
TYPE Methods

PUBLISHED 17 November 2023

DOI 10.3389/fdata.2023.1274135

OPEN ACCESS

EDITED BY

Xiaojie Guo,

IBM Research, United States

REVIEWED BY

Junhong Lin,

Massachusetts Institute of Technology,

United States

Yiyue Qian,

University of Notre Dame, United States

*CORRESPONDENCE

Lei Zhang

zhanglei@vt.edu

RECEIVED 07 August 2023

ACCEPTED 20 October 2023

PUBLISHED 17 November 2023

CITATION

Zhang L, Chen Z, Lu C-T and Zhao L (2023) Fast

and adaptive dynamics-on-

graphs to dynamics-of-graphs translation.

Front. Big Data 6:1274135.

doi: 10.3389/fdata.2023.1274135

COPYRIGHT

© 2023 Zhang, Chen, Lu and Zhao. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Fast and adaptive dynamics-on-
graphs to dynamics-of-graphs
translation

Lei Zhang1*, Zhiqian Chen2, Chang-Tien Lu1 and Liang Zhao3

1Department of Computer Science, Virginia Tech, Falls Church, VA, United States, 2Department of

Computer Science and Engineering, Mississippi State University, Mississippi, MS, United States,
3Department of Computer Science, Emory University, Atlanta, GA, United States

Numerous networks in the real world change with time, producing dynamic

graphs such as human mobility networks and brain networks. Typically, the

“dynamics on graphs” (e.g., changing node attribute values) are visible, and they

may be connected to and suggestive of the “dynamics of graphs” (e.g., evolution

of the graph topology). Due to two fundamental obstacles, modeling andmapping

between them have not been thoroughly explored: (1) the difficulty of developing

a highly adaptable model without solid hypotheses and (2) the ineffectiveness

and slowness of processing data with varying granularity. To solve these issues,

we offer a novel scalable deep echo-state graph dynamics encoder for networks

with significant temporal duration and dimensions. A novel neural architecture

search (NAS) technique is then proposed and tailored for the deep echo-state

encoder to ensure strong learnability. Extensive experiments on synthetic and

actual application data illustrate the proposed method’s exceptional effectiveness

and efficiency.

KEYWORDS

graph, ESN, reservoir computing, GNN, NAS

1 Introduction

Graphs are commonly used as universal representations of real-world things, including

social networks, brain functional connections, andmolecular topology. Real-world networks

generally exhibit patterns in their dynamics, which may be classed as “dynamics on graphs”

and “dynamics of graphs.” The former stresses the time-evolving patterns of the entities’

activity, which can be proven explicitly through the observable node attributes, whereas the

latter emphasizes the underlying change in the topological structure of the network. Both

forms of dynamics appear in real-world graphs, and it is tremendously advantageous to

understand their linkage and transformation. In social networks, for instance, it is crucial

to investigate how the node-level behaviors might affect time-evolving connectivities (Gao

et al., 2022). In neuroscience, it is essential to examine how the co-activation of many

neurons increases their physical nerve connections (Ma et al., 2019). In recent years,

a substantial amount of work and knowledge has been devoted to “dynamics graphs,”

a mix of “dynamics on graphs,” and “dynamics of graphs.” Dynamic graph embedding

methods, for instance, compute dynamic node embedding by aggregating messages from

nodes’ neighborhoods, which requires the input of both node signals (i.e., dynamics on

graphs) and graph topology (i.e., dynamics of graphs) (Taheri et al., 2019; Pareja et al.,

2020; Sankar et al., 2020). In practice, however, it is typically quite difficult to directly

measure all the edges to immediately perceive the entire graph. Instead, it is considerably

more frequent and economical to deduce the underlying network structure from the node

signals. Therefore, we propose the task that transfers “dynamics on graphs” to “dynamics

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1274135
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1274135&domain=pdf&date_stamp=2023-11-17
mailto:zhanglei@vt.edu
https://doi.org/10.3389/fdata.2023.1274135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1274135/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

of graphs” (in short, “on-to-of” task) to map the two individual

spaces. Existing on-to-of efforts can be divided into two distinct

categories. The first class of approaches discretizes continuous

node signals before implementing message passing on a fully

connected (Pareja et al., 2020; Yang et al., 2021), resulting in a severe

loss of information. The second category encodes full time series

directly into their embeddings and then calculates the correlation

between these embeddings using standard metrics such as cosine

similarity (Hlinka et al., 2013; Tupikina et al., 2016; Kipf et al.,

2018; Graber and Schwing, 2020). However, such metrics usually

imply strong priors and thus cannot adapt to more complicated

on-to-of mappings.

This study focuses on the on-to-of task, which cannot be

effectively addressed by existing solutions due to the following

challenges: (1) Difficulty in jointly extracting features from

node dynamics while learning the dynamic relationships in a

graph. The challenge necessitates that transformation patterns be

considered in both time and graph dimensions. Moreover, these

two dimensions are not independent, necessitating the need for

a framework that can facilitate the combined evolution of node

and edge dynamics. (2) Absence of an effective and scalable

framework for graph dynamics encoding over a continuous

long time duration with a high sampling rate. The inference

of dynamic graph topology necessitates fine-grained, long-term

knowledge on graph dynamics. Existing efforts for dynamic

network embedding and representation learning are unable to

efficiently manage extended time series of node attribute data.

