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Heterogeneous interfaces are central to many energy-related applications in the nanoscale. From the first-
principles electronic structure perspective, one of the outstanding problems is accurately and efficiently calcu-
lating how the frontier quasiparticle levels of one component are aligned in energy with those of another at the
interface, i.e., the so-called interfacial band alignment or level alignment. The alignment or the energy offset
of these frontier levels is phenomenologically associated with the charge-transfer barrier across the interface
and therefore dictates the interfacial dynamics. Although many-body perturbation theory provides a formally
rigorous framework for computing the interfacial quasiparticle electronic structure, it is often associated with
a high computational cost and is limited by its perturbative nature. It is therefore of great interest to develop
practical alternatives, preferably based on density functional theory (DFT), which is known for its balance
between efficiency and accuracy. However, conventional developments of density functionals largely focus on
total energies and thermodynamic properties, and the design of functionals aiming for interfacial electronic
structure is only emerging recently. This Review is dedicated to a self-contained narrative of the interfacial
electronic structure problem and the efforts of the DFT community in tackling it. Since interfaces are closely
related to surfaces, we first discuss the key physics behind the surface and interface electronic structure,
namely the image potential and the gap renormalization. This is followed by a review of early examinations
of the surface exchange-correlation hole and the exchange-correlation potential, which are central quantities
in DFT. Lastly, we survey two modern endeavors in functional development that focus on the interfacial
electronic structure, namely the dielectric-dependent hybrids and local hybrids.
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FIG. 1. The three types of molecule-semiconductor interfaces (the first three panels) and the molecule-metal interface (the
last panel). Blue blocks denote the valence and conduction bands of semiconductor substrates. The yellow block denotes the
occupied bands of a metal substrate, whose Fermi level is denoted by Er. Broadened lines denote the HOMO and LUMO
energy levels of an adsorbed molecule on a semiconductor or a metal substrate. If one replaces the HOMO and LUMO with the
VBM and the CBM of another semiconductor material, one would obtain semiconductor-semiconductor or metal-semiconductor

interfaces.

semiconductor or metal substrate, and the broadened
lines represent the highest occupied molecular orbitals
(HOMOs) and the lowest unoccupied molecular orbitals
(LUMOs) of the molecular adsorbate. The first three
panels are analogous to the three types of heterojunc-
tions of semiconductors®: (i) straddled bands in Type
I, where the LUMO (HOMO) is above (below) the con-
duction band minimum (CBM) [valence band maximum
(VBM)] of the semiconductor substrate. An alternative
situation, where both the HOMO and LUMO are within
the VBM-CBM gap of the semiconductor substrate, is
not shown; (ii) staggered bands in Type II, where the
LUMO is within the VBM-CBM gap and the HOMO is
below the VBM of the semiconductor substrate. An al-
ternative situation, where the LUMO is above the CBM
and the HOMO is within the VBM-CBM gap of the semi-
conductor substrate, is not shown; and (iii) broken bands
in Type III, where both HOMO and LUMO are below
the VBM of the semiconductor substrate. An alterna-
tive situation, where both HOMO and LUMO are above
the CBM of the semiconductor substrate, is not shown.
The last panel shows a molecule-metal interface, where
the LUMO (HOMO) is above (below) the Er of the metal
substrate. Because electrons tend to move downward and
holes tend to move upward in energy during a charge
transfer, different level or band alignment patterns lead
to different charge and energy transfer dynamics across
the interface.

Strictly speaking, all the frontier levels of interest,
namely the VBM and CBM of the semiconductor sub-
strates, the HOMO and LUMO of the molecular adsor-
bates, and Er of the metal substrates, are charged quasi-
particle energy levels, i.e., the energy cost of removing
one electron from or adding one electron to the system.
In density functional theory (DFT), the Hohenberg-Kohn
theorem® does (formally) guarantee that all properties
of a system are determined by the ground-state density,
n(r). However, under the Kohn-Sham (KS) formulation”,

only the form of E[n(r)], the ground-state total energy
as a functional of the density, is explicitly developed. Im-
portantly, although the eigenvalues of the KS Hamilto-
nian are often interpreted as quasiparticle energies, there
are no rigorous justifications for doing so, with the excep-
tion of the highest occupied level thanks to Koopmans’
theorem. Even for the latter, in the context of the inter-
face, it refers to the highest occupied energy level of the
composite interface system, rather than the VBM or the
HOMO of each individual component within the inter-
face. In other words, depending on the specific type in
Fig. 1, the “highest occupied energy level” may be the
VBM of the semiconductor substrate, the Fr of the metal
substrate, the HOMO of the adsorbate, or even a linear
combination of these in more complex situations. The
accuracy of the other frontier energy levels of interest in
Fig. 1, therefore, is not formally justified in DFT. Lastly,
we comment that the level alignment problem at inter-
faces is intimately relevant to the “gap problem” that has
been outstanding in the DFT community for decades®1°.
The level alignment values predicted by local and semi-
local density functionals are often too small compared to
the true values, where the discrepancy is typically on the
order of 1 eV.

It has been known that the charged quasiparticle ex-
citations can be formally described in terms of Green’s
functions in the framework of many-body perturba-
tion theory (MBPT)!!. The simplest and most pop-
ular approximation by far has been the so-called GW
approximation!?, where G stands for the Green’s func-
tion and W stands for the screened Coulomb interac-
tion. With significant advancements in methodology and
computational packages developed in the era of high-
performance computing!®1®, first-principles GW calcu-
lations are becoming routine, even for large-scale inter-
faces. However, from the perspective of the author of
this Review, the development of DFT-based approaches
for accurate interfacial energy level alignments is still



meaningful: compared to their MBPT counterparts, den-
sity functionals are easier to be implemented in a self-
consistent manner; they are easier to converge due to
fewer converging parameters; and they are typically lower
in scaling, enabling calculations of larger systems with
similar computational cost. Moreover, the journey of de-
veloping new functionals and approximations generates
new insight into the underlying physical principles spe-
cific to heterogeneous interfaces and pushes the bound-
aries of electronic structure methods.

This Review is intended to reflect on previous works
done in the DFT community in understanding and tack-
ling the interfacial electronic structure problem. We note
that there have been a number of excellent reviews over
the years dedicated to the formalism and developments of
DFT!622 a5 well as many comprehensive reviews of the
rich physics and chemistry associated with different types
of interfaces?® 28, Neither of the above is the goal here,
so we have to inevitably leave out some works that share
similar interests in a broader sense. In this Review, we
specifically focus on the methodological advancements in
the framework of DFT to tackle the electronic structure
problem at heterogeneous interfaces. Given the intimate
relationship between an interface and a substrate surface
(i.e., an interface between an extended material and the
vacuum), earlier attempts in the field involve studies of
metal surfaces. We hope our narrative of this well-defined
field of research will guide the future development of func-
tionals for accurate and efficient calculations of hetero-
geneous systems.

The outline of this Review is as follows. In Sec. II, we
give a brief overview of the physics behind the interfacial
electronic structure. Two aspects are discussed: the im-
age potential in Sec. IT A and the gap renormalization in
Sec. IIB. In Sec. III, we review early attempts in under-
standing the problem using DFT quantities. We discuss
the exchange-correlation (XC) hole at a metal surface in
Sec. IITA and the XC potential in Sec. IIIB. In Sec.
IV, we survey the modern developments of functionals to-
ward accurate calculations of interfacial electronic struc-
ture, which falls into two categories: dielectric-dependent
hybrid functionals in Sec. IV A and local-hybrid func-
tionals in Sec. IVB. We make concluding remarks in
Sec. V.

