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We experimentally and theoretically investigate the anisotropic speed of sound of an atomic superfluid
(SF) Bose-Einstein condensate in a 1D optical lattice. Because the speed of sound derives from the SF
density, this implies that the SF density is itself anisotropic. We find that the speed of sound is decreased by
the optical lattice, and the SF density is concomitantly reduced. This reduction is accompanied by the
appearance of a zero entropy normal fluid in the purely Bose condensed phase. The reduction in SF density—
first predicted [A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).] in the context of supersolidity—results from
the coexistence of superfluidity and density modulations, but is agnostic about the origin of the modulations.
We additionally measure the moment of inertia of the system in a scissors mode experiment, demonstrating
the existence of rotational flow. As such we shed light on some supersolid properties using imposed, rather
than spontaneously formed, density order.
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Superfluidity and Bose-Einstein condensation (BEC) are
deeply connected. In dilute atomic BECs, the superfluid
(SF) and condensate densities are generally equal [1,2]. By
contrast, SF 4He can achieve nearly 100% SF fraction, with
only about 14% condensate fraction [3], and infinite 2D
Berezinski-Kosterlitz-Thouless (BKT) SFs have no con-
densate at all [4,5]. In 1970 Tony Leggett showed that
supersolids—systems spontaneously forming both SF and
crystalline order (i.e., density modulations)—exhibit the
reverse behavior: SF density far below the condensate
density [6]. Here we observe this effect in a nearly pure
atomic BEC with artificial crystalline order imprinted by an
optical lattice.
The complex-valued order parameter [7] ϕðrÞ ¼ffiffiffiffiffiffi
ρsf

p
exp½iφðrÞ�, describing an SF with number density

ρsf and phase φðrÞ, gives rise to two hallmark SF properties:
dissipationless supercurrents associated with spatial gra-
dients in φðrÞ and (Bogoliubov [2]) phonons described
by traveling waves in φðrÞ. Because dissipationless super-
currents—both electrical, and as here, neutral—arise from
phase gradients, they are locally irrotational; in liquid 4He,
the resulting nonclassical rotational inertia [8,9] appears
below the SF transition temperature Tc. Supersolids are
more exotic systems spontaneously forming crystalline order
while exhibiting SF transport properties and phase coher-
ence [10]. Recent experiments with dipolar BECs of Dy and

Er exhibit crystalline order and phase coherence [11–13],
suggestive of SF. Leggett argued that the modulated density
ρðrÞ of a supersolid leads to an unavoidable reduction in ρsf ,
and derived an upper bound for ρsf [6]. This reduction is
accompanied with the appearance of an unusual normal
fluid, that is pinned to the lattice potential and contrary to the
usual two-fluid model carries no entropy. Here the reduced
superfluid density results from the 3D density distribution,
and as such is masked in tight binding descriptions such as
the Bose-Hubbard model, which makes the unrelated
prediction of vanishing ρsf at the superfluid to Mott insulator
transition [14,15].
We created an artificial SF crystal by imprinting periodic

density modulations into an atomic BEC using a 1D optical
lattice as in Fig. 1(a). While these modulations do not form
spontaneously, Leggett’s result still applies, making this an
ideal system for understanding crystalline SFs without the
added complexity of spontaneously broken symmetries.
We experimentally measured an anisotropic speed of sound
via Bragg spectroscopy [16] of the phonon mode. This
implies the existence of an effective anisotropic superfluid
density—which can be expressed as a second rank tensor
ρsfij—and we find that it saturates Leggett’s bound, in
agreement with Gross-Pitaveskii equation (GPE) simula-
tions. We also obtained an associated modification to the
moment of inertia from measurements of the scissors-mode
frequencies [17,18].
Anisotropic superfluids.—Here we consider pure 3D

BECs well described by the Gross-Pitaveskii wave function
ψðrÞ ¼ jψðrÞj exp½iϑðrÞ�. An optical lattice potential
VðrÞ ¼ ðU0=2Þ cosð2krxÞ periodically modulates the con-
densate density ρðrÞ ¼ jψðrÞj2 with unit cell (UC) size
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a ¼ π=kr [Fig. 1(b) i]. By contrast, the SF order parameter
ϕðrÞ is a coarse grained quantity describing system proper-
ties on a scale≫ a, giving the nominally uniform density in
Fig. 1(c) i.

