
Infinitely Deep Graph Transformation Networks
Lei Zhang∗, Qisheng Zhang∗, Zhiqian Chen†, Yanshen Sun∗, Chang-Tien Lu∗ and Liang Zhao‡

∗Department of Computer Science, Virginia Tech
Email: {zhanglei, qishengz19, yansh93, ctlu}@vt.edu

†Department of Computer Science and Engineering, Mississippi State University
Email: zchen@cse.msstate.edu

†Department of Computer Science, Emory University
Email: liang.zhao@emory.edu

Abstract—This work develops a node-edge co-evolution model
for attributed graph transformation, where both the node and
edge attributes undergo changes due to complex interactions.
Due to two fundamental obstacles, learning and approximat-
ing attributed graph transformation have not been thoroughly
explored: 1) the difficulty of jointly considering four types
of atomic interactions including nodes-to-edges, nodes-to-nodes,
edges-to-nodes, and edges-to-edges interactions. 2) the difficulty
of capturing iterative long-range interactions between nodes and
edges. To solve these issues, we offer a novel and scalable
equilibrium model, NEC∞, with node-edge message passing and
edge-node message passing. Additionally, we propose an efficient
optimization algorithm that is based on implicit gradient theorem
and includes a theoretical analysis of NEC∞. The effectiveness
and efficiency of the proposed model have been demonstrated
through extensive experiments on synthetic and real-world data
sets.

Index Terms—GNN, IGNN, Implicit model, Graph translation,
Graph transformation, Attributed graph

I. INTRODUCTION

Graphs have been used as universal representations of
relational or interactive components in many problem domains
such as social networks, physics, chemistry, and urban comput-
ing. To model and learn from such data, GNNs were proposed
to generate meaningful node representations by simultaneously
considering the edge attributes and node attributes. In the most
recent years, a new problem, attributed graph transformation,
has been proposed as a more generic task than the most
existing problem settings [1]–[3]. Different from most graph-
based problem settings, two graphs instead of one are involved
in this problem including an input graph and a target graph.
The goal of the attributed graph transformation problem is to
learn and approximate the mapping from the input attributed
graph to the target attributed graph, where both node attributes
and edge attributes could change in the transformation.

The attributed graph transformation problem covers a wide
range of real-world tasks including the ones that cannot be
formulated under the regular graph neural network and node
embedding settings. For example, the process of malware
confinement and propagation is a typical attributed graph trans-
formation learning problem [4]. Given the initial state of an
IoT (Internet of Things) system with node and edge attributes,
it is desired to predict its final state in a muti-attributed graph
where both node attributes and edge attributes are changed
due to malware propagation and malware epidemic control

processes. The chemical reaction prediction problem is also
an attributed graph transformation problem since both node
(atom) attributes and edge (bond) attributes are changed from
the input graph (reactant) to the target graph (product) [5].

The attributed graph transformation problem poses signif-
icant challenges and existing methods are not sufficient to
fully address them. Recent advancements in deep learning
have led to the development of graph-related techniques that
can address specific aspects of the problem, but not all of
them. Neural ordinary differential equations have been used
for learning dynamics in systems with fine-grained dynamic
graph data [6]–[8]. However, our problem differs from this
line of work as we are only given a single snapshot (the input
graph) and are required to predict the final state by an end-
to-end learning and underlying process instead of being given
prior knowledge of it. Some deep graph translation and one-
shot graph generation methods explicitly model node-edge,
edge-node, node-node, and edge-edge interactions [9]–[11].
However, they still rely on and computationally only afford
a predefined and limited number of GNN layers and cannot
capture long-range dependencies that suffice the inference of
equilibrium of target graphs.

To address these issues, we propose an infinite-depth node-
edge co-evolving (NEC∞) model for solving the graph trans-
formation problem. Our model can jointly consider both node
and edge interactions simultaneously, and has the ability to
learn unknown graph transaction mappings with complex
iterative interactions. Specifically, we model all node-edge
interactions with an equilibrium model that update node and
edge representations iteratively until a guaranteed equilibrium
status. In this way, the final representations are stable fixed-
point solutions for both node and edge dynamics in the model.

The contribution of this work are summarized as follows:
1) The development of a new framework for attributed

graph transformation. We propose the first deep equilibrium
model with the node-edge co-evolution message passing mech-
anism to tackle the attributed graph transformation task where
both node and edge attributes can change after transformation.

2) The theoretical analysis for the deep equilibrium
model with the node-edge co-evolution message passing.
We derive its well-posedness condition to ensure the existence
of a unique fixed-point solution.

3) The proposal of an efficient implicit function theorem-

778

2023 IEEE International Conference on Data Mining (ICDM)

DOI 10.1109/ICDM58522.2023.00087

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

79
-8

-3
50

3-
07

88
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
58

52
2.

20
23

.0
00

87

979-8-3503-0788-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

based optimization algorithm. It does require layer-by-
layer backpropagation and has constant memory requirements
regardless of the effective depth of the network.

4) The conduct of extensive experiments to validate the
effectiveness and efficiency of the proposed model. The
results show that NEC∞ can effectively capture long-range
dependencies and outperform the state-of-the-art models on
both synthetic and real-world datasets.

II. RELATED WORK

A. Deep Equilibrium Models on Graph Data

Deep equilibrium model is one type of implicit model.
Different from traditional explicit models (e.g., CNNs, RNNs),
implicit layers/models define a layer in terms of satisfying
some joint conditions of the input and output. Specifically,
deep equilibrium models are defined for satisfying equilibrium
equations and yielding fixed-point solutions [12]. Several
works [12]–[14] show the potential advantages of deep equi-
librium models on many applications, e.g., language mod-
eling, image classification, and semantic segmentation. Just
until recently, deep equilibrium models have been applied
to graph data. IGNN [15] learns node representations by
solving an equilibrium equation with respect to node attributes.
Another work of efficient infinite-depth graph neural networks
(EIGNN) derives a closed-form solution to inverse jacobian in
IGNN with matrix decomposition, avoiding numeric loss and
non-convergence issues in iterative solvers [16]. They all focus
on improving the efficiency of optimizing the weights in an
equilibrium equation for a vanilla GCN but fail to extend the
model to more complicated backbone models.

B. Deep Graph Transformation Learning

Early approaches in this field were tailored to specific ap-
plications and domains. For instance, methods were proposed
for molecular optimization, and protein structure generation
[17], [18]. Similarly, Do et al. focused on the task of chemical
reaction prediction by utilizing the explicit connectivity among
nodes [19]. These approaches can be classified as one-shot
generation methods which refer to building probabilistic graph
models based on the matrix representation that can generate
all nodes and edges in one shot [11]. Guo et al. proposed
the first generic framework for graph-to-graph transformation
learning, which is based on four different interaction paths
[4]. More recent work has also aimed to address the attributed
graph transformation problem, but with a focus on learning a
distribution rather than making predictions [10].

