
PHYSICAL REVIEW RESEARCH 5, 023185 (2023)

Weak-measurement-induced heating in Bose-Einstein condensates
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Ultracold atoms are an ideal platform for understanding system-reservoir dynamics of many-body systems.
Here, we study quantum back-action in atomic Bose-Einstein condensates, weakly interacting with a far-from
resonant, i.e., dispersively interacting, probe laser beam. The light scattered by the atoms can be considered
as a part of quantum measurement process, whereby the change in the system state derives from measurement
back-action. We experimentally quantify the resulting back-action in terms of the deposited energy. We model
the interaction of the system and environment with a generalized measurement process, leading to a Markovian
reservoir. Further, we identify two systematic sources of heating and loss: a stray optical lattice and probe-
induced light-assisted collisions (an intrinsic atomic process). The observed heating and loss rates are larger
for blue detuning than for red detuning, where they are oscillatory functions of detuning with increased loss at
molecular resonances and reduced loss between molecular resonances.
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I. INTRODUCTION

In recent years, there have been rapid breakthroughs in
quantum technologies that offer new opportunities for ad-
vancing the understanding of basic quantum phenomena,
realizing novel strongly correlated systems [1], and enhancing
applications in quantum communication, computation, and
sensing [2]. Cutting edge applications require high-fidelity
quantum measurement and control. Qubit-based quantum
error correction [3] is a prominent example where both
of these elements are indispensable for first measuring the
state of ancilla qubits and then applying the requisite feed-
back [4,5]. Quantum metrology provides a second example,
where the combination of measurement and feedback enables
the generation of squeezed states with metrologically useful
entanglement [6,7] and deterministic entanglement in super-
conducting qubits [8]. Quantum feedback control of ultracold
atoms is a new direction that relies on this toolbox as a
means to engineer new dynamical steady states that cannot be
achieved in a closed equilibrium system [9–11]. All together
these designate back-action limited measurements as essential
for fully cultivating this platform’s ultimate potential.

Here we study quantum back-action in atomic Bose-
Einstein condensates (BECs), weakly measured by a far-
detuned probe laser beam. All quantum measurements, no
matter how weak, partially collapse the system’s wave
function into the state indicated by the measurement out-
come. Thus, the act of measurement imparts energy to an
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equilibrium system, making heating a diagnostic of quan-
tum back-action. In this paper we experimentally characterize
measurement-induced heating, and in addition report two
key parasitic effects resulting from the measurement process:
light-induced collisions and a stray optical lattice formed from
the probe beam itself.

We also outline a quantum trajectory-based measure-
ment model, and focus on the information extracted by
light-scattering as a measurement process. This model de-
scribes experiments in which the scattered light is measured
by the environment, and the associated back-action—here
heating—on the system is experimentally observed. In a
companion paper, back-action is further characterized using
Ramsey interferometry, probing measurement-induced deco-
herence [12].

Weak measurements—sometimes termed partial or
nondestructive—enable dynamically monitoring of a single
quantum system. Established cold-atom applications include
the observation of real-time vortex dynamics [13,14], spinor
dynamics [15], and the formation of ferromagnetic order
in spinor BECs [16]. In these studies it was sufficient that
the disturbance from each measurement did not appreciably
influence the relevant dynamics, as they focused on mean-field
dynamics in large atom number BECs.

To date the ultimate quantum back-action limit of such
weak measurement techniques have not been considered for
quantum gas experiments except in optical cavities [17].
Back-action limited measurements alone enabled the pro-
duction of squeezed spin states in optical cavities, with
the overall collective spin conditioned on the measurement
outcome [18–20]. Similarly recent work on partially mea-
sured qubit arrays indicate the existence of entanglement
transitions that can only be identified given knowledge of
measurements [21,22]. Going beyond these measurement ap-
plications, closed-loop quantum control is also reliant on
back-action limited measurements. Even at their most simple,
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measurement-based feedback schemes provide a potential
alternative cooling method for ultracold atoms [23–25]. A
single-stage feedback scheme reducing number fluctuations
was demonstrated in Ref. [26]; however, it was applied to a
thermal gas where quantum-limited measurements were not
required. Further, generalized schemes are predicted to drive
quantum gases to new many body phases [27–30]. From this
perspective, characterizing the limits to quantum measure-
ment is a first step toward implementing feedback control and
measurement-driven Hamiltonian engineering in many-body
systems.

This paper begins by reviewing our measurement-based
theoretical framework in Sec. II. We elaborate on the details of
bolometry for determining measurement-induced heating in
Sec. III. Next, in Sec. IV, we continue with a brief description
of our experimental setup and methods. Section V discusses
the effects of light-assisted collisions on loss (Appendix B
expands on this discussion by presenting the phase-contrast
imaging (PCI) data corresponding to these measurements).
In Sec. VI, we study the added energy by measurement and
discuss the ensuing systematic effects. Section VII concludes
with a discussion of experimental and theoretical implica-
tions, and describes potential future directions for research.

II. MODEL

We outline our theoretical approach presented in Ref. [12]
focusing on a weakly interacting atomic BEC (the system)
dispersively coupled to optical electric fields Ê(x, t ) (the
reservoir) as illustrated in Fig. 1(a). In this model, the inter-
action picture system-reservoir Hamiltonian

ĤSR(t ) =
∫

d3x
h̄�

n̂g(x) ⊗ [Ê(x, t )·dge][d∗
ge ·Ê†(x, t )] (1)

describes the interaction of light with two-level atoms, giving
the ac Stark shift to the atoms and a dispersive phase shift to
the light. Here, n̂g(x) = b̂†

g(x)b̂g(x) is the atomic density op-
erator expressed in terms of the bosonic field operators b̂g(x)
for ground-state atoms at position x; dge is the dipole ma-
trix element for transitions between ground- and excited-state
atoms with energy difference h̄ωge; and lastly, � = ω0 − ωge

is the detuning from atomic resonance of a probe laser with
frequency ω0.

In the limit |�| � ωge, we express the optical electric field
operator

Ê(x, t ) = i

√
h̄ωge

2ε0

∑
σ

∫
d3k

(2π )3
âσ (k)εσ (k)ei(k·x−c|k|t ),

in terms of field operators âσ (k) describing states with wave
vector k and polarization σ . Here, ε0 is the electric constant;
c is the speed of light; and εσ (k) are a pair orthogonal po-
larization vectors transverse to k, labeled by σ = ±. Here,
each outgoing mode is in a specific polarization state ε(k⊥)
rendering the polarization subscript redundant.

