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Abstract Sections
Thermodynamic systems typically conserve quantities (known Introduction
as charges) such as energy and particle number. The charges are Early work

often assumed implicitly to commute with each other. Yet quantum
phenomena such as uncertainty relations rely on the failure of
observables to commute. How do noncommuting charges affect
thermodynamic phenomena? This question, upon arising at the Outlook
intersection of quantum information theory and thermodynamics,
spread recently across many-body physics. Noncommutation

of charges has been found to invalidate derivations of the form of

the thermal state, decrease entropy production, conflict with the
eigenstate thermalization hypothesis and more. This Perspective
surveys key results in, opportunities for and work adjacent to the
quantum thermodynamics of noncommuting charges. Open problems
include a conceptual puzzle: evidence suggests that noncommuting
charges may hinder thermalization in some ways while enhancing
thermalizationin others.

New physics

Adjacent work in other fields
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Perspective

Introduction

A simple story from undergraduate statistical physics motivates this
Perspective: throughout thermodynamics, we consider asmall system
S exchanging quantities with a large environment £ (Fig. 1). Suppose
that the systems are quantum. If they exchange only heat, S may ther-
malize to the canonical state g < e B ,where Bis the inverse tem-
perature of the environment and H denotes the Hamiltonian of the
system of interest. If S and £ exchange heat and partlcles S may ther-
malize to the grand canonical state p__ « e ##"7#N') where uis the
chemical potential and A’ denotes the system-of-interest particle-
number operator. This pattern extends to many exchanged quantities
(suchaselectric charge and magnetization) and many thermal states.

The exchanged quantities are conserved globally (across S€),
so we call them charges. The Hermitian operator Q, represents
the conserved quantities: S has an operator Q, £ has Q ¥ and the
globalsystemhasQ!*': = Q¥+ Q9= Q¥ ®1¥+19 ® Q ¥.Theindex
a=0,1,...,c,wherecisthe dimension of the algebra of the charges; the
Hamiltonian H = Q,.

Across thermodynamics, we often assume implicitly that the
charges commute with each other:[Q,, Q,1=0 V a, a’. This assump-
tion is almost never mentioned (recall your undergraduate statistical
physics course). However, the assumption underlies derivations of the
form of thermal states'?, linear-response coefficients*and more. How-
ever, observables can fail to commute, and this possibility enables
quintessentially quantum phenomena: the Einstein-Podolsky-Rosen
paradox®, uncertainty relations® and measurement disturbance®,
among others. Quantum physics, therefore, compels us to ask: what
happens to thermodynamic phenomena under dynamics that conserve
charges Q ;* that fail to commute with each other?

This question arose inrecent years at the intersection of quantum
information theory and quantum thermodynamics, then seeped into
many-body physics. This Perspective surveys results, opportunities
and adjacent work. In the rest of the introduction, we first present
a simple physical example. Then, we sample example phenomena
transformed by the noncommutation of charges. We later establish
notation, followed by the outline of this Perspective.

Asimple physical example was proposed theoretically’”® and real-
izedwith trappedions’: achain (Fig.2), formed from qubits (quantum
two-level systems). A few (say, two) qubits form S, and the other qubits
form €. The chain constitutes a closed quantum many-body system, of
the sort whose internal thermalization has recently been studied theo-
retically and experlmentally10 1, Denote by g, the Pauli-a operator, for
a=x,y,z by g, aspin component of qubit j; and by g5 : =Y; o,
atotal spincomponent. One can construct aHamiltonian that overtly
transports quanta of each g, locally while conserving the g°'s

r\/\je@
@

w

Small system

e ¥ ¢
~ o @
&

Fig.1| Common thermodynamic paradigm. A small system and large
environment locally exchange quantities (indicated by spheres and cubes)
thatare conserved globally. Common quantities include energy and particles
of different species.
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globally”®. Denote the o, ladder operators by g,,: = (0 +io,). The
operator 01”0”*1) +h.c.transports one g, quantum from qubltj +1to
qubit/j and vice versa, in superposition. Define ladder operators and
couplings analogously for o, and g,. The Hamiltonian
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Hig=2 ¥ (0o eh.c)=Y 00l 0

Jj a=x,y,z

transports the g,s locally, while conserving them globally. H% is the
Heisenberg model, theoretically well-known and experimentally
realizable™. Yet H,j%is rarely, if ever, expressed outside the literature on
the thermodynamics of noncommuting charges asitisinequation (1) —
aslocally transporting and globally conserving three noncommuting
charges. Furthermore, we can extend H,i%} to nonintegrable models
(which promote thermalization), to subsystems beyond qubits and to
charges beyond spin components®. (For more on quantum
thermodynamics of spin exchanges, see refs. 14-17).

Having exhibited athermodynamic system whose Q,s fail to com-
mute, we sample the physics altered by the noncommutation of
charges. Thissample only dipsinto the known results (detailed in the
section ‘New physics’) but demonstrates why noncommuting ther-
modynamic charges merit study. If the Qs fail to commute, the extent
towhich S canthermalizeis unclear for several reasons. First,noncom-
muting charges impede two derivations of the form of the thermal
state’”. (Aninformation-theoretic derivation holds regardless of the
noncommutation of charges, but this derivation provides less phys-
ical insight; see the section ‘Early work’.) Second, noncommuting
chargesforcedegeneracieson H*". ThereasonisSchur’'slemma,agroup-
theoretic result”®' (Supplementary Information). Nondegenerate
Hamiltonians underlie arguments supporting thermalization, mixing
and equilibration*** — arguments, thus, challenged by noncommut-
ing charges. Third, noncommuting charges conflict with the eigenstate
thermalization hypothesis (ETH)**. The ETH is a theoretical and con-
ceptual toolkit for explaining how quantum many-body systems ther-
malizeinternally?>**, Myriad numerical and experimental observations
support the ETH, which has been applied across many-body physics.
Yet noncommuting charges preclude the ETH (as discussed in the sec-
tion ‘New physics’). Hence, noncommuting charges challenge
expectations about thermalization in a third manner.

