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Abstract

Thermodynamic systems typically conserve quantities (known 
as charges) such as energy and particle number. The charges are 
often assumed implicitly to commute with each other. Yet quantum 
phenomena such as uncertainty relations rely on the failure of 
observables to commute. How do noncommuting charges affect 
thermodynamic phenomena? This question, upon arising at the 
intersection of quantum information theory and thermodynamics, 
spread recently across many-body physics. Noncommutation  
of charges has been found to invalidate derivations of the form of 
the thermal state, decrease entropy production, conflict with the 
eigenstate thermalization hypothesis and more. This Perspective 
surveys key results in, opportunities for and work adjacent to the 
quantum thermodynamics of noncommuting charges. Open problems 
include a conceptual puzzle: evidence suggests that noncommuting 
charges may hinder thermalization in some ways while enhancing 
thermalization in others.
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globally7,8. Denote the σz ladder operators by σ σ iσ: = ( ± ).z x y±
1
2  The 
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( +1)  transports one σz quantum from qubit j + 1 to 

qubit j and vice versa, in superposition. Define ladder operators and 
couplings analogously for σx and σy. The Hamiltonian
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transports the σas locally, while conserving them globally. HHeis
tot  is the 

Heisenberg model, theoretically well-known and experimentally 
realizable7,9. Yet HHeis

tot  is rarely, if ever, expressed outside the literature on 
the thermodynamics of noncommuting charges as it is in equation (1) — 
as locally transporting and globally conserving three noncommuting 
charges. Furthermore, we can extend HHeis

tot  to nonintegrable models 
(which promote thermalization), to subsystems beyond qubits and to 
charges beyond spin components8. (For more on  quantum 
thermodynamics of spin exchanges, see refs. 14–17).

Having exhibited a thermodynamic system whose Qas fail to com-
mute, we sample the physics altered by the noncommutation of 
charges. This sample only dips into the known results (detailed in the 
section ‘New physics’) but demonstrates why noncommuting ther-
modynamic charges merit study. If the Qas fail to commute, the extent 
to which S can thermalize is unclear for several reasons. First, noncom-
muting charges impede two derivations of the form of the thermal 
state1,2. (An information-theoretic derivation holds regardless of the 
noncommutation of charges, but this derivation provides less phys-
ical insight; see the section ‘Early work’.) Second, noncommuting 
charges force degeneracies on H tot. The reason is Schur’s lemma, a group- 
theoretic result7,18,19 (Supplementary Information). Nondegenerate 
Hamiltonians underlie arguments supporting thermalization, mixing 
and equilibration20–23 — arguments, thus, challenged by noncommut-
ing charges. Third, noncommuting charges conflict with the eigenstate 
thermalization hypothesis (ETH)24. The ETH is a theoretical and con-
ceptual toolkit for explaining how quantum many-body systems ther-
malize internally20,21,25. Myriad numerical and experimental observations 
support the ETH, which has been applied across many-body physics. 
Yet noncommuting charges preclude the ETH (as discussed in the sec-
tion ‘New physics’). Hence, noncommuting charges challenge 
expectations about thermalization in a third manner.

We encounter even more manners across this Perspective. 
Resistance to thermalization matters both fundamentally and for 
applications. Most systems thermalize, so resistance is unusual; 
few mechanisms for resistance in quantum many-body systems are 
known26,27. Additionally, thermalization disperses information about 
initial conditions, so thermalization resistance can promote memory 
storage.

Noncommuting thermodynamic charges present several research 
opportunities, three of which we flesh out in this Perspective. First,  
a major opportunity is to identify the extent to which noncommuting 
charges hinder thermalization. Another opportunity is to re-examine 
every thermodynamic or chaotic phenomenon, determining the extent 
to which it changes if charges fail to commute. The phenomena 
known to change, as reviewed in this Perspective, include the ETH, 
microcanonical states, thermodynamic-entropy production, entangle-
ment entropy and the ability of local interactions to effect global evolu-
tions. A third opportunity is to marry recent noncommuting-charge 
work, based largely on quantum thermodynamics and information 
theory, with adjacent work in other fields, such as high-energy theory. 
Other fields favour the terminology non-Abelian symmetries; 

Introduction
A simple story from undergraduate statistical physics motivates this 
Perspective: throughout thermodynamics, we consider a small system 
S  exchanging quantities with a large environment E  (Fig. 1). Suppose 
that the systems are quantum. If they exchange only heat, S  may ther-
malize to the canonical state 

S
ρ e∝ βH

can
− ( )

, where β is the inverse tem-
perature of the environment and H ( )S  denotes the Hamiltonian of the 
system of interest. If S  and E  exchange heat and particles, S  may ther-
malize to the grand canonical state NS S

ρ e∝ β H µ
GC

− ( − )( ) ( )
, where μ is the 

chemical potential and N S( ) denotes the system-of-interest particle-
number operator. This pattern extends to many exchanged quantities  
(such as electric charge and magnetization) and many thermal states.

The exchanged quantities are conserved globally (across SE),  
so we call them charges. The Hermitian operator Qa represents 
the conserved quantities: S  has an operator Q ,a

( ) ES  has EQa
( ) and the  

global system has � �Q Q Q Q Q: = + ≡ ⊗ + ⊗a a a a a
tot ( ) ( ) ( ) ( ) ( ) ( )S E S E S E . The index 

a = 0, 1, …, c, where c is the dimension of the algebra of the charges; the 
Hamiltonian H = Q0.

Across thermodynamics, we often assume implicitly that the 
charges commute with each other: Q Q a a[ , ] = 0 ∀ , ′a a′ . This assump-
tion is almost never mentioned (recall your undergraduate statistical 
physics course). However, the assumption underlies derivations of the 
form of thermal states1,2, linear-response coefficients3 and more. How-
ever, observables can fail to commute, and this possibility enables 
quintessentially quantum phenomena: the Einstein–Podolsky–Rosen 
paradox4, uncertainty relations5 and measurement disturbance6, 
among others. Quantum physics, therefore, compels us to ask: what 
happens to thermodynamic phenomena under dynamics that conserve 
charges Qa

tot that fail to commute with each other?
This question arose in recent years at the intersection of quantum 

information theory and quantum thermodynamics, then seeped into 
many-body physics. This Perspective surveys results, opportunities 
and adjacent work. In the rest of the introduction, we first present 
a simple physical example. Then, we sample example phenomena 
transformed by the noncommutation of charges. We later establish 
notation, followed by the outline of this Perspective.