(3) Dilemma between learnability and efficiency of models.

Modeling the complex mapping between node and edge dynamics

demands models with a high capacity for learning. Compared to

optimizing a model fitted to specific data, optimizing a highly

flexible, highly learnable model is typically time-consuming.

To address the above challenges, we present a novel framework

based on echo-state network (ESN) and neural architecture search

(NAS). Specifically, a deep echo-state network is proposed to

efficiently encode the continuous time series of node attributes

into dynamic edge embeddings. The architecture of the ESN is

automatically tuned by NAS in a self-supervised manner. The

application of the ESN makes the framework extremely efficient

and scalable when dealing with continuous node signals. The NAS

module enables the framework to be adaptive to varying data with

minimumpriors and ensures good results. The contributions of this

study are as follows: (1) Propose the first NASmethod for ESN. To

efficiently encode the continuous node signals, we propose to use

ESN as the the encoder and tune its architecture with NASmethods.

To the best of our knowledge, this is the first work that defines the

search space of ESN and optimizes its architectures automatically

for downstream tasks. (2) Design a novel generic framework

for mapping between “dynamics on graphs” and “dynamics of

graphs”. Different from existing studies, the proposed framework is

generic and does not depend on specific mapping priors. We show

that ESN and NAS complement each other and fit the problem

well. First, ESN is efficient and scalable but suffers from low

performance. Second, NASmakes the model adaptive to target data

but is expensive to train for large regular. The combination of NAS

and ESN yields a good balance between scalability and performance

and is well suited for the generic “dynamics on graphs” and

“dynamics of graphs” translation task. (3) Conduct extensive

experiments for performance and efficiency evaluations. The

proposed method was evaluated on both synthetic and real-

world application data. The results demonstrate that the proposed

approach runs significantly more efficiently and exhibits better

performance than the baseline methods.

2 Related work

2.1 “Dynamics on graphs” and “dynamics
of graphs”

The studies on graph structure learning (GSL) and dynamic

graph embedding studies are the most relevant to “dynamics on

graphs” and “dynamics of graphs.” The graph topology learning

strategies in GSL can be classified into metric-based, neural

approaches, and direct approaches (Zhu et al., 2021). Most existing

studies are metric-based (Du et al., 2012; Hlinka et al., 2013;

Graber and Schwing, 2020) which rely on strong priors of the

graph definition. The direct approaches are not related to the on-

to-of task because the optimization for an extra downstream task

is needed. The neural approaches can be used for the generic

on-to-of task. Only recently, several neural approaches have been

proposed for dynamic graph data and dynamic graph topology

(Graber and Schwing, 2020; Rossi et al., 2020). These research

have a greater emphasis on strengthening the graph neural network

module and solely use conventional 2D-CNNs or RNNs to encode

continuous graph signals. Furthermore, the GSL modules highly

rely on ad-hoc heuristic models that are designed under strong

priors. For example, Tupikina et al. (2016) assumed that the graph

is a temporal correlation matrix; Graber and Schwing (2020) tried

to recover the underlying physical interaction relationship with

temporal dependencies; Hlinka et al. (2013) focused on inferring

entropy graphs; Kipf et al. (2018) assumed a static graph is the cause

of the dynamics; Du et al. (2012) tried to recover the maximum

likelihood diffusion graph of cascades of events. Unlike previous

research, our proposed framework is designed to be highly adaptive

and does not rely on pre-processing or the usually unknown on-to-

of mapping mechanism.

2.2 Echo-state networks

Reservoir computing is a computational paradigm suited for

temporal/sequential data processing (Verstraeten et al., 2007;

Lukoševičius and Jaeger, 2009). Though different implementations

of reservoir computing exist in studies (Tino and Dorffner, 2001;

Maass et al., 2002), the echo state network (ESN) is the most widely

knownmodel, with a strong theoretical ground (e.g., Gallicchio and

Micheli, 2011; Manjunath and Jaeger, 2013; Massar and Massar,

2013; Tiňo, 2018) and plenty of successful applications reported

in studies (Bacciu et al., 2014; Crisostomi et al., 2015; Palumbo

et al., 2016). In recent years, ESNs have been applied to static

graph data (Gallicchio andMicheli, 2020) and even with extensions

to dynamic graphs where only the node labels change over time

(Tortorella and Micheli, 2021). ESNs have not been used for the

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

more complicated on-to-of task where two types of dynamics exist.

While it is well known that regular neural networks’ architecture

plays a vital role in their performance, the effect of the ESNs’

architecture still remains unclear. The pioneering studies of deep

ESN has been discussed in Gallicchio and Micheli (2017). While

deep ESNs have shown potential on efficiently processing temporal

data, the initialization of deep ESNs is still underexplored (Jaeger,

2002). Pre-training schemes such as PSO were used to alter the

ESN topology manually in a trial-and-error manner (Chouikhi

et al., 2017). Our study is different from this line of research, as we

first propose to initialize the echo-state network automatically with

neural architecture search.

3 Problem definitions

In this section, basic concepts and problem definitions

are introduced.