We encounter even more manners across this Perspective.
Resistance to thermalization matters both fundamentally and for
applications. Most systems thermalize, so resistance is unusual;
few mechanisms for resistance in quantum many-body systems are
known?*”, Additionally, thermalization disperses information about
initial conditions, so thermalization resistance can promote memory
storage.

Noncommuting thermodynamic charges present several research
opportunities, three of which we flesh out in this Perspective. First,
amajor opportunity is to identify the extent to which noncommuting
charges hinder thermalization. Another opportunity is to re-examine
every thermodynamic or chaotic phenomenon, determining the extent
to which it changes if charges fail to commute. The phenomena
known to change, as reviewed in this Perspective, include the ETH,
microcanonical states, thermodynamic-entropy production, entangle-
ment entropy and the ability of local interactions to effect global evolu-
tions. A third opportunity is to marry recent noncommuting-charge
work, based largely on quantum thermodynamics and information
theory, withadjacent work in other fields, such as high-energy theory.
Other fields favour the terminology non-Abelian symmetries;
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fundamental thermodynamics motivates our noncommuting-charge
language. A Hamiltonian conserves noncommuting charges,
[H*", Q1= 0 V a,ifand onlyifit has a continuous non-Abelian sym-
metry: UTH“”U =H'"" V a The charges generate the unitary operators:
U-=e ’Qﬂt, fort € R. The Q,s form a Lie algebra, and the U,s form the
associated Lie group®.

Acrossthe Perspective, we use the notationintroduced above, as
well as the following. We call a closed quantum many-body system
(such as the composite S€ in Fig. 1) a global system. N denotes the
number of degrees of freedom (DOFs) in a global system. Often, S€
consists of Ncopies of S. For example, N denotes the number of qubits
inFig.2.Largebutfinite N—the mesoscale —interestsus:as N > «, S
grows classical, according to the correspondence principle’. Noncom-
mutation enables non-classical phenomena, so we should expect the
noncommutation of charges to influence thermodynamic phenomena
atfinite V. Continuing with notation, we ascribe to the Pauli operators
o, eigenstates |a+) associated with the eigenvalues +1. Subscriptsindex
charges (asin aa(j)), whereas superscripts index sites or other subsys-
tems (suchas S and £). We often denote commuting charges, or other
observables that might commute, by @ s.

Therest of this Perspective is organized as follows. First, we intro-
duce the earliest work on noncommuting thermodynamic charges.
We, then, survey new physics that arises from the noncommutation
of charges. Next, we discuss bridges with related research. Finally, we
point out the richest-looking avenues for future work.

Early work

Edwin Thompson Jaynes was the first, to our knowledge, to address
anything like noncommuting thermodynamic charges®. He formalized
the principle of maximum entropy, which pinpoints the state
P=2Xp, Ik)<k| most reasonably attributable to a system about
whichoneknowslittle. lmaglne knowing about p only the expectation
values (Q ) of observables Qa The state obeys the constraints
Tr(an) = Qa fer plus the normalization condition Tr(p) = 1. Which-
ever constraint-obeying state maximizes the von Neumann entropy
Sw(p) : ==Tr(p log(p)) is the most reasonable, according to the max-
imum-entropy principle. (Thelogarithms of this subsection are base-e.)
The entropy maximization encapsulates our ignorance of everything
except the constraints. The function maximized is

Su0)=0=5(p) ~ALTr(p) ~11- 3 1 Tr(p2) - 0,
=1 L(p,A, )

¥)]

Lagrange multipliers are denoted by A, i, € R.

The state’s eigenbasis, {|k) <k|}, equals an eigenbasis ofzay Q if
{|k> <k} did not, decohering p with respect to any } ,f. Q e1genbasxs
would raise S,y monotonically, while preserving the other termsin
equation (2) (ref. 30). Hence, the decohered state would achieve at least
aslargean Lvalueas p. Maximizing £(p, A, {f }))withrespect to p, yields

= ﬂaQa

p—z e L, 3)
Maximizing with respect to A fixes the partltlon functlon
Z=Tr(e 2afaQa), Maximizing with respectto fi, yleldsQ
This procedure works, Jaynes noted evenlftheQ sdo notcommute
HeshowedhowtomeasuretheQ sofsuchobservablesusmgextra
systems. One canderive his results alternatively via analytic properties
of Z (ref.31).

= aN ==log(2).
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Fig.2|Example thermodynamic system that conserves noncommuting
charges. Two qubits form the system S of interest, and the rest form the environ-
ment €. Aqubit’s three-spin components, 0, ,., form the localnoncommuting

charges. The dynamics locally transport and globally conserve the charges.

Thework ofJaynes, though pioneering, left threads hanging. First,
the maximume-entropy principle invokes only information theory and
quantum physics, not thermodynamics or charge conservation. Con-
necting p to equilibrium requires arguments that are more physicalin
nature. Second, Jaynes wrote only one paragraph about noncommuting
Gas. What could they represent physically? Which systems might have
them? When might they impact thermodynamics?

Still, the known-about observables QNa of Jaynes can be noncom-
muting charges Q,. Hence, Jaynes wrote what was later termed the
non-Abelian thermal state (NATS)?,

R TS WOR)
Pnats: = 7€ P2 )

fdenotesaninverse temperature. The u,s denote generalized chemical
potentials. pysrs has the form of equation (3), which has been called the
generalized Gibbs ensemble (GGE), regardless of whether the charges
commute® ¥, We use the term NATS for three reasons. First, the term
GGEwasinitiallyintroduced for integrable systems, whereas the NATS
is a thermal state. Second, most GGE literature concerns commut-
ing charges (for exceptions, see the section ‘Adjacent work in other
fields’). Third, justifying the form of the NATS physically (not merely
information-theoretically) is more difficult thanjustifying the form of
atypical (commuting-charge) GGE, as explained later in this section.