We assume a probe laser of wavelength λ occupies a
single optical mode (k0, σ0) with k0 ≡ |k0| = 2π/λ. This
ansatz enables us to make the replacement âσ (k) → δ(k −
k0)δσ,σ0α0 + âσ (k), which describes a coherent driving field
with amplitude α0 � 1. In this expression the modes âσ (k)

FIG. 1. Model schematic and experimental concept. (a) System-
reservoir interaction. Left: General concept. The system (BEC) is
coupled to the reservoir via the interaction Hamiltonian ĤSR. Right:
Experimental concept. The BEC (blue) is illuminated with far-
detuned laser light (red) and scatters light (wiggly orange lines) into
both occupied and empty reservoir modes. The reservoir modes are
then projectively measured by the environment, modeled by an array
of photo-detectors. (b) Time sequence employed to determine the
measurement-induced heating. The ODT power (vertical axis) was
initially ramped down to establish T0 yielding either a BEC or a
thermal gas. Subsequently the trap power was ramped up in 300 ms,
and immediately following this compression stage, the far-detuned
probe beam (with 1/e2 minimum waist ≈700 µm aligned to the
BEC) illuminated the atomic cloud for a time tm realizing system-
reservoir coupling. Following a 400 ms thermalization period, the
ODT was turned off, initiating TOF. After 20 ms of TOF expansion,
the momentum-distribution of the atomic cloud was detected via
standard absorption imaging.

are initially empty. With this replacement, we expand Eq. (1)
in decreasing powers of the large parameter α0. The leading
term corresponds to the ac Stark shift, and the next term

Ĥeff = h̄P1/2
e

(ctm )1/2

∮
k0

d2k⊥
(2π )2

g∗(k⊥)n̂F (k⊥− k0)â†(k⊥) + H.c.,

describes scattering from the probe field into optical modes
by spatial structure in the atomic density, where Pe =
|α0gσ0 (k0)|2/�2 is the excited state occupation probability. In
the far-detuned limit, the outgoing wave number is fixed at k0

leading to the surface integral over the sphere of radius k0. The
coupling constant

g(k⊥) ≡ −i

(
ωge

2h̄ε0

)1/2

[dge · ε(k⊥)], (2)

quantifies the coupling strength between the incident
monochromatic light and an outgoing mode of wave vector
k⊥.

The Fourier components of the density distribution

n̂F (k⊥ − k0) =
∫

d3k
(2π )3

b̂†[k − (k⊥ − k0)]b̂(k)
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indicate that the back-action on the atomic system from a
photon recoiling in direction k⊥ places each atom into a co-
herent superposition with amplitude recoiling in the opposite,
momentum conserving, direction.

We model the larger environment as an observer that mea-
sures the outgoing light in the far-field with an ideal photo
detection process [Fig. 1(a)], that is, a strong measurement of
the photon density â†(k⊥)â(k⊥). This measurement process
begins with the combined system-reservoir state |0R〉 ⊗ |
S〉,
describing a reservoir with no photons (other than those in
the probe) and with the system in an arbitrary state. This state
briefly evolves for a time tm via the time evolution operator
ÛSR(tm ) = T exp[−i

∫ tm/2
−tm/2 Ĥeff (t )dt/h̄] at which time a pho-

ton may be detected in momentum state k⊥, and the atomic
system correspondingly recoils. Altogether, this two step pro-
tocol constitutes a generalized measurement of the system
realized by a projective measurement of the reservoir. In
this schema, the conditional post-measurement system wave
function |
 ′

S〉 is described by the Kraus operator M̂(k⊥) =
〈k⊥| ÛSR(tm ) |0R〉 yielding |
 ′

S〉 = M̂(k⊥) |
S〉.
Intuitively, there are two scattering mechanisms: either

light scatters from the “actual” density distribution 〈n̂g(x)〉 or
from quantum fluctuations around that mean. In the case of
a BEC, these lead to stimulated and spontaneous scattering,
respectively. In the context of heating and back-action, stim-
ulated scattering imparts a collective response, that results in
“lensing” of the scattered light [31]. In our experiments this
effect is negligible and heating is dominated by spontaneous
scattering.

Summing over the number of detected photons leads to
the total scattering probability Ptot = Pcol + Psp with the spon-
taneous scattering probability Psp = t̄mPe = t̄m Ī/(8δ̄2). We
introduced dimensionless variables: time t̄m = �tm scaled by
the natural linewidth �; detuning δ̄ = �/� in units of �; and
laser intensity Ī = I/Isat in units of the saturation intensity Isat.
For our system �/2π = 6.07 MHz and Isat ≈ 1.67 mW/cm2.
It is convenient to parameterize this process in terms of a
measurement strength g =

√
t̄m Ī/δ̄ (giving Psp = g2/8) quan-

tifying the information extracted from the system by the
hypothesized measurement process [12,32].

III. BOLOMETRY

This section discusses how the energy deposited by the
dispersive measurement of the atomic cloud is determined.
First, we outline our bolometric experimental sequence for
both a thermal gas and a BEC. Then we present the details of
our analysis procedure, which involves two primary steps. (1)
We extract the temperature T and the total number of atoms Nt

from time-of-flight (TOF) resonant absorption images of the
clouds, and (2) we then obtain the total energy Et bolometri-
cally using T and Nt .

A. Experimental sequence

Our protocol for bolometric measurements is as follows.
The initial stage of each experimental sequence establishes
a well-defined equilibrium state. As shown in Fig. 1(b), we
realize this by ramping down the trap depth [a crossed optical
dipole trap (ODT) as will be detailed in Sec. IV] and ensure

the system is in thermal equilibrium characterized by a mean
energy E0 and with a corresponding temperature T0. The final
value of the ODT power in this stage is varied to obtain a BEC
or a thermal cloud, the two cases we studied. At this stage the
equilibrium atomic system can be characterized by its entropy.

Next in the experimental sequence is a compression stage
[Fig. 1(b)], where we increase the ODT power to a fixed
value irrespective of T0, i.e., the state of the atomic system.
This stage was designed to be adiabatic, i.e., isoentropic [33].
The compression procedure increases the trap depth, so that
after adding energy evaporative processes do not reduce the
temperature which would make bolometry ineffective.

Following compression, the far-detuned probe is applied
for a duration tm realizing a dispersive measurement character-
ized by a measurement strength g. Immediately following the
light-matter interaction, system is not in thermal equilibrium.
For bolometry purposes, then we introduce a thermaliza-
tion period during which the ODT power is kept constant
to establish equilibration. Subsequently, the ODT is turned
off, initiating time-of-flight. We detect the post-measurement
atomic cloud using standard absorption imaging as illustrated
in Fig. 1(b). This completes our experimental sequence and in
the following sections we review our analytical procedure for
extracting the added-energy.