Definition 3.1 (Dynamics on graphs). In a graph with V nodes,

the dynamics on graph are defined as the multivariate time

series sensed continuously on all the nodes denoted as S =

{S(1), S(2), · · · , S(V)}, where S(i) is the node signal for node i.

Definition 3.2 (Dynamics of graphs). For a graphwith amaximum

number of V nodes, the dynamics of graphs is an ordered sequence

of separate weighted graphs A = {A1,A2, · · · ,Am}, where Ak ∈

RV×V corresponds to an incidence matrix weighted or adjacency

matrix.

In reality, it is usually very difficult to directly measure all the

edges in order to sense the whole graph directly. Instead, it is much

more efficient and common to sense the node signals on the nodes

to infer the underlying graph structure. We propose the problem

which maps the “dynamics on graphs" to “dynamics of graphs" (in

short, the on-to-of problem) for mapping the two spaces.

Definition 3.3 (The on-to-of task). We assume that the dynamics

on graphs data S and dynamics of graphA are all evenly segmented:

S = {S1, S2, · · · , Sm}, A = {A1,A2, · · · ,Am}, where the Ak is the

ground truth underlying dynamics of graphs in the k−th segment

of dynamics on graphs, i.e., Sk. The on-to-of task is to infer a

function to map between S andA: F :S → A.

For convenience, we denote S = {S1, S2, · · · , Sm} for m time

series, and S = {S(1), S(2), · · · , S(V)} for V nodes. S(i)k is the i−th

node’s k−th time series segment. S(i)k can be further defined as

discrete time series with length l: S(i)k = {s(i)k,1, s
(i)
k,2, ..., s

(i)
k,l}.

It is important to note that the on-to-of task is different from

most of the dynamic graph studies because only the node signals

are used as input, and the graph structure is the output. In most

dynamic graph studies, the graph structure must be used as well

in a graph neural network (Pareja et al., 2020; Yang et al., 2021).

The on-to-of task is also different from themore commonly studied

GSL problem (Zhu et al., 2021) where the evolving graph topology

(i.e., dynamics of graphs) is optimized toward optimizing other

downstream tasks (Graber and Schwing, 2020). In the on-to-of task,

though, recovering the dynamic graph topology is the task itself.

4 Methodology

To solve the on-to-of task and address the challenges, we

propose a new adaptive deep echo-state framework for graph

dynamics transformation in this section. The adaptive deep echo-

state framework (AD-ESN) mainly includes three modules as

demonstrated in Figure 1. To solve the challenge of lacking

scalability, we extend echo state network (ESNs) and propose a deep

ESN-based graph dynamics encoder (module 1⃝ in Figure 1). In

order to improve the performance and make the model adaptive,

we propose a novel idea of using NAS on ESNs (module 3⃝ in

Figure 1). This solution not only solves the challenge of lacking

model assumptions for the on-to-of task but also remedies the

shortage of vanilla ESNs that the performance is poor. ESN and

NAS together enable us to learn meaningful representations of

arbitrary node signals in a graph. We used an attention-based

dynamic graph topology decoder (module 2⃝ in Figure 1) for

mapping the node embeddings to edge labels as detailed in Section

4.2. While NAS is a powerful technique, it can also be extremely

slow, which does not match our original intention of proposing an

efficient on-to-of task solver. We solved this issue by proposing a

surrogate loss and using a gradient-based optimization algorithm

which is much faster to solve.

4.1 Efficient continuous time node signal
encoding

We propose an adaptive deep ESN-based encoder for learning

the representation of the dynamics of graphs. The input data are

non-linearly embedded into a higher dimensional feature space,

where the original problem is more likely to be solved linearly

according to Cover’s Theorem (Cover, 1965). With proper settings,

the dependencies of our ESN-based graph dynamics encoder on the

initial conditions are progressively lost, and the state of the network

asymptotically depends only on the driving input signal.

The ESN-based encoder can be considered as a RNN where all

of the weights are randomized and untrained. As shown in Figure 2,

there are input weight, internal weight, and output weight. On the

left side of the figure, each timestamp in the input time series is

considered as an input node. W(in) ∈ Rd×R is the weight that

maps each input node with d-dimensional signal to the internal

reservoir neurons. Every time a new timestamp S(i)k is fed in, the

reservoir neurons are affected by not only the input data but also

the current state of all the neurons in the ESN. Similarly, the output

weight W(out) connects the state of the reservoir neurons to the

outputs. The dynamics of the ESN can be represented as rt =

σ (Wrt−1 + W(in)s(i)k,t), where σ is a non-linear activation function,

rt is the current state of the ESN reservoir at time t, W ∈ RR×R is

the weight among the R reservoir neurons (shown in Figure 2). The

architecture of the ESN-based encoder is tuned by NAS as detailed

in Section 4.3 and Section 4.4.

For a time series segment with length l, we denote R as the

ESN’s reservoir, and x(i)k as the representation of the k-th time

series segment of node i. x(i)k can be calculated as the final hidden

representation in the ESN that can be computed recursively as

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

FIGURE 1

Adaptive deep echo-state framework for the on-to-of task.

