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Abstract. Non-Intrusive Load Monitoring (NILM) remains a critical
issue in both commercial and residential energy management, with a key
challenge being the requirement for individual appliance-specific deep
learning models. These models often disregard the interconnected na-
ture of loads and usage patterns, stemming from diverse user behavior.
To address this, we introduce GraphNILM, an innovative end-to-end
model that leverages graph neural networks to deliver appliance-level
energy usage analysis for an entire home. In its initial phase, Graph-
NILM employs Gaussian random variables to depict the graph edges,
later enhancing prediction accuracy by substituting these edges with ob-
servations of appliance interrelationships, stripping the individual load
enery from the aggregated main energy all at one time, resulting in re-
duced memory usage, especially with more than three loads involved,
thus presenting a time and space-e�cient solution for real-world imple-
mentation. Comprehensive testing on popular NILM datasets confirms
that our model outperforms existing benchmarks in both accuracy and
memory consumption, suggesting its considerable promise for future de-
ployment in edge devices.
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1 Introduction

Energy conservation is a crucial research area in today’s scientific world. House-
hold and commercial electrical use accounts for approximately 60% of global
energy consumption [7]. Real-time monitoring of power consumption is a use-
ful approach for assisting homes, utilities, appliance manufacturers, and pol-
icymakers in making more informed decisions. However, obtaining individual
appliance-level load data in real-time typically requires the installation of a sen-
sor per load, which can be costly and impractical for older houses or o�ce
buildings. As a result, non-intrusive load monitoring (NILM) technology has
gained popularity due to its low installation and maintenance costs, as well as
its respect for privacy. By gathering data from the main power measurements
and computing the projected individual power consumption without additional
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measuring equipment, NILM provides a cost-e↵ective solution for disaggregat-
ing energy consumption. Several surveys [1] have demonstrated the business case
for NILM, revealing that energy savings outweigh installation costs. Moreover,
research has shown that providing active energy data feedback to customers
through NILM can reduce energy use by 5-20% [24]. However, NILM is inher-
ently challenging due to the various load combinations in a given place and
consumers’ complex consumption preferences. Addressing this problem requires
the development of innovative and e�cient models that can accurately disaggre-
gate energy consumption at the appliance level, which is the focus of this study.
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Fig. 1. NILM general explanations and
comparisons of our proposed method with
common state-of-art methods.

Figure 1 depicts the NILM appli-
cation scenario utilizing state-of-the-
art disaggregation techniques versus
our proposed GraphNILM method. In
most houses or o�ce buildings, the
number of routinely used devices ex-
ceeds four. As the number of appli-
ances increases, the amount of re-
sources needed to estimate the in-
stantaneous load power rises. Graph-
NILM, in contrast, utilizes roughly
the same amount of memory size
to achieve comparable results, which
seems more reasonable to be deployed
on edge devices in the houses or o�ce buildings.

There are three main challenges in the NILM field. (1) A low rate of

sampling. The sampling rate in the NILM field, which is typically 1 Hz for
common datasets, is significantly lower than the working frequency of the loads;
and thus, the sampled data cannot be fully restored according to the Nyquist-
Shannon sampling theorem. Adoption of classical algorithms, like hidden Markov
models and their variants [17, 22], yields restricted results under specific condi-
tions, making widespread adoption challenging. (2) Homogeneous data with

restricted characteristics. The majority of available data consists solely of
aggregated power readings in a timely order, which makes it di�cult for domain
experts to quantify the dedicated load power numbers from readings only. Nu-
merous studies therefore focus on the classification problem [8] by Convolutional
Neural Network (CNN) and the Recurrent Neural Network (RNN) [5], rather
than quantitative analysis, but even good classification results are of limited
utility to consumers. Non-stable power consumption and the complex combina-
tions of loads makes disaggregation a challenging problem. (3) More memory

resources required as more loads are introduced In the NILM commer-
cial sector, a regression model with instantaneous individual load power output
appears more desirable than a categorization model. In recent years, nonlinear
regression models in NILM have emerged with respectable performance, but the
vast majority of deep learning models have a high memory footprint and in-
creased computational complexity[23]. To improve performance, the majority of
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regression models [26, 13] repeat the same structure with di↵erent parameters
for di↵erent loads. A residence with ten loads will necessitate the concurrent
operation of ten times the proposed model, indicating the high cost of business
implementations on edge devices. This research aims to develop an end-to-end
model with reduced memory consumption and cutting-edge performance for fu-
ture business deployments on edge devices. To solve the challenges highlighted
in the NILM field, this paper designs the GraphNILM model and provides the
following significant contributions:

– Formulating a novel end-to-end framework for energy disaggrega-

tion. The paper presents GraphNILM, a model that uses a modified convo-
lutional neural network for initial disaggregation and a graph neural network
for refinement, enabling simultaneous disaggregated power readings. Graph-
NILM e�ciently extracts power features from low-rate sequences, fine-tuning
the results using load relationships before producing the final output.

– Constructing an e↵ective algorithm to characaterize load relations.

This paper categorizes relationships between distinct loads as synchronous
and asynchronous. Supplementing our approach, we introduce a new algo-
rithm to calculate the synchronous relations between the aggregated power
readings and individual load by correlations, and asynchronous relations be-
tween loads by dynamic matching.

– Designing a new structure for memory reduction. In response to
single-load targeted models, we construct a weighted graph for GraphNILM,
transforming loads into nodes using pre-established relationships. This allows
simultaneous power disaggregation, reducing memory and computational re-
quirements by avoiding separate individual load trainings. We are the first
to use dynamic time wrapping relationship structure in the NILM field.

– Conducting extensive experimental performance evaluations. The
proposed GraphNILM network has been evaluated utilizing data from stan-
dard NILM datasets: REDD [16] and UK-DALE [14]. It often surpasses
competing methods across di↵erent metrics, utilizing a fraction of memory
compared to benchmarks. We also discuss the practical benefits of integrat-
ing GraphNILM into edge devices.

2 Related Work

The NILM field was pioneered by Hart [10] about three decades ago. In order
to solve the NILM problem with low rate sampling data, Hidden Markov based
Model(HMM, FHMM, etc.) [17] and its variants[22] were adopted in the early
stage. Such methods were categorized as event-based methods, which usually
contain three procedures: edge detection, feature extraction , and classification
[9, 18], and were broadened to handle NILM disaggregations problems in other
fields [6]. With deep learning flourishing in most domains in recent years, deep
neural networks and convolution neural networks have lowered the obstacles in
the NILM field for researchers to extract power features without the help of
domain experts [13]. Deep learning has lighted up a new direction for solving
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the NILM problem[19]. Long-short-term memory network (LSTM)[20] extracted
dominate appliance usage from the aggregate power signals, which are collected
at a low sampling rate. The widely-used Seq2Point model[26], showed great im-
provement on regression tasks in the NILM domain and received challenges all
the time since its debut, but still need trainings per load introduced[4]. The
introduction of graph signal processing (GSP) to the NILM field is a novel con-
cept. Stankovic’s research group [27, 11, 2] tracked this technique by segmenting
aggregated energy sequences to do classification task in NILM. Similar work has
been conducted by Bing and other groups [25], with all of them utilizing graph
neural networks to perform load identification tasks which extracted information
is insu�cient to meet individual and commercial energy planning requirements.

Our aim is to create an easily implementable real-world model that can pro-
duce instantaneous disaggregated load energy with reduced memory consump-
tion, while maintaining accuracy equivalent to the state-of-the-art techniques.
Realized the ignorance of relations among loads in regression tasks and the dif-
ficulty of transforming homogeneity data to adapt to the multi-variate inputs
needs for graph signal processing, we decide to design a new integrated frame-
work for energy disaggregation by utilizing the advantages of the deep convo-
lution neural network and the graph neural network. As a result, the proposed
model can not only fine-tune the disaggregated power results, but also reduce
total computations by incorporating the graph design.

Fig. 2. GraphNILM Total Structure.