Il. THE PHYSICS BEHIND SURFACE AND INTERFACE
ELECTRONIC STRUCTURE

We mentioned above that the quasiparticle energy lev-
els of interest in Fig. 1 are charged excitation energies.
From the perspective of classical electrostatics, charge
addition/removal in the adsorbate (i.e., the species near
the substrate surface) will induce a change in the charge
distribution within the substrate and near the surface,
which in turn affects the Coulomb interaction within the
adsorbate. This is known as the dielectric screening due
to the substrate, and the Coulomb interaction within the

adsorbate is said to be screened by the substrate, such
that the electron-electron repulsion in the adsorbate is
weaker than the bare Coulomb interaction. In the quan-
tum mechanical description, the screened Coulomb inter-
action W contains key information about the substrate
dielectric screening, a long-range correlation effect. The
simplest interface is a surface, where a periodic substrate
meets the vacuum. The simplest substrate is a metal,
whose classical dielectric constant is infinity. Thus metal
surfaces were naturally the first type of heterogeneous
systems studied in history. In this section, we review
early studies of surfaces and interfaces, which centered
on the understanding of the spatial dependence and or-
bital dependence of the screened Coulomb interaction W.

A. Spatial dependence of the screened Coulomb
interaction: The image potential

A few years after the DFT formalism was formally pro-
posed, Lang and Kohn applied this theory to metal sur-
faces, resulting in three seminal papers?® 3!, referred to
as LK70, LK71, and LK73 below. Among other results
that are less relevant to this Review, LK70%° empha-
sized the importance of XC effects and self-consistency
in solving the KS equations, which lead to Friedel os-
cillations in the density that is missing in the Thomas-
Fermi approach. LK713° focused on the work function
and presented the screening charge density induced by a
weak external electric field along the outward surface nor-
mal. This screening charge density is subsequently used
in LK73%! to define an “effective position of the metal
surface”, zp, which is now known as the image plane.
To be specific, zg is defined as the center of mass of the
screening charge density, n(z):

2 an(z)dz
20 = W, (1)

where z is the direction perpendicular to the surface (note
that the original paper used x. Here we use z to align
with recent conventions).

Using linear-response theory, LK733! showed that the
change in the electrostatic potential well outside of n(z)
is —=€(z — zp), where £ is the magnitude of the external
electric field. Therefore, zq is recognized as the effective
position of the metal surface. zq is found to be closer to z,
for larger r,, where z; is the edge of the uniform positive-
charge background (jellium) used to model the metal ions
and ry is the Wigner-Seitz radius, i.e., (47/3)[rs(n)]® =
1/n. Besides the case of an external electric field, LK73
also studied the interaction between a small point charge
g with position z; and its induced surface charge. The
paper showed that this interaction assumes the form of
an image potential
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Remarkably, the classical image plane 2 in this equation
is identical to that defined in Eq. (1), which clarifies mys-
teries raised by contemporary work®?. Note that LK73
argued that the positions of the positive ions are nearly
unaffected by the external field, because the top-layer
ions are located 1/2d (d is the inter-layer spacing) below
zp, such that the external field has been largely screened
out at the position of the ions.

While the LK series focused on metal surfaces, Inkson
studied metal-semiconductor interfaces, which resulted
in four papers in the early 1970s, referred to as 171a33,
171b34, 17235, and 1733% below. This series of work largely
followed the idea of Newns®?, who used a similar ap-
proach of linear response to treat metal surfaces as Lang
and Kohn did. The difference between Newns and LK
lies in that the former used a linearized Thomas-Fermi
approximation and the latter used DFT.

I71a used static model dielectric functions®? of the bulk
metal and the bulk semiconductor to derive the image po-
tential in the vicinity of the metal-semiconductor inter-
face. This approach neglects the effect of the charge re-
distribution near the interface on the dielectric functions
of each component. The model dielectric functions are
characterized by Thomas-Fermi screening lengths, and
the behaviors of the resulting image potential depend on
the relative Thomas-Fermi screening lengths of the two
components. Inkson found that the image potential has
a long-range (well inside the semiconductor) part that re-
covers the Newns result3” of metal-vacuum divided by the
classical dielectric constant of the semiconductor. How-
ever, at short range (close to the interface), the form of
the image potential is more complicated and can be ei-
ther positive or negative.

I71b constructed the screened Coulomb interaction W
at the interface*, which goes into the expression for the
first-order self-energy (i.e., the GW approximation!?):

Y(r,r';w) = (227)4 /G(r,r';w—w')W(r,r’;w')e_i‘s“’l do’.

(3)
The X is the self-energy that is part of the quasiparticle
wavefunction equation:

<—;V2 + Vext + vH> oi(r) + / Y(r,r'; E;)¢i(r') dr’

= E;¢i(r).
(4)

Here, veyt is the potential due to the ions and is called the
external potential (for the electrons). vy is the (classical)
Hartree potential that depends on the electron density:
vu(r) = [n(r')/|r — 1’| dr’. Both sides of Eq. (4) depend
on the quasiparticle energy F;.

We note that the first three terms on the left-hand side
of Eq. (4) is local and the last term on the left-hand side
of Eq. (4) is non-local in r. One can, nevertheless, define
an orbital-dependent effective potential phenomenologi-

cally based on the non-local term:

o (x)n(r) = / S B)g(e)dr. (5)

Based on these relationships and the model W at the
interface, I71b concluded that the asymptotic behavior of
v*f should recover the classical image potential —e?/(4z2).
Remarkably, because the image potential results from the
non-locality of W even at a very large distance from the
interface, once the non-locality is built into W, the image
potential asymptote follows naturally.

The W at the metal-semiconductor interface has rich
pole structures that are responsible for surface plasmons,
which are analyzed in 1723°. In particular, two types
of plasmons are identified: a metal-metal type that has
higher energy and a metal-dielectric type that has very
low long-wavelength energy, lying well within the gap of
the semiconductor. The latter was believed to be impor-
tant in tunneling experiments.

Similar calculations of the jellium model for metal sur-
faces include Refs. 38-43. Beyond the jellium model
where the atomistic details of the metal nuclei are miss-
ing, first-principles calculations using pseudopotentials
started emerging in the 1980s and early 1990s, including
Refs. 44-52, many of which studied the response of metal
surfaces to external electric fields and charges. Here, we
provide a brief account of the results from Ref. 52, rep-
resentative of contemporary works of that time.

FIG. 2. The electrostatic potential in the direction perpen-
dicular to a semi-infinite metal with an applied electric field.
The screening charge density is non-zero only in the region
between z4 and zp. Deep in the bulk of the metal (z < z4),
the potential is taken to be zero. Far out in the vacuum re-
gion (z > zgB), the potential has the form £(z — zo), where zg
is the position of the “electrical surface”. AV is the potential
step across the region where the screening charge density is
non-zero. Reproduced with permission from Ref. 52: S. C.
Lam and R. J. Needs, J. Phys.: Condens. Matter 5, 2101
(1993). Copyright 1993 IOP Publishing Ltd.

Using calculations based on the local density approxi-
mation (LDA), Lam and Needs®? studied the dependence
of the “electrical surface”, zg, as a function of the magni-
tude of the external field, &, for two surfaces: Al(111) and
Al(110). The authors first re-derived (based on differ-
ent but more heuristic arguments) the LK73 result that



zo, the center of mass of the screening charge density
as defined in Eq. (1), is also the point where the linear
potential of the external field appears to originate. A
schematic illustration of zy is shown in Fig. 2.

Ref. 52 fitted zp as a function of the external electric
field, &, into a linear form for Al(110) and a quadratic
form for Al(111). Importantly, LK73 defined zo with
respect to the “geometrical surface” z;,, with the latter
being the edge of the jellium and defined as 1/2d (d is the
inter-layer spacing) outside the top layer of atomic nuclei.
Here, Lam and Needs argued that zy should instead be
defined directly with respect to the outmost atomic layer,
such that one could consider the situation of fully relaxed
atomic layers. Compared to jellium, the atomic nuclei
pull zg inwards, and the screening charge density is stiffer,
in the sense that dzo/d€ is smaller than that calculated
using the jellium model.