A simple physical example was proposed theoretically7,8 and real-
ized with trapped ions9: a chain (Fig. 2), formed from qubits (quantum 
two-level systems). A few (say, two) qubits form S, and the other qubits 
form E. The chain constitutes a closed quantum many-body system, of 
the sort whose internal thermalization has recently been studied theo-
retically and experimentally10–13. Denote by σa the Pauli-a operator, for 
a = x, y, z; by σa

j( ), a spin component of qubit j; and by σ σ: = ∑a j a
jtot ( ),  

a total spin component. One can construct a Hamiltonian that overtly 
transports quanta of each σa locally while conserving the σ sa

tot  

Small system Environment

Fig. 1 | Common thermodynamic paradigm. A small system and large 
environment locally exchange quantities (indicated by spheres and cubes)  
that are conserved globally. Common quantities include energy and particles  
of different species.
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fundamental thermodynamics motivates our noncommuting-charge 
language. A Hamiltonian conserves noncommuting charges, 
H Q a[ , ] = 0 ∀a

tot tot , if and only if it has a continuous non-Abelian sym-
metry: U H U H a= ∀a a

† tot tot . The charges generate the unitary operators: 
U e=a

iQ t− a , for t∈ R. The Qas form a Lie algebra, and the Uas form the 
associated Lie group28.

Across the Perspective, we use the notation introduced above, as 
well as the following. We call a closed quantum many-body system 
(such as the composite SE  in Fig. 1) a global system. N denotes the 
number of degrees of freedom (DOFs) in a global system. Often, SE  
consists of N copies of S. For example, N denotes the number of qubits 
in Fig. 2. Large but finite N — the mesoscale — interests us: as N → ∞, SE  
grows classical, according to the correspondence principle2. Noncom-
mutation enables non-classical phenomena, so we should expect the 
noncommutation of charges to influence thermodynamic phenomena 
at finite N. Continuing with notation, we ascribe to the Pauli operators 
σa eigenstates ∣a±� associated with the eigenvalues ±1. Subscripts index 
charges (as in σa

j( )), whereas superscripts index sites or other subsys-
tems (such as S  and E). We often denote commuting charges, or other 
observables that might commute, by Q sa

∼
.

The rest of this Perspective is organized as follows. First, we intro-
duce the earliest work on noncommuting thermodynamic charges. 
We, then, survey new physics that arises from the noncommutation 
of charges. Next, we discuss bridges with related research. Finally, we 
point out the richest-looking avenues for future work.

Early work
Edwin Thompson Jaynes was the first, to our knowledge, to address 
anything like noncommuting thermodynamic charges29. He formalized 
the principle of maximum entropy, which pinpoints the state 

∣ ∣ρ p k k= ∑ � �k k  most reasonably attributable to a system about  
which one knows little. Imagine knowing about ρ only the expectation 
values 

∼
Q� �a  of observables 

∼
Qa. The state obeys the constraints 

∼ ∼
ρQ QTr( ) = ∈a a

avg
R, plus the normalization condition ρTr( ) = 1. Which-

ever constraint-obeying state maximizes the von Neumann entropy 
S ρ ρ ρ( ) : = −Tr( log( ))vN  is the most reasonable, according to the max-
imum-entropy principle. (The logarithms of this subsection are base-e.) 
The entropy maximization encapsulates our ignorance of everything 
except the constraints. The function maximized is

∑S ρ S ρ λ ρ µ ρQ Q

ρ λ µ

( ) − 0 = ( ) − [Tr( ) − 1] − Tr( ) −

= : ( , , { })
(2)a

a a a

a

vN vN
avg





L

∼

∼

∼ ∼

Lagrange multipliers are denoted by ∼ Rλ µ, ∈a .
The state’s eigenbasis, ∣ ∣k k{ � � }, equals an eigenbasis of ∼ ∼

µ Q∑a a a: if 
∣ ∣k k{ � � } did not, decohering ρ with respect to any µ Q∑a a a

∼ ∼
 eigenbasis 

would raise SvN monotonically, while preserving the other terms in 
equation (2) (ref. 30). Hence, the decohered state would achieve at least 
as large an L value as ρ. Maximizing L ∼ρ λ µ( , , { })a  with respect to pk yields

∑ρ
Z

e=
1

(3)µ Q−
a a a
∼ ∼

Maximizing with respect to λ fixes the partition function: 
Z e= Tr( ).µ Q− ∑a a a

͠∼
 Maximizing with respect to µa

∼  yields 
∼
Q =a

avg
Z− log( ).µ

∂
∂ a
∼  

This procedure works, Jaynes noted, even if the 
∼
Q sa  do not commute. 

He showed how to measure the Q sa

avg∼
 of such observables using extra 

systems. One can derive his results alternatively via analytic properties 
of Z (ref. 31).

The work of Jaynes, though pioneering, left threads hanging. First, 
the maximum-entropy principle invokes only information theory and 
quantum physics, not thermodynamics or charge conservation. Con-
necting ρ to equilibrium requires arguments that are more physical in 
nature. Second, Jaynes wrote only one paragraph about noncommuting 
Q sa
∼

. What could they represent physically? Which systems might have 
them? When might they impact thermodynamics?

Still, the known-about observables Qa
∼

 of Jaynes can be noncom-
muting charges Qa. Hence, Jaynes wrote what was later termed the 
non-Abelian thermal state (NATS)2,

ρ
Z

e: =
1

(4)∑β H µ Q
NATS

− ( − )a a a

β denotes an inverse temperature. The μas denote generalized chemical 
potentials. ρNATS has the form of equation (3), which has been called the 
generalized Gibbs ensemble (GGE), regardless of whether the charges 
commute32–35. We use the term NATS for three reasons. First, the term 
GGE was initially introduced for integrable systems, whereas the NATS 
is a thermal state. Second, most GGE literature concerns commut-
ing charges (for exceptions, see the section ‘Adjacent work in other 
fields’). Third, justifying the form of the NATS physically (not merely 
information-theoretically) is more difficult than justifying the form of 
a typical (commuting-charge) GGE, as explained later in this section.

Later researchers expanded upon the work of Jaynes36–39. One 
extension39 focused on seeking a more physical justification for the 
form of ρNATS. Consider N copies of the system of interest, in the ensem-
ble tradition of thermodynamics. In thermodynamics, we regard all 
copies except one (S) as forming an effective environment (E) (ref. 40). 
Imagine S  exchanging energy and particles with E. How can we prove 
that S  is in a canonical state ρcan? We assume that SE  has a fixed particle 
number and an energy in a small window — that SE is in a microcanonical 
subspace. Tracing out E  from the microcanonical state yields the state 
of S, which equals ρcan if S  and E  couple weakly41. Suppose that S  and E  
exchange several commuting charges 

∼
Qa. The microcanonical subspace 

is an eigenspace shared by the Q sa

tot∼
 (except Q H=0

tot tot∼
, the time-

evolution generator). What if S and E  exchange noncommuting charges 
Qa? The Q sa

tot  share no eigenbasis, so they might share no eigenspaces. 
Microcanonical subspaces might not exist.