3 Proposed Model

3.1 Problem Setup: Disaggregation

Given the aggregated power meter readings, xt, we wish to disaggregate the
immediate power contribution of each individual load. The disaggregation of
xt 2 R at time t is formulated as:

xt =
NX

n=1

yn
t + noise, (1)

N is the number of loads which are to be monitored and ynt stands for the
power of the n-th load at time t. The noise and unmonitored loads in the given
dataset have been generalized to the niose. Our purpose is to get the individual
load power together at the same time, as Yt = [y1t , y

2
t , ..., y

N
t ]T based on the

measurement of the aggregated power xt from our proposed model.
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3.2 GraphNILM

The proposed GraphNILM model consists of two major components: coarse dis-
aggregation and disaggregation distillation, see Fig 2. It utilizes convolutional
neural networks to extract the representations of power from the aggregated
power sequence. The output of the coarse disaggregation component represents
the power characteristics of various loads and will be used as the coarse dis-
aggregation results for the disaggregation distilling’s inputs. GCN components
in our disaggregation distillation section will use these inputs along with the
constructed relations as the graph edges to disaggregate the main power to the
individual load power in the given house.

(1) Coarse Disaggregation

The coarse disaggregation part is for extracting power characteristics. The in-
put xt�W+1:t is a length W time series representing the aggregated main power
within W time stamps. Then we intentionally add the first order di↵erence be-
tween two consecutive aggregated main power readings which brings approxi-
mately half sigma better performance in the later experiment. Fseq represents
the convolutional layers in the proposed architecture, and it outputs

V⌧ = Fseq(xt�W+1:t) = [v1⌧ , v
2
⌧ , ..., v

N
⌧ ]T , (2)

where ⌧ = t� W�1
2 representing the middle point of the window W time series,

and V⌧ stands for the extracted power characteristics of the input sequence
xt�W+1:t. The intuition behind the midpoint selection is based on the assumption
that the model can learn the information of aggregated power before and after
the midpoint [21]. These results will be further used as the nodes in the graph
structure in the following Disaggregation Distilling part.

(2) Disaggregation Distilling

The introduction of GraphNILM’s second component, graph structure, is a novel
concept in the NILM field, as the accessible data in popular datasets include no
relational information. A graph G usually consists of nodes set V and adjacency
matrix A and is represented as G = {V, A}. vi 2 V denotes for the i-th node
in V, which is vi⌧ from equation (2). The adjacency matrix defines the edges
aij 2 A and their weights in the graph. These weighted edges are mapping
our expectations to utilize relations among loads in the design of our proposed
model. Some loads have simultaneous direct relationships, while others may have
asynchronous relations. Weighted edges in a graph can appropriately describe
such relationships when they can be quantified.

To leverage the relational strengths of the graph model, we map both the
aggregated power and the coarse disaggregated characteristics - obtained from
the coarse disaggregation stage - onto the nodes in G, signifying that x⌧ , V⌧ ✓ V.
To avoid over-fitting, we add x⌧ , the mid-point of the aggregated power sequence,
as the central node in the graph.
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Finding meaningful edges between nodes, i.e., interpreting the relationships
between loads in NILM, is the core principle in our graph construction. According
to our observations, there are primarily two sorts of relationships in given houses:
synchronous and asynchronous. For example, in a given house, the owner prefers
to watch television with her food prepared. Before turning on the television, she
toasts a slice of bread and then boils some water in the kettle. These events occur
sequentially and have strong relationships from an asynchronous perspective:
the individual power reading peak for one load occurs close to the power reading
peaks for other loads. On the other hand, it is straightforward to conclude that
the aggregated power x⌧ closely connected with each load at the same time,
e.g. the aggregated power would rise at the same time she turns on a new load,
a typical synchronous relationship. Though for each house, owners’ habits may
vary, the major loads for the house are still similar, which makes our pre-trained
model transferrable.