Later researchers expanded upon the work of Jaynes®***°. One
extension®” focused on seeking a more physical justification for the
form of pyrs. Consider N copies of the system of interest, in the ensem-
ble tradition of thermodynamics. In thermodynamics, we regard all
copies except one (S) asforming an effective environment () (ref. 40).
Imagine S exchanging energy and particles with £. How can we prove
that Sisinacanonical state p.,,? We assume that S€ has afixed particle
number and anenergy inasmallwindow — that S€isinamicrocanonical
subspace. Tracing out £ from the microcanonical state yields the state
of S, whichequals p,,if Sand Ecouple weakly*. Suppose that Sand £
exchangeseveralcommutmgchargetstQ Themlcrotcanomcalsubspace
is an eigenspace shared by the Q, s (except Q,, =H"", the time-
evolution generator). Whatif Sand E exchange noncommuting charges
Q.?The Q;"tsshare no eigenbasis, so they might share no eigenspaces.
Microcanonical subspaces might not exist.

An attempt to overcome this challenge is presented by ref. 39.
The charge density Q;°/N commutes in the infinite-N limit:
hm " [Q °.Q"1=0 V a,a’. This property was hoped to enable a
generallzatlon of microcanonical subspaces for noncommuting
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charges. But a well-justified generalization would wait for the
maturation of quantum information theory.

For decades afterward, noliterature, to our knowledge, addressed
the ability of thermodynamic charges to not commute. The topic
gained attention againin the 2010s, when two publications showed that
noncommuting charges can violate thermodynamic expectations**.

Thefirst of these publications showed that noncommuting charges
overturn an expectation about free energy*. Consider a system S of
interest, in a state p°. Let S begin uncorrelated with its environment
&£, which consists of c subsystems: p'© ® p'©, wherein p© has the GGE
formofequation (3). S has ccommuting chargesQ X andEhasQ g)
OnecanattributetoSa‘freeenergy’F, S)(p) = ——S(p) +Tr(@ P (The
quotation marks reflect the controversy surroundlng free ener-
giesdefined information-theoretically, for out-of-equilibriumstates).
Let any charge-conserving unitary U evolve S to a state P
[U,Q, 1=0 Va. The subscript f distinguishes the final states of
Sand €. The jth subsystem of £ ends up in p{*”: = Tr;(p?) . Three
more quantities change: the von Neumann entropy of S, by
ASR: = Sn(p) = Syn(p™); the envnronmental expectation value of
ath charge byA(Q 5)) Tr(Q p91);and the ath free energy’
of the system, by AF( ). U redlstrlbutes charges and information
contents according to

_Aséﬁ) + D((pf(SE)”pf(S) ®pf(5)))

~ (& ' (5)
=B Z ﬂa((A(Qa(g)) - AFQS))) - D((pf(f)“ @j.pf(&j)))

The relative entropy D(gy|0,) = —Tr(o[log o, - log 6,]) quantifies the
distance between quantum states o;,*. Equation (5) relates that
the growthin the information content of S, plus the final nonseparabil-
ity of global state, depends on the average changes in the charges of
&, the ‘free-energy’ change of S, and the correlations formed in &. If
charges fail tocommute, the derivation breaks down. No term decom-
poses into AFH(S) of distinct charges. Hence, noncommuting charges
undermine an expectation about free energy.

Thesecond of these publications reasoned about noncommuting
charges in thermodynamic resource theories'. Resource theories are
information-theoretic models for contexts in which restrictions con-
strainthe operations performable and the systems accessible**. Using
aresource theory, one calculates the optimal efficiencies with which
anagent, subject to therestrictions, can perform tasks such as extract-
ing work from non-equilibrium quantum systems. Inthermodynamics,
the first law constrains agents to conserve energy. Every unitary U
performable ona closed, isolated system conserves the total Hamilto-
nian: [U, H*]=0 (ref 45). Suppose that U must conserve commuting
global charges Q [U, Q ] 0 (ref. 46). Which systems, if freely
accessible to a thermodynamlc agent, would render the model
non-trivial —would notenable the agent to, say, perform work for free,
achieving a perpetuum mobile? The answer is, systems in the equilib-
riumstate showninequation (3) (refs.46,47). The proof fails, however,
if the charges fail to commute’.

Three groups to apply quantum-information-theoretic thermo-
dynamicstononcommuting charges are spurred by refs. 1,42, leading
to a trio of papers>*°*® (as overviewed in ref. 49). (Ref. 50 predates
refs. 2,30,48; it lacks thermodynamic motivations but has thermody-
namic implications.) A quantification of trade-offs among work and
chargesis presented by ref. 30, using aresource theory similar to that
in refs. 1,42. Consider a system S in an out-of-equilibrium state p‘®.

S begins uncorrelated with an environment £ in a GGE p©., Each of S
and £ has charges Q, that might or might not commute. (In this section,
only in this paragraph do Q,s denote possibly commuting charges.)
The set-up also includes batteries, systems in which work or charges
can be reliably stored and from which the resources can be reliably
retrieved. A ‘free entropy’ can be ascribed to every state p of S:
F):=BY 1 Tr(pQ) -Sw©"). 6)
a

(f(S)(p) is the negative of a non-equilibrium extension of a Mas-
sieu function®’.) Let S€ evolve under any unitary U that conserves
each total (system-environment-battery) charge. For all X=§, &,
the state p® evolves to pf(X). The average a-charge of X changes
by AQ; Wy: = QM [p* - pX]). The free entropy of S changes by
AF . The batteries perform on S¢ the average ‘a-charge work’
W,= —(A(Qa(s)) +A(Q?)) . This charge work obeys a generalized second

law of thermodynamics,

~(S)
B2 Wos-AF @)
a

If Sis trivial (corresponds to a 0-dimensional Hilbert space) or is
unchangedby U, AF® =0.Consequently, one can extract any amount
of any charge from £ by paying a price in the other charges:
U W< =Y griq 1, W, Under what conditions equation (7) is saturable
depends onwhether the charges commute. Trade-off conclusions are
also drawn by ref. 48, which were applied to the erasure of qubits.