FIGURE 2

Echo state network. The architecture of the reservoir is optimized with NAS.

shown in Eq. (1):

x(i)k = W(out)R(S(i)k) = W(out)σ ((Wr(i)k,l−1 +W(in)s(i)k,l))

= W(out)σ (Wσ (Wr(i)k,l−2 +W(in)s(i)k,l−1)+W(in)s(i)k,l).
(1)

One of the most essential features in ESN that we utilize is that

the input weight W(in) and internal weight W are randomized and

will not be optimized during the training process. Only the output

weight W(out) will be trained on the labeled data. The feature that

W(in) and W are not trained makes ESNs efficient and scalable. At

the same time, ESNs suffer from poor performance compared with

similar modern recurrent neural networks that are optimized with

backpropagation through time (BPTT).

In conclusion, the ESN does not learn the representation of

the input time series. It is directly applied to the sequential input

data and maps the input into a high-dimensional space. While

ESN is efficient, tuning its initial state is highly dependant on

domain experts’ experiences. It is highly desired if ESNs can be

automatically tuned before its trained on the labeled data.

4.2 Dynamic graph topology decoding

The proposed attention-based dynamic graph topology

decoder aims to infer time-evolving edge features or connectivities,

ensuring that the on-to-of task inference is scalable and general

without bias. Within the k-th time series segment, the dynamics

on graphs now are represented as Xk = {x(1)k , x(2)k , · · · , x(V)k } on

V nodes. We define the attention coefficients between node i and

node j as the edge label (dynamics of graphs) we try to infer:

ek,i,j = a(x(i)k , x
(j)
k), where a is the attention mechanism with shared

weights. As there is already a shared learnable linear transformation

layer Wout in the ESN before getting the embeddings, an external

linear transformation is omitted before using the attention

mechanism. In practice, the attention a is implemented as a

single head GAT (Veličković et al., 2018) (denoted as function g)

parameterized withW(G) defined on a fully connected graph. Now,

we can express the on-to-of task as Ak,i,j = F
(W(out),W(G))

(S(i)k , S
(j)
k) =

exp(σ (g(W(out)R(S(i)k)||W(out)R(S
(j)
k))))

∑
n∈V exp(σ (g(W(out)R(S(i)k)||W(out)R(S(n)k))))

.

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

4.3 The neural architectures of echo-state
networks

Given a class of neural networks, the first step of NAS is to

define the search space. Take CNN models as an example. The size

and number of the convolution kernels, the number of clusters,

and the choice of activation functions in most CNN models are

all hand-crafted. NAS is the process that optimizes the neural

network architecture automatically such that it performs best on

the data after training. On ESNs, it is easy to see that by carefully

assigning the connectivity represented as the weights in W(in) and

W, regardless of the weights, the ESN can become deep-layered

architectures (Gallicchio et al., 2018).

As no NAS studies have been proposed for ESNs, we propose

ESN architecture search, the first attempt of using NAS on ESNs

for graph dynamics learning. The goal is to automatically learn

the ESN architecture so that it will achieve a good performance in

downstream tasks.

The following is the search space that we define for ESNs.

Definition 4.1 (The search space of echo-state networks). The

search space of echo-state networks is defined as follows:

• The connectivity from the input to ESN’s reservoir neurons

A(in) ∈ Rd×R where A(in)
i,j = {0, 1}. A(in)

i,j = [W(in)
i,j ̸= 0] 1

• The connectivity between ESN’s reservoir neurons A ∈ RR×R

where Ai,j = {0, 1}. Ai,j = [Wi,j ̸= 0].

For simplicity, we denote A(R) = [A(in),A] as the ESN’s

architecture. The choice of activation functions and the number

of reservoir nodes are also hyperparameters in the search space

but can be set according to general rules (will be discussed in

Section 5.2.

4.4 Deep-echo-state architecture
optimization

A rigorous optimization loss function for optimizing AD-ESN

can be expressed as follows:

A(R) = argmin
A

L(W(out)∗,W(G)∗,A),

L(W(out),W(G),A) =
∑

0<k<m

∑

i̸=j

|F(W(out),W(G),A)(S
(i)
k , S

(j)
k)−Ak,i,j|,

where [W(out)∗,W(G)∗] = argmin
[W(out),W(G)]

L(W(out),W(G),A),

(2)

here, F(W(out),W(G),A) represents the graph topology decoder with a

fixed ESN architecture A.

However, the loss in Eq. (2) is extremely expensive to solve as

it requires doing the bi-level optimization on the original on-to-of

task. One common practice in NAS studies is to propose a surrogate

loss that is much easier to solve. Inspired by self-supervised

1 Please note that A represents the graph structure of ESNs, while A

represents the graph structure of the target graphs (dynamics of graphs).

learning, instead of optimizing the ESN for the empirical loss in Eq.

(2), we decouple the ESN-based encoder and the graph topology

decoder, then define a surrogate loss function for the prediction

performance of the ESN-based encoder. Given the time series data

S′ = {s′1, s
′
2, · · · , s

′
m} sampled from the whole data S, the NAS

problem with the surrogate loss is defined in Eq. (3).