For synchronous relations, spearman correlations can be used in this model
since it measures the strength and direction of monotonic association between
two variables. Thus we use it to denote weight edges from the aggregated main
power meter to the disaggregaged individual load. For asynchronous relation-
ships, dynamic time wrapping (DTW) is used to determine the correlations be-
tween each load. In both of the typical datasets with which we explored, missing
values at di↵erent time for di↵erent loads hampered our ability to obtain rela-
tionships through simple correlation techniques.Therefore, using DTW is a good
choice for asynchronous relations. For the calculation of the distance between
two load sequences, we define the k-th load with p samples as sko and the l-th
load with q samples as slo: s

k
o = [yk1 , ..., y

k
p ] and slo = [yl1, .., y

l
q]. However, since

the power ranges of each load are di↵erent and DTW accumulates the absolute
distance, meaning two asynchronous well-correlated loads with small power may
get smaller results than two asynchronous uncorrelated loads with large power.
Therefore, we must normalize the load sequence in order to have meaningful
DTW results:

sk =
sko

E(skON
o )

, (3)

where E(skON

o ) is the mean of the k-th load’s active power when the load turned
ON. Then, using DTW algorithm [11], we will obtain the final DTW distance
as D(sk, sl). Apply the same rule to all loads and we will get DTW standard
distances between loads. Next, we translate standard distances, ranging from 0
to 1 to range 0 to 1, to ensure the asynchronous and synchronous relations lie
in the same range, by

rd = e�D(sk,sl)/↵, (4)

where ↵ is a scale factor chosen manually based on the average distances. The
relations between the load and the aggregated main power, rs, and the relations
between the load and the other load, rd, may thus be applied to the weighted
edges in A in our graph G. The entire process of how the adjacency matrix A is
derived from loads and main power is shown in the algorithm 1. The proposed
method utilizes two weeks of known load data S = [s1, ..., sN ] concatenated
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from equation 3 in the given house to perform our algorithm. The standard
distance between the k-the load and l-th load is the element positioned at the
k-the row/column l-th column/row in A. By resampling the aggregated power se-
quence X to Xk, which has aligned samples with sk in the given time, spearman
correlation rks can be performed simultaneously. Then the rks could be placed in
A’s k-th row/column N +1-th column/row. With two relations being calculated
and put into the appropriate locations in A, the building of the adjacency matrix
for the designed weighted graph is completed.

By mapping our design into standard GCN layer[15], our proposed method
completes the initial distilling. With the repeated GCN layer nodes fully con-
nected to the MLP layer at the output, the GraphNILM will return N results
representing the disaggregated power readings for N separate loads.

Algorithm 1: Adjacency matrix from DTW and correlation
input : X, S
output: The adjacency matrix A

1 Start ↵ = 1000, A = [1]N+1,N+1

2 while not all edges, rs, rd, in A have been computed do
3 D(0, 0) 0 . Initialize the start point

4 sk, sl ⇠ S . Sample sk, sl from S

5 rd =exp(�D(sk,sl)/↵) . Equation (4)

6 Xk, Xl . Resample X to match sk, sl

7 rks , r
l
s . Xk, sk and Xl, sl to perform correlation

8 A(k, l) rd, A(l, k) rd
9 A(N + 1, k) rks , A(k,N + 1) rks

10 A(N + 1, l) rls, A(l, N + 1) rls
11 end

4 Experiment

This study involves the examination of two mainstream open-access datasets:
REDD [16], UK-DALE [14]. All datasets have labeled appliance-level power con-
sumption along with whole-house power consumption. We also use NILMTK [3]
for data prepossessing and comparing results among benchmarking algorithms.
All these algorithms are implemented in Python3 and run on NVIDIA QUADRO
P5000 GPU. The model is implemented using Pytorch and Pyg. To ensure the
consistency of our results, each experiment was performed 20 times with a fixed
seed. The Adam optimizer was employed, with a learning rate 0.005 and the
batch size is 1024. The training and testing split is 0.8 vs 0.2. The loss func-
tion applied in the proposed model is L2 loss. Standard normalization is used
on both input and output with data from each appliance normalized separately.
Any negative values post-denormalization are set to 0. An early stop was im-
plemented after 49 non-improved validation losses. The reason for setting the
threshold at 49 for monitoring validation loss is due to fluctuations observed in
the validation loss. Initially, the model fits into the mean value of each appli-
ance, causing the loss to decrease. However, once the mean is fitted, the model
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begins the disaggregation process, thereby inducing an increase in validation
loss. The validation loss subsequently decreases once the disaggregation pattern
is discerned. In addition to Seq2Point and GraphNILM model, Seq2MultiPoint
model whose structure is largely similar to that of GraphNILM except the GCN
layers is also tested for ablation study. GraphNILM* is for investigating the pro-
posed model without first-order di↵erence. This paper also evaluates the classical
FHMM method for comparison.