III. PROBLEM FORMULATION

Definition III.1 (Attributed Graph Transformation). An at-
tributed graph is defined as G = (V, E), where V is a
set of |V| nodes and E represents edges. F ∈ RD×|V|

is the node attributes tensor, where D is the dimension of
node attributes. E ∈ RK×|E| is the edge attributes tensor,
where K is the dimension of edge attributes. The problem
of attributed graph transformation is defined as learning a

TABLE I: Important notations and descriptions

Notations Descriptions
G(V0, E0, E0, F0) Input graph with node set V0, edge set

E0, edge attributes tensor E0 and node
attributes tensor F0

G(V ′, E ′, E′, F ′) Target graph with node set V ′, edge set
E ′, edge attributes tensor E′ and node
attributes tensor F ′

|V| Number of nodes
|E| Number of edges
B Node-edge incidence matrix
Hv node embedding, Hv ∈ Rp×|V|

He edge embedding, He ∈ Rq×|E|

Wve weight matrix for the node to edge
message passing

Wev weight matrix for the edge to node
message passing

(!)|·| element-wise absolute value of a ma-
trix or vector

mapping T from an input graph G0 to a target graph GT :
T : G0(V0, E0, E0, F0) → GT (V ′, E ′, E′, F ′).

For instance, let’s consider the malware containment prob-
lem. Here, V0 refers to the IoT device characteristics, while E0

denotes the physical distance matrix between the devices be-
fore confinement. Subsequently, V ′ represents the condition of
the IoT devices after containment, such as being compromised
or not, while E′ represents the distance matrix that has been
adjusted through malware epidemic management protocols.

In the attributed graph transformation task, both the node
and edge attributes can change. The commonly studied node
embedding/classification problem can be seen as a special case
of the attributed graph transformation problem where the edge
features remain the same during the transformation. Learning
the attributed graph transformation necessitates addressing two
key considerations: 1) Four types of atomic interactions.
As both node attributes and edge attributes change during the
transformation, and they are dependent on each other, it is es-
sential to consider four types of atomic interactions including
nodes-to-edges, nodes-to-nodes, edges-to-nodes, and edges-
to-edges interactions. For example, in the case of malware
confinement where nodes represent IoT devices and edges
reflect communication paths between devices, the transient
state of a node or edge is impacted by both the incident
nodes and edges [20]. A model for learning the attributed
graph transformation must possess the ability to represent all
four types of atomic interactions. 2) Iterative long-range
interactions. While each type of atomic interaction could
be straightforward to model, learning the attributed graph
transformation process in an end-to-end fashion is challenging
as the interactions often occur iteratively or asynchronously,
and result in long-range dependencies. The target graph to
predict is often a stable graph after complex interactions, not
a graph after a specific number of atomic interactions. As an
example, the PageRank algorithm can be viewed as a graph
transformation process where the target graph is the graph

779

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

when the PageRank has converged. In this case, the local
operation of PageRank can be easily described in a linear
model, but the entire convergence process is non-trivial to
model with any traditional feed-forward neural networks.

Attributed graph translation should consider both the above
considerations, which cannot be comprehensively handled by
existing methods. The typical practice of tackling the prob-
lem of long-range dependencies is using a large number of
layers. However, besides this strategy being computationally
expensive, it can lead to over-smoothing issues, resulting in the
model failing to capture relevant information. Incorporating
four types of atomic interactions within a single model and
balancing the need for long-range dependency without over-
smoothing present a significant challenge.

IV. INFINITE-DEPTH NODE-EDGE CO-EVOLUTION

In this section, we formally introduce the proposed NEC∞

and elaborate its implementation details.

A. Overall Architecture

The proposed infinite-depth model for the attributed graph
transformation learning problem can be defined as:

F ′ = gΘe(H
t
e), E

′ = fΘv (H
t
v),

Ht+1
e , Ht+1

v = T (Ht
e, H

t
v, F0, E0),

subject to: Ht
e = Ht+1

e and Ht
v = Ht+1

v .

(1)

Here the function T is applied to both the node and edge
embeddings recurrently until it converges to a fixed point,
i.e., Ht

e = Ht+1
e , Ht

v = Ht+1
v , here Ht

! is the hidden rep-
resentation after t-th layer/iteration. This type of formulation
is commonly referred to as a deep equilibrium model (DEQ)
and can be considered as a recurrent neural network operating
on a graph with the constraint that a fixed-point solution must
be found. Once the fixed-point is discovered, the function T
is equivalent to a model with an infinite number of layers
and is able to capture global-range node/edge dependencies,
as both Hv and He will remain unchanged with the addition
of extra layers. The key advantage of using this equilibrium
formulation is that T is immune to oversmoothing because it
is still considered as a single implicit layer. Specifically, the
function T in Eq. (1) is not a feedforward neural network, but
rather an implicit layer, as the output of the layer is defined
by satisfying the equilibrium equation.

The proposed NEC∞ learns the graph transformation pro-
cess through the use of a specifically designed DEQ function
T . In Section IV-B, we formally define the function T to tackle
the different types of interactions among nodes and edges for
the graph transformation problem. In Section IV-C, we discuss
the strict mathematical condition for when Eq. (1) can function
as intended (i.e., yielding a fixed-point solution as the output)
and formulate the problem as a constrained optimization prob-
lem. In Section IV-D, an efficient optimization method based
on projected gradient descent (PGD) and alternating direction
method of multipliers (ADMM) is proposed for solving the
constrained optimization problem.

B. Node-Edge Co-Evolution Message Passing
To handle the attributed graph transformation problem, the

message passing function T in Eq. (1) must be able to capture
the four types of atomic interactions among nodes and edges
as outlined in Section III. In order to take into account the
nature of recurrent models, function T is decomposed into
two basic paths: the node-to-edge message passing path and
the edge-to-node message passing path. These two paths are
then applied iteratively, allowing for direct inferences of the
nodes-to-edges and edges-to-nodes atomic interactions. As the
message passing procedure is applied iteratively, the nodes-to-
nodes and edges-to-edges interactions can also be inferred by
stacking one layer of node-to-edge message passing path and
one layer of edge-to-node message passing path, or one layer
of edge-to-node message passing path and one layer of node-
to-edge message passing path respectively. The two message-
passing paths are defined in the following equations.