B. Image analysis: Number and temperature extraction

Standard absorption imaging begins with an image IA con-
taining the shadow of the atomic ensemble in a large probe
beam and a second image IP with the atoms absent. The
analysis commenced by computing the ratio of these two
images f = IA/IP. Both of these images contain diffraction
fringes from dust and imperfections in the imaging system.
These imperfections can move on the wavelength scale in the
time between the acquisition of the images, meaning that f
can contain spurious modulations from phase-shifted inter-
ference structures. We use a principle component analysis
(PCA)-based technique to generate an “optimal” probe IPCA

for each IA to remove these artifacts. In some data f differs
slightly from 1 in regions where no atoms are present, giving
an artificial background that we remove. We then compute the
Isat corrected optical depth

OD′ = −ln

(
IA
IPCA

)
− IA − IPCA

Isat
; (3)

for further discussion see Ref. [34].
We extract temperature by excluding the central region

(containing the Bose-condensed atoms) and performing a fit
of the remainder to a 2D Gaussian model

G(x, y) = ag exp

⎡
⎣−1

2

∑
i=x,y

(
xi − bi

σi

)2
⎤
⎦, (4)

where ag is the amplitude, σx,y are the widths, and bx,y are
center positions. We implemented the exclusion by assigning
extremely large uncertainties to data within the exclusion
region. The width of the excluded region along the x and
y directions were set to be 20% and 15% larger than the
largest observed Thomas-Fermi radius along that direction,
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respectively. In our experiment, ωy ≈ 14.9 × ωx so the ex-
cluded region was elliptical.

In the fits, σx and σy vary independently, and as such we
obtain two measures of temperature,

Tx,y = m

kB

ω2
x,y

1 + ω2
x,yt

2
σ 2
x,y, (5)

where t is the TOF duration. In our anisotropic trap (with
ωx � ωy, ωz) the in situ extent of our clouds along ex was
not small compared to the size in TOF. As such Tx has an
≈10% correction compared to the long TOF limit whereas
the correction for Ty is negligible. In addition, a quadruple
magnetic field was present during TOF [35]. This quadruple
field introduced curvature terms along ex reducing the width
of the TOF distribution for our |F = 2,mF = 2〉 ensembles.
In past experiments, this was observed to be an �5% effect.
Since Ty requires no correction factors, it would be favored
as our primary measure of T . However, we observed system-
atic shifts of Ty (and not Tx) between different thermal gas
measurement runs, for which Tx and Ty were not in agreement
with each other, and as such we report T = Tx.

The number of atoms in thermal component is deter-
mined by integrating over the Gaussian profile, giving Nnc =
2πσxσyag/σ0. Here, σ0 is the resonant scattering cross-
section. To obtain the condensate population Nc we integrate
the excluded region after subtracting the fitted thermal pro-
file [36,37]. Then the observed total number of atoms is Nt =
Nc + Nnc and the condensate fraction is Rc = Nc/Nt .

C. Temperature-energy conversion

We made complementary dispersive measurements in a
dilute thermal gas and a BEC, and as such we evaluate tem-
perature to energy conversion in both limits. In the case of
a thermal gas, energy is well approximated by the ideal gas
result Et = 3NkBT in a harmonic trap with Boltzmann con-
stant kB.

For a weakly interacting BEC the per-particle energy [38]
is

Et

NkBT 0
c

= 3ζ (4)

ζ (3)
T̄ 4 + 1

7
μ̄(1 − T̄ 3)2/5(5 + 16T̄ 3), (6)

in terms of T̄ = T/T 0
c , μ̄ = μ/(kBT 0

c ), and the Riemann ζ

function ζ (x). Here, T 0
c is the 3D noninteracting BEC transi-

tion temperature. To determine T 0
c we first extract the critical

temperature Tc by fitting the observed condensate fraction
Rc to

Rc = max

[
1 −

(
T

Tc

)a

, 0

]
, (7)

where Tc and a are fit parameters. Owing to the reduction
of Tc with respect to the 3D noninteracting value, for the
energy computation we use T 0

c acquired from our observed
Tc following Eq. (119) of Ref. [38]:

δTc

T 0
c

= −1.3
aRb

aho
N1/6, (8)

where the shift in the critical temperature is δTc = Tc −
T 0

c ; aRb is the 87Rb scattering length; aho = (h̄/mωho) is
the harmonic oscillator length with the geometric mean of

trap frequencies ωho = (ωxωyωz )1/3. Appendix A presents the
measured critical temperature and the results for T 0

c .

IV. EXPERIMENTAL SYSTEM

Our experiments started with ultracold 87Rb gases (both
thermal and Bose-condensed) with about 1 × 105 atoms in the
|F = 1,mF = 1〉 electronic ground state in a crossed ODT.
For the BEC case, ODT had trap frequencies (ωx, ωy, ωz ) =
2π × [9.61(3), 113.9(3), 163.2(3)] Hz [39]. This trap config-
uration yielded condensates with condensate fraction Rc =
78(3)%, and chemical potential μ = h × 0.76(6) kHz.

As Sec. III A elaborated on, for the bolometric extrac-
tion of measurement-induced heating we then increased the
trap depth yielding harmonic trap frequencies (ωx, ωy, ωz ) =
2π × [22.6(3), 337(2), 265(2)] Hz. (We compressed by a re-
duced amount for data shown in Sec. VI B.) Next, we applied
a resonant microwave π pulse to transfer the atoms into the
|F = 2,mF = 2〉 detection state. We then implemented dis-
persive weak measurements by illuminating the BEC in situ
with a far-detuned probe laser beam (1/e2 radius ≈700 µm)
on the |F = 2,mF = 2〉 to |F ′ = 3,m′

F = 3〉 transition. The
measurement strength was adjusted by varying the probe laser
detuning with δ̄ ∈ [−160, 317], with intensity Ī up to 35, and
the measurement time in the range 4 µs < tm < 20 µs.

The system was then allowed to thermalize for 400 ms
[see Fig. 1(b)]. Subsequently, we extinguished the ODT and
after a 20 ms TOF period detected the post-measurement
density distribution using resonant absorption imaging (20 µs
pulse duration and intensity I/Isat ≈ 1). As previously noted,
a Stern-Gerlach gradient was applied during TOF for con-
sistency in experimental sequence with our companion
paper [12]. Using these TOF images we extracted the final
temperature, and then the total energy Et as discussed in
Sec. III C.

Although, t̄m and δ̄ are well determined by our experi-
mental control sequence Ī is not. We therefore imaged the
dispersive measurement probe beam (with no atoms present)
on a charge coupled device camera in order extract Ī (see
Ref. [40]). Together these allow us to compute g with high
accuracy.