B. Orbital dependence of the screened Coulomb
interaction: The gap renormalization

In addition to the spatial dependence of W as discussed
in I71b, 173 discussed the state dependence of the W and
the self-energy3%, by studying metal-semiconductor inter-
faces. To do that, Green’s functions are needed and the
author used the bulk Green’s functions up to the sur-
face and neglected any effects from the charge redistri-
bution upon the formation of the interface. A spherically
symmetric two-band model® for the wavefunctions was
employed. The goal was to analyze how the effective
potential defined in Eq. (5) depends on each band, in
particular, whether the band is occupied or unoccupied
(note that there are only two bands in the model). The
motivation behind Eq. (5) is to describe the effect of
the non-local self-energy X(r,r’) using a local potential
v ().

The conclusion is that the correlation energy obeys
the classical image-potential value divided by the clas-
sical dielectric constant and uniformly applies to every
band, both occupied and unoccupied: v. = —e?/(4z¢p),
while the screened exchange energy is twice the image
potential and of opposite sign and applies only to the oc-
cupied band: vg = +€2/(2z¢p). The net result is that
the occupied band energy is shifted up compared to the
unoccupied band, leading to a decrease in the fundamen-
tal gap upon formation of the interface, known as the gap
renormalization.

Although Inkson’s work in 1973 laid the foundation for
understanding the orbital energy and gap renormaliza-
tion at an interface using model G and model W, it was
not until the early 2000s that such effects are explicitly
elucidated based on the first-principles GW approach.
With advancements in first-principles methodologies and
high-performance computing, Neaton, Hybertsen, and
Louie®® studied the renormalization of molecular levels
at a weakly coupled molecule-metal interface, benzene
adsorbed on graphite (0001) surface. This work verified

the basic conclusions of 173 using first-principles GW,
i.e., the energy level shifts and gap renormalizations due
to the metal surface polarization, as schematically illus-
trated in Fig. 3.
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FIG. 3. Schematic energy level diagram at a weakly cou-
pled molecule-metal interface. Blue lines show the molecular
orbital energy and gap renormalizations. Pj, (P.) is the sur-
face polarization energy for occupied (unoccupied) molecular
orbitals, which is approximated by the image-charge model.
Reproduced with permission from Ref. 54: J. B. Neaton, M.
S. Hybertsen, and S. G. Louie, Phys. Rev. Lett. 97, 216405
(2006). Copyright 2006 American Physical Society.

More importantly, Ref. 54 proposed a simple “image-
charge model” that corrects the quantitatively inaccu-
rate KS energy level alignments from local and semi-local
functionals. The basic idea is to attribute the molecular
energy level renormalization to the combined effect of
the changes in the screened exchange and Coulomb-hole
correlation upon adsorption, which altogether is also re-
ferred to as surface polarization in Ref. 54. In certain lim-
its, this surface polarization could be well approximated
by a classical image-charge interaction between a point
charge (or a collection of point charges) placed on the
molecule and the induced image charge(s) in the metal
slab. Then, an approximation is made such that all oc-
cupied (unoccupied) molecular levels are shifted upward
(downward) by the amount of surface polarization, com-
pared to gas-phase quasiparticle orbital energies (note
that the latter are not gas-phase KS orbital energies),
shown as P, (P.) in Fig. 3. This idea led to the de-
velopment of the so-called “DFT+3” approach, which
has been particularly successful in quantitative predic-
tions of transport properties in molecular junctions®6.
In the original version, the image-plane position is de-
fined according to Ref. 52, based on the response of a
metal surface to an external electric field3'. Alterna-
tively, the image-plane position can be defined by match-
ing the long-range asymptote of the XC potential (see
Sec. IIIB for details) to an image potential®”-58.

Apart from first-principles studies, Thygesen and Ru-
bio explained the same physics using site-model Hamilto-
nians in Ref. 59. This work focused on qualitative trends



under different binding and interaction strengths, which
are easily tunable by changing parameters in the model
Hamiltonian. The Hamiltonian consists of three parts,
H = Hpyeta1 + Himol + V, describing the metal surface as
a semi-infinite tight-binding chain, the molecule as an in-
teracting two-level system (“H” for HOMO and “L” for
LUMO), and the interactions between the metal and the
molecule:

0
I:Imetal = Z Z t (ngcifl,a + CI_l_’ch.O') ) (6)

i=—o0 o="1,]
Hunor = x4 (€ + Do) iz, + Ul (7)

V =
v=H,Lo=1|

thyb <CI)(;CV0 + ClgCOa> + Uext(sﬁoéﬁmol'

(3)
The meanings of most symbols in these equations should
be self-explanatory. In Eq. (7), Ag is the HOMO-LUMO
gap of the molecule, and Umol = UoﬁHTTALHi—FUoﬁLTTALLi—F
Ugrnupnyg. Notably, the interaction between the metal
and the molecule V' consists of two terms. The first
term is a one-body interaction, in the form of a stan-
dard hopping tnyp between the two molecular sites and
the end site (“0”) of the tight-binding chain that models
the metal. The second term is a many-body interaction,
in the form of an inter-site Uexy (note that this is con-
ceptually different from the on-site Hubbard U), where
0o = (g — 1) and 07imel = (Amol — 2) is the deviation of
charge from the ground state on the end-site of the chain
and the molecule, respectively. It is this inter-site Ugyy
term that distinguishes this Hamiltonian from the Ander-
son model®® (which has an on-site U) and other models
alike. It is also this inter-site Ueyy term that gives rise to
the surface polarization or screening that is responsible
for molecular energy level renormalizations.

Based on this model, Ref. 59 studied molecular level
renormalization as a function of U, Ao, and t using
different approaches, including total energy difference,
Hartree-Fock, GW, and “exact” KS DFT. The latter is
defined as a constructed KS potential via reverse engi-
neering to reproduce the GW occupation. It is inter-
esting - and encouraging in a certain sense - to see that
although not quantitative, the “exact” KS DFT is able
to qualitatively capture the trend in energy level renor-
malization. This model is further generalized to describe
a semiconducting substrate®! and to adopt other forms

of the molecular Hamiltonian%?.

Il. EARLY EXAMINATIONS OF SURFACES FROM
DFT PERSPECTIVES

Before first-principles calculations of nanoscale hetero-
geneous interfaces (or even metal and semiconductor sur-
faces) were possible, early works in the DFT community

focused on jellium models to understand the origin of the
image charge and the image potential at metal surfaces,
as well as their relationships with the XC hole and the
XC potential.

A. Exchange-correlation hole at a metal surface

For completeness, we first briefly provide necessary def-
initions and explanations of the concept of the XC hole,
to facilitate the review of studies of this quantity at a
metal surface.

The pair density is defined as the probability density
of finding an electron of spin ¢ within volume element dr
and a second electron of spin ¢’ within volume element
dr':

P(x,2") = N(N—l)/|‘ll(x,x’,x3,~-~ o))’ das - day,
(9)

where x = (r, o) is the spin-coordinate and N is the total
electron number. P(z,z’) is also known as the diagonal
second-order density matrix and is a symmetric function
of x and z’. One can also define the conditional proba-
bility

(10)

where n(z) is the electron density. Q(z,z’) is then the
probability density of finding any electron of spin o’
within volume element dr’, if there is already an elec-
tron of spin ¢ within volume element dr. The XC hole is
defined as

hxc(,2') = Qw,a’) - na’) = —n(a'). (1)
In other words, the XC hole is the change in the condi-

tional probability compared to the uncorrelated system.
Alternatively, one can define the pair-correlation function

Pz, z')

n(x)n(z’) (12)

g(a:, xl) -
that contains the same information as the hole. It is easy
to see that hxc(z,z')/n(z') = g(z,2') — 1.

The exchange hole arises from the KS orbitals and can
be expressed as:

hx(z,2') = —w (13)

Here, I'y(z,2") is the KS density matrix and is diagonal
in spin:

No

07 (o) = TS0, r) = 3 65, 0 (). (14)

i=1

So hx(x,z’) is diagonal in spin and is negative every-
where. The on-top exchange hole, i.e., setting 2’ — =z,



is the negative of the electron density: hx(z,2’ — z) =
—n(x). The difference between hxc(z,z’) and hx(x,2’)
is the correlation hole h¢(x, z').