Node-to-edge: Ht+1
e = T1(H

t
v, B) = φ(WveH

t
vB),

Edge-to-node Ht+1
v = T2(H

t
e, B) = φ(WevH

t
eB

ᵀ),
(2)

where Ht
v and Ht

e are the node embedding and edge em-
bedding on the t−th layer, respectively. B is the incident
matrix. Wve and Wev are trainable weights. φ is an activation
function. In this paper, we use ReLU activation, but it can be
any activation function with CONE property (e.g. Sigmoid,
tanh, ReLU, LeakyReLU, etc.). During the node/edge message
passing procedures, the node embeddings Hv ∈ Rp×|V| always
remain the same, while edge embeddings He ∈ Rq×|E| also
remain the same. To map from the feature spaces F ∈
RD×|V|/E ∈ RK×|E| to the embedding spaces Hv ∈ Rp×|V| /
He ∈ Rq×|E|, we add an MLP bΩ. If we explicitly seek node
embedding fixed points, the final message passing function is
defined as :

H∗
v = Tv(H

∗
v , B)

= φ(Wevφ(WveH
∗
vB)Bᵀ + bΩ(E0, F0)),

H∗
e = Te(H

∗
v , B) = φ(WveH

∗
vB).

(3)

Once the fixed-point for node embeddings is found as is
shown in Eq. (3), the fixed-point for edge embeddings is
also automatically found because of the nature of equilibrium
functions. Assuming the fixed-point solution for the node
embedding is H∗

v , then the edge embedding in the next layer
is Te(H∗

v , B). As the node embeddings have reached the fixed
point, the node embedding in the next layer will still be
H∗

v , thus the next of the next edge embedding will still be
Te(H∗

v , B). Alternatively, if we seek edge embedding fixed
points first, the function bΩ will be defined to output features
in the space of Rq×|E|.

C. Sufficient Well-posedness Condition for NEC∞

While our model in Eq. (3) is designed to generate a fixed-
point solution, it may not always yield a solution for arbitrary
input and weights. Thus, the notion of well-posedness and the
sufficient well-posedness condition play an important role in
our model as a deep equilibrium model. This notion has been
previously introduced in [21] for ordinary implicit models and

780

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

in [15] for ordinary graph neural networks. To ensure the
existence and uniqueness of the solution to Eq. (3), we define
the notion of well-posedness for NEC∞ in attributed graph
transformation problems.

Definition IV.1 (Well-posedness for NEC∞). The tuple
(Wve,Wev, B) is said to be well-posed for φ if for any
b ∈ Rp×|V|, the solution Hv ∈ Rp×|V| of the following
equation

Hv = φ(Wevφ(WveHvB)Bᵀ + b), (4)

exists and is unique.

Similar to [21], we derive the sufficient condition for the
well-posedness to hold based on the proposed node-edge
co-evolution message passing. According to Definition IV.1,
the condition is about the relationship among three variables
including Wve, Wev , and B.

Theorem IV.2 (PF sufficient condition for well-posedness
on Eq. (3). Suppose φ is a component-wise non-expansive
(CONE) activation map. In such a case, (Wve,Wev, B) is
considered well-posed for any φ if λpf ((B ⊗ Wev)|·|(Bᵀ ⊗
Wve)|·|) < 1. Additionally, the solution Hv to equation (3)
can be obtained by iteratively applying equation (3).

The proof of Theorem IV.2 is given in Appendix A
While the condition about the Perron-Frobenius (PF) eigen-

value λpf (BBᵀ)λpf (W
|·|
evW

|·|
ve) < 1 in Theorem IV.2 guar-

antees that the well-posedness can be obtained, calculating
the PF eigenvalue is very costly. To avoid a costly spectral
decomposition process, we enforce the following more strict
condition ∥W |·|

evW
|·|
ve∥∞ < λpf (BBᵀ)−1. It has been proven

in existing work that this is still equivalent to the sufficient PF
condition [15]. More details can be found in Appendix C.

D. Optimization of NEC∞

The optimization of weights in NEC∞ differs from most
existing neural networks because the layer is defined by
equilibrium and the optimization process involves constraints.
The loss function can be written as:

min
Θv,Θe,Wev,Wve,Ω

L1(F
′, gΘe(Hv)) + L2(E

′, fΘe(He)),

subject to: He = φ(WveHvB),

Hv = φ(Wevφ(WveHvB)Bᵀ + bΩ(E0, F0)),

λpf (BBᵀ)λpf (W
|·|
evW

|·|
ve) < 1,

(5)
where the constraint λpf (BBᵀ)λpf (W

|·|
evW

|·|
ve) < 1 is derived

from Section IV-C. Readout functions gΘe and fΘe are MLPs.
To efficiently solve this problem while keeping the function

stable and constrained, we use a combination of projected
gradient descent (PGD) and implicit function theorem (IFT).
Since Hv and He are also the fixed point solutions, we derive
the analytic solution with IFT. In this way, we can avoid doing
backpropagation on each layer, and the memory usage remains
constant regardless of the number of layers before the model
reaches the fixed-point. To ensure that the model will converge,
while we move in the direction of the negative gradient, we
also use PGD to “project” the weights onto the feasible set

defined by the constraint. The projection itself is also a sub-
problem of optimization and is solved by using alternating
direction method of multipliers (ADMM) [22].

1) ADMM-based Projection: The projection operator can
be expressed as the following optimization problem.

{W+
ev,W

+
ve} = argmin ||Wve −W+

ve||2F + ||Wev −W+
ev||2F ,

subject to: λpf (W
|·|
evW

|·|
ve) < κ,κ = 1/λpf (BBᵀ),

(6)

where W+
ev and W+

ve refer to the updated versions of Wev and
Wve, respectively, after the projection. We enforce the stricter
condition ||W |·|

evW
|·|
ve ||∞ ≤ κ. The projection operator now

becomes a child optimization problem in Eq. (7).

minimize ||X − P ||2F + ||Y −Q||2F ,
subject to ||X |·|Y |·|||∞ ≤ κ.

(7)

As the constraint in Eq. (7) is for X |·|, each dimension in X
and P will always be of the same sign. If one dimension in X
has the opposite sign with the corresponding dimension in P ,
the opposite of that dimension will also satisfy the same con-
straint but result in a smaller loss. Similarly, each dimension in
Y and Q will also always have the same sign. For simplicity,
we can first minimize ||X |·| −P |·|||2F + ||Y |·| −Q|·|||2F . Once
the optimal X ′ = X |·| and Y ′ = Y |·| are obtained, the actual
X and Y can be simply calculated by X = sign(P) ⊙ X ′

and Y = sign(Q) ⊙ Y ′. This trick simplifies the problem in
Eq. (7) to the following version, assuming all values of X , Y ,
P , and Q are positive:

minimize ||X − P ||2F + ||Y −Q||2F ,
subject to XY = C, ||C||∞ ≤ κ.

(8)

To solve Eq. (8) with ADMM, We first define the augmented
Lagrangian, for a parameter ρ > 0:

Lρ(X,Y,C,λ) = ||X − P ||2F + ||Y −Q||2F
+ ⟨λ, XY − C⟩F + (ρ/2)||XY − C||2F .