V. LIGHT-ASSISTED COLLISIONS

Although the light matter interaction discussed in Sec. II
describes the behavior of atoms, it neglects the considerable
impact of laser light on two-body molecular physics. It is
known from photoassociation experiments in cold atoms that
near-resonant illumination can excite a zoo of molecular res-
onances [41]. In this section we present the results of such
effects for dispersively measured BECs, and Appendix B de-
tails the PCI data resulting from these measurements.

Light-assisted collisions describe enhanced two-body col-
lisions between atoms in the presence of a strong laser
field [42]. Light-assisted collisions manifest in two primary
ways: losses from photoassociation (PA) and increased kinetic
energy from light-induced acceleration. In our companion
work [12], we observed that probe light-assisted collisions
precipitate atom loss. This paper expands on the effect of such
mechanisms in the context of measurement-induced heating.
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FIG. 2. (a) Light-assisted collisions for red (left) and blue (right) detuned light. Left: for red detuning atom pairs are excited to the attractive
excited potential states followed by decay to ground state molecules. Right: for blue detuning atom pairs are excited to repulsive excited
state and accelerate before decaying. (b) Photoassociation losses following dispersive measurement. Fraction of atoms remaining (red) and
fraction remaining outside the BEC but within a 1 recoil momentum circle (blue). The measurement consisted of two pulses each of duration
tm/2 = 8.2 µs separated by a free-evolution time of 26.5 µs following our pulse-evolve-pulse scheme described in Sec. VI B. All data were taken
with target measurement strength of g = 1 (attained by adjusting Ī between 15.5 and 37). The insets separately histogram the measurement
strength sampled across red (left) and blue (right) detuned data.

The first mechanism, PA, is a two-body loss process
resulting from the formation of molecules. Figure 2(a)
schematically illustrates Born-Oppenheimer scattering poten-
tials for a pair of atoms both in the ground state (black)
and with one excited atom (purple). The potentials for red
detuned light (left), include possible scattering resonances to
electronically excited molecular states leading to PA. In a
harmonic trap, PA preferentially removes atoms from regions
of high density, located in the vicinity of the potential minima.
As a consequence, this loss process increases the per-particle
energy of the remnant atoms: antievaporation.

The second mechanism, light-induced acceleration is il-
lustrated by the potentials in Fig. 2(a) for blue detuned light
(right). In this case, colliding atoms can acquire kinetic en-
ergy as they are promoted into the excited Born-Oppenheimer
potential with a photon of energy h̄ω0, but decay with a
lower energy photon closer to h̄ωge. This process directly adds
kinetic energy, but conserves atom number. In practice this
process leads to loss by ejecting atoms from our compara-
tively shallow optical dipole trap.

Our in situ dispersive measurements were conducted
at high atomic densities of ρ ≈ 1 × 1014 cm−3. These
experiments began with BECs with N0 atoms in the
|F = 2,mF = 2〉 detection state; we then applied the
far-detuned measurement light and immediately initiated
TOF [43]. We determined the fractional change in total atom
number Nt/N0 and in uncondensed number Nnc/N0. Here, Nt

is computed by directly counting the atom number within a
single photon recoil momentum circle centered on the BEC.
The fractional number Nnc/N0 has contributions from thermal
atoms, those that have undergone large-angle light scattering,
and atoms having undergone some light-assisted acceleration.

Figure 2(b) plots these fractions as a function of δ̄ with
constant g = 0.99(3), confirming the expected behavior for
light-assisted collisions. The histograms present the distribu-
tion of measurement strengths for red and blue detuned data,
respectively, evidencing a nearly constant g as δ̄ changes. In
the case of red detuning the fractional number is oscillatory,
with minima marking the location of molecular resonances
spaced by “antiresonances” with reduced loss. By contrast,
the blue detuned data is completely featureless.

The observed peak atom number at the antiresonances is
nearly 2× larger than that is for blue detuning. However, the
uncondensed fraction is only slightly increased. This likely
results from light-assisted collisions occurring predominantly
in the high density BEC, rather than the surrounding lower
density thermal cloud.

A second important feature of Fig. 2(b) is that for both
red and blue detuning the nominal loss rate at fixed g has
no overall dependence on δ̄. Instead δ̄ serves only to control
the detuning from molecular resonances. This results from the
fact that the overall rate of light-assisted collisions is propor-
tional to the excited state probability Pe, yielding a collision
number in the time interval tm proportional to g2. Importantly
this is the same scaling behavior as for light scattering.

VI. HEATING MEASUREMENTS

The back-action resulting from the environment detecting
each scattered photon invariably adds energy to the system as
|
S〉 → |
 ′

S〉. The added energy is an extensive quantity re-
sulting from the change in |
 ′

S〉 with contributions both from
kinetic and interaction energies. In BECs, the added interac-
tion energy derives from the change in density as outgoing
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FIG. 3. Heating of a BEC dispersively measured with a single
probe pulse. Left: Results for measurement times tm = 4 µs and 20 µs
plotted as a function of δ̄. Right: Data plotted as a function of g on
logarithmic scale, with data excluded as described in the text plotted
with hollow symbols. (a), (d) Total number Nt . The solid curves in
panel (a) are fits to Eq. (9) and the shaded regions are where Nt has
fallen below 85% of its asymptotic value. (b), (e) Condensate fraction
Rc. (c), (f) Temperature T . The magenta dashed line marks the
condensation temperature Tc. In each panel, the dashed black lines
indicate the results when no-dispersive measurement took place.
Each data point is the average of five iterations of the experiment.

scattered atoms interfere with the BEC mode. We obtain the
total energy Et bolometrically by measuring the temperature
T following thermalization, and contrast the cases of a BEC
and a thermal gas.

A. Compressed BEC heating

Our data generally consisted of bimodal density distribu-
tions with contributions from condensed and uncondensed
atoms. We obtain T as well as Nc and Nnc as described in
Sec. III B. Figure 3(a) shows the total number Nt obtained via
this procedure as a function of δ̄ for two measurement times
tm. The variation in number for different pulse times at large
δ̄ derives from long-term number drift in our apparatus. These
data show that for sufficiently small detuning of the probe
beam Nt begins to decrease potentially due to evaporation and
photoassociative losses (discussed in Sec. V). We therefore
treat Nt as a gate marking data for which bolometry is valid;

the curves depict fits to

f = N0 − A exp[−B/|g(tm, δ̄, Ī )|], (9)

(a falling exponential function of δ̄) and we accepted data
when the curve exceeds 85% of its maximum value (unshaded
regions). In the following figures data rejected by this thresh-
old are plotted as hollow symbols.