A(R) = argmin
A

Ls(W
(pred∗),A),

Ls(W,A) =
∑

0<t<m−1

|R′
W,A(S

′
0 : t)− s′t+1)|,W

(pred∗) =

argmin
W

Ls(W,A(R)),

(3)

where the previous W(out) is replaced with W(pred). Differing from

W(out), W(pred) transforms the internal states of the ESN reservoir

into a representation that shares the same dimensionality as the

time series data. R′
W,A denotes the surrogate reservoir with W as

the output weight andA as the architecture. UnlikeR,R′ functions

as a reservoir that acts as a self-regression function. The rationale

behind this surrogate loss aligns with NRI (Kipf et al., 2018):

effective architectures enable accurate forecasting. To efficiently

address the problem in Eq. (3), we employ the reparameterization

trick and sample ESN graph connections using Gumbel-Softmax.

For each data batch, the ESN architecture is sampled based on

the continuous A(R). The optimization of the ESN’s prediction

weight W(pred) is achieved through regular backpropagation. The

optimization of the ESN’s architecture parameter A(R) follows a

simple heuristic, optimizing the validation loss by assuming that

the currentW(pred) is identical toW(pred′). Once the optimization is

completed, to establish the discrete topology in the ESN, we retain

the edge labels (presence or absence) by applying a threshold λ.

Additional details regarding the NAS process can be found in the

Supplementary material. The outlined procedures are described in

Algorithm 1.

The time complexity of our ESN-based encoder module is

O(Rl), where R is the number of internal reservoir neurons and l

is the length of the time series. Before our method, the standard

way of handling time series data with recurrent neural networks is

BPTT (backpropagation through time), which is O(R2l) (Williams

and Zipser, 1995). The time complexity of the graph topology

decoder can be expressed as O(V2). This is attributed to the

pairwise computation of node hidden feature vectors which is

inevitable. There is also a NAS module in our framework that takes

time, while a vanilla RNN model does not require it. However,

the NAS is meant to automate the fine-turning process that was

originally performed by humans, which normally takes a longer

time. Furthermore, our proposed NAS process is independent of

the supervised-learning process and only runs on small sampled

unlabelled data.

5 Experiments

5.1 Datasets

The proposed AD-ESN framework and baseline methods are

tested on five datasets including two synthetic and three real-world

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

1: initialize A(R) in continuous space

2: while Early stopping criterion is not met do

3: for e in epoch do

4: for minibatch in training and validation data

do

5: //Sample discrete ESN according to A(R)

6: A(R) ∼ Gumbel(0, 1)

7: Initialize W(in) and W according to A(R)

8: // Update the ESN’s predict weights on the

training set

9: W = W − ηW∇WLtr(W,A(R))

10: // Update the ESN’s topology parameters A(R)

on the validation set

11: A(R) = A(R) − ηA(R)∇A(R)Lval(W,A(R))

12: end for

13: end for

14: end while

Algorithm 1. Bi-level optimization for the encoder’s architecture.

datasets: Syn-Coupled (Kipf et al., 2018) is a physical simulated

dataset for phase-coupled oscillators. Each node is an oscillator

that is coupled with its neighbors according to a dynamic graph.

Syn-Chaotic is another physical simulated dataset. Each node is

defined as a chaotic time series. The ground truth dynamic graphs

are defined as real-time correlation graphs. Brain is a real-world

brain fMRI data. The dynamic graphs represent the functional

connectivity between brain regions. The node signals represent the

BOLD (blood oxygenation level dependent) time series in each of

the brain regions. Social (Gao et al., 2019) is a real-world social

media dataset. The node signals are forum users’ activities. The

dynamic graphs are users’ accumulated transition graphs. Protein

(Anand and Huang, 2018) is a real-world protein folding data.

The node signals contain the amino acids’ 3-dimensional dynamic

coordinates. The dynamic graphs are the protein’s connectivity

during the folding process. For Syn-Chaotic, Forum, and Brain

datasets, the edges have dynamic weights, such that the “dynamics

of graphs” are represented as affinity matrices. We evaluate the

results with averageMAE and RMSE. For Syn-Coupled and Protein

datasets, the “dynamics of graphs” are represented as adjacency

matrices. The results are evaluated with accuracy (Acc) following

(Kipf et al., 2018). We also report the recall (sensitivity) rate as it is

important for the model to have fewer false negatives, i.e., discover

the edge if it exists. More detailed data descriptions can be found in

Supplementary material.

5.2 Experiment settings

All the models are trained with the ADAM optimization

algorithm. For each of the datasets, 80% of the data

are used as the training set, 10% for testing, and 10%

for validation. The architecture of the ESN is optimized

on 10% of the training data with a gradient-based NAS

algorithm. For an input of size d, to remember τ time

points in the past, the number of ESN nodes is set as

d × τ (Lukoševičius, 2012). The randomly generated ESN

weights are normalized to meet a standard called echo state

property (ESP). More implementation details can be found in

Supplementary material.

To show AD-ESN’s strengths in terms of adaptability and

scalability, we compare it with two baselines: LSTM-Att utilizes

LSTM as encoder and GAT as decoder. ESN adopts vanilla ESN as

encoder and GAT as decoder. Additionally, we compare AD-ESN

with two recent SOTA approaches for graph inference: NRI (Kipf

et al., 2018) uncovers the relation graph by learning a variational

auto-encoder (VAE). dNRI (Graber and Schwing, 2020) is similar

with NRI but encodes the temporal dependence with LSTM. At

last, two simple comparison methods are also used: Pre-step simply

determines the relations between nodes as the previous status in

the last segment. Siamese (Mueller and Thyagarajan, 2016) encodes

the time series with LSTM and decode the graph dynamics with a

siamese feed-forward neural network.