An attempt to overcome this challenge is presented by ref. 39.  
The charge density Q N/a

tot  commutes in the infinite-N limit: 
Q Q a alim [ , ] = 0 ∀ , ′.

N N a a→∞

1 tot
′

tot
2

 This property was hoped to enable a 
generalization of microcanonical subspaces for noncommuting 

σx, σy, σz

Fig. 2 | Example thermodynamic system that conserves noncommuting 
charges. Two qubits form the system S  of interest, and the rest form the environ
ment E. A qubit’s three-spin components, σa=x,y,z, form the local noncommuting 
charges. The dynamics locally transport and globally conserve the charges.
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charges. But a well-justified generalization would wait for the 
maturation of quantum information theory.

For decades afterward, no literature, to our knowledge, addressed 
the ability of thermodynamic charges to not commute. The topic 
gained attention again in the 2010s, when two publications showed that 
noncommuting charges can violate thermodynamic expectations1,42.

The first of these publications showed that noncommuting charges 
overturn an expectation about free energy42. Consider a system S  of 
interest, in a state ρ( )S . Let S  begin uncorrelated with its environment 
E, which consists of c subsystems: ρ ρ⊗( ) ( )S E , wherein Eρ( ) has the GGE 
form of equation (3). S  has c commuting charges ∼ S

Qa

( )
, and E  has Q sa

( )E∼ . 
One can attribute to S a ‘free energy’ ∼

F ρ S ρ Q ρ( ) : = − ( ) + Tr( )a βµ a
( ) 1

a

S . (The 
quotation marks reflect the controversy surrounding free ener-
gies defined information-theoretically, for out-of-equilibrium states). 
Let any charge-conserving unitary U evolve SE  to a state SEρf

( ): 
∼

U Q a[ , ] = 0 ∀a

tot
. The subscript f distinguishes the final states of  

S  and E . The jth subsystem of E  ends up in ρ ρ: = Tr ( )j
jf

( , )
f
( )E E . Three 

more quantities change: the von Neumann entropy of S , by 
S S ρ S ρ∆ : = ( ) − ( )vN

( )
vN f

( )
vN

( )S S S ; the environmental expectation value of 
ath charge, by 

E E E E∼ ∼
Q Q ρ ρ∆� � : = Tr( [ − ])a a

( ) ( )

f
( ) ( ) ; and the ath ‘free energy’ 

of the system, by F∆ a
( )S . U redistributes charges and information 

contents according to

S SE S E

E S E E∼
( )

( )∑

S D ρ ρ ρ

β µ Q F D ρ ρ

−∆ + ( || ⊗ )

= (∆� � − ∆ ) − ( || ⊗ )
(5)

a
a a a j

j

vN
( )

f
( )

f
( )

f
( )

( ) ( )
f
( )

f
( , ) 







The relative entropy D σ σ σ σ σ( ) = −Tr( [log − log ])1 2 1 1 2  quantifies the 
distance between quantum states σ1,2

43. Equation (5) relates that 
the growth in the information content of S, plus the final nonseparabil-
ity of global state, depends on the average changes in the charges of 
E, the ‘free-energy’ change of S, and the correlations formed in E . If 
charges fail to commute, the derivation breaks down. No term decom-
poses into SF∆ a

( ) of distinct charges. Hence, noncommuting charges 
undermine an expectation about free energy.

The second of these publications reasoned about noncommuting 
charges in thermodynamic resource theories1. Resource theories are 
information-theoretic models for contexts in which restrictions con-
strain the operations performable and the systems accessible44. Using 
a resource theory, one calculates the optimal efficiencies with which 
an agent, subject to the restrictions, can perform tasks such as extract-
ing work from non-equilibrium quantum systems. In thermodynamics, 
the first law constrains agents to conserve energy. Every unitary U 
performable on a closed, isolated system conserves the total Hamilto-
nian: [U, H tot] = 0 (ref. 45). Suppose that U must conserve commuting 
global charges Qa

tot∼ : ∼
U Q[ , ] = 0a

tot  (ref. 46). Which systems, if freely 
accessible to a thermodynamic agent, would render the model 
non-trivial — would not enable the agent to, say, perform work for free, 
achieving a perpetuum mobile? The answer is, systems in the equilib-
rium state shown in equation (3) (refs. 46,47). The proof fails, however, 
if the charges fail to commute1.

Three groups to apply quantum-information-theoretic thermo-
dynamics to noncommuting charges are spurred by refs. 1,42, leading 
to a trio of papers2,30,48 (as overviewed in ref. 49). (Ref. 50 predates 
refs. 2,30,48; it lacks thermodynamic motivations but has thermody-
namic implications.) A quantification of trade-offs among work and 
charges is presented by ref. 30, using a resource theory similar to that 
in refs. 1,42. Consider a system S  in an out-of-equilibrium state Sρ( ).  

S  begins uncorrelated with an environment E  in a GGE ρ( )E . Each of S  
and E  has charges Qa that might or might not commute. (In this section, 
only in this paragraph do Qas denote possibly commuting charges.) 
The set-up also includes batteries, systems in which work or charges 
can be reliably stored and from which the resources can be reliably 
retrieved. A ‘free entropy’ can be ascribed to every state ρ of S:

∼ S S S∑F ρ β µ ρQ S ρ( ) : = Tr( ) − ( ) . (6)
a

a a

( ) ( )
vN

( )

(F ρ( )
( )S∼

 is the negative of a non-equilibrium extension of a Mas
sieu function40.) Let SE  evolve under any unitary U that conserves  
each total (system–environment–battery) charge. For all S EX = , ,  
the state ρ(X) evolves to ρ X

f
( ). The average a-charge of X changes  

by Q Q ρ ρ∆� � : = Tr( [ − ]).a
X

a
X X X( ) ( )

f
( ) ( )  The free entropy of S  changes by 

S∼
F∆ .