(9)

ADMM consists of the following iterations:

X = (2P − λY ᵀ + ρCY T)(2I + ρY Y ᵀ)−1, (10)
Y = (2I + ρXᵀX)−1(2Q−Xᵀλ+ ρXᵀC), (11)
C = argmin

||C||∞≤κ
⟨λ, XY − C⟩F , (12)

λ = λ+ ρ(XY − C). (13)

See Appendix B for more details on how the analytical
solutions for X , Y , and C are derived.

Denote optimal primal variables by X∗ and Y ∗, and the
optimal dual variable by λ∗. The primal feasibility is measured
by primal residual:

r = ||Xk+1Y k+1 − Ck+1||F . (14)

The dual residual can be defined as:

s = ρXk+1(Y k − Y k+1)(Y k)ᵀ. (15)

Algorithm 1 summarizes the ADMM optimization iteration.

781

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 ADMM-based projection for PGD
Input: Weight metrics A and B, parameter κ
Choose εpri > 0 , εdual > 0
repeat

Update X by Eq. (10) // analytical solution
Update Y by Eq. (11) // analytical solution
Update C by infinity norm
Update λ by λk+1 = λk + ρ(XY − C)
Calculate the primal residual by Eq. (14)
Calculate the dual residual by Eq. (15)
if r > 10s then

ρ ← 2ρ
else if 10r < s then

ρ ← ρ/2 //varying penalty parameter
else

ρ ← ρ //varying penalty parameter
end if

until r < εpri, s < εdual

2) Gradient Descent based on Implicit Function Theorem:
After the projection, we calculate the gradients of loss with
respect to weights in the equilibrium model by utilizing the
implicit function theorem.

Hv = φ(Wevφ(WveHvB)Bᵀ + bΩ(E0, F0)). (16)
From the chain rule, it is easy to obtain ∇HvL for the internal
state. In addition, we can write the gradient w.r.t scalar q ∈
Wev as follows:

∇qL = ⟨∂Z
∂q

,∇ZL⟩, (17)

where Z = WveHvB assuming fixed Hv . Unlike Hv that is
implicitly defined, Z is a closed evaluation of Z = WveHvB
assuming Hv doesn’t change depending on Z. We find that
∇ZL can be calculated by solving the following equilibrium
equation in Eq. (18). This format is similar with how IGNN
was solved but with different derivation (see Appendix D for
details).

∇ZL = D1 ⊙ (W ᵀ
ev(D2 ⊙ (W ᵀ

ve∇ZLBᵀ))B +∇HvL). (18)

After ∇ZL is calculated, it is easy to infer the derivative of
the loss with respect to Wev and Wve:

∇WevL = ⟨ ∂Z
∂Wev

,∇ZL⟩ = ∇ZLR(φ(WveHvB))ᵀ.

∇WveL = HvB((Bᵀ∇ZLWev)⊙ φ′(WveHvB)).
(19)

Detailed partial derivative calculations for Eq. (19) can be
found in Appendix E.

The updates of bω is done automatically with chain rule
and autograd. In the backpropagation, ∇ZL is calculated first
with the IFT-based algorithm (Appendix D). From there on,
optimizing bω is not different from updating weights in a
feedforward NN.

V. EXPERIMENTS

In this section, we present the evaluation results over the
proposed NEC∞ model.

A. Experimental Setup
1) Datasets: We performed experiments on a set of pub-

licly available attributed graph transformation datasets, which
consisted of four synthetic random graph datasets and four
real-world datasets. In order to assess our model’s capability
in tracking long-range dependencies, we also created two
additional synthetic dynamical system datasets.

Synthetic random graph datasets: To evaluate the ability
of models to approximate predefined node-edge translation
functions, we utilized four synthetic benchmark datasets Syn
I - Syn IV [4]1. These datasets were generated using different
random graph generators and translation rules. The input graph
structures were created using either the Erdős-Rényi (ER)
model or the Barabási-Albert (BA) model, with the number
of nodes ranging from 20 to 60. The target graph structure
is defined as the multi-hop graph of the input graph, where
each edge in the target graph represents multi-hop reachability
in the input graph. The node attributes in the input graphs
correspond to the node degrees, while the node attributes in
the target graphs are calculated using a predefined polynomial
function applied to the node attributes in the input graphs. In
both the input and target graphs, the edge attributes are binary
variables that indicate whether an edge is present or absent.
Each dataset consists of 500 pairs of input-output graphs.

Synthetic dynamical system dataset: To further demon-
strate the models’ performance in handling graph translation
problems involving long-range node-edge interactions, we
generated two additional discrete dynamical system datasets:
Syn-V and Syn-VI. Each dataset contains 500 pairs of input-
output graph pairs. The graph structures in Syn-V were created
with ER model in the same way as Syn-I dataset. The graph
structures in Syn-VI were created with BA model in the same
way as Syn-IV dataset. The 1-dimensional input node features
were sampled from a uniform distribution on the interval [0, 1).
The output node features are the stable-state results of the
dynamical system with linear evolution functions.

Malware confinement dataset: Three malware datasets
for IoT devices are used for evaluating the performance
of malware confinement prediction tasks [23]. For all three
datasets, the nodes in the input graph represent IoT devices
in the system where the node attribute is a binary value
referring to whether the device is compromised or not. The
edge attribute between two nodes is defined as the physical
distance between two devices. The target graphs represent
the graphs with updated node and edge attributes after the
malware confinement, which can be considered as stable
graphs resulting from a dynamical system [20]. Each of the
three datasets consists of 334 pairs of input and target graphs,
with varying contextual parameters such as infection rate,
recovery rate, and decay rate.

Molecule reaction dataset: We apply graph translation
methods to a fundamental problem in organic chemistry, which
involves predicting the product (target graph) of a chemical
reaction given the reactant (input graph). The datasets used in

1source: https://github.com/xguo7/Dataset-for-Deep-Graph-Translation

782

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

our study were collected by Lowe [24] from USPTO granted
patents for chemical reaction extraction studies [24], and they
have been previously used for attributed graph transformation
evaluations [4]. We work with a dataset comprising 5,000
reactant-product pairs, which are evenly divided into training
and testing sets. The node features in this dataset include ele-
mental identity, connectivity degree, hydrogen atoms, valence,
and aromaticity, while the bond features capture bond type and
connectivity.

2) Comparison Methods: To assess the effectiveness of
our proposed method, we conducted comparisons with several
existing approaches, namely NR-DGT, NEC-DGT [4], and
IGNN [15]. NR-DGT is a node-edge co-evolution GNN model
with two blocks/layers, while NEC-DGT is a variant of NR-
DGT that incorporates graph spectral-based regularization. On
the other hand, IGNN is a deep equilibrium model that only
passes messages for node embedding. In comparison to these
existing approaches, our proposed model shares similarities
with IGNN in terms of being an infinite layer GNN and
considers node-edge co-evolution, akin to NEC-DGT. Addi-
tionally, we also compared our proposed method against two
categories of state-of-the-art techniques: 1) link attribute pre-
diction/graph structure learning (GSL) methods, and 2) node
classification/regression methods. These comparisons allowed
us to thoroughly evaluate the performance of our approach and
understand its relative strengths and weaknesses.