Rounding out the trio>***%, ref. 2 has presented multiple physical
justifications for the form of py,rs, beginning withamicrocanonical-like
derivation. Noncommuting charges prevent microcanonical subspaces
from existing (in abundance). Hence, microcanonical subspaces were
generalized to approximate microcanonical (AMC) subspaces inref. 2.
Inan AMCsubspace M,everyQ;"‘hasafairlywell-deﬁned value: meas-
uringany Q \°*has ahigh probability of yielding a value near the expec-
tation value <Q;°‘>. The existence of M was proven under certain
conditions”. Denote by I, the projector onto M. Consider ascribing
the AMCsstateTl,,/Tr(I1, ) to the global system, formed from N copies
of the system S of interest. Trace out all copies except the £
¥ =Tr(M,,/Tr(1,,)) Compare p®© with pys using the relative entropy.
Average over ¢. This average distance is upper-bounded as
+6

(DO Py < ®)

JN
The constants fand 8 areindependent of Nbut depend on parameters
(the number c of charges, their expectation values and so on). As the
global systemgrows (N - «), the1l/~/N > 0 sothedistanceshrinks. Hence,
aphysical argument, based on an ensemble in an AMC subspace, com-
plements the information-theoretic derivation of py.s by Jaynes. Fur-
thermore, the AMC subspace enabled later noncommuting-charge
work’*** (described later in this sectionand in the section ‘New physics’).

The form of pyrs Was justified also with the principle of complete
passivity>*®, Astate p is completely passive ifnowork can be extracted
from p®¥adiabatically, forany N € Z,,(refs. 52,53). Complete passivity
extends Carnot’s version of the second law of thermodynamics:
no engine can extract work from one fixed-temperature heat
bath. Consider work extraction that evolves the state of a battery
from p® to p®. Let Q¥ denote the ath charge of a battery. One
can define the (average) work performed on the battery as
Tr(p P12 1,0 - Tr(p®[2, 1,Q, ). Using this definition and
aresource theory, one can prove that py,ys is completely passive’.
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Thisresult resolved the problem spotlighted in ref. 1: noncommuting
charges invalidate a resource-theoretic derivation of the form of
thermal state. (By invalidate, we mean that, if the charges fail to com-
mute, the derivation becomes unsound. We use unsound in the techni-
cal sense of the study of logic: a deductive argument is sound if,
provided that the input premises are true, the conclusionis true.) Yet
work is traditionally a change in the energy charge*®. Indeed, pyars is
completely passive if work is defined as a change in energy alone, if
the extracted-from system obeys charge conservation®. Furthermore,
one can define an analogue W, of work for each charge Q, (ref. 48), as
inref. 30. Consider substituting different W,s into the definition of
complete passivity. Different W, s distinguish different thermal states
as passive because the Qs fail to commute*®, Hence, complete passivity
isanother thermodynamic principle complicated by noncommuting
charges.

The trio®***® have galvanized noncommuting-charge activity at
theintersection of quantuminformationand quantum thermodynam-
ics. Several publications have elaborated on resource theories** . For
example, more-detailed ‘second laws’ were proven using the mathe-
matical tools of matrix majorization®*. These second laws stipulate
necessary and sufficient conditions for any quantum state g; to trans-
forminto any state o,. Other literature has shown how different batter-
ies could store different Q,s despite the noncommutation of
charges®®***"*°, (Batteries are called reference frames when used to
implement otherwise forbidden transformations. Consider transform-
ing asystem-and-environment composite S€ with unitaries Urestricted
to conservingeachQ ¥+ Q/®. Whatif adesired Ubreaks the conserva-
tion law? A reference frame may supply the charge needed, or accept
the charge forfeited, by S€.)

Theabove work, steeped ininformation theory, is theoretical and
abstract. Yetitinspired an experimental demonstration that real-world
systems exhibit the thermodynamics of noncommuting charges’. In
the demonstration, 6-21 trapped ions form a linear Paul chain. Two
qubits form S, and the rest form £ (Fig. 1). The global system is prepared
in ¥y = (y+) Ix+) 1z+)) ®N/3, inan AMC subspace. (The definition of
AMC subspace was adapted by ref. 7 from the information-theoretic
ref. 2 to many-body physics. Inref. 2,if S€ occupies an AMC subspace,
measuring any Q;"‘ has a high probability of yielding a value near
(Q;°". Constant-in-Nexpressions quantify what ‘high’ and ‘near’ mean.
In refs. 7-9, the probability distribution has a variance of O(N"),
wherein r<1.) The native interactions are long-range Ising couplings
(Y- a%®). However, Heisenberg interactions (also long-range) are
simulated via Trotterization with rotations. The dynamics conserve
the charges 0, , globally while transporting o, . locally. Quantum
state tomography reveals the long-time state p;of S.

Thedistance of the state from py,rsis calculated using the relative
entropy D(pqllpnars), following ref. 2. Averaging D(pql|pnars) OVer the qubit
pairs S that form the chain produces (D(pglloyats)? - D(pellpg)> and
(D(p,llp.,,)» are calculated similarly. The NATS predicted the experi-
mental results best: (D(prIpNATS)) < (D(pfllpGC)) < (D(pfllpcan)). Despite
the plurality of the conservation laws that decoherence could break, the
effects of noncommuting charges were experimentally observable;
dynamical-decoupling pulse sequences mitigated the noise suffi-
ciently. This experiment, a realization of the proposal in ref. 7, opens
the door to experimentally testing the many theoretical results about
noncommuting thermodynamic charges (discussed in the section
‘New physics’). Along with trapped ions, feasible platforms include
superconducting qudits, ultracold atoms, nitrogen-vacancy centres
and quantumdots’.