The condensate fraction Rc and temperature T shown in
Figs. 3(b) and 3(c) consistently indicate that increasing the
measurement strength parameter g—either from reducing δ̄ or
increasing tm—are increasingly destructive, increasing T and
reducing Rc in tandem. Using the procedure described in Ap-
pendix A, the condensate fraction in Fig. 3(b), in conjunction
with the temperature in Fig. 3(c), allow us to extract the BEC
transition temperature Tc = 165 nK for our N ≈ 105 atom
system [horizontal magenta dotted lines in Figs. 3(c) and 3(f)],
which is reduced with respect to the 3D noninteracting value
of T 0

c = 225 nK for a harmonically trapped gas. This sup-
pression primarily results from our system being transitionary
from 3D to 1D with μ only about three times larger than the
transverse trap frequencies. Figures 3(d)–3(f) expand on this
observation by plotting such data taken for four values of tm
as a function of g and show all of our observations nominally
collapse onto the same curve.

B. BEC heating with stray lattice mitigated

As we shall see in Sec. VI E, the energy added by these
dispersive measurements is greatly in excess of that predicted
by our scattering model. We found that in our experiment,
the probe beam creates a stray optical lattice by interfering
with its retro-reflections off the optical elements in the high-
resolution in situ imaging system. In optical setups, it is a
standard practice to introduce slight tilts in optical elements
to prevent back-reflections. However, in a high-resolution
imaging setup the probe beam is centered on the optical axis
and optimized to intersect each element at normal incidence
to minimize optical aberrations [44]. Consequently, in our
experiment a weak optical lattice is generated as a systematic
byproduct during each dispersive-measurement probe pulse.
Matterwave diffraction of the BEC off of a weak optical
lattice coherently creates population in diffraction orders with
momentum ±2h̄k0.

The phase imprinted by the stray lattice can be unwound
by splitting the probe pulse into two pulses of shorter duration
tp separated by a delay time of td (see in our recent work
in Ref. [12] for a more detailed discussion). Our technique
for mitigating the optical lattice can be intuitively understood
in terms of a three-state truncation [45,46] of the full lattice
Hamiltonian

Ĥ (k)

E0
=

⎛
⎝(k + 2k0)2 s/4 0

s/4 k2 s/4
0 s/4 (k − 2k0)2

⎞
⎠, (10)

describing a lattice of depth sE0, with single photon re-
coil momentum h̄k0 = 2π h̄/λ, energy E0 = h̄2k2

0/(2m), and
time T0 = 2π h̄/E0 ≈ 265 µs. For atoms initially at rest,
i.e. k = 0, this is a resonant lambda coupling scheme
with bright state subspace spanned by |b0〉 = |k = 0〉 and
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|b1〉 = (|k = −2k0〉 + |k = −2k0〉)/
√

2 and an uncoupled
dark state |d〉 = (|k = −2k0〉 − |k = −2k0〉)/

√
2.

Our initial state |k = 0〉 is in the bright state manifold, so
we focus on the bright state Hamiltonian

Ĥb(0)

E0
= 2Î + 1

2

[
4σ̂z + s√

2
σ̂x

]
.

When the lattice is off, this describes Larmour procession
around ez with frequency 4E0/h̄ and when the lattice is on
the procession axes changes to 4ez + [s/

√
2]ex with frequency√

16 + s2/2E0/h̄. In the limit s � 4
√

2, the axis of rotation is
tipped by θ = 4s/

√
2, the Rabi frequency is nearly unchanged

from 4E0/h̄, and the condition to return to the initial state
is td/T0 = 1/8 − tp/T0. In practice we selected td = T0/10 =
26.5 µs and tp = T0/32 = 8.2 µs.

This pulse-evolve-pulse scheme is only effective for
momenta near zero, thereby rendering it ineffective for mea-
surements at higher temperature. These include data from
the thermal cloud as well as the BEC in the deep trap,
for which Rc ≈ 0.4 [see Figs. 3(b) and 3(e)]. For this
reason, we altered our experimental sequence to make mea-
surements with the pulse-evolve-pulse sequence at reduced
temperature (with T = 41 nK and Rc ≈ 0.77). We reduced
the temperature by first starting with a colder BEC [Rc ≈
0.97(3)] and then increasing the trap depth only to ≈3 ×
E0 (a factor of ≈3.3 shallower than the data discussed
above) yielding final trap frequencies of (ωx, ωy, ωz ) = 2π ×
[13.1(1), 206.7(8), 214.3(5)] Hz. This gives reduced heating
due to compression, and is still sufficient to trap scattered
atoms and avoid evaporation.

C. BEC heating at PA antiresonances

Having eliminated excess heating from lattice effects, we
now turn to light-assisted collisions. The heating data pre-
sented to this point was from dispersive measurements with
the probe light blue detuned from resonance. As we discussed
in Sec. V light-assisted collisions in this regime depend only
on excited state probability, and otherwise are independent of
δ̄. By contrast PA resonances and antiresonances are present
for red detuned probe light.

We concentrate our measurements on the antiresonant fea-
tures observed at δ̄ ∈ {−111.6, −124.3, −138.1, −153.7}
and to further mitigate excess heating continue to use the
pulse-evolve-pulse sequence. As such, the intensity Ī is the
only remaining parameter by which the measurement strength
g can be tuned. Figure 4 shows the results of these mea-
surements with panels (a)–(c) containing curves taken at two
antiresonances. As with previous analysis, we retain data
where the number has dropped by less than 15% for obtaining
the deposited energy. Figures 4(d)–4(f) demonstrate that the
same data plotted as a function of g nearly perfectly collapse.

In Secs. VI E and VI F we discuss and contrast the data sets
presented thus far.

D. Thermal gas heating

As a reference case we also measured the change in tem-
perature of a dilute thermal gas at T/Tc ≈ 2.5. To facilitate
comparison with BEC measurements, we used parameters

FIG. 4. Heating in a BEC dispersively measured at PA antireso-
nances and with stray lattice mitigated using the pulse-evolve-pulse
scheme. Left: Results for detunings δ̄ = −111.6 and δ̄ = −153.7
plotted as a function of Ī . Right: Data for all four δ̄ values plotted
as a function of g on logarithmic scale. (a), (d) Total number Nt .
The solid curves in panel (a) are fits Eq. (9) and the shaded regions
indicate where Nt falls below 85% of its asymptotic value. (b), (e)
Condensate fraction Rc. (c), (f) Temperature T . Hollow symbols
indicate excluded data in added-energy computation as in Fig. 3.
In each panel, the dashed black lines indicate the results when no-
dispersive measurement took place. Each data point is the average of
five iterations of the experiment.

common with the BEC data: blue detuned thermal data was
taken following the procedure in Sec. VI A, while red-detuned
thermal data followed Sec. VI C. These thermal data used a
single probe pulse of duration tm = 20 µs (we did not apply the
pulse-evolve-pulse sequence to these higher temperature data
as it is ineffective in this regime). Appendix C presents the
extracted Nt and T at red detuned probe light measurements.
Similar to the BEC measurements reported in Figures 3 and 4,
these data demonstrate that Nt and T collapse when scaled to
g. In the next section, we compare the added energy in these
thermal gas measurements with the ones in BECs.