Even disregarding potential differences between ρsfðrÞ
and ρðrÞ, we argue that ϕðrÞ is not simply equal to ψðrÞ
averaged over some scale large compared to a. The
fundamental origin of this effect can be understood by
considering a 1D system of size L with periodic boundary
conditions in which both the condensate phase ϑ and SF
phase φ wind by an integer multiple N of 2π [Figs. 1(b)
and 1(c) ii], yielding a metastable quantized supercurrent
[19]. To satisfy the steady-state continuity equation, the
microscopic current JðxÞ ¼ ρðxÞ½ℏ∂xϑðxÞ=m� must be in-
dependent of x [Fig. 1(b) ii], however, the periodically
modulated density ρðxÞ > 0 implies the local velocity
vðxÞ ¼ ℏ∂xϑðxÞ=m has oscillatory structure and conse-
quently ϑðxÞ follows a staircase pattern [Fig. 1(b) iii, iv]
with steps of height 2πNa=L.
From macroscopic considerations the superfluid current

is J ¼ ρsf ½ℏ∂xφðxÞ=m� ¼ 2πNℏρsf=ðmLÞ. Equating the
currents obtained from the condensate wave function and
the SF order parameter and integrating over a UC [20]
yields Leggett’s equation [6]

ρsfðxÞ ¼
�
1

a

Z
UC

dx0

ρðxþ x0Þ
�
−1
; ð1Þ

along with

φðxÞ ¼ 1

a

Z
UC

ϑðxþ x0Þdx0:

GPE simulations confirm that these analytical relations are
valid independent of the lattice period to healing length
ratio (see Supplemental Material [21] for a more rigorous
derivation). Equation (1) further implies that ρsf ≤ ρ̄, where
ρ̄ is the spatial average of the condensate density over a UC,
and at zero temperature the remaining density ρn ¼ ρ̄ − ρsf

behaves as a normal fluid pinned to the lattice potential.
In a 3D system, the current Ji ¼ ρsfij½ℏ∂jφ=m� derives

from an SF density tensor (having employed the Einstein
summation convention). Provided that the condensate phase
can be expressed as ϑðrÞ ¼ ϑxðxÞ þ ϑyðyÞ þ ϑzðzÞ, the
argument above in conjunction with the 3D continuity
equation implies that ρsfij is diagonal, and the analogs to
Eq. (1) for each of the three elements use the 1D density
integrated along the transverse directions [25]. In the more
general context where mean field theory [such as the Gross-
Pitaveskii equation (GPE)] is inapplicable or the condensate
phase cannot be separated as above, the Leggett expression
for ρsf is an upper bound for the SF density [6]; in later work
Leggett also found a lower bound [26]. Using the Leggett
expression, this implies that the superfluid density is only
reduced along the direction of the optical lattice, so
ρsfyy ¼ ρsfzz ¼ ρ̄.

Experiment.—We used 87Rb BECs with N ≈ 2 × 105

atoms in the jF ¼ 1; mF ¼ 1i hyperfine ground state. A
1064 nm trapping laser with an elliptical cross-section,
traveling along ex provided strong vertical confinement
with frequency ωz=ð2πÞ ¼ 220 Hz; the in-plane frequen-
cies, from ωx;y=ð2πÞ ¼ ð34; 51Þ to (56,36) Hz, were opti-
mized for our different experiments.We created a 1D optical
lattice using a retroreflected λ ¼ 532 nm laser traveling
along ex, giving an a ¼ 266 nm lattice period, comparable
to the ξ ¼ 170ð20Þ nm minimum healing length. The
optical lattice was linearly ramped on in 100 ms to a final
depth ≤ 10Er, with single photon recoil energy and
momentum Er ¼ ℏ2k2r =ð2mÞ, and ℏkr ¼ 2πℏ=λ, respec-
tively [27]. For Bragg experiments the final state was
measured using resonant absorption imaging after a
15 ms time of flight (t.o.f.); scissors mode measurements
were performed in situ using partial transfer absorption
imaging [29].
Anisotropic speed of sound.—The speed of sound for

diagonal ρsfij obeys the hydrodynamic relation [30] c2i ¼
fsfii =ðκmÞ in terms of the compressibility κ ¼ ρ̄−1ð∂ρ̄=∂μÞ,
the chemical potential μ, and with density reduced by the
superfluid fractions fsfij ¼ ρsfij=ρ̄. This reduces to the well-
known value c2 ¼ μ=m for an isotropic homogeneous
system (See [21] for the full dispersion beyond the linear
approximation). The sound speed ratio