Both the hxc(z,2’) and hx(x,2") normalize to —1:

/hxc(x,z’) dx’ = —1; /hx(x,x’) dr’ = -1, (15)

such that hc(z, z’) normalizes to 0:

/hc(x,m’) dx’ = 0. (16)

Lastly, the XC energy is the Coulomb interaction be-
tween the electron density and the XC hole:

// rl hXC r17r2) dI‘ldI'Q. (17)

Exc[n
[y — 1y

Therefore, any approximation to the XC hole is formally
associated with an approximation to Exc[n].

The study of the exchange-only hole (also known as the
exchange charge density in the old literature) of jellium
can be dated back to Bardeen®? and Juretschke®*, before
the formal development of DFT. Based on the infinite-
barrier model of the metal surface, the exchange hole
was originally believed to be localized near the metal
surface when the reference electron moves away from
the surface. Together with the information about the
XC hole obtained from the random-phase approximation
(RPA)% using single-particle orbitals from the infinite-
barrier model, the image potential was believed to be a
result of both the exchange and the correlation holes.

This understanding was challenged by the works of
Sahni and co-authors® %8, The authors first showed that
the previously used infinite-barrier model for the jellium
leads to a surface-localized exchange hole. Rather, the
authors considered a linear-potential model for the metal
surface (under a certain limit, it is reduced to the infinite-
barrier model) in Refs. 66,67 and further extended the
study to the step-potential model®®. The authors con-
cluded that using these models, as the reference electron
moves away from the surface, the exchange hole is not
only left behind, but also becomes wider rather than nar-
rower (as predicted by the infinite-barrier model) along
the direction of the surface normal. Furthermore, the ex-
change hole spreads in directions parallel to the surface.
As a result, the exchange hole “takes the shape of equally
spaced disks” 8.

The details can be seen in Fig. 4, where the plane-
averaged exchange hole hx (y,y’) is plotted as a function
of /', for different choices of the positions of the reference
electron y. In the asymptotic limit, the exchange hole
will be delocalized throughout the crystal, not only over
its entire length (perpendicular to the surface), but also
over its entire width (parallel to the surface). Crucially,
since the XC hole is localized at the surface, the authors
conjectured that the correlation hole, which normalizes
to 0 according to Eq. (16), must add constructively to
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FIG. 4. The plane-averaged exchange hole hx (y,y’) at a sur-
face. ¢ is the direction of the surface normal. The up ar-
row indicates the position of the reference electron and the
dashed line indicates the jellium edge. From (a) to (f), the
reference electron moves from the interior [(a)] to the surface
[(b)] and away from the surface [(c) to (f)]. One can see that
the height of the main peak diminishes and the weights of
smaller peaks increase as the reference electron moves away
from the surface, indicating that the exchange hole becomes
more delocalized and eventually spread over the entire crys-
tal. Reproduced and adapted with permission from Ref. 66:
V. Sahni and K.-P. Bohnen, Phys. Rev. B 29, 1045 (1984).
Copyright 1984 American Physical Society.

the exchange hole for a deeper XC hole near the surface
and cancel out the exchange hole deep in the bulk.

The evolution of the XC hole hxc(r, r’) as the reference
electron r moves through a metal surface is schematically
summarized in Ref. 69 and the result is reproduced in Fig.
5. Here, the solid circle represents the electron, and one
considers how the shape of the XC hole (shaded area)
evolves when the electron moves from inside the metal
to the image plane and then to the outside of the metal.
Inside the metal [(a)(d)], the XC hole is localized near
the electron. The electron and the hole start to separate
when the reference electron is at the image-plane posi-
tion. When the reference electron is outside the metal
surface, the hole stays near the surface within the metal
but spreads laterally. Note that this figure contains the
full XC hole, as compared to the exchange-only hole in
Fig. 4.

In addition to various jellium models for the metal sur-
face where the single-particle orbitals can be obtained an-
alytically, more sophisticated approaches have been used
to analyze the pair correlation function g(r,r’) and the
XC hole. Ref. 70 performed diffusion Monte Carlo cal-
culations of g(r,r’) for the jellium surface of different
rs. Diffusion and variational quantum Monte Carlo ap-
proaches have proved to be useful in computing the XC
holes in molecules” and bulk solids”>73. Ref. 74 used the
weighted density approximation (WDA)™ to study the
jellium surface, focusing on both g(r,r’) and the XC hole,



FIG. 5. (a)-(c) Schematic representation of the XC hole shape
for different electron positions (solid circle). The solid line
marks the end of the electron density and the dashed line
marks the image plane, where electron-hole separation begins.
Before separation, the hole follows the electron, and after the
separation, it remains on the image plane and spreads later-
ally. (d)-(f) Schematic electron density profile at the surface,
and hole density profiles, showing the same effect. Repro-
duced with permission from Ref. 69: P. A. Serena, J. M.
Soler, and N. Garcia, Phys. Rev. B 34, 6767 (1986). Copy-
right 1986 American Physical Society.

where the results of Ref. 69 shown in Fig. 5 for the XC
hole are verified (i.e., the hole is left behind when the ref-
erence electron is moved outside the surface). The WDA
has also been used in Ref. 76. Notably, Ref. 76 not only
verified the previous results on jellium, but also applied
the approach to the Cu(100) surface where the atomistic
details of the surface were considered. The XC holes are
analyzed for different vertical planes through the atop,
hollow, and bridge sites, respectively. Although the re-
sults are qualitatively similar to previous results, this
work did not show a complete separation between the
reference electron and the XC hole for the Cu(100) sur-
face (although it did so for the jellium surface), perhaps
due to the fact that the reference electron was placed not
too far from the Cu(100) surface.

Lastly, the XC hole could be computed from the
density-response function, via’”

gr, vy =14 —— [—1 / dE x(r,r';iF)
T Jo (18)

—n(r)d(r — r')} ,

where x is the coupling-constant-averaged retarded
density-response function. One can then use, e.g., DFT-
based RPA to compute the x and then the XC hole
afterward. This is the approach taken by Refs. 77,78.
The advantage of this approach is that one can build in
self-consistency %80 and use different approximations for
x"8, compared to the pre-1990 calculations using single-
particle orbitals. The results of Refs. 77,78 for the XC
hole once again confirmed the qualitative results in the
1980s shown in Fig. 5. The results of Ref. 78 are repro-
duced in Fig. 6, where contour plots of the XC hole are
generated (very similar results were presented in Ref. 77).

Additionally, Ref. 78 analyzed the on-top correlation hole
and concluded that it is accurately described by local and
semi-local density-functional approximations. However,
Ref. 78 showed that the exchange-only hole is also local-
ized near the surface, which is contradictory to the results
of Refs. 66,67. It is not entirely clear whether the vanish-
ing density assumption (used in Ref. 78 and intentionally
avoided in Refs. 66,67) and/or the self-consistency in the
calculations led to this contradiction.
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FIG. 6. Contour plots of the XC hole hxc(ry, 2, 2). From (a)
to (d), the reference electron 2’ moves from inside the jellium
to far outside the surface in the vacuum. The bulk parameter
is 75 = 2.07 and the jellium surface is at z = 0. 7| = £|r) 1]
and A\p = 27/kp is the bulk Fermi wavelength. Reproduced
and adapted with permission from Ref. 78: L. A. Constantin
and J. M. Pitarke, J. Chem. Theory Comput. 5, 895 (2009).
Copyright 2009 American Chemical Society.

B. Exchange-correlation potential at a metal surface

In the KS formulation of DFT, the XC potential vy.(r)
is a local, multiplicative potential that is part of the KS
Hamiltonian and applies to every KS orbital. The KS
equation reads:

Hv? T et () + vr(r) + vre(r) | bi(r) = Bii(r).