E. Added energy

Having measured the temperature both of condensed and
thermal systems, we now consider the per-atom energy [47]
using the conversions described in Sec. III C.

Using the data presented in Sec. VI A, Fig. 5(a) shows Et

for a weakly interacting BEC (markers) along with a fit to the
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FIG. 5. Per-atom added energy. (a) BEC single probe pulse mea-
surements at blue detuning. (b) BEC pulse-evolve-pulse scheme
measurements at blue detuning. (c) BEC pulse-evolve-pulse scheme
measurements at PA antiresonances. (d) Thermal gas single probe
pulse measurements at PA antiresonances. Squares indicate data for
which δ̄ was scanned at four values of tm, and with Ī held constant.
Triangles mark data for which δ̄ was scanned at four values of Ī , at
constant tm. Circles indicate data for which Ī was scanned at four
values of δ̄, at constant tm. The squares in panel (a) and triangles in
panel (b) are jointly colored according to

√
t̄m Ī , the numerator of the

measurement strength expression. The circular symbols in panels (b),
(c), and (d) use the common legend in panel (c) identifying different
values of |δ̄|. The magenta curves plot the predicted added kinetic
energy obtained from Monte Carlo simulations. The purple curves
are fits to E = E0 + βg2 and the black dashed lines depict the initial
energy.

expected functional form δE = E0 + βg2. The magenta curve
plots the energy computed from a stochastic classical scatter-
ing model (see Appendix D), which includes only large-angle
scattering, i.e., spontaneous emission [48]; this gives β =
54.9(3) nK as compared to the fit value β = 1365(49) nK.

Figure 5(b) incorporates the pulse-evolve-pulse measure-
ment protocol in which we varied δ̄ at four different probe
intensities I keeping tm constant [the marker colors in Fig. 5(b)
are selected to make the product t̄m Ī consistent with the colors
in Fig. 5(a)]. We find that the added energy Et is decreased
by half compared to the single pulse measurements, giving
β = 696(13) nK. While this is a marked improvement it is

still more than ten times in excess of the simple spontaneous
emission prediction.

Last, Fig. 5(c) retains the pulse-evolve-pulse protocol and
operates at the PA antiresonances. As discussed in Sec. VI C,
for these measurements we held tm and δ̄ constant and scanned
Ī . In these data the heating rate is reduced by a factor of about
three giving β = 227(4) nK. This represents a 6× reduction
in heating as compared to the blue detuned data in Fig. 5(a)
without lattice compensation, however, it is still about 4.1×
in excess of our expectations.

By comparison, Fig. 5(d) presents thermal gas data (at red-
detuned antiresonances) for which we obtain a fit coefficient
β = 331(8) nK and a similar analysis for blue detuning yields
β = 401(8) nK. In contrast with BEC measurements, com-
pensating for light-assisted collisions yielded a modest 20%
improvement. This is expected owing to the greatly reduced
density of the thermal gas.

F. Discussion

In all cases the added energy is far in excess of what is
expected from light scattering alone. The results presented
in Fig. 5 confirm that both the stray lattice and light-assisted
collisions contribute.

The energy added by the stray optical lattice, a function
of its depth Vlatt ∝ Ī/δ as well as the time t̄m, has no particu-
lar relation with the scattering probability g2/8. As a result
lattice-induced heating does not yield data collapse when
scaled to g (see Appendix D for numerical examples). The
single-pulse BEC measurements data shown in Fig. 5(a) col-
lapses poorly; in conjunction with the energy reduction and
improved collapse of the pulse-evolve-pulse data presented
in Figs. 5(b) and 5(c), this is fully consistent with the stray
lattice as a significant contributor of BEC heating. However,
data from the single-pulse measurements in thermal gas in
Fig. 5(d) show reasonable collapse, with the imperfect col-
lapse being consistent with the simulations in Appendix D (for
which the peak lattice depth was about 5E0).

In comparison, the light-assisted collision rate is pro-
portional to the excited state occupation probability, so the
short-time rate of such collisions is ∝g2. Therefore they con-
tribute heating with the same overall scaling as spontaneous
scattering. As such, the observed progression from Fig. 5(a) to
5(c) is consistent with heating from a combination of photon
scattering and light-assisted collision processes.

In addition, Figs. 5(c) and 5(d), show that the added energy
for the BEC is smaller than that of the thermal gas. This
in line with our expectations because lattice compensation is
ineffective for the broad momentum distribution of a thermal
gas. In the case of the fully compensated BEC, it is unclear
whether the remaining excess energy results from imperfect
cancellation of the lattice, or other effects. Although expected
to be a minor effect, the probe beam inhomogeneities, which
were experimentally characterized for our specific setup in
Ref. [40] will impart some energy.

VII. CONCLUSION AND OUTLOOK

In this paper, we characterized heating of dispersively mea-
sured ultracold atoms and identified systematic effects that
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dominate the heating with respect to the quantum back-action
signal. Nevertheless, straightforward applications of disper-
sive imaging techniques may well allow repeated monitoring
of the same quantum system. In this case, excess heating
places additional limitations on the lifetime of continuously
monitored BECs, and further constrains on potential appli-
cations. In a complementary measurement with the same
experimental setup we found that the reduction in contrast of
a Ramsey interferometer is back-action limited [12]. This ap-
parent contradiction indicates that not all degrees of freedom
are equally impacted by these systematic effects.

The systematic effects—a stray optical lattice and light-
assisted collisions—accentuate critical requirements for fu-
ture research with back-action limited measurements. A
feasible experimental modification to minimize the systematic
contribution of stray optical lattices would use a probe beam
slightly tilted with respect to the existing probe beam. As
noted in Sec. VI B, high-resolution cold-atom imaging sys-
tems generally use the probe beam to define the optical axis,
allowing the optical elements to be placed on-center and at
normal incidence with respect to the optical axis. This makes
a well-aligned probe beam indispensable for imaging system
alignment. However, this reference probe beam need not be
used for actual imaging: a second, slightly tilted, probe could
greatly mitigate back reflections, at the price of potentially
increased aberrations. Thus, the original perfectly centered
probe beam functions to define the optical axis, while the sec-
ond tilted probe beam performs the dispersive measurements
and governs the quantum back-action. The performance of our
pulse-evolve-pulse scheme improves for weaker lattices, so
modestly reducing back reflections can yield disproportionate
benefits.