5.3 Performance and adaptability analysis

Table 1 summarizes the results of all the models on all the

datasets. We observed that AD-ESN achieves overall the best

performance on all five datasets with different data scales and

TABLE 1 Performance comparison.

Dynamic edge binary classification Dynamic edge weight estimation

Datasets Syn-Coupled-1 Syn-Coupled-2 Protein Syn-Chaotic Forum Brain

Metrics Acc Recall Acc Recall Acc Recall RMSE MAE RMSE MAE RMSE MAE

Pre-step 51.2 72.5 47.7 70.3 64.5 68.7 0.036 0.033 0.33 0.067 0.8 0.505

LSTM-Att 51.4 62.5 51.7 49.9 53.3 45.3 0.036 0.033 0.26 0.047 - -

Siamese 66.2 14.6 53.2 11.3 50.0 47.3 0.039 0.035 0.26 0.052 - -

ESN 50.0 48.6 50.4 48.3 50.0 42.4 0.031 0.03 0.49 0.091 0.93 0.562

NRI 94.6 91.5 49.9 33.5 49.9 48.2 0.029 0.026 0.43 0.075 - -

dNRI 94.4 91.4 56 33.7 56.3 62.6 0.029 0.026 0.49 0.088 - -

AD-ESN 92.2 90.9 74.4 83.6 67.8 71.4 0.029 0.026 0.26 0.05 0.67 0.442

“-” denotes that the model is not trainable on our hardware. The best performance is indicated by the use of bold numbers.

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

FIGURE 3

Visualization of graphs. Darkness of the edges reflects their weights.

underlying priors, which indicates the exceptional adaptability

of AD-ESN over the baselines. Specifically, AD-ESN surpasses

ESN in all tasks, highlighting the efficacy of neural architecture

searches. Some of the baseline models can perform well on a

restricted set of tasks but fall short on others, which means

they are much more sensitive to datasets. For simulated coupled

oscillator data, we first tested all the methods on a sampled

dataset with the same initialization circumstances as NRI (Syn-

Coupled-1) (Kipf et al., 2018), then another dataset with a different

configuration (Syn-Coupled-2). It can be seen that NRI and

dNRI perform better than AD-ESN on Syn-Coupled-1 but fails

miserably on Syn-Coupled-2 when the hyperparameters are not

fine-tuned. Our proposed AD-ESN architecture, on the other

hand, performs slightly worse than NRI and dNRI on Syn-

Coupled-1 but significantly better than all the rest comparison

approaches. This serves as a noteworthy illustration showcasing

both the capabilities and limitations of our proposed AD-ESN

framework. In the case of a dataset such as Syn-Coupled-1,

for which existing methods (e.g., NRI) have been specifically

designed and optimized, AD-ESN may not necessarily surpass

these established methods. Nevertheless, its notable strength lies

in its adaptability across a diverse array of datasets, consistently

delivering satisfactory performance even when other methods

prove ineffective. On the remaining datasets, our proposed AD-

ESN consistently outperforms the other methods. Only two of

the ESN-based algorithms are scalable to be trained on the Brain

dataset since the time-series of nodes are excessively long. The

predicted graphs using AD-ESN are compared to the ground truth

graphs from the Syn-Chaotic dataset in Figure 3. The adaptability

of AD-ESN is enabled by the proposed deep-echo-state graph

dynamics encoder which is automatically altered with NAS in a

self-supervised manner.

TABLE 2 GPU usage test results.

Model L D Node # BS GPU memory

LSTM-Att 500 100 50 128 8,893 MB

AD-ESN 500 100 50 128 6,425 MB

LSTM-Att 1000 10 50 128 6,581 MB

AD-ESN 1000 10 50 128 1,647 MB

LSTM-Att 5000 1 50 128 N/A

LSTM-Att 5000 1 50 ↓ 32 7464 MB

AD-ESN 5000 1 50 128 2227 MB

L, Time Series Length; D, Input dimension; BS, Batch size. N/A means the GPU memory is

not enough for this setting. The best performance is indicated by the use of bold numbers.

5.4 Scalability analysis

Table 2 shows a comparison of LSTM-Att and AD-ESNmodels’

GPU RAM usage on synthetic data. The hidden dimensions of both

models are the same. The LSTM-Att model utilizes more RAM

than the AD-ESN model when used to process long time series.

The advantage increases when the time series data become longer

because RNN-based models (e.g., LSTM, GRU) require memory to

store the gradients for each timestamp backpropagation, whereas

ESNs do not. A training time comparison between models

employing the ESN-based encoder and its LSTM-based counterpart

(LSTM-Att) is shown in Figure 4. The number of parameters in

the two models is fixed to be the same to make a fair comparison.

The training cost of the NAS process is negligible compared with

the actual training time due to the efficient gradient-based bi-level

optimization and the surrogate loss. While the ESN-based encoder

is only one component of the whole framework, the training time

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

FIGURE 4

Scalibility Analysis. The ESN encoder makes the framework much more efficient and scalable.

of the whole AD-ESN framework is much shorter in all scenarios,

especially when the length of time series increases, which coincides

with the time complexity analysis in Section 4.4.