( )
 The batteries perform on SE  the average ‘a-charge work’ 

W Q Q= −(∆� � + ∆� �) .a a a
( ) ( )S E  This charge work obeys a generalized second  

law of thermodynamics,

∑β µ W F≤ −∆ . (7)
a

a a
( )∼ S

If S  is trivial (corresponds to a 0-dimensional Hilbert space) or is 
unchanged by U, 

∼ S
F∆ = 0

( )
. Consequently, one can extract any amount 

of any charge from E  by paying a price in the other charges: 
µ W µ W≤ − ∑a a a a a a′≠ ′ ′. Under what conditions equation (7) is saturable 
depends on whether the charges commute. Trade-off conclusions are 
also drawn by ref. 48, which were applied to the erasure of qubits.

Rounding out the trio2,30,48, ref. 2 has presented multiple physical 
justifications for the form of ρNATS, beginning with a microcanonical-like 
derivation. Noncommuting charges prevent microcanonical subspaces 
from existing (in abundance). Hence, microcanonical subspaces were 
generalized to approximate microcanonical (AMC) subspaces in ref. 2.  
In an AMC subspace M, every Qa

tot has a fairly well-defined value: meas-
uring any Qa

tot has a high probability of yielding a value near the expec-
tation value Q� �a

tot . The existence of M was proven under certain 
conditions2. Denote by MΠ  the projector onto M. Consider ascribing 
the AMC state M MΠ /Tr(Π ) to the global system, formed from N copies 
of the system S  of interest. Trace out all copies except the ℓth: 

ℓ
ℓ M Mρ = Tr (Π /Tr(Π )).( )  Compare ρ(ℓ) with ρNATS using the relative entropy. 

Average over ℓ. This average distance is upper-bounded as

ℓ
ℓ

D ρ ρ
θ
N

θ( || ) ≤ + (8)( )
NATS

′

The constants θ and θ′ are independent of N but depend on parameters 
(the number c of charges, their expectation values and so on). As the 
global system grows (N → ∞), the N1/ → 0, so the distance shrinks. Hence, 
a physical argument, based on an ensemble in an AMC subspace, com-
plements the information-theoretic derivation of ρNATS by Jaynes. Fur-
thermore, the AMC subspace enabled later noncommuting-charge 
work7–9,24 (described later in this section and in the section ‘New physics’).

The form of ρNATS was justified also with the principle of complete 
passivity2,48,51. A state ρ is completely passive if no work can be extracted 
from ρ⊗N adiabatically, for any N ∈ ≥0Z  (refs. 52,53). Complete passivity 
extends Carnot’s version of the second law of thermodynamics:  
no engine can extract work from one fixed-temperature heat  
bath. Consider work extraction that evolves the state of a battery  
from Bρ( ) to ρf

( )B . Let BQa
( ) denote the ath charge of a battery. One  

can define the (average) work performed on the battery as 
ρ µ Q ρ µ QTr( [∑ ]) − Tr( [∑ ])a a a a a af

( ) ( ) ( ) ( )B B B B . Using this definition and  
a resource theory, one can prove that ρNATS is completely passive2.  
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This result resolved the problem spotlighted in ref. 1: noncommuting 
charges invalidate a resource-theoretic derivation of the form of 
thermal state. (By invalidate, we mean that, if the charges fail to com-
mute, the derivation becomes unsound. We use unsound in the techni-
cal sense of the study of logic: a deductive argument is sound if, 
provided that the input premises are true, the conclusion is true.) Yet 
work is traditionally a change in the energy charge48. Indeed, ρNATS is 
completely passive if work is defined as a change in energy alone, if 
the extracted-from system obeys charge conservation51. Furthermore, 
one can define an analogue Wa of work for each charge Qa (ref. 48), as 
in ref. 30. Consider substituting different Was into the definition of 
complete passivity. Different Was distinguish different thermal states 
as passive because the Qas fail to commute48. Hence, complete passivity 
is another thermodynamic principle complicated by noncommuting 
charges.

The trio2,30,48 have galvanized noncommuting-charge activity at 
the intersection of quantum information and quantum thermodynam-
ics. Several publications have elaborated on resource theories54–58. For 
example, more-detailed ‘second laws’ were proven using the mathe-
matical tools of matrix majorization54. These second laws stipulate 
necessary and sufficient conditions for any quantum state σ1 to trans-
form into any state σ2. Other literature has shown how different batter-
ies could store different Qas despite the noncommutation of 
charges50,56,57,59. (Batteries are called reference frames when used to 
implement otherwise forbidden transformations. Consider transform-
ing a system-and-environment composite SE with unitaries U restricted 
to conserving each Q Q+a a

( ) ( )S E . What if a desired U breaks the conserva-
tion law? A reference frame may supply the charge needed, or accept 
the charge forfeited, by SE .)

The above work, steeped in information theory, is theoretical and 
abstract. Yet it inspired an experimental demonstration that real-world 
systems exhibit the thermodynamics of noncommuting charges9. In 
the demonstration, 6–21 trapped ions form a linear Paul chain. Two 
qubits form S, and the rest form E  (Fig. 1). The global system is prepared 
in ∣ ∣ ∣ ∣ψ y x z� = ( +� +� +�) N

0
⊗ /3, in an AMC subspace. (The definition of  

AMC subspace was adapted by ref. 7 from the information-theoretic 
ref. 2 to many-body physics. In ref. 2, if SE  occupies an AMC subspace, 
measuring any Qa

tot has a high probability of yielding a value near 
 Q� �a

tot . Constant-in-N expressions quantify what ‘high’ and ‘near’ mean.  
In refs. 7–9, the probability distribution has a variance of O(Nr),  
wherein r ≤ 1.) The native interactions are long-range Ising couplings 
(σσ σσ⋅j k( ) ( )). However, Heisenberg interactions (also long-range) are 
simulated via Trotterization with rotations. The dynamics conserve 
the charges σx y z, ,

tot  globally while transporting σx,y,z locally. Quantum 
state tomography reveals the long-time state ρf of S.

The distance of the state from ρNATS is calculated using the relative 
entropy D(ρf‖ρNATS), following ref. 2. Averaging D(ρf‖ρNATS) over the qubit 
pairs S  that form the chain produces D ρ ρ� ( � )�f NATS . D ρ ρ� ( � )�f GC  and 

D ρ ρ� ( � )�f can  are calculated similarly. The NATS predicted the experi-
mental results best: D ρ ρ D ρ ρ D ρ ρ� ( � )� < � ( � )� < � ( � )�f NATS f GC f can . Despite 
the plurality of the conservation laws that decoherence could break, the 
effects of noncommuting charges were experimentally observable; 
dynamical-decoupling pulse sequences mitigated the noise suffi-
ciently. This experiment, a realization of the proposal in ref. 7, opens 
the door to experimentally testing the many theoretical results about 
noncommuting thermodynamic charges (discussed in the section 
‘New physics’). Along with trapped ions, feasible platforms include 
superconducting qudits, ultracold atoms, nitrogen-vacancy centres 
and quantum dots7.