Secondly, light-assisted collisions can be suppressed in
BECs either by controlling the atom density, or by further
management of molecular resonances [49]. For example, ho-
mogeneous confining potentials, i.e., “box traps,” reduce ρ2

the average value of density squared, and therefore decrease
the rate of two-body effects such as light-assisted collisions. In
addition the spacing between molecular resonances increases
with detuning [41], allowing for more robust antiresonances
at large detuning.

There are multiple measurement techniques for quan-
tum gases based on the dispersive light-matter interac-
tion [31,36,50,51] that in principle can give back-action
limited measurement outcomes. In particular, we use digitally
enhanced phase-contrast imaging [44], an optical homodyne
detection technique that accounts for imaging system im-
perfections. For example, Appendix B presents PCI data
associated with the light-assisted collisions measurements
in Fig. 2(b). The second-order light-matter interaction in
Eq. (1) is ∝1/δ and purely dispersive in the classical lim-
its: when Ê → 〈Ê〉 the atoms experience only an AC Stark
shift, and when n̂g → 〈n̂g〉 the light experiences only a
phase shift. Despite this, Eq. (1) accounts for both spon-
taneous and stimulated emission with their ∝1/δ2 and
∝1/δ scaling, respectively. This gives both the imaginary
(dissipative) and real (dispersive) parts of the atomic sus-
ceptibility. As such this theoretical approach can be applied
even quite close to resonance, until these scalings break
down.

FIG. 6. Determination of critical temperature. The vertical blue
dashed line marks the predicted T 0

c for noninteracting bosons com-
puted from for our trap frequencies in the compressed trap and total
atom number Nnm.

The 4π steradian measurement model outlined in this pa-
per is powerful and as demonstrated in our companion paper
Ref. [12] makes reliable predictions. While a convenient theo-
retical abstraction, this model does not derive from a practical
experimental measurement geometry. By contrast measuring
the spatially resolved optical phase shift via PCI is a well-
established dispersive measurement method. However, in this
case the conditional change in the system wave function given
an observed real space measurement is not described by the
intuitive picture of atoms recoiling from scattered photons.
Formally, this measurement is associated with a completely
different set of Kraus operators, corresponding to a different
(and physically motivated) unraveling of the master equation.
A natural extension of this work will account for these differ-
ences and explore the experimental applications.
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APPENDIX A: BEC THERMODYNAMICS

The per-particle energy for a weakly interacting BEC given
in Eq. (6) requires the knowledge of two critical experimental
parameters: the 3D noninteracting BEC transition temperature
T 0

c and the chemical potential μ. This section provides the
analysis details for obtaining each parameter.

We determine T 0
c using the measured critical temperature

Tc as detailed in Sec. III C. Figure 6 presents Rc as a function
of T using the BEC heating at antiresonances data presented
in Sec. VI C. Fitting to Eq. (7) gives best fit results Tc =
109(1) nK and a = 1.67(1). For the no-weak-measurement
BEC results (dashed lines in Fig. 3) we determine the number
of atoms to be Nnm = 1.28(1) × 105. For our compressed
ODT configuration, Eq. (8) yields T 0

c = 189 nK.
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FIG. 7. Detected peak atomic column density computed from PCI data for red (left) and blue (right) detuning. These data result from the
exact same dispersive measurements that lead to the photoassociation and light-assisted acceleration shown in Fig. 2. The purple curves plot a
10 point wide running average as a guide to the eye. The vertical arrows mark the PA antiresonances observed in Fig. 2(b). All data were taken
with target measurement strength of g = 1 (attained by adjusting Ī between 15.5 and 37).

According to the Thomas-Fermi approximation, the chem-
ical potential is related to the condensed atom number by

μ = ωho

2

[
15NaRb

aho

]2/5

. (A1)

We derive the chemical potential μ using Nnm value with the
measured compressed trap frequencies.

APPENDIX B: PHASE-CONTRAST IMAGING

Although the measurement strength gwas introduced in the
context of a 4π scattering measurement model, it quantifies
the strength of any measurement based on the dispersive light-
matter interaction. For example, the far-detuned probe laser
described here actually implements PCI in our laboratory, and
the PCI signal to noise ratio is proportional to g. Although it
is not the central focus of the present work, we did acquire a
phase-contrast image each time we illuminated the BEC with
the probe laser; as such the probe laser truly implemented
dispersive measurements. Details regarding our PCI setup can
be found in Refs. [40,44].

Figure 7 plots the in situ peak density determined from PCI
(see Ref. [44] for details) for each TOF data point presented in
Fig. 2. In both panels the solid curves plot the data averaged
over 10 points and the arrows mark the location of the PA
antiresonances observed in Fig. 2.

The PCI and TOF data are different in three qualitative
ways: (1) the signal to noise ratio of the PCI data is reduced;
(2) the contrast of the red detuned PA features is reduced; and
(3) the PCI signal is larger for the blue detuned data, while the
reverse is the case after TOF. Firstly, the PCI signal to noise
ratio is reduced by about 4× compared to that in TOF simply
because PCI is a weak measurement process.

Second, the red detuned PA features are reduced in am-
plitude because the PCI signal is proportional to the atom
number averaged over the measurement pulse’s duration, not
the number following the pulse as for TOF data. When the
loss is small, this argument predicts a 50% reduction in con-
trast. An additional contributor is remnant absorption at large
detunings; this impacts the PCI signal in a way that is anti-
symmetric in detuning. For a phase dot with −π/2 phase shift
as in our case, absorption increases the PCI signal for blue
detuning and reduces it for red detuning. This introduces an

additional ≈15% fractional difference between the red and
blue detuned data.

The third observation results from the fact that the light-
induced acceleration process does not change the atom
number, and during our brief measurement pulses the accel-
erated atoms do not have sufficient time to leave the BEC. By
contrast the red detuned PA process simply removes atoms.
This observation also indicates that individual PCI measure-
ments give a misleading impression regarding the importance
of light-assisted collisions.

FIG. 8. Heating of a thermal gas dispersively measured at PA
antiresonances. Left: Results for probe detunings δ̄ = −111.6 and
δ̄ = −153.7 plotted as a function of Ī . Right: Data for all four δ̄

values plotted as a function of g on logarithmic scale. (a), (c) Total
number Nt . The solid curves in panel (a) are fits Eq. (9) and the
shaded regions show where Nt falls below 85% of its asymptotic
value. (b), (d) Temperature T . All measurements were of a single
probe pulse of duration tm = 20 µs. Hollow symbols mark excluded
data in added-energy computation described in the main text. In each
panel, the dashed black lines indicate the results when no-dispersive
measurement took place. Each data point is the average of five
iterations of the experiment.
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Considering only the direct effect of the atoms on the far-
detuned probe light, without quantifying the resulting heating
of the post-measurement cloud, cloaks systematic effects of
light-assisted collisions. Indeed, our heating measurements
(see Fig. 5) show that the blue-detuned process alone adds
about 8 times more energy than can be attributed to the light
matter interaction alone. Each of these observations gives
different and important facts informing the design of exper-
iments focused on measurement back-action.