New physics

Noncommuting thermodynamic charges engender new physics.
They conflict with the ETH, allow for multiple stationary states and
violate the dichotomy of energy-level statistics. The noncommutation
of charges also constrains the global dynamics implementable with
local charge-conserving unitaries. Additionally, noncommuting
charges decrease thermodynamic entropy production, yet increase
average entanglement entropy.

Conflict with the eigenstate thermalization hypothesis

The ETH explains how reversible dynamics thermalize closed quantum
many-body systems internally?>?"*, Consider a system with N DOFs
governed by a nondegenerate Hamiltonian H*". Let O denote any
operator, which we represent as amatrix relative to the energy eigen-
basis. The ETH is an ansatz for the forms of matrix elements. Suppose
that the system begins inamicrocanonical state |¢(0)) —in this context,
apurestate with asmall H**variance. The ETH implies thermalization:
the time-averaged expectation value of O approximately equals the
canonical expectation value

lim® [ de @10 =Tr(Op,) +ONY )
> L JO

Throughout this subsection, the O notation means ‘scales as. Noncom-
muting charges impede three assumptions behind the argument for
thermalization. First, noncommuting charges prevent microcanonical
states from existing in abundance (as discussed in the section ‘Early
work’). Second, noncommuting charges force degeneracies on the Ham-
iltonian (as discussed in the section ‘Introduction’). Third, noncommut-
ing charges lead the Wigner-Eckart theoremto supersede the ETH®. To
review the Wigner-Eckart theorem briefly, we consider N qubits whose
global spincomponents S;?y‘,zare conserved, asinthe section ‘Introduc-
tion’. Denote by {|a, m)} the eigenbasis shared by H**, (§"°)? and
S if =1, then H* |o, m) =E, |a, m) , (8"%)*|a, m) =s,(s, + 1)la, m)
and S°" |a, m) =m |a, m). The Wigner-Eckart theorem governs spher-
ical tensor operators formed from components T{¥ (ref. 60). The T“'s
formabasis for the space of operators defined on the Hilbert space of
the system. For example, consider anatom absorbing a photon (of spin
k=1), gaining ¢ = 1 quantum of z-type angular momentum. T ;"
represents the effect of the photon on the state of the atom. Consider
representing T(;k) as amatrix relative to the energy eigenbasis. That
matrix obeys the Wigner-Eckart theorem®:
(a,mITOla, m'y = (s, mls -, m's k, @Xall T’y (10)
(S mls,, m’; k, g)denotes a Clebsch-Gordan coefficient,aconversion
factor between the productstate|s,.,, m’; k, q)=|s,, m’)|k, g) and the
total-spin eigenstate |s,, m).{a]| T®)|a’is areduced matrix element —
the part of (@, m|T¥la’, m’) that does not depend on magnetic spin
quantum numbers. The theorem (10) conflicts with the ETH, an ansatz
for the left-hand side. First, the two constraints are fundamentally
different; the Wigner-Eckart theorem concerns SU(2) symmetry,
whereas the ETH concerns randomness. Second, the ETH states that
off-diagonal elements (o, m|T \¥|a’, m’) are exponentially smallin N.
The Wigner-Eckart theoremimplies that these elements may be O(1).
Therefore, a non-Abelian ETH is posited by ref. 24. This ansatz
depends on the average energy £:= %(Ea+Ea,), energy difference
w:=E, - E,, average spin quantum number S: = %(sa +5,.) and differ-
encev:=s,-S,..Denote by S,,(& S) the thermodynamic entropy at
energy £ and spin S. The observable T*) and Hamiltonian ' satisfy
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the non-Abelian ETH if, for smooth real functions 7%(&, S) and
P& s )

@IT®NaY=TH(E, S) 6, o +eSHEN (O (g S, @)R, w  (1D)

7 ® parallels amicrocanonical average in the conventional ETH. R, -
resembles anormalized O(1) random variable® . The matrix element
(10) deviates from the ordinary ETH through S-dependent functions
and a Clebsch-Gordan coefficient. Equation (11) has withstood pre-
liminary numerical checks with a Heisenberg Hamiltonian ona2D qubit
lattice®*. More testing is needed, however.

The non-Abelian ETH predicts thermalization to the usual extent
insome, but notall, contexts. Consider preparing the systemin astate
|¢(0)) in an AMC subspace (as discussed in the section ‘Early work’).
Suppose that |(0)) has an extensive magnetization along an axis that
we call 2:{g(0)|SE°|(0)) = O(N). According to the non-Abelian ETH,

t

m%fo df GOTEREN =TrTEp, H+ONT  (12)
However, if (¢»(0)|S:°"|¢(0)) = O, the correction can become O(N*?) —
polynomially larger. This result relies on an assumption argued to be
physically reasonable: the smooth function 7% in equation (11) can
contain a non-zero term of O(s,/N). The unusually large, analytically
expected correction constitutes further evidence that the
noncommutation of charges can alter thermalization.

Thenon-Abelian ETH invites further studies. First, numerical and
experimental tests shall be conducted. Second, from the final term of
non-Abelian ETH, one can infer about fluctuations around the time
average as in equation (9). Third, the time required for equilibration
merits study: in quantum many-body physics, most thermalization-
blocking mechanisms slow thermalizationintime (as discussed inthe
section‘Adjacent work in other fields’). By contrast, the O(N"*2) ‘slows’
the time-averaged expectationvaluein N, inthe approachtoathermal
expectation value. How long does (¢(t’)| T;")up(t’)) take to reach its
long-time value? Fourth, the ETH can be used to demonstrate the way
classicality, Markovianity and local detailed balance emerge from the
pure-state dynamics of a system with commuting charges®. Such
results might be extended to noncommuting-charge systems, with the
non-Abelian ETH and AMC subspaces. Finally, one might storeinforma-
tion in a system that thermalizes — forgets its initial conditions — less
thanusual. Thismemory-storage opportunity resonates with the work
that we explain now.