Link attribute prediction / GSL methods: GT-GAN is a
recent generative adversarial network for graph topology learn-
ing [10]. GraphRNN is an LSTM-based deep autoregressive
model that can approximate any distribution of graphs with
minimal assumptions about their structure [25]. GraphVAE
is a variational autoencoder-based graph topology generation
method [26].

Node classification/regression methods: IN is a general
GNN framework for learning node-level, edge-level and graph-
level representations [27]. DCRNN is a holistic approach
that captures both spatial and temporal dependencies using
diffusion convolution [28]. STGCN constructs ST-Conv blocks
with spatial convolution layers and residual connections [29].

3) Evaluation: The attributed graph transformation prob-
lem is a multi-objective machine learning problem. While node
attributes and edge attributes are used as input at the same
time, the node prediction and edge prediction are evaluated
separately. For different datasets, the target attributes, for both
nodes and edges, can be binary values or continuous values.
We use MSE, R2, Pearson’s r, and Spearman’s r as metrics.
For binary values, we use accuracy as the metric. For all
datasets, we followed the same training and testing protocols
as described in [4]. 2

B. Performance

1) Metric-based evaluation for synthetic datasets: Results
for synthetic random graph datasets (Syn-I - Syn-IV) are

2The source codes can be found at https://anonymous.4open.science/r/NEC-
infty–6A1C/

shown in Table II. It can be seen that the proposed model
outperforms all comparison methods on both the node and
edge attributes prediction. Specifically, in terms of node at-
tribute prediction, the methods that consider both node and
edge message passing (NR-DGT, NEC-DGT, NEC∞) perform
significantly better than the methods that only do node-to-
node message passing (IN, DCRNN, STGCN). This is because
the traditional node-to-node message-passing methods only
consider a static graph topology while the attributed graph
transformation problem requires explicitly modeling the evolv-
ing edge attributes as well. Furthermore, the proposed NEC∞

performs better than NR-DGT and NEC-DGT. Especially
on the Syn-IV dataset for BA graphs, the MSE has been
decreased one order of magnitude (from 1.86 to 0.183) com-
pared with the second-best performed method. The additional
performance boost comes from the infinite depth equilibrium
layer that captures global graph information. When it comes
to edge attribute prediction, the proposed NEC∞ also shows
significant advantages. It outperforms NEC-DGT by 30% on
average and more for the rest methods. On Syn-IV, the edge
prediction accuracy is improved to almost 100%. The results
demonstrate the effectiveness of the infinite-depth node-edge
co-evolution.

Results for synthetic dynamical system datasets are shown
in Table III. Only node attribute prediction results are eval-
uated because the dynamical systems in Syn V and Syn VI
only output new node attributes. Our main baseline method
NEC-DGT still performs well but was not able to outperform
STGCN on Syn-VI due to the unchanged edges. However, for
both node MESE and Pearson’s r, NEC∞ outperforms all the
comparison methods. It is not a surprise because equilibrium
functions are naturally the mathematical tools for modeling
discrete dynamical systems.

2) Evaluation of the learned translation mapping for
synthetic data: To illustrate whether the inherent mapping
mechanism for both node and edge attributes in the attributed
graph transformation problem is learned correctly by NEC∞,
we visualize the ground-truth mapping and plot the learned
distribution by NEC∞ for all the four synthetic datasets. The
ground-truth mapping is drawn according to the predefined
functions in the dataset generation described in section V-A1.
Figure 1 shows a ground-truth line in green and predicted
values in red dots. As shown in Figure 1, the predicted
values are located closely around the ground-truth plot. This
is mainly because the equilibrium architecture approximates
the underlying transformation dynamics in a natural way.

Figure 2 visualizes the convergence processes for both the
forward pass fixed-point solution in Eq. (3) of Hv and the
intermediate variable ∇ZL in Eq. (18).

3) Metric-based evaluation for malware confinement
datasets: Performance metrics for the malware detection task
are shown in Table IV. The edge attributes are continuous
values and thus are evaluated by E-MSE, E-R2, and E-P.
The node attributes are evaluated by E-Acc. NEC∞ achieves
the overall best performance. For node attributes prediction,
NEC∞ performs the best on the first two datasets but slightly

783

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Evaluation of Generated Target Graphs for Syn-
thetic Dataset (N for node attributes, E for edge attributes, P
for Pearson correlation, SP for Spearman correlation and Acc
for accuracy)

Data Method N-MSE N-R2 N-P N-Sp Method E-Acc

Syn-I

IN 5.97 0.06 0.48 0.44 GraphRNN 0.621
DCRNN 51.36 0.12 0.44 0.45 GraphVAE 0.659
STGCN 15.44 0.19 0.42 0.56 GT-GAN 0.703
IGNN 14.69 0.007 0.82 0.89 NR-DGT 0.701
NR-DGT 2.13 0.87 0.90 0.89 NEC-DGT 0.712
NEC-DGT 1.98 0.76 0.93 0.91 NEC∞ 0.944
NEC∞ 1.018 0.93 0.965 0.959

Syn-II

IN 1.36 0.85 0.77 0.87 GraphRNN 0.562
DCRNN 71.07 0.11 0.39 0.37 GraphVAE 0.463
STGCN 33.11 0.21 0.15 0.15 GT-GAN 0.700
IGNN 3.76 0.88 0.94 0.94 NR-DGT 0.701
NR-DGT 1.43 0.91 0.94 0.97 NEC-DGT 0.720
NEC-DGT 1.91 0.93 0.97 0.97 NEC∞ 0.969
NEC∞ 1.203 0.96 0.982 0.983

Syn-III

IN 35.46 0.31 0.59 0.56 GraphRNN 0.452
DCRNN 263.23 0.09 0.41 0.39 GraphVAE 0.370
STGCN 43.34 0.22 0.48 0.47 GT-GAN 0.577
IGNN 3.27 0.90 0.95 0.95 NR-DGT 0.625
NR-DGT 5.90 0.90 0.94 0.92 NEC-DGT 0.658
NEC-DGT 4.56 0.93 0.97 0.96 NEC∞ 0.955
NEC∞ 3.322 0.95 0.976 0.974