APPENDIX C: THERMAL GAS MEASUREMENTS

For completeness, Fig. 8 displays the data acquired from
dispersive measurements in a dilute thermal gas. These results
were then used to arrive at the data presented in Fig. 5(d) for
post-measurement energy increase in a thermal gas.

APPENDIX D: HEATING FROM ANISOTROPIC
SCATTERING

We modeled the added kinetic energy using a classical
Monte Carlo simulation. This simulation incorporates scat-
tering as a stochastic process with atoms recoiling in the
dipole emission pattern expected for the |F = 2,mF = 2〉 →
|F = 3,mF = 3〉 cycling transition. In addition, the simula-
tion includes an optical lattice potential.

Our numerical approach solves the stochastic equations of
motion using a first-order approximation for the deriva-
tives [52], with a time step selected to be much smaller than
the scattering time. This model should accurately describe
the added energy for a weakly interacting thermal gas. In
addition we expect it to reasonably approximate the added
kinetic energy for a BEC as the overall properties (such as the

FIG. 9. Modeled energy of a thermal cloud including sponta-
neous emission and an optical lattice for the parameters in Fig. 5(d).
The nominal lattice depth was selected to give the observed peak
heating and was scaled to be proportional to Ī/δ̄. The peak lattice
depths are 3.9E0, 4.4E0, 4.8E0, and 5.4E0 for δ̄ = 111.6, 124.3,
138.1, and 153.7, respectively.

per-particle energy) of a BEC evolving in an optical lattice are
well described using classical models [53].

Figure 9 plots the computed added energy associated with
the thermal gas measurements in Fig. 5(d). The lattice depth
was selected to approximately account for the experimentally
observed heating at g = 0.8, and was scaled with Ī/δ̄ away
from this point (see caption). These simulations show that
even in principle these data do not collapse onto a single curve
as a function of g. The variation is comparable with the ob-
served scatter in Fig. 5(d), suggesting that for the thermal gas
(where lattice mitigation is ineffective) the remnant heating at
red-detuning could be from stray lattice effects.
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tation of Cavity Squeezing of a Collective Atomic Spin, Phys.
Rev. Lett. 104, 073602 (2010).

[19] J. G. Bohnet, K. C. Cox, M. A. Norcia, J. M. Weiner, Z. Chen,
and J. K. Thompson, Reduced spin measurement back-action
for a phase sensitivity ten times beyond the standard quantum
limit, Nat. Photonics 8, 731 (2014).

[20] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Measurement noise 100 times lower than the
quantum-projection limit using entangled atoms, Nature
(London) 529, 505 (2016).

[21] M. J. Gullans and D. A. Huse, Dynamical Purification Phase
Transition Induced by Quantum Measurements, Phys. Rev. X
10, 041020 (2020).

[22] C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan, D. Biswas,
M. Cetina, A. V. Gorshkov, M. J. Gullans, D. A. Huse,
and C. Monroe, Measurement-induced quantum phases real-
ized in a trapped-ion quantum computer, Nat. Phys. 18, 760
(2022).

[23] N. Behbood, G. Colangelo, F. Martin Ciurana, M. Napolitano,
R. J. Sewell, and M. W. Mitchell, Feedback Cooling of an
Atomic Spin Ensemble, Phys. Rev. Lett. 111, 103601 (2013).

[24] M. R. Hush, S. S. Szigeti, A. R. R. Carvalho, and J. J. Hope,
Controlling spontaneous-emission noise in measurement-based
feedback cooling of a Bose-Einstein condensate, New J. Phys.
15, 113060 (2013).

[25] M. Schemmer, A. Johnson, R. Photopoulos, and I. Bouchoule,
Monte carlo wave-function description of losses in a one-
dimensional Bose gas and cooling to the ground state by
quantum feedback, Phys. Rev. A 95, 043641 (2017).

[26] M. Gajdacz, A. J. Hilliard, M. A. Kristensen, P. L. Pedersen, C.
Klempt, J. J. Arlt, and J. F. Sherson, Preparation of Ultracold
Atom Clouds at the Shot Noise Level, Phys. Rev. Lett. 117,
073604 (2016).

[27] G. Mazzucchi, W. Kozlowski, S. F. Caballero-Benitez, T. J.
Elliott, and I. B. Mekhov, Quantum measurement-induced
dynamics of many-body ultracold Bosonic and Fermionic
systems in optical lattices, Phys. Rev. A 93, 023632
(2016).

[28] G. Mazzucchi, S. F. Caballero-Benitez, and I. B. Mekhov,
Quantum measurement-induced antiferromagnetic order and

density modulations in ultracold fermi gases in optical lattices,
Sci. Rep. 6, 31196 (2016).

[29] J. T. Young, A. V. Gorshkov, and I. B. Spielman, Feedback-
stabilized dynamical steady states in the Bose-Hubbard model,
Phys. Rev. Res. 3, 043075 (2021).

[30] S. Lloyd and J.-J. E. Slotine, Quantum feedback with weak
measurements, Phys. Rev. A 62, 012307 (2000).

[31] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Direct, nondestructive observation
of a Bose condensate, Science 273, 84 (1996).

[32] K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wave-
function method in quantum optics, J. Opt. Soc. Am. B 10, 524
(1993).

[33] In practice we observe a reduction in the condensate fraction,
which would not occur for a noninteracting Bose gas.

[34] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin, Strong
saturation absorption imaging of dense clouds of ultracold
atoms, Opt. Lett. 32, 3143 (2007).

[35] In a companion paper [12] this was utilized to separate the spin
states via the Stern-Gerlach effect in other measurements using
Ramsey interferometry to characterize back-action.

[36] W. Ketterle, D. S. Durfee, and D. Stamper-Kurn, Making,
probing and understanding Bose-Einstein condensates, Bose-
Einstein condensation in atomic gases, in Proceedings of the
International School of Physics “Enrico Fermi,” Course CXL
(IOS Press, Amsterdam, 1999), pp. 67–176.

[37] J. Szczepkowski, R. Gartman, M. Witkowski, L. Tracewski, M.
Zawada, and W. Gawlik, Analysis and calibration of absorptive
images of Bose-Einstein condensate at nonzero temperatures,
Rev. Sci. Instrum. 80, 053103 (2009).

[38] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, The-
ory of Bose-Einstein condensation in trapped gases, Rev. Mod.
Phys. 71, 463 (1999).

[39] All uncertainties herein reflect the uncorrelated combination of
single-sigma statistical and systematic uncertainties.
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