New physics
Noncommuting thermodynamic charges engender new physics. 
They conflict with the ETH, allow for multiple stationary states and 
violate the dichotomy of energy-level statistics. The noncommutation  
of charges also constrains the global dynamics implementable with 
local charge-conserving unitaries. Additionally, noncommuting 
charges decrease thermodynamic entropy production, yet increase 
average entanglement entropy.

Conflict with the eigenstate thermalization hypothesis
The ETH explains how reversible dynamics thermalize closed quantum 
many-body systems internally20,21,25. Consider a system with N DOFs 
governed by a nondegenerate Hamiltonian Htot. Let O denote any 
operator, which we represent as a matrix relative to the energy eigen-
basis. The ETH is an ansatz for the forms of matrix elements. Suppose 
that the system begins in a microcanonical state ψ(0)�∣  — in this context, 
a pure state with a small Htot variance. The ETH implies thermalization: 
the time-averaged expectation value of O approximately equals the 
canonical expectation value

∫t
t ψ t ψ t ρ O Nlim

1
d � ( )| | ( )� = Tr( ) + ( ) (9)

t

t

→∞ 0

′ ′ ′
can

−1O O

Throughout this subsection, the O notation means ‘scales as’. Noncom-
muting charges impede three assumptions behind the argument for 
thermalization. First, noncommuting charges prevent microcanonical 
states from existing in abundance (as discussed in the section ‘Early 
work’). Second, noncommuting charges force degeneracies on the Ham-
iltonian (as discussed in the section ‘Introduction’). Third, noncommut-
ing charges lead the Wigner–Eckart theorem to supersede the ETH60. To 
review the Wigner–Eckart theorem briefly, we consider N qubits whose 
global spin components Sx y z, ,

tot  are conserved, as in the section ‘Introduc-
tion’. Denote by ∣α m{ , �} the eigenbasis shared by H tot, S( )tot 2  and  
Sz
tot: if ħ = 1, then H α m E α m, � = , �α

tot ∣ ∣ , α m s s α m( ) | , = ( + 1)| ,α α
tot 2S  

and S α m m α m, � = , �z
tot ∣ ∣ . The Wigner–Eckart theorem governs spher-

ical tensor operators formed from components Tq
k( ) (ref. 60). The T sq

k( )  
form a basis for the space of operators defined on the Hilbert space of 
the system. For example, consider an atom absorbing a photon (of spin 
k = 1), gaining q = 1 quantum of z-type angular momentum. Tq

k
=1
( =1) 

represents the effect of the photon on the state of the atom. Consider 
representing Tq

k( ) as a matrix relative to the energy eigenbasis. That 
matrix obeys the Wigner–Eckart theorem60:

α m T α m s m s m k q α T α� , | | , � = � , | , ; , �� || || � (10)q
k

α α
k( ) ′ ′ ′ ( ) ′

′

s m s m k q, , ′; ,α α ′  denotes a Clebsch–Gordan coefficient, a conversion 
factor between the product state s m k q s m k q, ′ ; , ≡ , ′ ,α α′ ′  and the 
total-spin eigenstate s m, �α∣ . α T α′k( )  is a reduced matrix element —  
the part of α m T α m� , | | ′, ′�q

k( )  that does not depend on magnetic spin 
quantum numbers. The theorem (10) conflicts with the ETH, an ansatz 
for the left-hand side. First, the two constraints are fundamentally 
different; the Wigner–Eckart theorem concerns SU(2) symmetry, 
whereas the ETH concerns randomness. Second, the ETH states that 
off-diagonal elements α m T α m� , | | ′, ′�q

k( )  are exponentially small in N. 
The Wigner–Eckart theorem implies that these elements may be O(1).

Therefore, a non-Abelian ETH is posited by ref. 24. This ansatz 
depends on the average energy E E E: = ( + )α α

1
2 ′ , energy difference 

ω E E: = −α α ′, average spin quantum number s s: = ( + )α α
1
2 ′S  and differ-

ence ν s s: = −α α ′. Denote by E SS ( , )th  the thermodynamic entropy at 
energy E  and spin S. The observable Tq

k( ) and Hamiltonian Htot satisfy 
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the non-Abelian ETH if, for smooth real functions T E S( , )k( )  and 
f ω( , , )ν

k( ) E S ,

α T α δ e f ω R� || || � = ( , ) + ( , , ) (11)k k
α α

S
ν

k
α α

( ) ′ ( )
,

− ( , )/2 ( )
,′ th ′T E S E SE S

k( )T  parallels a microcanonical average in the conventional ETH. Rα α, ′ 
resembles a normalized O(1) random variable61–63. The matrix element 
(10) deviates from the ordinary ETH through S-dependent functions 
and a Clebsch–Gordan coefficient. Equation (11) has withstood pre-
liminary numerical checks with a Heisenberg Hamiltonian on a 2D qubit 
lattice64. More testing is needed, however.

The non-Abelian ETH predicts thermalization to the usual extent 
in some, but not all, contexts. Consider preparing the system in a state 
∣ψ(0)�  in an AMC subspace (as discussed in the section ‘Early work’). 
Suppose that ψ(0)�∣  has an extensive magnetization along an axis that 
we call z:̂ ψ S ψ O N(0) (0) = ( )z

tot . According to the non-Abelian ETH,

∫t
t ψ t T ψ t T ρ O Nlim

1
d � ( )| | ( )� = Tr( ) + ( ) (12)

t

t

q
k

q
k

→∞ 0

′ ′ ( ) ′ ( )
NATS

−1

However, if ψ S ψ(0) (0) = 0z
tot , the correction can become O(N−1/2) — 

polynomially larger. This result relies on an assumption argued to be 
physically reasonable: the smooth function T k( ) in equation (11) can 
contain a non-zero term of O(sα/N). The unusually large, analytically 
expected correction constitutes further evidence that the 
noncommutation of charges can alter thermalization.

The non-Abelian ETH invites further studies. First, numerical and 
experimental tests shall be conducted. Second, from the final term of 
non-Abelian ETH, one can infer about fluctuations around the time 
average as in equation (9). Third, the time required for equilibration 
merits study: in quantum many-body physics, most thermalization-
blocking mechanisms slow thermalization in time (as discussed in the 
section ‘Adjacent work in other fields’). By contrast, the O(N−1/2) ‘slows’ 
the time-averaged expectation value in N, in the approach to a thermal 
expectation value. How long does ψ t T ψ t� ( ′) ( ′)�q

k( )∣ ∣  take to reach its 
long-time value? Fourth, the ETH can be used to demonstrate the way 
classicality, Markovianity and local detailed balance emerge from the 
pure-state dynamics of a system with commuting charges65. Such 
results might be extended to noncommuting-charge systems, with the 
non-Abelian ETH and AMC subspaces. Finally, one might store informa-
tion in a system that thermalizes — forgets its initial conditions — less 
than usual. This memory-storage opportunity resonates with the work 
that we explain now.