(19)
Note that there is a fundamental difference between the
Uxe(r) in Eq. (19) and the effective orbital-dependent
potential defined in Eq. (5). The vy (r) is defined as
the functional derivative of the XC energy: vy (r) =
dExc[n(r)]/on(r).

Different approaches have been taken to analyze the
asymptotic behavior of the vy.(z) near a metal surface,
where z is the direction perpendicular to the surface. We
review three different perspectives below.

The first perspective is through the analysis of the so-



called Sham-Schliiter equation'?:

[ty [ 2 Gute )60 i) -
v

/dr1/drg/g—:Go(nrl;w)Exc(rl,rg;w)G(r27r;w).
(20)

In this equation, G is the KS Green’s function, G is the
fully dressed one-particle Green’s function, and Y. is the
self-energy X less the Hartree term.

Based on Eq. (20) and the infinite-barrier model of
the metal surface, Sham®!, citing the work of Rudnick®?,
pointed out that

2
[ = 02 ) =~ Sl (21)

Here, p is the chemical potential representing the high-
est occupied state that decays the slowest as z — oo.
Note that comparing Eq. (21) and Eq. (5) reveals that
the effective potential decays as —1/(4z), consistent with
LK733!. From a term-by-term examination of the ¥,
Ref. 81 concluded that the vy yields a 1/2% behavior as
z — 00, so it is the v, that is responsible for the overall
1/z behavior.

Under the same theoretical framework, Ref. 83 investi-
gated the resulting XC potential from Eq. (20) for a jel-
lium surface and the Al(100) surface. Ref. 83 compared
the vy derived from Eq. (20) where ¥4 is from a GW
calculation of a jellium slab and the LDA vy.. For the
latter, Ref. 83 used the definition vy, = ¥yc(k = kp; E =
Er) with ¥y, taken from the GW self-energy for the bulk
jellium (rather than jellium slab). The authors of Ref. 83
noted that this definition of LDA vy, numerically differs
from the “standard” Ceperley-Alder formulation®* by a
small amount. Notably, the vy, derived from Eq. (20)
becomes image-like outside the surface, while the LDA
vy decays much faster as z — oo.

Furthermore, Ref. 83 separated the exchange and cor-
relation contributions, by computing vy from Xyp and
v from Y. = Ygw — Xpr. The result is reproduced
in Fig. 7. The authors showed that v,(2) — —a/2? as
2z — 00, consistent with Sham®!'. Here, the coefficient a
gives rise to the exchange contribution to the image-plane
position zg [recall the image potential is —e?/4(z — 29)].
The authors concluded that the position of the image
plane includes a significant contribution from the ex-
change, because the full vy.(z) merges with the image
potential much closer to the surface than v.(z) does, see
Fig. 7. Numerically, Ref. 83 showed that one can define
the image-plane position by matching the asymptotic be-
havior of the vy.(z) with an image potential, and the re-
sulted zg is closer to the jellium surface than the value
computed from the linear response of the surface to an
external electric field®:°2. Note that this conclusion is
different from that in Ref. 69.

Moreover, Ref. 83 constructed a point-by-point tabu-
lation between the vy, derived from Eq. (20) and the
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FIG. 7. Solution of Eq. (20) for the XC potential using three
approximations to the self-energy: Yur (Hartree-Fock), Xaw
(the GW approximation), and 3. (which is ¥gw — Xur).
Reproduced with permission from Ref. 83: A. G. Eguiluz, M.
Heinrichsmeier, A. Fleszar, and W. Hanke, Phys. Rev. Lett.
68, 1359 (1992). Copyright 1992 American Physical Society.

density n, denoted by vye(rs;n'/?), where the 1/3-order
in n is to ensure the correct density scaling. Effectively,
one can carry out non-local calculations using this func-
tional with the same ease as standard LDA calculations.
The authors applied this numerically defined vy, to the
Al1(100) surface, and successfully produced the Rydberg
series of image states.

A related but fundamentally different piece of work is
Ref. 85, which performed GW calculations of the A1(111)
surface. Unlike Ref. 83 that studies the exact vy (r) from
Eq. (20), Ref. 85 analyzed the effective orbital-dependent
potential defined in Eq. (5). The authors reached a
similar conclusion as those of Ref. 83: the ¢ crosses
smoothly to the asymptotic image potential, and the zq
defined in this way is closer to the surface than that de-
fined from linear-response calculations using an external
test charge3!143:52 This conclusion is consistent with Ref.
86. Moreover, Ref. 85 studied the exchange part of the
vfﬂ for unoccupied orbitals and concluded that it decays
exponentially into the vacuum and it is the correlation
that is responsible to describe the image potential felt by
occupied states.

The second perspective in the literature to analyze
the asymptotic behavior of the vy.(z) near a surface
was proposed by Almbladh and von Barth®’. The au-
thors approached the problem based on the decay of
one-electron orbitals, density matrix, and spectral func-
tion in the asymptotic region. The authors concluded
that for the exact DFT to reproduce the density profile,
Uxe(r) ~ a(r,r)/2 as z — oo, where a(r,r) is the diago-
nal element of the polarizability, and

for a metal surface;

_1
a(r,r) ~ { 2j€0_1

— for a semiconductor surface
2z eg+1 ?

(22)
with €y being the macroscopic dielectric constant of the
semiconductor. It is then straightforward to see that the
Uxc(r) assumes the image potential form as z — oo for a



metal surface, and the form is revised for a semiconductor
surface. Note that Ref. 87 did not separate exchange and
correlation contributions.

The third perspective in the literature to analyze the
asymptotic behavior of the vx.(z) near a metal surface
was proposed by Sahni and co-workers®® 90, Refs. 88,89
focused on numerical calculations of the jellium surface,
with an analytical study presented in Ref. 90. The key
idea is to recognize that the potential of the electron is
the work done in bringing it from infinity to its final
position against the electric field of the XC hole. Us-
ing the finite linear effective potential model for the jel-
lium surface, Ref. 89 showed that the exact exchange
potential decays as —1/(4z), consistent with the classi-
cal picture of the image potential being a consequence of
the Coulomb interaction between a test charge and its
image®!. As a result, according to Sahni and co-workers,
although the exchange hole does not constitute part of
the image charge at the semi-infinite jellium surface (re-
call that it is delocalized over the crystal®®), work done
against this delocalized exchange hole - which is the exact
exchange potential - corresponds to the image potential
asymptotically outside a jellium surface®®. Additionally,
Ref. 89 showed that the Slater potential®! is also image-
potential-like, but with a different coefficient.

Notably, there is controversy between Refs. 81,83 and
Refs. 88-90 regarding the asymptotic behavior of the ex-
act exchange potential as well as the physical origin of the
image potential. Ref. 85 pointed out that the former per-
spective dealt with slab geometries, where the exchange
potential goes as —1/z2, while the latter perspective dealt
with semi-infinite jellium, where the exchange is respon-
sible for the image-potential.

The difference between a jellium slab with finite width
and a semi-infinite jellium surface was further discussed
in subsequent works in the field. Ref. 92 performed nu-
merical calculations within the framework of the opti-
mized effective potential for a jellium slab with finite
width, and Ref. 93 performed similar calculations for a
semi-infinite jellium surface. Based on the findings in
these works, as z — oo, the KS exact exchange potential
vx(2) has form

vx(z) = { —% In (az)
(23)

Here, a represents a coeflicient that depends on the av-
erage electron density of the metal.

Related to the semi-infinite jellium surface, a rigorous
formulation for the inhomogeneity is the edge electron
gas?®, with the simplest model being the Airy gas, i.e.,
an effective linear potential —Fz (F' > 0) for z < L and
infinite potential for z > L. This model has been proved
useful in the construction of XC functionals beyond local
and semilocal approximations®®?® with correct surface
asymptotics®7.