6 Conclusion

This research has focused on solving the generic “dynamics

on graphs” to the “dynamics of graphs” translation tasks without

knowing what type of mapping was employed. To do so, we

have proposed a generic ESN-based framework with NAS that can

automatically tune its architecture based on the input continuous

node signal data in a self-supervised manner. To the best of

knowledge, this is the first study that combines ESN and NAS.

This combination enables the framework to achieve a compelling

trade-off between the efficiency and neural architecture flexibility.

Experiment results attest that our AD-ESN framework can

successfully uncover the underlying on-to-of mappings on different

types of data. The employment of ESN and NAS has been proven to

be surprisingly effective and makes the framework highly versatile

and scalable.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

LZhao, and ZC conceived of the presented idea. LZhan

designed the model and conducted the experiments. LZhao

provided datasets and problem definition, and contributed the

domain knowledge. ZC and C-TL offered the feedback on the

proposedmethod and writing. All authors contributed to the article

and approved the submitted version.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.

1274135/full#supplementary-material

References

Anand, N., and Huang, P.-S. (2018). “Generative modeling for protein structures,”
in Proceedings of the 32nd International Conference on Neural Information Processing
Systems (Red Hook, NY: Curran Associates Inc.), 7505–7516.

Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., and Micheli, A. (2014).
An experimental characterization of reservoir computing in ambient assisted living
applications. Neural Comp. Applicat. 24, 1451–1464. doi: 10.1007/s00521-013-1364-4

Chouikhi, N., Ammar, B., Rokbani, N., and Alimi, A. M. (2017). Pso-based analysis
of echo state network parameters for time series forecasting. Appl. Soft Comput. 55,
211–225. doi: 10.1016/j.asoc.2017.01.049

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE trans. Elect. Comp. 3,
326–334. doi: 10.1109/PGEC.1965.264137

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://www.frontiersin.org/articles/10.3389/fdata.2023.1274135/full#supplementary-material
https://doi.org/10.1007/s00521-013-1364-4
https://doi.org/10.1016/j.asoc.2017.01.049
https://doi.org/10.1109/PGEC.1965.264137
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhang et al. 10.3389/fdata.2023.1274135

Crisostomi, E., Gallicchio, C., Micheli, A., Raugi, M., and Tucci, M. (2015).
Prediction of the italian electricity price for smart grid applications. Neurocomputing
170, 286–295. doi: 10.1016/j.neucom.2015.02.089

Du, N., Song, L., Yuan, M., and Smola, A. (2012). Learning networks of
heterogeneous influence. Adv. Neural Inf. Process. Syst. 25:2780–2788.

Gallicchio, C., and Micheli, A. (2011). Architectural and markovian factors of echo
state networks. Neural Netw. 24, 440–456. doi: 10.1016/j.neunet.2011.02.002

Gallicchio, C., and Micheli, A. (2017). Deep echo state network (deepesn): a brief
survey. arXiv.

Gallicchio, C., and Micheli, A. (2020). Fast and deep graph neural networks. Proc.
Int. AAAI Conf. Weblogs. Soc. Media 34, 3898–3905. doi: 10.1609/aaai.v34i04.5803

Gallicchio, C., Micheli, A., and Pedrelli, L. (2018). Design of deep echo state
networks. Neural Netw. 108, 33–47. doi: 10.1016/j.neunet.2018.08.002

Gao, Y., Chowdhury, T., Wu, L., and Zhao, L. (2022). Modeling health stage
development of patients with dynamic attributed graphs in online health communities.
IEEE Trans. Knowl. Data Eng. 35, 1831–1843. doi: 10.1109/TKDE.2022.3144083

Gao, Y., Wu, L., Homayoun, H., and Zhao, L. (2019). “Dyngraph2seq: Dynamic-
graph-to-sequence interpretable learning for health stage prediction in online health
forums,” in 2019 IEEE International Conference on Data Mining (ICDM) (Washington,
DC: IEEE Computer Society Press), 1042–1047.

Graber, C., and Schwing, A. G. (2020). “Dynamic neural relational inference,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Silver Spring, MD: IEEE Computer Society), 8513–8522.

Hlinka, J., Hartman, D., Vejmelka, M., Runge, J., Marwan, N., Kurths, J., et al.
(2013). Reliability of inference of directed climate networks using conditional mutual
information. Entropy 15, 2023–2045. doi: 10.3390/e15062023

Jaeger, H. (2002). “Short term memory in echo state networks. gmd-report 152,”
in GMD-German National Research Institute for Computer Science (2002). Princeton:
Citeseer.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). “Neural
relational inference for interacting systems,” in International Conference on Machine
Learning (Cambridge MA: JMLR), 2688–2697.

Lukoševičius, M. (2012). “A practical guide to applying echo state networks,” in
Neural Networks: Tricks of the Trade. Cham: Springer, 659–686.