FIG. 1. Concept. (a) A BEC is confined in a harmonic trap
superimposed with a 1D optical lattice (along ex, green), spatially
modulating the condensate density (red). The dashed and dotted
lines call out a region of nominally constant mean density and the
left and right columns indicate the (b) state of the condensate and
(c) SF in the presence of a current. These were computed for a 5Er
deep lattice and plot: i. density (red), ii. current (green), iii. phase
(orange), and iv. local velocity (blue). The red dashed line plots
the mean density ρ̄.
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c2x
c2y

¼ ρsfxx
ρsfyy

¼ fsfxx; ð2Þ

provides direct access to the different components of the
superfluid density (see [21] for a Josephson sum rule
argument). Because the density is y independent, Eq. (1)
implies ρsfyy ¼ ρ̄.
We performed Bragg scattering using a weak sinusoidal

potential with reciprocal lattice vector δk slowly moving
with velocity v by patterning a laser beam with a digital
micro-mirror device (DMD [31]) and measured the scat-
tered fraction p. This results from what are effectively
two interfering laser beams driving two-photon transitions
with difference-wave vector δk and angular frequency
δω ¼ δk v. We applied this potential for ≈5 ms. Bragg
transitions ensued when the difference energy and momen-
tum were resonant with the BEC’s Bogoliubov dispersion,
and Fig. 2(a) shows data in the linear regime. The width of
this spectral feature is limited by our BEC’s inhomogeneous
density profile; the resonance (vertical dashed line) obtained
from a Lorentzian fit (solid curve) therefore reflects an
average speed of sound [32]. The reduced Bragg signal at
small δω results from the vanishing of the static structure
factor in the phonon spectrum as δω goes to zero [33].
A series of such fits lead to phonon dispersion

relations with Bragg-lattice period from 2.25 to 8.5 μm.
Representative dispersions taken along ex and ey are
shown in Fig. 2(b), and we obtain the phonon speed of
sound using linear fits. Figure 2(c) summarizes these data
showing the speed of sound decreasing along the lattice
direction ex, but slightly increasing along ey (resulting
from the increased atomic density in the individual lattice
sites). Finally, Fig. 2(d) shows our main result: the
normalized superfluid density obtained from these data
using Eq. (2) decreases as a function of U0.

We compared these data to GPE simulations in two ways,
we (i) used the Bogoliubov–de Gennes (BdG) equations
[30] to obtain cx and cy and (ii) directly evaluated Eq. (1)
from the GPE ground state density. The solid curves in
Fig. 2(c) plot the sound speed obtained from solving the 1D
BdG [34], and the red dashed curve in (d) is the ratio of
these speeds. To compare with Leggett’s prediction, we
found the ground state of the 2D GPE for our experimental
parameters and evaluated Eq. (1) throughout our inhomo-
geneous system. The black curve in (d) plots the resulting
weighted average. Remarkably the BdG results are in near-
perfect agreement with Leggett’s expression.

Scissors mode.—The direct connection between the SF
phase gradient and the velocity field greatly impacts rota-
tional properties such as the moment of inertia I. For a
highly anisotropic harmonic trap, the scissors mode [17,18]
describes a fixed density distribution pivoting by a small
angle θ about an axis traversing trap center with frequency
ωsc. Scissors mode experiments are in spirit reminiscent
of, though different in detail from, torsional balance
experiments in 4He, which give access to the nonclassical
rotational inertia [8,9].
We describe the scissors mode in terms of the angular

momentum density,

Πz ¼ mðxJy − yJxÞ ¼ ℏρ̄ðxfsfyy∂yφ − yfsfxx∂xφÞ; ð3Þ

of the initial density distribution ρ̄ðrÞ oscillating by a small
angle θðtÞ. Integrating Πz over the system yields the total
angular momentum Lz, then taking the derivative with
respect to time gives the torque