Syn-IV

IN 4.63 0.10 0.53 0.51 GraphRNN 0.517
DCRNN 63.03 0.12 0.22 0.16 GraphVAE 0.300
STGCN 6.52 0.08 0.11 0.10 GT-GAN 0.805
IGNN 4.16 0.32 0.62 0.65 NR-DGT 0.670
NR-DGT 4.49 0.12 0.55 0.54 NEC-DGT 0.843
NEC-DGT 1.86 0.73 0.93 0.89 NEC∞ 0.998
NEC∞ 0.183 0.97 0.98 0.985

TABLE III: Evaluation of Generated Target Graphs for Dy-
namical System Dataset

Dataset Method N-MSE N-P

Syn-V

IN 0.004 0.67
DCRNN 0.005 0.44
STGCN 0.005 0.53
IGNN 0.016 0.85
NR-DGT 0.017 0.63
NEC-DGT 0.009 0.76
NEC∞ 0.003 0.92

Dataset Method N-MSE N-P

Syn-VI

IN 0.003 0.81
DCRNN 0.011 0.70
STGCN 0.007 0.92
IGNN 0.0018 0.96
NR-DGT 0.017 0.74
NEC-DGT 0.0009 0.87
NEC∞ 0.0004 0.99

worse than STGCN on Malware III. The most possible rea-
son is that Malware III is less dependent on the node-edge
interactions and NEC∞ has to be trained to perform both
node attribute and edge attribute predictions at the same time.
In summary, the node-edge message passing methods (NEC-
DGT and NEC∞) can handle node and edge prediction at the
same time better than the rest methods. By introducing the
infinite-depth node-edge message passing, NEC∞ consistently
performs better than its finite layer counterpart.

4) Metric-based evaluation for molecule reaction
datasets: In this task, the proposed model is compared with
the baselines (NEC-DGT and NR-DGT) and traditional re-
action prediction method WLDN. Table V shows the per-
formance of all methods on edge accuracy, the main metric
for reaction prediction tasks. Even the baselines achieve good
performance, they cannot reach a perfect 100 percent accuracy
like NEC∞ does. This shows that NEC∞ can be applied to a
wide range of real-world applications and make accurate node
and edge attribute predictions at the same time.

Fig. 1: Visualizations of predicted node attributes and the
ground truth relationship for synthetic graphs.

Fig. 2: Visualization of the fixed-point solution as results for
node embedding Hv and ∇ZL in optimization.

C. Scalability Analysis

Due to the node-edge and edge-node message passing, the
time complexity of NEC∞ is O(|V|2), matching that of NEC-
DGT and proving more scalable than GraphVAE (O(|V|4)).
It’s important to note that an equilibrium layer is generally
slower than a feed-forward layer with the same function;
hence, a NEC∞ layer is expected to be slower than a NEC-
DGT layer at the same time complexity. However, it’s worth
highlighting that a single NEC∞ can be viewed as an infinite
number of equivalent layers.

The proposed NEC∞ model with the IFT-based optimiza-
tion algorithm is more efficient and scalable than the recurrent-
version counterpart. We refer to the counterpart as NEC-Rec
which is a recurrent model with the same module (node-
edge co-evolution message passing) and weight tying. To
demonstrate it, Figure 3 and 4 illustrates the scalability of
NEC∞ with respect to the graph size and the number of
layers respectively. The run time and memory usage of both
NEC∞ and NEC-Rec increase superlinearly when the number
of nodes increases due to the inevitable pairwise node-to-
edge message passing. However, NEC∞ runs much faster and

784

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Evaluation of Generated Target Graphs for Mal-
ware Dataset (N for node attributes, E for edge attributes, P
for Pearson correlation, SP for Spearman correlation and Acc
for accuracy)

Malware-I
Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.610 1831.43 0.52 0.00 IN 0.878
GraphVAE 0.506 2453.61 0.00 0.04 DCRNN 0.878
GT-GAN 0.630 1718.02 0.42 0.11 STGCN 0.923
NR-DGT 0.910 668.57 0.82 0.91 IGNN 0.882
NEC-DGT 0.921 239.79 0.78 0.91 NR-DGT 0.910
NEC∞ 0.938 195.72 0.78 0.92 NEC-DGT 0.929

NEC∞ 0.934
Malware-II

Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.705 1950.46 0.44 0.29 IN 0.882
GraphVAE 0.606 2410.57 0.73 0.16 DCRNN 0.879
GT-GAN 0.903 462.73 0.13 0.81 STGCN 0.933
NR-DGT 0.911 448.48 0.68 0.83 IGNN 0.843
NEC-DGT 0.938 244.40 0.81 0.91 NR-DGT 0.885
NEC∞ 0.941 233.66 0.81 0.92 NEC-DGT 0.934

NEC∞ 0.948
Malware-III

Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.839 1775.58 0.16 0.23 IN 0.873
GraphVAE 0.8119 2109.64 0.39 0.32 DCRNN 0.873
GT-GAN 0.945 550.30 0.63 0.80 STGCN 0.937
NR-DGT 0.954 341.10 0.76 0.88 IGNN 0.876
NEC-DGT 0.960 273.67 0.81 0.90 NR-DGT 0.877
NEC∞ 0.978 231.99 0.83 0.92 NEC-DGT 0.900

NEC∞ 0.928

TABLE V: Evaluation of Generated Target Graphs for
Molecule Dataset: N for node attributes, E for edge attributes

Method N-MSE N-R2 N-P N-Sp Method E-Acc
IN 8e−2 0.46 0.13 0.12 GT-GAN 0.868
STGCN 6e−4 0.98 0.99 0.97 WLDN 0.966
IGNN 6e−4 0.98 0.99 0.99 NR-DGT 0.991
NR-DGT 8e−4 0.97 0.99 0.99 NEC-DGT 0.992
NEC-DGT 4e−4 0.99 0.99 0.99 NEC∞ 1.0
NEC∞ 4e−4 0.99 0.99 0.99

becomes more memory efficient when the graph grows larger.
The run time and memory usage of NEC∞ stay stable when
the number of layers increases because the proposed optimiza-
tion algorithm updates the weight in the model without the
layer-by-layer backpropagation.

Fig. 3: Run time and RAM usage w.r.t the number of nodes.

Fig. 4: Run time and RAM usage w.r.t number of layers.

VI. CONCLUSION

This paper focuses on a new problem, end-to-end attributed
graph transformation. To achieve this, we propose a novel
NEC∞ method consisting of a graph deep equilibrium model
which translates an initial graph to a target graph with dif-
ferent node and edge attributes. To jointly tackle complicated
node-edge dynamics, the infinite-depth node-edge co-evolution
message passing is proposed. We also proposed an efficient
implicit theorem-based optimization algorithm to avoid heavy
computation and memory overhead. To the best of our knowl-
edge, NEC∞ is the first work of its kind that is capable of
incorporating both node and edge dynamics within an equilib-
rium architecture. Extensive experiments have been conducted
on both synthetic and real-world datasets. Experiment results
have shown that our NEC∞ can approximate the underlying
ground-truth translation rules, even those with iterative graph-
wide operations, and it significantly outperforms existing
methods and baselines.