Stationary-state multiplicity
Consider an open quantum system with a Liouvilian superoperator L. 
ρstat is a stationary state of L if Lρ =0stat . Consider an arbitrary basis for 
the stationary subspace. One might associate the jth basis element, 
ρ j
stat
( ), with the jth letter, Lj, of a classical alphabet: ρ L�j

jstat
( ) . To encode Lj 

in the system, one would prepare any state that thermalizes to ρ j
stat
( ) .  

The larger the stationary subspace, the more classical information the 
system may store. Denote by nstat the dimensionality of the stationary 
subspace. A lower bound nNC on nstat for a system with noncommuting 
charges66 is n = ∑j jNC

2D , wherein jD  denotes the jth irreducible repre-
sentation of a symmetry group. For example, nNC ≈ N3 for a Heisenberg 
model (as discussed in the section ‘Introduction’) coupled to an envi-
ronment that conserves the system-of-interest charges Sσx y z, ,

( ) . If the 
charges commute, the lower bound, nC, scales as the number of simul-
taneous eigenspaces shared by all the SQa

( ). Because nNC and nC scale 
differently, noncommuting charges could alter the dimensionality of 
the stationary subspace and, thus, the amount of information storable.

Hybrid energy-level statistics
Energy-level statistics diagnose quantum chaos and integrability67. 
Denote by ω = Ej+1 − Ej the spacing between consecutive eigenenergies 
of a many-body Hamiltonian. Any given spacing (near the centre of the 
spectrum) has a probability density P(ω) of having the size ω. A Poissonian 
P(ω) diagnoses integrability67. A Wigner–Dyson distribution, 
A ω B ωexp(− )γ

γ
γ

2 , signals chaos68,69. The parameter γ ∈ {1, 2, 4} depends 
on the time-reversal and rotational symmetries of the Hamiltonian. Nor-
malization and the mean ω determine the coefficients Aγ and Bγ. Noncom-
muting charges defy the Poisson-vs-Wigner–Dyson dichotomy in a way 
that commuting charges cannot. The charges generate a non-Abelian 
algebra, which has multidimensional irreducible representations, which 
force degeneracies on the Hamiltonian. These representations induce 
statistics that interpolate between the two distributions64,70,71. Noh 
observed such statistics numerically, using a 2D Heisenberg model64.

Constraints on charge-conserving dynamics
Natural interactions are spatially local, motivating a quantum- 
computational result: every N-qubit unitary decomposes into gates on 
pairs of qubits72–74. Can charge-conserving local unitaries effect every 
charge-conserving global unitary U? Perhaps surprisingly, the answer is 
no75. As proven using Lie theory, locality-constrained charge-conserving 
unitaries cannot even approximate Us. The reason is that the two types 
of unitaries form Lie groups of different dimensions75–78. Moreover, 
noncommuting charges impose four types of constraints on the imple-
mentable global unitaries, whereas commuting charges impose only 
two78. The extra constraints may restrict chaos, which enables ther-
malization. Hence, this result suggests that noncommuting charges 
may restrict thermalization.

Decreased thermodynamic-entropy production
Noncommuting charges reduce entropy production, which quantifies 
irreversibility3. Throughout this paragraph and the next, entropy  
refers to thermodynamic entropy, not entanglement entropy. Let 
systems X = A, B have charges Qa

X( ) that might or might not commute 
(in no other subsection of this section do Q sa

X( )  denote possibly commu
ting charges). Each system begins in a GGE ρ µ Q∝ exp (∑ )X

a a
X

a
X

µµ
( ) ( ) ( )

X( ) , 
wherein µ µµµ = ( , , . . . )X X X( )

0
( )

1
( )  (ref. 79) (Fig.  3). Hence, AB begins  

in ρ ρ ρ(0) : = ⊗A B
µµ µµ
( ) ( )

A B( ) ( ). Let us specialize to the linear-response regime: 
µµ µµ≈A B( ) ( ). A charge-conserving unitary U can shuttle charges between 
the systems, producing entropy. Noncommuting charges decrease the 
entropy production3. Denote by δµ µ µ: = −a a

A
a

B( ) ( ) the difference between 
the a-type chemical potentials of the two systems. The a-type charge 
system A changes, in the Heisenberg picture, by U Q U Q−a

A
a
A† ( ) ( ). 

(Tensored-on s�  are implicit where necessary to make operators act on 
the appropriate Hilbert spaces.) We combine the foregoing two quanti-
ties into ∼ δµ U Q U QΣ : = ∑ ( − )a a a

A
a

A† ( ) ( ) . Taking the expectation value of 
∼
Σ  

in the initial state, we obtain the net entropy production, ρΣ = Tr(Σ (0))
∼

.  
The initial state lies near the fixed point π ρ ρ: = ⊗

µµ µµ
A B( ) ( )

A A( ) ( ) of U, by the 
linear-response assumption. (In π, unlike in ρ(0), A and B have the same 
lists of chemical potentials.) π and 

∼
Σ have a Wigner–Yanase–Dyson 

skew information I π π π( , Σ) : =− Tr([ , Σ][ , Σ])y
y y1

2
1−∼ ∼ ∼ , parameterized by 

y ∈ (0, 1). I π( , Σ)y
∼  quantifies the coherence that 

∼
Σ has relative to the 

eigenbasis of π. The Wigner–Yanase–Dyson skew information contrib-
utes to the entropy production: ∫ y I πΣ = var(Σ) − d ( , Σ)y

1
2

1
2 0

1∼ ∼  (ref. 3). 
Iy is always ≥0 and is positive if and only if the charges fail to commute. 
Therefore, noncommuting charges lower Σ. Because entropy produc-
tion accompanies thermalization, this result indicates that 
noncommutation may inhibit thermalization.
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Two extensions support ref. 3. The first consists of numerical 
simulations of an optomechanical system interacting with a squeezed 
thermal bath80. The second extension is a progression beyond the 
linear-response regime81. Even there, the noncommutation of charges 
can decrease entropy production.