τ ¼
Z

d3r∂tΠz ¼ −g
Z

d3rρ̄½xfsfyy∂yδρ − yfsfxx∂xδρ�;

FIG. 2. Bragg spectroscopy. Black and red symbols mark excitations created along ex and ey, respectively. (a) Transferred population
fraction p as a function of frequency difference δωwith wave vector δk=2π ¼ 0.26 μm−1 and lattice depth U0 ¼ 5.7Er. The solid curve
is a Lorentzian fit giving the resonance frequency marked by the vertical dashed line. (b) Phonon dispersion obtained from Bragg
spectra. The bold symbols resulted from (a) and the linear fit (with zero intercept) gives the speed of sound. (c) Anisotropic speed of
sound. The bold symbols are derived from (b) and the solid curves are from BdG simulations (no free parameters [21]). (d) SF density
obtained from speed of sound measurements (blue markers, error bars mark single-sigma statistical uncertainties). We compare with two
models: the red dashed curve plots a homogeneous gas BdG calculation, and the solid black curve plots the result of Eq. (1). The
simulations used our calibrated experimental parameters. In (a)–(c) each point has uncertainty as shown on the last point.
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where g is the GPE interaction strength, and we used the
linearized long-wavelength hydrodynamic kinetic equation
0 ¼ ℏ∂tφþ gδρ to describe small changes in the density
δρ. Assuming an initial Thomas-Fermi distribution for ρ̄,
the small-θ density difference δρ ≈ −mθðω2

x − ω2
yÞxy=g

gives the torque

τ ¼ mθ

N
ðω2

x − ω2
yÞðhx2ifsfyy − hy2ifsfxxÞ: ð4Þ

In this case, the equation of motion τ ¼ I  θ describes the
scissors mode oscillations and thus connects the scissors
mode frequency ωsc to the moment of inertia

I
Ic

¼ ðω2
x − ω2

yÞðω2
xfsfxx − ω2

yfsfyyÞ
ω2
scðω2

x þ ω2
yÞ

ð5Þ

in terms of the classical moment of inertia Ic. This
expression is in agreement with Ref. [17] when
fsfxx ¼ fsfyy ¼ 1. Therefore we expect ωsc, in conjunction
with the superfluid density will give I=Ic as a function of
lattice depth.
The inset to Fig. 3(a) plots the observed dipole mode

frequencies ωx;d and ωy;d for a trap with bare (i.e., U0 ¼ 0)
frequencies ðωx;ωyÞ ¼ ð54; 36Þ Hz. The dipole frequency
ωx;d decreases with increasing U0; similarly to the sound
speed, this is related to ρsf via fsf ¼ ðωx;d=ωxÞ2 along the
lattice direction [21]. This ratio can also be expressed in
terms of an increased effective mass m�, with fsf ¼ m=m�

[35]; this converges to the predictions of single-particle
band structure [36] when the lattice period falls below
the healing length; in our case the value computed

perturbatively from the GPE differs by about 20% from
the band structure prediction. The result of this modeling is
shown by the solid curves.
We excited the scissors mode using our DMD to tilt the

harmonic potential by 50 to 140 mrad for ≈1 ms (shorter
than the trap periods) and let the BEC evolve in the original
trap for a variable time. Wemeasured the resulting dynamics
in situ and extracted the angle by fitting the resulting density
profile to a rotated Gaussian. Figure 3(a) shows the scissors
mode frequency normalized to the expected frequency [7] of
ω2
sc;0 ¼ fsfxxω2

x þ fsfyyω2
y for a trap elongated either along ex

[with frequencies (56,36) Hz, blue] or along ey [with
frequencies (36,50) Hz, green]. In both cases ωsc appears
to be about 5% in excess of the simple prediction, perhaps
from finite temperature or anharmonicities in the optical
dipole trap.
We combine these observations in Fig. 3(b) to obtain