Lastly, we note in passing that the v, discussed here in
Sec. III B is the exact exchange potential, rather than the

for a jellium slab with finite width;

for a semi-infinite jellium surface.
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screened exchange potential vy, mentioned in 173%¢ and
similar works that we discussed in Sec. II B. The former
is defined within the DFT framework while the latter is
a concept originating from the MBPT framework. The
difference between them is a form of correlation®®99.

IV. MODERN DEVELOPMENTS OF DENSITY
FUNCTIONALS FOR INTERFACES

We discuss two types of density functionals developed
in recent years, namely the dielectric-dependent hybrid
and the local hybrid functionals, which are designed to
improve the description of the electronic structure at het-
erogeneous interfaces compared to conventional local and
semilocal functionals. We will also see that some func-
tionals possess features of both categories.

In a certain sense, the issue of interfacial energy level
alignment and the famous “gap problem” in DFT® 10
share the same origin: both are properties of quasiparti-
cle energy levels and problems arise when one intends to
approximate these energy levels using eigenvalues from
the KS equation. In light of the success of hybrid func-
tionals - or more generally, the generalized Kohn-Sham
(GKS) scheme!®? - in tackling the “gap problem”, most
modern density functionals targeting accurate interfacial
energy level alignments are hybrid. Needless to say, this
Review is not intended to be a comprehensive narrative of
the “gap problem” and its solutions, for which many ex-
cellent review articles and accounts exist!'61017103 Here,
we merely list the core concepts of hybrid functionals for
completeness to facilitate our discussion below.

Introduced by Becke in 1993'%4, hybrid functionals mix
a fraction of non-local Fock exchange into the XC energy.
The simplest form is

By = aE + (1- )Ed[] + B[], (24)

where Eg* is the non-local Hartree-Fock exchange energy
that explicitly depends on orbitals, F5'[n] and E3![n] are
the semi-local approximation to the exchange and corre-
lation, respectively, which explicitly depend on the den-
sity. « is the mixing parameter that is between 0 and

Apart from this simplest form, the idea of range sep-
aration has led to success in a variety of systems. In
range-separated hybrid (RSH) functionals?®:105:106 " the
Coulomb interaction is separated into long-range and
short-range components'®” 119 A general form for the
range separation used in most RSH functionals is

1 a+Berf(ylr —1'|)
r—r/| |r — 1|
25
Lot gatope v %
v —r'| '

Here, «, 8, and 7 are parameters (all between 0 and 1)
and erf(-) is the error function. In this form, the first
term is treated using the non-local Fock exchange that



involves orbitals, and the second term is treated using a
semi-local exchange that only involves the density. As a
result, the corresponding XC energy is

Exc = O‘Ei),(SR + (1 - OK)E)S({SR[W’] + (OL + B) )e(f(LR

1 : (26)

+(1—a-p5) ;I,LR[n] + E3[n).

Here, SR (LR) denotes the short-range (long-range) com-
ponent of the Coulomb interaction.

Hybrid functionals are most commonly implemented

in the so-called GKS scheme!®?, with the GKS equation

—%VQ + Vet (£) + vu(r) + O ¢s(r) = Eips(r), (27)

where the O is an operator that corresponds to the energy
expression of the hybrid functional. In general, part of O
can be a non-local XC operator, whose physical meaning
is clear by comparing Eq. (19) and Eq. (27). Typically,
the O is approximated by

O = vl (e x') + ol [n](r) + o [n](x),  (28)

where vl and vg! are the semilocal exchange and correla-
tion potential from KS DFT, respectively. The ynon—local
has the form of the non-local Fock operator:

,U)r:on—localqj)i(r) _ —Zqﬁj(r)/dr/ ¢;(r/)¢i(r/)@(|r—r’|).

(29)
In the case of a global hybrid functional in Eq. (24),
v(lr—1’|) in Eq. (29) will have the form of a/|r —1'|, i.e.,
bare Coulomb interaction scaled by the mixing parameter
a. v¥[n](r) will have the form of a standard semi-local
functional multiplied by 1—a. vS![n](r) is from a standard
semi-local functional. As a result, for a global hybrid
functional in Eq. (24), the O has form

0 = av(r,) + (1 — ol (0) + 2 n](x).  (30)

In the case of a RSH in Eq. (26), v(Jr—r’|) in Eq. (29)
will have the form of [« + Berf(y|r —1’|)]/|r — 1’|, i.e., the
first term in Eq. (25). v![n](r) will be a modified version
of the semi-local functional used where the exchange hole
is scaled!%® by the second term in Eq. (25). v'[n](r) is
from a standard semi-local functional. As a result, for a
RSH, the O has form

O =avy sy (r,v';7) 4 (a + B r(r, 5 y)
+ (1= a)dsg[nl(r;7) + (1 — a = B)odl g [n])(r;7)
+ ve[n](r),
(31)

where all exchange quantities parametrically depend on
v, the range-separation parameter.
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A. Dielectric-dependent hybrid functionals

In dielectric-dependent hybrid functionals, the param-
eters of a hybrid functional (especially the mixing pa-
rameter for the Fock exchange, among others) are ex-
pressed in terms of the dielectric properties of the mate-
rial. There have been two main strategies in developing
dielectric-dependent functionals: (i) start with a model
dielectric function and then construct the corresponding
XC potential, and (ii) start with a fixed functional form
and then express the parameters in terms of the dielec-
tric properties. We discuss these two different strategies
below.

The idea of incorporating the dielectric function into a
density functional was first proposed by Shimazaki and
Asai'll, where the authors followed the first strategy
mentioned above. The authors proposed a model for the
dielectric function:

ek) =1+ {(es -t +a (ljziﬂ - . (32)

In this equation, €5 is the electronic part of the static
dielectric constant, o = 1.563 following Bechstedt!!?113,
k is the momentum, and krp is the Thomas-Fermi wave
number. This is a simplified version of the Bechstedt
model and behaves like the Thomas-Fermi model for
large k. The Fourier transform of Eq. (32) yields a
screened Coulomb interaction

1 47
SCr — k . k
3 (r) @ / e exp (ik - r)d
1 —k 11
:(1_>6XP(TFT>+ (33)
€s r €T
- (1 B 1> erfc(2kppr/3) NERY
€s r €T

Here, krp = (k2p/a)[1/(es—1)+1]. The resulting v (r)
contains a Yukawa-type potential in the second line of Eq.
(33), which is further replaced by the erfc(-) function for
computational simplicity in the third line of Eq. (33).

Substituting Eq. (33) as the v(Jr—1’|) in Eq. (29), one
can see that the result is a dielectric-dependent non-local
Fock exchange potential. It is then combined with a local
correlation potential''!, either the Vosko-Wilk-Nusair or
the Lee-Yang-Parr flavor, for a complete non-local XC
potential [the O in Eq. (27)]. This approach was applied
to compute the band structure of the diamond, yielding
a band gap that is very close to the experimental value.

In a subsequent work!'4, the authors further recog-
nized that when the screening length krp is large, the
nonlocal contribution in the first term of Eq. (33) be-
comes small. Therefore, it can be approximated using a
local potential, e.g., the Slater exchange®'. As a result,
the XC potential becomes

€s €s

1 1
Uxe(€s) = =0 + <1 - > pS1ter 4y (34)



If one compares this equation with Eqs. (28) and (24),
one recognizes the similarity: the non-local Fock ex-
change mixes with a semi-local exchange, with the mixing
fraction being 1/es, hence a dielectric-dependent hybrid
functional is constructed. A self-consistent procedure
was also developed in Ref. 114 to determine €5, which is
approximated using the fundamental gap from the GKS
calculation. This approach was applied to a large set of
materials''® to test its performance.

Besides starting from a model dielectric function and
then deriving the corresponding XC potential form, as
we mentioned above, an alternative strategy is to start
from a fixed XC functional form, say, the RSH functional
defined in Eqgs. (26) and (31), and then express the pa-
rameters (a, 3,7) in terms of the dielectric properties.