REFERENCES

[1] L. Wu, P. Cui, J. Pei, L. Zhao, and L. Song, “Graph neural networks,”
in Graph Neural Networks: Foundations, Frontiers, and Applications.
Springer, 2022, pp. 27–37.

[2] C. Graber and A. Schwing, “Dynamic neural relational inference for
forecasting trajectories,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 1018–
1019.

[3] X. Guo, L. Zhao, Z. Qin, L. Wu, A. Shehu, and Y. Ye, “Interpretable
deep graph generation with node-edge co-disentanglement,” in Proceed-
ings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, 2020, pp. 1697–1707.

[4] X. Guo, L. Zhao, C. Nowzari, S. Rafatirad, H. Homayoun, and S. M. P.
Dinakarrao, “Deep multi-attributed graph translation with node-edge co-
evolution,” in 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 2019, pp. 250–259.

[5] Y. Du, X. Guo, Y. Wang, A. Shehu, and L. Zhao, “Small molecule
generation via disentangled representation learning,” Bioinformatics
(Oxford, England), p. btac296, 2022.

[6] J. Z. Kolter and G. Manek, “Learning stable deep dynamics models,”
Advances in neural information processing systems, vol. 32, 2019.

[7] Z. Huang, Y. Sun, and W. Wang, “Coupled graph ode for learning
interacting system dynamics.” in KDD, 2021, pp. 705–715.

[8] C. Zang and F. Wang, “Neural dynamics on complex networks,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 892–902.

[9] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural
relational inference for interacting systems,” in International Conference
on Machine Learning. PMLR, 2018, pp. 2688–2697.

785

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

[10] X. Guo, L. Wu, and L. Zhao, “Deep graph translation,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

[11] X. Guo and L. Zhao, “A systematic survey on deep generative models
for graph generation,” arXiv preprint arXiv:2007.06686, 2020.

[12] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[13] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale deep equilibrium
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 5238–5250, 2020.

[14] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” Advances in neural information pro-
cessing systems, vol. 31, 2018.

[15] F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui, “Implicit graph
neural networks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 11 984–11 995, 2020.

[16] J. Liu, K. Kawaguchi, B. Hooi, Y. Wang, and X. Xiao, “Eignn: Efficient
infinite-depth graph neural networks,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 762–18 773, 2021.

[17] N. Anand and P. Huang, “Generative modeling for protein structures,”
Advances in neural information processing systems, vol. 31, 2018.

[18] W. Jin, K. Yang, R. Barzilay, and T. Jaakkola, “Learning multimodal
graph-to-graph translation for molecular optimization,” arXiv preprint
arXiv:1812.01070, 2018.

[19] K. Do, T. Tran, and S. Venkatesh, “Graph transformation policy network
for chemical reaction prediction,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 750–760.

[20] H. Sayadi, H. M. Makrani, S. M. P. Dinakarrao, T. Mohsenin, A. Sasan,
S. Rafatirad, and H. Homayoun, “2smart: A two-stage machine learning-
based approach for run-time specialized hardware-assisted malware
detection,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019, pp. 728–733.

[21] L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, “Implicit deep
learning,” SIAM Journal on Mathematics of Data Science, vol. 3, no. 3,
pp. 930–958, 2021.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[23] S. M. P. Dinakarrao, H. Sayadi, H. M. Makrani, C. Nowzari, S. Rafatirad,
and H. Homayoun, “Lightweight node-level malware detection and
network-level malware confinement in iot networks,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 776–781.

[24] D. M. Lowe, “Extraction of chemical structures and reactions from the
literature,” Ph.D. dissertation, University of Cambridge, 2012.

[25] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “Graphrnn:
Generating realistic graphs with deep auto-regressive models,” in Inter-
national conference on machine learning. PMLR, 2018, pp. 5708–5717.

[26] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of
small graphs using variational autoencoders,” in International conference
on artificial neural networks. Springer, 2018, pp. 412–422.

[27] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al., “Interaction
networks for learning about objects, relations and physics,” Advances in
neural information processing systems, vol. 29, 2016.

[28] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in International Con-
ference on Learning Representations (ICLR ’18), 2018.

[29] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” in Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI), 2018.

APPENDIX

A. PF sufficient condition for well-posedness
Theorem A.1 (PF sufficient condition for well-posedness on
Eq. (3). Assume that φ is a component-wise non-expansive
(CONE) activation map. Then, (Wve,Wev, B) is well-posed
for any such φ if λpf ((B ⊗ Wev)|·|(Bᵀ ⊗ Wve)|·|) < 1.
Moreover, the solution Hv of equation (3) can be obtained
by iterating equation (3).

Proof.

Hv = φ(Wevφ(WveHvB)Bᵀ + bΩ(E0, F0)). (20)

vectorize both sides:

vec(Hv) = φ(vec(Wevφ(WveHvB)Bᵀ) + vec(b))

= φ((B ⊗Wev)vec(φ(WveHv))) + vec(b)).
(21)

as φ is a component-wise non-expansive (CONE) activation
map:

vec(Ht+1
v −Ht

v)
|·|

= (φ((B ⊗Wev)vec(φ(WveH
t
vS))) + vec(B))

− φ((B ⊗Wev)vec(φ(WveH
t−1
v B))) + vec(B)))|·|

≤ ((B ⊗Wev)vec(φ(WveH
t
vB))− (B ⊗Wev)vec(φ(WveH

t−1
v B)))|·|

≤ (B ⊗Wev)
|·|(vec(φ(WveH

ᵀ
vB))− vec(φ(WveH

t−1
v B)))|·|

≤ (B ⊗Wev)
|·|(vec(WveH

ᵀ
vB)− vec(WveH

t−1
v B))|·|

= (B ⊗Wev)
|·|(vec(Wve(H

t
v −Ht−1

v)B))|·|

= (B ⊗Wev)
|·|((Bᵀ ⊗Wve)vec((H

t
v −Ht−1

v)))|·|

≤ (B ⊗Wev)
|·|(Bᵀ ⊗Wve)

|·| vec(Ht
v −Ht−1

v)|·|.
(22)

According to Lemma A.2, Eq. (3) has a unique solution if
λpf ((B ⊗Wev)|·|(Bᵀ ⊗Wve)|·|) < 1

λpf ((B ⊗ Wev)|·|(Bᵀ ⊗ Wve)|·|) = λpf ((BBᵀ) ⊗
(W |·|

evW
|·|
ve)) = λpf (BBᵀ)λpf (W

|·|
evW

|·|
ve) < 1.