Stationary-state multiplicity

Consider anopen quantumsystemwith a Liouvilian superoperator L.
Pyaisastationarystateof Lif Lo, = 0.Consideranarbitrary basis for
the stationary subspace. One might associate the jth basis element,
p(f)t withthejthletter, L, of aclassical alphabet: p\/) ¢ L. ToencodeL;
in the system, one would prepare any state that thermalizes to p(tf;t
Thelarger the stationary subspace, the more classicalinformation the
system may store. Denote by n,, the dimensionality of the stationary
subspace. A lower bound nyc on ng, for asystem with noncommuting
charges®®is nyc = 2 D?, wherein D; denotes the jthirreducible repre-
sentation of asymmetry group. For example, ny = N*for aHeisenberg
model (as discussed in the section ‘Introduction’) coupled to an envi-
ronment that conserves the system-of-interest charges o}Sy) ,-Ifthe
charges commute, the lower bound, ¢, scales as the number of simul-
taneous eigenspaces shared by all the Q(;S). Because nyc and nc scale
differently, noncommuting charges could alter the dimensionality of
the stationary subspace and, thus, the amount of information storable.

Hybrid energy-level statistics

Energy-level statistics diagnose quantum chaos and integrability®’.
Denote by w = E;,; - E; the spacing between consecutive eigenenergies
of amany-body Hamiltonian. Any given spacing (near the centre of the
spectrum) hasa probability density P(w) of having the size w. A Poissonian
P(w) diagnoses integrability®’. A Wigner-Dyson distribution,
A, wVexp(—Bywz), signals chaos®®*®’, The parametery € {1, 2, 4} depends
onthetime-reversal and rotational symmetries of the Hamiltonian. Nor-
malizationand the mean w determine the coefficients A,and B,. Noncom-
muting charges defy the Poisson-vs-Wigner-Dyson dichotomyinaway
that commuting charges cannot. The charges generate a non-Abelian
algebra, which has multidimensionalirreducible representations, which
force degeneracies on the Hamiltonian. These representations induce
statistics that interpolate between the two distributions®*’°”". Noh
observed such statistics numerically, using a 2D Heisenberg model®*.

Constraints on charge-conserving dynamics
Natural interactions are spatially local, motivating a quantum-
computational result: every N-qubit unitary decomposes into gates on
pairs of qubits’>”*. Can charge-conservinglocal unitaries effect every
charge-conservingglobal unitary U? Perhaps surprisingly, the answer is
0”.AsprovenusingLie theory, locality-constrained charge-conserving
unitaries cannot evenapproximate Us. Thereasonis that the two types
of unitaries form Lie groups of different dimensions” 7%, Moreover,
noncommuting chargesimpose four types of constraints on the imple-
mentable global unitaries, whereas commuting charges impose only
two’®. The extra constraints may restrict chaos, which enables ther-
malization. Hence, this result suggests that noncommuting charges
may restrict thermalization.

Decreased thermodynamic-entropy production
Noncommuting charges reduce entropy production, which quantifies
irreversibility®. Throughout this paragraph and the next, entropy
refers to thermodynamic entropy, not entanglement entropy. Let
systems X=A, B have charges Q, ) that might or might not commute
(innoothersubsection of this sectiondoQ, Msdenote possibly commu-
ting charges). Each system beginsina GGEp (fQ) <exp (L, Q).
wherein p®=@®,u®,...) (ref. 79) (Fig. "3). Hence, AB begins
inp(0): =p 4 ®p . Let us specialize to thelinear-response regime:
1@ =u®, Acharge-conserving unitary Ucan shuttle charges between
the systems, producing entropy. Noncommuting charges decrease the
entropy production®. Denote byou,:= pa‘A) - u® the difference between
the a-type chemical potentials of the two systems. The a-type charge
system A changes, in the Heisenberg picture, by U'QWU-Q Y.
(Tensored-on Isare implicit where necessary to make operators act on
the appropriate Hilbert spaces.) We combine the foregoing two quanti-
tiesinto¥: =¥, 6 (UTQ VU~ Q"). Taking the expectation value of £
intheinitial state, weobtainthe netentropy productron 2 =Tr(E p(0)).
The initial state lies near the fixed point 77 ‘Puf& ®p (?A)) of U, by the
linear-response assumption. (In 7, unlike in p(0), Aanchavethesame
lists of chemical potentials ) nand Y havea Wigner Yanase-Dyson
skewmformationly(n %): ——7Tr([ny St Z]) parameterized by
y€(0,D).1(m, ¥) quantifies the coherence that ¥ has relative to the
eigenbasrs of m. The Wigner-Yanase- Dyson skewmformatloncontrrb
utes to the entropy production: ¥ = —var():) - zj dyl(m, %) (ref. 3).
I,isalways >0 and is positive ifand onlyifthecharges failtocommute
Therefore, noncommuting charges lower X. Because entropy produc-
tion accompanies thermalization, this result indicates that
noncommutation may inhibit thermalization.
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Two extensions support ref. 3. The first consists of numerical
simulations of an optomechanical systeminteracting with asqueezed
thermal bath®°, The second extension is a progression beyond the
linear-response regime®. Even there, the noncommutation of charges
can decrease entropy production.

Howref. 3 impacts engine efficiencies remains an open question.
Efficiencies suffer from waste and so may benefit from the lowering
of X of noncommuting charges. However, the noncommutation of
charges can decrease the amount W, of a-charge (analogous to work)
extractable by an engine®. If using finite-size NATS baths, an engine
can extract W, S Wolininicesize bach — O(C/€). C captures the correlations
between the chargesin py,rs; if the charges commute, C= 0. & encoding
thesizes of baths, divergesin the infinite-bath limit. Extractable work,
here lowered by noncommutation of charges, tends to trade off with
efficiency. A precise relationship between the two figures of merit, in
the presence of noncommuting charges, merits calculation.