4.1 Dataset

Fig. 3. REDD House 1 case study.

The REDD dataset contains 6 res-
idential houses with 17 uniquely la-
beled appliances in Boston area from
April 2011 to Jun 2011. Though it
recorded the power consumption at
very low rate, extending up to fifty
seconds in some cases, we still choose
the training data from 2011-04-20 to
2011-04-30 and test from 2011-05-01
to 2011-05-03 for classic dataset re-
sults comparison. The UK-DALE

dataset contains 5 residential houses
with 62 load-level unique labels in
Southern England from November
2012 to January 2015. The exper-
iment elected to utilize data from
house 1 due to the superior num-
ber of appliances and data points col-
lected every six seconds for each ap-
pliance therein. The training data is
from 2014-02-01 to 2014-02-14 for the
completeness of data during this pe-

riod; the testing data is from 2014-02-15 to 2014-02-28. DTW relations are cal-
culated from 2014-02-01 3 am to 2014-02-07 3am.

4.2 Metrics

For evaluating the performance, MAE and NEP metrics were chosen since they
are the most encountered metrics to assess the disaggregated energy [12]. Mean
Absolute Error (MAE): MAE measures how accurately the disaggregated en-
ergy is compared to the true energy consumption. Normalized Error in Assigned
Power (NEP) is an accuracy measures across di↵erent appliances.

NEP =

vuut
NX

i=1

TX

t=1

(ŷi
t � yi

t)/
NX

i=1

TX

t=1

(yi
t). (5)
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Fig. 4. Comparison w.r.t. MAE and NEP (log y-
axis). (left to right) Fridge, Microwave oven, Dish
washer, Washing machine, Kettle, Toaster, Audio
amplifier, Router, Active subwoofer, Computer.

When the requirement is
to compare performance across
di↵erent appliances, the NEP
provides a more e↵ective
measurement framework. The
larger the MAE and NEP val-
ues are, the more error is pro-
duced by the model compared
to the ground truth.

4.3 Results

Figure 3 shows the disaggre-
gation results for 4 devices in
REDD, revealing how Graph-
NIML captures the patterns
for di↵erent appliances as
Seq2Point model does.
REDD. Follow the method-
ology discussed earlier, seven
appliances in REDD dataset
were chosen with the results
in Fig 4. Overall the pro-
posed model produces com-
parable results compared to
BM model when we only use
3.9% of memory compared
to BM deep learning models.
For classic method FHMM
which uses least of memory
resources, its performance is
much worse than all the deep