I=Ic; the data (symbols) and our 2D GPE simulations
(curves, with moment of inertia computed using I ¼
limΩ→0 ∂ΩLz, with angular frequency Ω ¼ θ̇) are in agree-
ment [37]. For traps elongated along ex (green) I=Ic
surprisingly changes sign when ωx;d ¼ ωy;d. To under-
stand the physical origin of this effect we now turn our
attention to rotating systems.
Rotation.—Our discussion so far has focused on the

superfluid density, and avoided questions about any asso-
ciated normal fluid flow. We can deduce the existence of a
normal fluid component by considering two thought experi-
ments each a 1D ring geometry (with radius R) and in each
case consider the resulting angular momentum. In case (i),
we consider a lattice along the azimuthal direction that is
very slowly accelerated [38] to a final angular velocity Ω;
this is best understood by transforming into the frame
corotating with the lattice. This leads to a lab frame angular
momentum Lz=ℏ ¼ 2πRðρ̄ − ρsfÞ which we interpret as
resulting from the normal fluid comoving with the lattice. In
case (ii), we consider a complementary configuration with a
static lattice and slowly insert a single quantum of “syn-
thetic” magnetic flux (see Ref. [39] for a proposal using
artificial gauge fields to provide synthetic magnetic flux).
The process is equivalent to imprinting a 2π phase winding
(of the type discussed on page 1), giving angular velocity
Ω ¼ ℏ=ðmR2Þ and angular momentum Lz=ℏ ¼ 2πRρsf .
The Supplemental Material [21] confirms this picture of

the existence of a normal fluid using 2D numerical
simulations of rotating trapped systems with a 1D lattice
where (i) the lattice corotates with the confining potential,
or (ii) it is static in the lab frame (as in scissors mode
experiments). In (i), the current results from a sum of
normal and superfluid flow. The former corotates with the
lattice and the trap, while the latter derives from the SF
phase gradient. In (ii) there is no normal fluid flow, but as
with our scissors mode observations, I=Ic changes sign.
Discussion and outlook.—In light of the discussion

following Eq. (5), we cannot obtain I=Ic from scissors

FIG. 3. Moment of inertia from scissors mode. (a),inset
Measured dipole mode frequencies (circles) along with fits
(curves) where the bare trap frequency is the only free parameter
for each curve. (a) Normalized scissors mode frequency. Blue and
green correspond to U0 ¼ 0 trap frequencies (34,51) and
(54,36) Hz, respectively. (b) Moment of inertia in units of Ic.
In (a) and (b) each point has uncertainty as shown on the first
point. Symbols are the data computed as described in the text, and
the solid curves are GPE predictions.

PHYSICAL REVIEW LETTERS 131, 163401 (2023)

163401-4



mode measurements without detailed modeling, a con-
clusion that reinforces similar findings in supersolid
dipolar gases [40]. (In that case, the degrees of freedom
describing the droplet configuration can couple to scissors
mode oscillations.) Reference [40] concluded that the
scissors mode does directly yield the moment of inertia
when 1D density modulations comove with the oscillatory
motion: this is consistent with our findings comparing
motion in static and rotating lattices. Although we con-
clude that a normal fluid exists, it is inseparable from the
optical lattice and lacks any internal dynamics of its own,
i.e., it is not described by a dynamical equation of motion.
Similarly, calculations for the strongly interacting super-
fluid 4He films on materials such as hexagonal boron
nitride also predict an anisotropically reduced SF density
[41], implying the existence of a pinned normal fluid.
In contrast, both the superstripe phase in spin-orbit

coupled BECs [42–46] and supersolid phases of dipolar
gases [13,47–49], support dynamical density modulations.
Leggett’s expression [Eq. (1)] applies to both of these
systems implying a reduced superfluid density; in this case
the associated normal fluid might exhibit dynamics, as
expected for a conventional two-fluid model [17,18]. This
leaves open questions regarding the nature of the normal
fluid in the superstripe phase of spin-orbit coupled systems
where an interplay between single-particle physics and
interactions govern supersolidlike properties [50]. In
addition, ρsf is expected to be reduced outside of the
superstripe phase [45,46] where the density is uniform
(making Leggett’s expression inapplicable), but the BEC’s
spin vector is spatially periodic.

Note added.—Recently, we become aware of a related
work, using a 1D lattice with period longer than the healing
length applied to a homogeneously confined 2D BEC [35].
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