To this end, one naturally wonders if there is an opti-
mal way of determining (¢, 8,y). For finite systems, this
is possible thanks to Koopmans’ theorem: for an exact
functional, the energy of the HOMO is negative of the
ionization potential. This idea led to the development of
optimally tuned range-separated hybrid functional (OT-
RSH)!6. Here, « is chosen to be 0.25 as in the PBEO
functional (PBE=Perdew-Burke-Ernzerhof), a + 5 = 1
is used as a constraint to enforce the correct asymptotic
potential''”, as full Fock exchange in the long range has
proved to be essential for gap predictions of finite systems
such as molecules'®. 7 is tuned to minimize the differ-
ence between the HOMO energy computed from the RSH
functional and the ionization potential calculated from
the energy difference between the cation and the neutral
species, i.e., enforcing Koopmans’ theorem.

However, this idea faces two challenges for extended
or heterogeneous systems: (i) one cannot tune 7 based
on Koopmans’ theorem because Koopmans’ theorem is
trivially satisfied in the bulk limit (albeit with the wrong
slope for the total energy versus particle number)*8-120,
and (ii) the long-range Coulomb interaction is screened
by the dielectric environment of the extended material.
In Ref. 99, the OT-RSH was extended to molecular crys-
tals, with the above two challenges addressed as follows:
(i) the ~ is fixed to be that tuned for the constituting
molecule in its gas phase, and (ii) with « fixed to be
0.25 as in PBEO, « + 3 is chosen to be ¢! to reflect
the long-range dielectric screening, where € is the macro-
scopic dielectric constant of the molecular crystal. The
result is then a dielectric-dependent hybrid functional.

This idea was further generalized to treat heteroge-
neous interfaces formed between molecules and metal
surfaces in Ref. 121. To address the same two chal-
lenges as above, the 7 is fixed to be that tuned for the
molecular adsorbate, and « + [ is chosen to incorpo-
rate the dielectric screening effect from the metal sub-
strate. For the latter, one tunes 8 such that Egomo(a =
0.25, tuned 8) — Euomo(a + 8 = 1) is equivalent to the
surface polarization energy that is approximated by the
classical image-charge model®*°8. Here, Exomo(a+3 =
1) is simply the HOMO energy of the isolated molecule
predicted by the original formulation of OT-RSH'6.
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Enowmo(a = 0.25, tuned ) is also calculated for the gas-
phase molecule only (rather than for the molecular ad-
sorbate within the interface system), implicitly assuming
that a hybrid functional with a fixed set of parameters
does not lead to energy and gap renormalization after a
molecule is adsorbed on a metal substrate!22.

The essential idea is Ref. 121 is to focus on the elec-
tronic structure of the molecular adsorbate®®, and as-
sumes that the optimal set of («,,v) suitable for the
molecular adsorbate does not deteriorate the properties
of the metal substrate, which is typically well described
by a semi-local functional. An additional challenge ex-
ists if one tends to apply the same approach to interfaces
formed between a molecule and a semiconductor sub-
strate. Here, one needs to find a common set of (a, 3, 7)
that works for both components of the interface. This
is a non-trivial task and there is no a priori guaran-
tee that this is possible for an arbitrary combination of
molecular adsorbate and substrate. In Ref. 123, this was
accomplished via a multi-objective optimal tuning for a
series of (metallo)phthalocyanine molecules adsorbed on
two-dimensional (2D) MoS;. One first tunes the a + 3
against surface polarization energy (the same procedure
as Ref. 121), which is estimated by the classical image-
charge interaction near a dielectric slab with a finite size
along the surface normal'?*'25. Then, one tunes (a,7)
by minimizing the sum of the error in the band gap of
the freestanding MoSy and the surface polarization en-
ergy for the molecular adsorbate.

The relationship between the Fock exchange mixing
parameter and the dielectric constant of the material can
be formalized by comparing the hybrid functional and
the GW approximation. This is similar to the practice
of comparing Eq. (34) and Egs. (28) and (24) as done in
Ref. 114.

Ref. 126 first drew a heuristic connection between hy-
brid functionals and GW, where the authors noted that
if the screening in the screened-exchange (SEX) term
in GW is replaced by an effective static dielectric con-
stant €5, = 1/a (a is the mixing fraction of the Fock
exchange in a hybrid functional) and then the Coulomb-
hole (COH) term in GW is modeled by the static and
local parts of the hybrid functional, then the quasipar-
ticle equation has the same form as the GKS equation
for a hybrid functional. This idea was further explored
in Ref. 127, where self-consistent and non-self-consistent
hybrid calculations were carried out.

In a subsequent paper following Refs. 111,114 discussed
above, Shimazaki and Nakajima'?® compared the non-
local XC potential to the COHSEX approximation!'? of
GW, and devised a local correlation potential that also
depends on the dielectric function.

These ideas were further extensively formalized and
discussed in Ref. 129 by the Galli group. The authors



noted that if one approximates W (r,r’) as

W(r,r’):/dr”e_l(r,r”)v(r",r’)

—1
€

(35)

~
~

v(r, '),

where v(r,r') = 1/|r — 1’| is the Coulomb interaction,
then the SEX and COH terms of GW can be approxi-
mated as

occ.

Yspx(r,1r) = — Z ¢i(r)g; ()W (r,x")

occ.

e Y o) (o)

Q

Ycou(r,r') = —%6(1‘ —1')[v(r,r") — W(r,1")]

If one compares these two terms with the non-local
operator O of a global hybrid functional [Eq. (28)], one
recognizes that o = e for the non-local term. Then one
further approximates the Xcop as the local part of the
exchange and the local correlation. The approach was
made self-consistent by evaluating €., using the coupled
perturbed KS equations™?, where one considers the di-
electric response of the system subject to a macroscopic
electric field.

In a subsequent paper'3!, the dielectric-dependent hy-
brid functional was extended to a range-separated ver-
sion. Within the framework of RSH, Eq. (35) becomes

-1

W(r,r') ~ —2— 4 (0 —e))

erfe(y|r — r'|)
v —r'| '

|r — 1’| (38)

Then one compares this equation to the non-local oper-
ator O of an RSH [Eq. (31), note that the notation we
use is different from that used in Ref. 131] to determine
the parameters or express them in terms of the dielec-
tric function. Ref. 131 chooses the long-range fraction
a+ = e}, and the short-range fraction o = 0.25 as in
PBEO. The authors provided three means to determine
the range-separation parameter «, including one that fits
the long-range decay of the diagonal elements of the di-
electric matrix e (G, G’ = G), which can be computed
from first principles!32.

Both Refs. 129 and 131 targeted applications in bulk
materials. The method was then generalized to finite
systems'33 and heterogeneous interfaces'®*. For the lat-
ter, the mixing fraction for the Fock exchange depends
not only on the dielectric function (hence a dielectric-
dependent hybrid), but also on the spatial variable r.
Therefore, it can also be considered as a local hybrid
functional, which we reserve for Sec. IV B below.

Although most applications of dielectric-dependent
hybrid functionals [those with the form of Eq. (34)
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or similar] are for extended bulk systems!3>14! there
are notable applications in heterogeneous systems, in-
cluding defects'2, 2D or layered materials,'3144 and
surfaces/interfaces'4> 148, Ref. 143 analyzed 24 bulk
metal oxides and 24 quasi-2D semiconductors, and con-
cluded that layered materials benefit from the use of
dielectric-dependent hybrid functionals more than 3D ex-
tended bulk systems. The findings are shown in Fig. 8,
where one can see that the dielectric-dependent hybrid
functional (the red circles and line) leads to the best
agreement with experiments. Ref. 145 self-consistently
determined the range-separation parameter « from the
surface polarizability tensor and found excellent agree-
ment in band-edge energies of NaCl(100) surface com-
pared to GW results. Refs. 146-148 studied the band
alignment of wide-gap semiconductors using dielectric-
dependent functionals and found good agreement with
MBPT or experimental measurements. Lastly, Refs.
127,141,146 pointed out that non-self-consistent applica-
tions of the dielectric-dependent hybrid functionals lead
to acceptable results compared to self-consistent calcula-
tions, which enables high-throughput screening of mate-
rials.
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FIG. 8. Correlations between computed and measured band
gaps for the series of 24 quasi-2D materials. The best perfor-
mance is obtained for the dielectric-dependent hybrid func-
tional (the red circles and line). Reproduced with permission
from Ref. 143: T. Das, G. Di Liberto, S. Tosoni, and G. Pac-
chioni, J. Chem. Theory Comput. 15,6294 (2019). Copyright
2019 American Chemical Society.