Increased average entanglement entropy

Quantum many-body thermalization entails entanglement, which can
be enhanced by the noncommutation of charges®. Consider initializing
anisolated N-qubit systemin a pure state. Divide the system into sub-
systems A and Bwith sizes N, and N,. A and B can share entanglement
quantified by the entanglement entropy, S,s. S5 is the von Neumann
entropy of the reduced state p, of A, S,x(p,). Plotting S,; against N,
yields the Page curve®.

Page curves for two comparable N-qubit models are reported by
ref. 8 (Fig. 4), one with commuting charges only and the other with
noncommuting charges. They involve no dynamics, so the observables
of interest are not technically charges. However, the modelled states
result from chaotic dynamics: Haar-random states were sampled from
(approximate, when necessary)>”’ microcanonical subspaces. Page
curves were estimated numerically viaexact diagonalization and analyti-
cally vialarge-Napproximations of combinatorics. The noncommuting-
charge Haar-averaged Page curves lay above the commuting-charge
analogues. The difference was of O(N2/(N?Nj)), in the simplest compari-
son. A possible reason centres on the least entangled basis for the
subspace of each model. If the local charges QNa commute, they share
an eigenbasis. Hence, the global commuting Q,, s share a tensor-
producteigenbasis for the subspace. If the local charges fail tocommute,
this argument breaks, and the least entangled basis of the subspace is
entangled. One might, therefore, expect more entanglement of the
noncommuting-charge model on average across the subspace.

Other works concern the effects of non-Abelian symmetries
on entanglement entropy but focus less on the changes induced by
the noncommutation of charges. For example, a non-Abelian sym-
metry raises the entanglement in Wess-Zumino-Witten models,
whichare (1 +1)-dimensional conformal field theories with Lie-group
symmetries®*®. Second, holographic calculations highlight another
correction that non-Abelian symmetries introduce into entangle-
ment entropy®*¥. (This correction appears to be negative. However,
refs. 86,87 concern symmetry-resolved Page curves, in contrast to the
conventional Page curves of ref. 8. A symmetry-resolved Page curve
models the entanglement, averaged over time, of a system whose
charges move only within A and within B, not between the subsystems.
Conventional Page curves model less-restricted thermalization.) Third,
algebraic quantum field theory calculations agree that non-Abelian
symmetries raise Page curves®®,

These works suggest several research opportunities. Theincrease
in entanglement entropy merits checking with more comparable
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Fig.3 | Two thermal reservoirs (A and B) exchange charges, producing entropy.

Blue spheres represent charges of one type, and red cubes represent charges of

another. For each of X = A, B, system X has alist p™ of effective chemical potentials.
isli i )

Thislist parameterizes the NATS P ey

models analogous to those depicted in Fig. 4. Additionally, one might
adjust the Page curve calculations following the revelation that local
charge-conserving unitaries constrain global Us tightly”. Under locality
constraints, the Haar distribution may model chaotic dynamics inac-
curately. Finally, the entanglement entropy of refs. 8,84-88 differs
from the thermodynamicentropy of ref. 3. Even so, theincrease of the
former by noncommuting charges conceptually conflicts, somewhat,
with their decrease of the latter.

Adjacent work in other fields
Noncommuting charges have arisenin other thermodynamics-related
contexts, usually under the guise of non-Abelian symmetries. We
discuss four contexts. First, integrable systems have more charges,
which might fail to commute, than the thermodynamic systems
previously discussed. Second, noncommuting charges destabilize
a thermalization-avoidant phase of quantum matter: many-body
localization (MBL). Third, gauge theories naturally have non-Abelian
symmetries, albeit local ones. Fourth, hydrodynamics describes the
flow of some non-Abelian charges, including in heavy-ion collisions.
We briefly mention three more connections. Noncommuting
charges may impact quantum information scrambling®. Also, pyxrs
helps explain phase transitions’*2 Finally, the resource theory of
asymmetry quantifies the noninvariance of astate under operation by
the elements of a symmetry group'. The group may be non-Abelian,
so the mathematical tools of the theory merit application to
noncommuting thermodynamic charges.

Conventional integrable systems

Garden-variety integrable systems fail to thermalize. Each has exten-
sively many non-trivial charges, which constrain the dynamics sub-
stantially. By contrast, our thermodynamic set-up (described in
the section ‘Introduction’) entails a number of charges, c <« N, much
smaller than the number of DOFs. Integrable and near-integrable sys-
tems withnoncommuting charges have been studied. Models include
the GGE equal to the py,sinequation (4). Several works assess how the
accuracy of GGE grows with the number of Qsincludedinthe state” .
Outside of GGE studies, an integrable system can exhibit anomalous
transport — diffusion with a diffusion constant D - \/N (refs. 96,97).
The system studied in ref. 96 is the 1D nearest-neighbour Heisenberg
model showninequation (1). Theanomalous transport can be explained
with Bethe-ansatz calculations and the z-axis magnetization®°°, Can
all three noncommuting charges (o,,,,) predict anomalous transport
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A qubits:

o @ @ @
Fig. 4| Analogous noncommuting-charge and commuting-charge models.
Each model consists of Nsites, each formed from .4 and B qubits. Local

observables distinguish the models. The noncommuting observables
areQ;=X,®1z,Q,=Y,®1zand Q;=Z, ® 1. The commuting observables are

jth site
Q=X,®13

Q=X,® X3

Q=X ® Xy, Q,=Y,® Ygand Q;=Z, ® Z;. The local charges, summed across the
chain, form global observables that define the (approximate) microcanonical
subspaces. Figure adapted with permission fromref. 8, APS.

60
o 66

alternatively? Another open question follows fromincreasingly break-
ing the integrability of anoncommuting-charge system'®'. How do the
behaviours of a system transmute into thermodynamic behaviours
described in this Perspective?

