. Neural Netw. 20, 391-403.
doi: 10.1016/j.neunet.2007.04.003

Williams, R. J., and Zipser, D. (1995). “Gradient-based learning algorithms for
recurrent networks and their computational complexity,” in Backpropagation: Theory,
Architectures, and Applications, 433.

Yang, Y., Cao, J., Stojmenovic, M., Wang, S., Cheng, Y., Lum, C, et al. (2021). Time-
capturing dynamic graph embedding for temporal linkage evolution. IEEE Trans.
Knowl. Data Eng. 35, 958-971. doi: 10.1109/TKDE.2021.3085758

Zhu, Y., Xu, W., Zhang, J., Du, Y., Zhang,], Liu, Q,, et al. (2021). A survey on graph
structure learning: progress and opportunities. arXiv:2103.03036.

frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://doi.org/10.1016/j.neucom.2015.02.089
https://doi.org/10.1016/j.neunet.2011.02.002
https://doi.org/10.1609/aaai.v34i04.5803
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1109/TKDE.2022.3144083
https://doi.org/10.3390/e15062023
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/NECO_a_00411
https://doi.org/10.1103/PhysRevE.87.042809
https://doi.org/10.3233/AIS-160372
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.1016/j.neucom.2017.11.076
https://doi.org/10.1023/A:1010972803901
https://doi.org/10.14428/esann/2021.ES2021-70
https://doi.org/10.1371/journal.pone.0153703
https://doi.org/10.1016/j.neunet.2007.04.003
https://doi.org/10.1109/TKDE.2021.3085758
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
	1 Introduction
	2 Related work
	2.1 ``Dynamics on graphs'' and ``dynamics of graphs''
	2.2 Echo-state networks

	3 Problem definitions
	4 Methodology
	4.1 Efficient continuous time node signal encoding
	4.2 Dynamic graph topology decoding
	4.3 The neural architectures of echo-state networks
	4.4 Deep-echo-state architecture optimization

	5 Experiments
	5.1 Datasets
	5.2 Experiment settings
	5.3 Performance and adaptability analysis
	5.4 Scalability analysis

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