How ref. 3 impacts engine efficiencies remains an open question. 
Efficiencies suffer from waste and so may benefit from the lowering 
of Σ of noncommuting charges. However, the noncommutation of 
charges can decrease the amount Wa of a-charge (analogous to work) 
extractable by an engine82. If using finite-size NATS baths, an engine 
can extract Wa ≲ Wa|infinite-size bath − O(C/ξ). C captures the correlations 
between the charges in ρNATS; if the charges commute, C = 0. ξ, encoding 
the sizes of baths, diverges in the infinite-bath limit. Extractable work, 
here lowered by noncommutation of charges, tends to trade off with 
efficiency. A precise relationship between the two figures of merit, in 
the presence of noncommuting charges, merits calculation.

Increased average entanglement entropy
Quantum many-body thermalization entails entanglement, which can 
be enhanced by the noncommutation of charges8. Consider initializing 
an isolated N-qubit system in a pure state. Divide the system into sub-
systems A and B with sizes NA and NB. A and B can share entanglement 
quantified by the entanglement entropy, SAB. SAB is the von Neumann 
entropy of the reduced state ρA of A, SvN(ρA). Plotting SAB against NA 
yields the Page curve83.

Page curves for two comparable N-qubit models are reported by 
ref. 8 (Fig. 4), one with commuting charges only and the other with 
noncommuting charges. They involve no dynamics, so the observables 
of interest are not technically charges. However, the modelled states 
result from chaotic dynamics: Haar-random states were sampled from 
(approximate, when necessary)2,7,9 microcanonical subspaces. Page 
curves were estimated numerically via exact diagonalization and analyti-
cally via large-N approximations of combinatorics. The noncommuting-
charge Haar-averaged Page curves lay above the commuting-charge 
analogues. The difference was of O N N N( /( ))A B

2 2 , in the simplest compari-
son. A possible reason centres on the least entangled basis for the  
subspace of each model. If the local charges Qa

∼
 commute, they share  

an eigenbasis. Hence, the global commuting 
∼
Q sa

tot
 share a tensor-

product eigenbasis for the subspace. If the local charges fail to commute, 
this argument breaks, and the least entangled basis of the subspace is 
entangled. One might, therefore, expect more entanglement of the 
noncommuting-charge model on average across the subspace.

Other works concern the effects of non-Abelian symmetries 
on entanglement entropy but focus less on the changes induced by 
the noncommutation of charges. For example, a non-Abelian sym-
metry raises the entanglement in Wess–Zumino–Witten models, 
which are (1 + 1)-dimensional conformal field theories with Lie-group 
symmetries84,85. Second, holographic calculations highlight another 
correction that non-Abelian symmetries introduce into entangle-
ment entropy86,87. (This correction appears to be negative. However, 
refs. 86,87 concern symmetry-resolved Page curves, in contrast to the 
conventional Page curves of ref. 8. A symmetry-resolved Page curve 
models the entanglement, averaged over time, of a system whose 
charges move only within A and within B, not between the subsystems. 
Conventional Page curves model less-restricted thermalization.) Third, 
algebraic quantum field theory calculations agree that non-Abelian 
symmetries raise Page curves88.

These works suggest several research opportunities. The increase 
in entanglement entropy merits checking with more comparable 

models analogous to those depicted in Fig. 4. Additionally, one might 
adjust the Page curve calculations following the revelation that local 
charge-conserving unitaries constrain global Us tightly75. Under locality 
constraints, the Haar distribution may model chaotic dynamics inac-
curately. Finally, the entanglement entropy of refs. 8,84–88 differs 
from the thermodynamic entropy of ref. 3. Even so, the increase of the 
former by noncommuting charges conceptually conflicts, somewhat, 
with their decrease of the latter.

Adjacent work in other fields
Noncommuting charges have arisen in other thermodynamics-related 
contexts, usually under the guise of non-Abelian symmetries. We 
discuss four contexts. First, integrable systems have more charges, 
which might fail to commute, than the thermodynamic systems 
previously discussed. Second, noncommuting charges destabilize 
a thermalization-avoidant phase of quantum matter: many-body 
localization (MBL). Third, gauge theories naturally have non-Abelian 
symmetries, albeit local ones. Fourth, hydrodynamics describes the 
flow of some non-Abelian charges, including in heavy-ion collisions.

We briefly mention three more connections. Noncommuting 
charges may impact quantum information scrambling89. Also, ρNATS 
helps explain phase transitions90–92. Finally, the resource theory of 
asymmetry quantifies the noninvariance of a state under operation by 
the elements of a symmetry group19. The group may be non-Abelian, 
so the mathematical tools of the theory merit application to 
noncommuting thermodynamic charges.

Conventional integrable systems
Garden-variety integrable systems fail to thermalize. Each has exten-
sively many non-trivial charges, which constrain the dynamics sub-
stantially. By contrast, our thermodynamic set-up (described in 
the section ‘Introduction’) entails a number of charges, c ≪ N, much 
smaller than the number of DOFs. Integrable and near-integrable sys-
tems with noncommuting charges have been studied. Models include 
the GGE equal to the ρNATS in equation (4). Several works assess how the 
accuracy of GGE grows with the number of Qas included in the state92–95. 
Outside of GGE studies, an integrable system can exhibit anomalous 
transport — diffusion with a diffusion constant D N~  (refs. 96,97). 
The system studied in ref. 96 is the 1D nearest-neighbour Heisenberg 
model shown in equation (1). The anomalous transport can be explained 
with Bethe-ansatz calculations and the z-axis magnetization98–100. Can 
all three noncommuting charges (σx,y,z) predict anomalous transport 

A B

ρ(A)µ(A) ρ(B)µ(B)

Fig. 3 | Two thermal reservoirs (A and B) exchange charges, producing entropy. 
Blue spheres represent charges of one type, and red cubes represent charges of 
another. For each of X = A, B, system X has a list µµ X( ) of effective chemical potentials. 
This list parameterizes the NATS ρ X

X
µµ( )
( ) .
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alternatively? Another open question follows from increasingly break-
ing the integrability of a noncommuting-charge system101. How do the 
behaviours of a system transmute into thermodynamic behaviours 
described in this Perspective?

Many-body localization
Disordered, interacting quantum systems exhibit MBL. Examples include 
a qubit chain subject to the disordered Heisenberg Hamiltonian 
H J h σσσ σσ= ∑ ( ⋅ + )j

N j j
j z

j
MBL
tot

=1
( ) ( +1) ( )  The disorder term, h σ∑ j

N
j z

j
=1

( ), acts as  
an external field whose magnitude hj varies randomly across sites. Denote 
by h the standard deviation of the disorder term. If the disorder is much 
stronger than the interaction, h ≫ J, the system localizes. Imagine measur-
ing the σz of each qubit. The qubits approximately maintain the measured 
configuration long afterward. This behaviour contrasts with how thermal-
izing systems, such as classical gases, change configurations quickly. 
Hence, MBL resists thermalization for long times. The reason is that the 
Hamiltonian decomposes as a linear combination of quasilocal DOFs26.