Many-body localization
Disordered, interacting quantum systems exhibit MBL. Examplesinclude
a qubit chain subject to the disordered Heisenberg Hamiltonian
Hyy =31 (090U + hiol) The disorder term, Y hio!”), acts as
anexternal field whose magnitude h;varies randomly across sites. Denote
by hthe standard deviation of the disorder term. If the disorder is much
stronger thantheinteraction, 7>/, the systemlocalizes.Imagine measur-
ingthe g,of each qubit. The qubits approximately maintain the measured
configurationlongafterward. This behaviour contrasts with how thermal-
izing systems, such as classical gases, change configurations quickly.
Hence, MBL resists thermalization for long times. The reason s that the
Hamiltonian decomposes as a linear combination of quasilocal DOFs.
Noncommuting charges destabilize MBL'*”, Consider forcing a
non-Abelian symmetry on Hy%, . The resulting Hamiltonian, Hyy, will
have degeneracies, by Schur’s lemma (Supplementary Information).
So will the quasilocal DOFs, which can therefore become ‘excited’ at
no energy cost. Consider adding to Hyj an infinitesimal field that
violates the symmetry. The resulting Hamiltonian, H\%,,, can map Hyyy,
eigenstates |()) to same-energy eigenstates |()): (| Hy%, |¢) # 0. Two
such eigenstates can be zero-energy excited states of neighbouring
quasilocal DOFs. Hence, Hy;- can transport zero-energy ‘excitations’
between quasilocal DOFs — across the system. Such transportisincon-
sistent with MBL. Therefore, non-Abelian symmetries promote a
thermalizing behaviour.

Gauge theories

Classical electrodynamics exemplifies a gauge theory, a model that
contains more DOFs than does the physical system it represents'*>.
Choosing a gauge eliminates the extra DOFs. The transformations
between gauges formaLie group G. The elements U € G preserve the
theory’saction, S, thatis, U:S+— S.Gauge theories model elementary-
particle physics and condensed matter, both of which can have non-
Abelian groups G. For example, quantum chromodynamics, which
describes the strong force, has SU(3) symmetry. Hence, elementary-
particle physics should realize noncommuting-charge thermodynam-
ics naturally; pyars might be observable in high-energy and nuclear
systems'**. Granted, confinement prevents quantum-chromodynamic
systems from having non-zero(Q;°"s. Still, noncommuting charges
raise the average entanglement entropy in spin systems with

(Q;°)=0 V a® Furthermore, subsystems can contain positive and
negative charges, (Q /) # 0, that can undergo dynamics®. Gauge
symmetries are local, though, unlike the global symmetries covered
in this Perspective. The contrast raises the question: how much
noncommuting-charge quantum thermodynamics ports over into
gauge theories?

Hydrodynamics and heavy-ion collisions

Hydrodynamics models long-wavelength properties of fluids that are
in equilibrium locally'®. The theory describes condensed matter and
certain stages of heavy-ion collisions'°®, among others. Noncommut-
ing charges can flow similarly to the more-often studied energy and
particles'”’. A few effects of the noncommutation of charges have been
isolated; examplesinclude non-Abelian contributions to conductivity'*®
and entropy currents'®’. In addition, non-Abelian symmetries can
shorten charge-neutralization times in heavy-ion collisions"°. More
such effects may be discoverable. Also, quantum thermodynamics
might assist withlong-standing questions about heavy-ion collisions: By
what process does the system thermalize? How should the initial state
bemodelled? Does the (non-)Abelian ETH explain the thermalization?
And why is the thermalization time so short™'?

Outlook
The discoveries discussed in this Perspective suggest rich research
opportunities, of which we detail five.

First, the predictions merit experimental testing. The first test of
noncommuting-charge thermodynamics was performed with trapped
ions’. Other potential platforms include superconducting qubits,
quantumdots, ultracold atoms, quantum optics and optomechanics®’*,

Second, existing results present a conceptual puzzle. Evidence
suggests that noncommuting charges hinder thermalization to an
extent: they invalidate derivations of the form of a thermal state'?,
decrease thermodynamic-entropy production®, clash with the ETH*
and uniquely restrict the global unitaries implementable via local
interactions’®. However, other evidence suggests that noncommuting
charges enhance thermalization: they destabilize MBL'**and increase
average entanglement entropy®. These results do not conflict with each
other technically, as they stem from different set-ups. Yet the results
clash conceptually, suggesting that the noncommutation of charges
hinders thermalization in some ways and enhances it in others. Does
the hindrance or enhancement win out overall? Reconciling these
results presents a challenge.

Third, to what extent can classical mechanics reproduce
noncommuting-charge thermodynamics? The noncommutation of
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observables underlies quintessentially quantum phenomenaincluding
uncertainty relations, measurement disturbance and the Einstein-
Podolsky-Rosen paradox. Yet classical mechanics features quantities
that fail to commute with each other — for example, rotations about
different axes. How non-classical is noncommuting-charge thermo-
dynamics (achievable only outside of classical physics), beyond being
merely quantum (achievable within quantum physics)?

Fourth, every chaotic or thermodynamic phenomenon merits
re-examination. To what extent does it change under dynamics that
conserve noncommuting charges? Example phenomenainclude diffu-
sion coefficients, transport relations, thermalization times, monitored

circuits'?, out-of-time-ordered correlators'”, operator spreading*,
frame potentials™

and quantum-complexity growth"s,

Finally, noncommuting-charge thermodynamics merits bridging
to similar topics in neighbouring fields. Non-Abelian gauge theories,
non-Abelian hydrodynamics, GGE studies and dynamical phase transi-
tions overlap with noncommuting thermodynamic charges. To what
extent can these areas inform each other? Do gauge theories realize
noncommuting thermodynamic charges naturally?

For decades, conserved thermodynamic quantities were assumed
implicitly tocommute with each other. Noncommutation, however, is
atrademark of quantumtheory. Theidentification and elimination of
theassumption, thoughinitiated where quantuminformation theory
meets quantum thermodynamics, have potential ramifications across
quantum many-body physics.
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