Lukoševičius, M., and Jaeger, H. (2009). Reservoir computing approaches
to recurrent neural network training. Comp. Sci. Rev. 3, 127–149.
doi: 10.1016/j.cosrev.2009.03.005

Ma, G., Ahmed, N. K., Willke, T. L., Sengupta, D., Cole, M. W., Turk-Browne, N.
B., et al. (2019). “Deep graph similarity learning for brain data analysis,” in CIKM 2019
(New York, NY: Association for Computing Machinery), 2743–2751.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without
stable states: a new framework for neural computation based on perturbations. Neural
Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Manjunath, G., and Jaeger, H. (2013). Echo state property linked to an input:
exploring a fundamental characteristic of recurrent neural networks. Neural Comput.
25, 671–696. doi: 10.1162/NECO_a_00411

Massar, M., and Massar, S. (2013). Mean-field theory of echo state networks. Phys.
Rev. E 87, 042809. doi: 10.1103/PhysRevE.87.042809

Mueller, J., and Thyagarajan, A. (2016). “Siamese recurrent architectures for
learning sentence similarity,” in Thirtieth AAAI Conference on Artificial Intelligence
(Palo Alto, CA: AAAI Press).

Palumbo, F., Gallicchio, C., Pucci, R., and Micheli, A. (2016). Human
activity recognition using multisensor data fusion based on reservoir
computing. J. Ambient Intell. Smart Environ. 8, 87–107. doi: 10.3233/AIS-
160372

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., et al.
(2020). Evolvegcn: evolving graph convolutional networks for dynamic graphs. Proc
Int AAAI Conf Weblogs Soc Media 34, 5363–5370. doi: 10.1609/aaai.v34i04.5984

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., and Bronstein, M.
(2020). “Temporal graph networks for deep learning on dynamic graphs,” in ICML
2020 Workshop on Graph Representation Learning.

Sankar, A., Wu, Y., Gou, L., Zhang, W., and Yang, H. (2020). “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,” in Proceedings
of the 13th International Conference on Web Search and Data Mining, 519–527.

Taheri, A., Gimpel, K., and Berger-Wolf, T. (2019). “Learning to represent the
evolution of dynamic graphs with recurrent models,” in Companion proceedings of
the 2019 World Wide Web Conference (New York, NY: Association for Computing
Machinery), 301–307.

Tiňo, P. (2018). Asymptotic fisher memory of randomized linear symmetric echo
state networks. Neurocomputing 298, 4–8. doi: 10.1016/j.neucom.2017.11.076

Tino, P., and Dorffner, G. (2001). Predicting the future of discrete
sequences from fractal representations of the past. Mach. Learn. 45, 187–217.
doi: 10.1023/A:1010972803901

Tortorella, D., and Micheli, A. (2021). Dynamic graph echo state networks. arXiv.
99–104. doi: 10.14428/esann/2021.ES2021-70

Tupikina, L., Molkenthin, N., López, C., Hernández-García, E., Marwan,
N., and Kurths, J. (2016). Correlation networks from flows. The case of
forced and time-dependent advection-diffusion dynamics. PloS ONE 11, e0153703.
doi: 10.1371/journal.pone.0153703

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio,
Y. (2018). “Graph Attention Networks,” in International Conference on Learning
Representations.

Verstraeten, D., Schrauwen, B., dHaene, M., and Stroobandt, D. (2007). An
experimental unification of reservoir computing methods. Neural Netw. 20, 391–403.
doi: 10.1016/j.neunet.2007.04.003

Williams, R. J., and Zipser, D. (1995). “Gradient-based learning algorithms for
recurrent networks and their computational complexity,” in Backpropagation: Theory,
Architectures, and Applications, 433.

Yang, Y., Cao, J., Stojmenovic, M., Wang, S., Cheng, Y., Lum, C., et al. (2021). Time-
capturing dynamic graph embedding for temporal linkage evolution. IEEE Trans.
Knowl. Data Eng. 35, 958–971. doi: 10.1109/TKDE.2021.3085758

Zhu, Y., Xu, W., Zhang, J., Du, Y., Zhang, J., Liu, Q., et al. (2021). A survey on graph
structure learning: progress and opportunities. arXiv:2103.03036.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1274135
https://doi.org/10.1016/j.neucom.2015.02.089
https://doi.org/10.1016/j.neunet.2011.02.002
https://doi.org/10.1609/aaai.v34i04.5803
https://doi.org/10.1016/j.neunet.2018.08.002
https://doi.org/10.1109/TKDE.2022.3144083
https://doi.org/10.3390/e15062023
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/NECO_a_00411
https://doi.org/10.1103/PhysRevE.87.042809
https://doi.org/10.3233/AIS-160372
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.1016/j.neucom.2017.11.076
https://doi.org/10.1023/A:1010972803901
https://doi.org/10.14428/esann/2021.ES2021-70
https://doi.org/10.1371/journal.pone.0153703
https://doi.org/10.1016/j.neunet.2007.04.003
https://doi.org/10.1109/TKDE.2021.3085758
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
	1 Introduction
	2 Related work
	2.1 ``Dynamics on graphs'' and ``dynamics of graphs''
	2.2 Echo-state networks

	3 Problem definitions
	4 Methodology
	4.1 Efficient continuous time node signal encoding
	4.2 Dynamic graph topology decoding
	4.3 The neural architectures of echo-state networks
	4.4 Deep-echo-state architecture optimization

	5 Experiments
	5.1 Datasets
	5.2 Experiment settings
	5.3 Performance and adaptability analysis
	5.4 Scalability analysis

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