Noncommuting charges destabilize MBL102. Consider forcing a 
non-Abelian symmetry on HMBL

tot . The resulting Hamiltonian, HMBL′
tot , will 

have degeneracies, by Schur’s lemma (Supplementary Information). 
So will the quasilocal DOFs, which can therefore become ‘excited’ at 
no energy cost. Consider adding to HMBL′

tot  an infinitesimal field that 
violates the symmetry. The resulting Hamiltonian, HMBL″

tot , can map HMBL′
tot  

eigenstates ∣ψ� to same-energy eigenstates ψ �∣ ∼ : ∣ ∣∼
ψ H ψ� � ≠ 0MBL″

tot . Two 
such eigenstates can be zero-energy excited states of neighbouring 
quasilocal DOFs. Hence, HMBL″

tot  can transport zero-energy ‘excitations’ 
between quasilocal DOFs — across the system. Such transport is incon-
sistent with MBL. Therefore, non-Abelian symmetries promote a 
thermalizing behaviour.

Gauge theories
Classical electrodynamics exemplifies a gauge theory, a model that 
contains more DOFs than does the physical system it represents103. 
Choosing a gauge eliminates the extra DOFs. The transformations 
between gauges form a Lie group G. The elements GU∈  preserve the 
theory’s action, S, that is, S SU : ↦ . Gauge theories model elementary-
particle physics and condensed matter, both of which can have non-
Abelian groups G. For example, quantum chromodynamics, which 
describes the strong force, has SU(3) symmetry. Hence, elementary-
particle physics should realize noncommuting-charge thermodynam-
ics naturally; ρNATS might be observable in high-energy and nuclear 
systems104. Granted, confinement prevents quantum-chromodynamic 
systems from having non-zero Q� �sa

tot . Still, noncommuting charges 
raise the average entanglement entropy in spin systems with 

Q a� � = 0 ∀a
tot 8. Furthermore, subsystems j can contain positive and 

negative charges, Q� � ≠ 0a
j( ) , that can undergo dynamics28. Gauge 

symmetries are local, though, unlike the global symmetries covered 
in this Perspective. The contrast raises the question: how much 
noncommuting-charge quantum thermodynamics ports over into 
gauge theories?

Hydrodynamics and heavy-ion collisions
Hydrodynamics models long-wavelength properties of fluids that are 
in equilibrium locally105. The theory describes condensed matter and 
certain stages of heavy-ion collisions106, among others. Noncommut-
ing charges can flow similarly to the more-often studied energy and 
particles107. A few effects of the noncommutation of charges have been 
isolated; examples include non-Abelian contributions to conductivity108 
and entropy currents109. In addition, non-Abelian symmetries can 
shorten charge-neutralization times in heavy-ion collisions110. More 
such effects may be discoverable. Also, quantum thermodynamics 
might assist with long-standing questions about heavy-ion collisions: By 
what process does the system thermalize? How should the initial state 
be modelled? Does the (non-)Abelian ETH explain the thermalization? 
And why is the thermalization time so short111?

Outlook
The discoveries discussed in this Perspective suggest rich research 
opportunities, of which we detail five.

First, the predictions merit experimental testing. The first test of 
noncommuting-charge thermodynamics was performed with trapped 
ions9. Other potential platforms include superconducting qubits, 
quantum dots, ultracold atoms, quantum optics and optomechanics3,7,28.

Second, existing results present a conceptual puzzle. Evidence 
suggests that noncommuting charges hinder thermalization to an 
extent: they invalidate derivations of the form of a thermal state1,2, 
decrease thermodynamic-entropy production3, clash with the ETH24 
and uniquely restrict the global unitaries implementable via local 
interactions78. However, other evidence suggests that noncommuting 
charges enhance thermalization: they destabilize MBL102 and increase 
average entanglement entropy8. These results do not conflict with each 
other technically, as they stem from different set-ups. Yet the results 
clash conceptually, suggesting that the noncommutation of charges 
hinders thermalization in some ways and enhances it in others. Does 
the hindrance or enhancement win out overall? Reconciling these 
results presents a challenge.

Third, to what extent can classical mechanics reproduce 
noncommuting-charge thermodynamics? The noncommutation of 

qubits:

qubits:

jth site

1
… …

N

Fig. 4 | Analogous noncommuting-charge and commuting-charge models. 
Each model consists of N sites, each formed from A and B qubits. Local 
observables distinguish the models. The noncommuting observables 
are A B A B� �Q X Q Y= ⊗ , = ⊗1 2  and �A BQ Z= ⊗3 . The commuting observables are 

A B A BQ X X Q Y Y= ⊗ , = ⊗1 2
͠ ͠  and A BQ Z Z= ⊗3

͠ . The local charges, summed across the 
chain, form global observables that define the (approximate) microcanonical 
subspaces. Figure adapted with permission from ref. 8, APS.
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observables underlies quintessentially quantum phenomena including 
uncertainty relations, measurement disturbance and the Einstein–
Podolsky–Rosen paradox. Yet classical mechanics features quantities 
that fail to commute with each other — for example, rotations about 
different axes. How non-classical is noncommuting-charge thermo-
dynamics (achievable only outside of classical physics), beyond being 
merely quantum (achievable within quantum physics)?

Fourth, every chaotic or thermodynamic phenomenon merits 
re-examination. To what extent does it change under dynamics that 
conserve noncommuting charges? Example phenomena include diffu-
sion coefficients, transport relations, thermalization times, monitored 
circuits112, out-of-time-ordered correlators113, operator spreading114, 
frame potentials115 and quantum-complexity growth116.

Finally, noncommuting-charge thermodynamics merits bridging 
to similar topics in neighbouring fields. Non-Abelian gauge theories, 
non-Abelian hydrodynamics, GGE studies and dynamical phase transi-
tions overlap with noncommuting thermodynamic charges. To what 
extent can these areas inform each other? Do gauge theories realize 
noncommuting thermodynamic charges naturally?

For decades, conserved thermodynamic quantities were assumed 
implicitly to commute with each other. Noncommutation, however, is 
a trademark of quantum theory. The identification and elimination of 
the assumption, though initiated where quantum information theory 
meets quantum thermodynamics, have potential ramifications across 
quantum many-body physics.

Published online: xx xx xxxx
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