Lemma A.2. If φ is component-wise non-negative (CONE),
M is some squared matrix and v is any real vector of
compatible shape, the equation x = φ(Mx+ v) has a unique
solution if λpf (|M |) < 1. And the solution can be obtained
by iterating the equation. Hence, x = limt→∞ xt.

xt+1 = φ(Mxt + v), x0 = 0, t = 0, 1, . . . (23)

The proof of Lemma A.2 can be found in the supplementary
material B.3 in [16].

B. ADMM-based Production

ADMM consists of the iterations:

Xk+1 = argmin
X

(||Xk − P ||2F + ⟨λ, XkY k − Ck⟩

+ (ρ/2)||XkY k − Ck||2F),
Y k+1 = argmin

Y
(||Y k −Q||2F + ⟨λ, Xk+1Y k − C⟩

+ (ρ/2)||Xk+1Y k − Ck||2F),
Ck+1 = argmin

||C||∞≤κ
(⟨λ, Xk+1Y k+1 − Ck⟩F

+ ||Xk+1Y k+k

− Ck||2F),
λk+1 = λk + ρ(Xk+1Y k+1 − Ck+1).

(24)

For X:

786

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

∂||X − P ||2F + ⟨λ, XY − C⟩F + (ρ/2)||XY − C||2F
∂X

= 0,

2(X − P) + λY T + ρ(XY − C)Y T = 0,

2X − 2P + λY T + ρXY Y T − ρCY T = 0,

X(2I + ρY Y ᵀ) = 2P − λY T + ρCY T ,

X = (2P − λY T + ρCY T)(2I + ρY Y ᵀ)−1.

(25)

For Y :

∂||Y −Q||2F + ⟨λ, XY − C⟩F + (ρ/2)||XY − C||2F
∂Y

= 0,

2(Y −Q) +Xᵀλ+ ρXᵀ(XY − C) = 0,

2Y − 2Q+Xᵀλ+ ρXᵀXY − ρXᵀC = 0,

(2I + ρXᵀX)Y = 2Q−Xᵀλ+ ρXᵀC,

Y = (2I + ρXᵀX)−1(2Q−Xᵀλ+ ρXᵀC).

(26)

For C:
The optimization can be decomposed along the rows of

C. Each subproblem involves projecting onto an L1-ball, and
efficient methods for this operation are available.

C. Additional information for the stricter sufficient well-
posedness condition

We adopt a similar method to that used in [15] to derive a
more stringent and computationally tractable sufficient condi-
tion for well-posedness of our model.

λpf (W
|·|
evW

|·|
ve)

=inf
S

||SW |·|
evW

|·|
veS

−1||∞ : S = diag(S), s > 0.
(27)

In the case where W |·|
evW

|·|
ve has simple PF eigenvalue,

problem (27) admits positive optimal scaling factor s > 0, a
PF eigenvector of W |·|

evW
|·|
ve . And we can design the equivalent

model with ∥W ′|·|
ev W ′|·|

ve ∥∞ < λpf (BBᵀ)−1 by rescaling:

f̃Θ(·) = fΘ(S
−1 ·), |W ′|·|

ev W ′|·|
ve = SW |·|

evW
|·|
veS

−1,

b̃Ω(·) = SbΩ(·), where S = diag(s).
(28)

D. Additional information for the IFT-based GD

To avoid taking derivatives of matrices by matrices, we
again introduce the vectorized representation vec(·) of ma-
trices. The vectorization of a matrix Hv ∈ Bp×|V| denoted
vec(X), is obtained by stacking the columns of Hv into one
single column vector of dimension p|V|. For simplicity, we
use

−→
Hv := vec(Hv) as a shorthand notation of vectorization.

With vectorization, we have:

−→
Hv = φ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B). (29)

similarly, now we change the definition of Z

−→
Z = ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B. (30)

According to Lemma A.3 in Appendix D, we have

∂
−→
Hv

∂
−→
Z

=
∂φ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B)

∂
−→
Z

+
∂φ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B)

∂
−→
Hv

∂
−→
Hv

∂
−→
Z

,

(31)

where

∂φ((B ⊗Wev)φ((B
ᵀ ⊗Wve)

−→
Hv) +

−→
B)

∂
−→
Hv

=
∂φ(

−→
Z)

∂
−→
Z

∂((B ⊗Wev)φ((B
ᵀ ⊗Wve)

−→
Hv) +

−→
B)

∂
−→
Hv

=D̃1(B ⊗Wev)
ᵀ(Bᵀ ⊗Wve)

ᵀD̃2,

(32)

and

D̃1 =
∂φ(

−→
Z)

∂
−→
Z

,

D̃2 =
∂φ((Bᵀ ⊗Wve)

−→
Hv)

∂(Bᵀ ⊗Wve)
−→
Hv

.

(33)

∇−→
Z
L = (

∂
−→
Hv

∂
−→
Z

)ᵀ∇−→
Hv

L. (34)

Plugging Eq. (31) to (34), we arrive at the following
equilibrium equation

∇−→
Z
L = D̃1(B ⊗Wev)

ᵀ(Bᵀ ⊗Wve)
ᵀD̃2∇−→

Z
L+ D̃1∇−→

Hv
L,

(35)
or in the devectorized form:

∇ZL = D1 ⊙ (W ᵀ
ev(D2 ⊙ (W ᵀ

ve∇ZLBᵀ))B +∇HvL). (36)

here the ∇HvL can be easily obtained through modern
autograd frameworks so ∇ZL can be calculated in the fixed-
point function in Eq. (36).

Lemma A.3. Using Implicit Function Theorem. The function
W *→ H is defined implicitly by H = f(H,W).

Then, H ′(W) = ∂f
∂HH ′(W) + ∂f

∂W .

E. Details for the derivative calculation in Section
For calculating ∇WveL, it requires calculating matrix to

matrix derivatives so we use the the vectorized representations
again.

∇−−→
Wve

L = ⟨ ∂
−→
Z

∂
−−→
Wve

,∇−→
Z
L⟩ = ⟨∂

−→
Z

∂
−→
φ

∂
−→
φ

∂
−−→
Wve

,∇−→
Z
L⟩

= ⟨(R⊗Wev)
∂
−→
φ

∂
−−→
Wve

,∇−→
Z
L⟩

= ⟨(R⊗Wev)
∂
−→
φ

∂
−−−−−−→
WveHvB

∂
−−−−−−→
WveHvB

∂
−−→
Wve

,∇−→
Z
L⟩

= ∇−→
Z
L((R⊗Wev)φ

′(
−−−−−−→
WveHvB)((BᵀHᵀ

v)⊗ I)).

(37)

Here I is a q × q identity matrix.
Thus

∇WveL = HvB((Bᵀ∇ZLWev)⊙ φ′(WveHvB)). (38)

787

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 09,2024 at 17:33:28 UTC from IEEE Xplore. Restrictions apply.