learning models. The proposed model has 4 best performance appliances while
BM model has 3 best performance appliances. Not surprisingly, Seq2Point model
shows slightly better MAE and NEP on disaggregating fridge and microwave,
whose pattern could be more easily to learn from separate single model. Graph-
NILM performs closely to Seq2Point models on these three loads. With load
relationship taken into consideration, washing machine, light, stove and heater
results from the proposed model outperform results from the BM models. To
understand the impact of the DTW and GCN layers in GraphNILM, it is com-
pared to Seq2MultiPoint: GraphNILM is better in 6 out of 7 appliances in MAE
and NEP, which means the GraphNILM solution is constantly providing extra
information needed to diaggregate energy consumption. The first order di↵er-
ence introduced in the proposed design also contributes to the overall better
performance by comparing GraphNILM and GraphNILM*.
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UK-DALE. The same methodology is adopted here and 12 appliances are cho-
sen in UK-DALE dataset. The result is shown in Fig 4. In this experiment, the
proposed method achieves the same level of performance compared to BM model
while only uses 2.6% of memory. Still, Seq2Point produces the best results for
fidge and microwave while GraphNILM better disaggregates all other appliances
except the washing machine in this dataset. One reason for the better disaggrega-
tion in GraphNILM should be the strong asynchronous relationship among loads
observed by DTW: the owner of the house usually uses kettle and toaster in a
timely order, and computer, audio amplifier, router, active subwoofer are always
functioning in nearby time slot. Therefore, these loads with strong relationships
converted to graph edge weights in GraphNILM seem to help it outperform other
models. When comparing Seq2MultiPoint to the GraphNILM where the only dif-
ference is the DTW and GCN layers, the proposed model performs better on
11 out 12 devices in both MAE and NEP, which stresses the importance of the
DTW and GCN in the proposed design. With both datasets’ results, the pro-
posed model shows a good and reliable performance in general for solving NILM
problems. The popular SOA solution Seq2Point trains a dedicated model for

Load amounts 1 4 8 12
Seq2Point 3.6 MB 14.4 MB 28.8 MB 43.2 MB

GraphNILM 832 KB 832 KB 832 KB 832 KB
Table 1. Memory usage of Seq2Point and GraphNILM

each chosen appliance separately hence the total memory size increases linearly
along with the number of appliances increases. However in GraphNILM since the
number of parameter increase is only nodes and edges in the distilling part, the
memory increase is much less significant compared to Seq2Point. Table 1 shows
the memory usage for Seq2Point and GraphNILM at window size is 99. The num-
ber of parameter in Seq2Point is calculated using NILMTK provided model. To
disaggregate one device, Seq2Point requires 3.6 million parameters while the pro-
posed GraphNILM model uses 832 thousands parameters. In a modern home, at
least 5 appliances are presented to be disaggregate. In this way more than 80%
of the energy consumption could be explained. GraphNILM model only requires
5.2% parameters compared to Seq2Point to disaggregate 5 devices. Besides, in
UK-DALE experiment, the runtime for GraphNILM is 98.32s while Seq2Point
requires 254.74s for 12 loads training. Therefore, in terms of memory saving, e�-
ciency and transfer implementation, GraphNILM shows competitive advantage.

Transferability This paper also did a quick study on the transferability of our
model by using our trained model from UK-DALE House 1 to predict UK-DALE
House 5. The chosen houses have similar amounts and categories of loads, which
is more like the o�ce building usecase. Table 2 shows the proposed model is at
least one sigma better than the Seq2MultiPoint model, stressing the DTW and
GCN importance again in the proposed design.
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Model FR MW DW WM KT TS HTPC TV AA RT ASr PC Overall
GraphNILM 43.15 30.04 22.73 57.20 16.61 5.64 63.17 24.20 23.61 6.03 4.03 13.07 309.53±13.99
Seq2MultiPoint 44.37 29.83 20.87 66.56 18.68 5.33 70.22 20.84 25.10 6.03 2.75 13.08 323.72±13.99

Table 2. UK-DALE House 1 Model transferred to House 5 under metric 3*MAE

5 Conclusion

GraphNILM outperforms the benchmarks in terms of both the total memory sav-
ing, runtime e�ciency and the overall MAE performance. Especially for loads
with evident relationships, such as the TV, toaster, and kettle groups, the pro-
posed method produces nearly all better results than the current state-of-art
method. Even for an independent working device like a fridge or washer, Graph-
NILM achieves comparable satisfactory results based on MAE and NEP. Given
the proposed framework only consumes up to the reciprocal of the total load
amount of the memory size in the benchmark, the computational cost of a house
with typical loads is drastically reduced. Therefore, extensive experiments con-
ducted on REDD and UK-DALE demonstrate the extraordinary competitiveness
of less memory usage and better performance provided by GraphNILM. The de-
ployment of the NILM technique in edge devices for commercial use seems to be
around the corner.
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