Apart from the interfacial electronic structure of band
alignment, we briefly discuss how dielectric-dependent
hybrid functionals can be used to predict optical proper-
ties. It has been shown that with Fock exchange mixing
parameters chosen based on the dielectric function, the
resulting hybrid functionals could lead to quantitative
agreements with experiments in optical absorption spec-
tra and capturing exciton effects for bulk solids'4? 15!, It



is, however, yet to be seen how such functionals perform
for the optical properties of heterogeneous systems, such
as surfaces and interfaces.

B. Local hybrid functionals

The concept of local hybrid functional was first dis-
cussed in Ref. 152 and was first realized in Ref. 153. The
essential idea is to generalize Eq. (24) by introducing
spatial dependent mixing parameters:

E.. = /d3r n(r) [a(r)ei"(r) + (1 —a(r))

(39)
where eX, €5l and el are exact-exchange energy den-
sity, semi-local exchange energy density, and correlation
energy density, respectively. In other words, EJ* =
[ d®rn(r)e(r). Similar relationships hold for ES and
B3

Eq. (39) provides additional flexibility than Eq. (24),
due to the spatial dependence of a(r). However, the ef-
forts in designing a suitable a(r) and making such func-
tionals practically feasible are highly non-trivial, since
the exchange integral in Eq. (29) becomes non-standard
due to the spatial dependence of a(r). Furthermore, the
issue of gauge problem'®* arises: unlike exchange ener-
gies, the exchange-energy densities are not unambigu-
ously defined, because one can add another function that
integrates to zero to any energy density without affect-
ing the integrated energy. Despite these fundamental and
practical challenges, there has been considerable progress
made in local hybrid functionals'®®>1%9 including range-
separated ones'%0-162 with position-dependent range sep-
aration function!63164. Ref. 165 provides an excellent
review of local hybrid functionals.

Most local hybrid functionals focused on improving the
thermodynamic properties. As far as interfacial quasi-
particle properties are concerned, we discuss two repre-
sentative works below, Ref. 166 and Ref. 134. The latter
can also be considered as a dielectric-dependent func-
tional as we briefly mentioned above.

From the discussion in Sec. IV A, it is apparent that
the local mixing parameter a(r) in Eq. (39) must be asso-
ciated with the dielectric properties in some way, even if it
is not explicitly expressed in terms of the dielectric func-
tion. Ref. 167 is an early attempt to introduce a position-
dependent dielectric function. Building upon Ref. 128
and Eq. (33), the dielectric constant e is partitioned into
atomic contributions and is determined self-consistently.
As a result, the vy is defined in terms of atomic orbital
basis functions, which depends on the average of dielec-
tric constants of atom A and B, eap = (€4 + €5)/2.
A similar idea was presented in Ref. 168 (although not
in the DFT context), where density response functions
(polarizabilities) are modeled for each atom, either with
metallic response or non-metallic response. The dielec-
tric function of the whole system is then related to the
sum of all atomic density response functions.

ex(r) +ed(r)],

14

Beyond the partition of dielectric function into atomic
contributions, Ref. 126 proposed an estimator g, which is
an averaged value of the “local estimator” over the unit

cell:
I T R [ 2]
N chell /ccll d TL(I‘) . (40)

The quantity |Vn|/n is commonly used as a descriptor for
the “local gap” in meta-GGAs (GGA=generalized gradi-
ent approximation) such as the one proposed by Tran
and Blaha, known as TB09'6%, as well as in other lo-
cal hybrids'®3. Via the integration over the unit cell, g
represents a global estimator of the band gap. Ref. 126
performed a fitting of the Fock exchange mixing parame-
ter a in Eq. (24) in terms of g. Furthermore, the authors
proposed a local form of g, a convolution of g in Eq. (40)
with a Gaussian of variance o:
r—uw

Vn
g(r;o) = 27T0_2 ICIeys) / \/ |
(41)

The authors noted that the o should be large enough to
allow for a proper estimation of the dielectric properties,
but small enough to sample only the “local” environment.
Ref. 126 did not proceed to develop a local hybrid func-
tional based on Eq. (41), and only mentioned that it will
be more meaningful to use Eq. (41) than Eq. (40) for
non-bulk systems.

Building on top of these preliminary ideas, Ref. 166
proposed a local hybrid functional of the form

=g ff
+/am>m—anw J) + e )

j(r) i (')

(42)

Comparing this equation with the general form of local
hybrid functionals in Eq. (39), one finds that the mixing
parameter is deliberately chosen to be a(r, r’) rather than
simply a(r). We will see below that this choice greatly
simplifies the implementation in plane-wave-based pack-
ages. In Ref. 166, a(r,r’') was further made symmetric
and separable

a(r,r’) = a(r)a(r’). (43)
The local mixing function a(r;o) is then expressed in
terms of g(r;0): a(r;o) = a1 +az[g(r; o)™, where a; and
as are parameters inherited from Ref. 126, and m = 1
for a PBEO form of the hybrid functional and m = 4
for an HSE (HSE=Heyd-Scuseria-Ernzerhof) form of the
hybrid functional. In the case of the latter, |[r —r’| in Eq.
(42) needs to be replaced by the corresponding screened
Coulomb interaction [c.f. the discussion of Eq. (29) and
thereafter].
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FIG. 9. Upper panel: planar averaged mixing parameter
@y (z;0). Middle panel: Profile view of the Si/SiO2 struc-
ture. Si atoms are blue and O atoms are red. Lower panel:
band profiles of the CBM and VBM. The calculations are
performed with the HSE-based local hybrid functional using
different values of 0. Reproduced with permission from Ref.
166: P. Borlido, M. A. L. Marques, and S. Botti, J. Chem.
Theory Comput. 14, 939 (2018). Copyright 2018 American
Chemical Society.

A few discussions of this functional are in order. First,
Ref. 166 neglected the gauge freedom'® for the exchange
energy densities. Second, the derivatives of a(r,r’) with
respect to n(r) and Vn(r) are neglected in the functional
derivative § Ey./én(r). This is equivalent to the approx-
imation that the mixing parameter a(r,r’) is applied di-
rectly to the nonlocal Fock potential. The consequence is
that the XC potential is not a functional derivative of the
XC energy. Both approximations are partially justified
since the focus of Ref. 166 is interfacial electronic struc-
ture rather than thermochemistry. Third, for a surface
(i.e., an interface with the vacuum), the ¢ — 1 limit is
not correctly recovered.

Practically, neglecting the derivatives of a(r,r’) with
respect to n(r) and Vn(r) enables easy implementa-
tion and efficient calculations. Using a plane-wave ba-
sis, the exact exchange is typically computed'”® by
a fast Fourier transform of the auxiliary codensities
pij(r) = ¢¥(r)¢,(r). The separable form of a(r,r’) in
Eq. (43) simply alters the form of the codensities such
that y/a(r; o) is absorbed into p;;(r). The computational
cost is therefore similar to that of a standard hybrid func-
tional.
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Ref. 166 performed test calculations on a few het-
erogeneous interfaces formed between two semiconduc-
tors, Si/SiO2, GaP/Si, AIP/GaP, and AlAs/GaAs. The
results are typically on par with GoWy, with 0.1-0.2
eV difference in the VBM or CBM band offset. Fig.
9 shows the planar average of the mixing parameter
Qzy(z;0) = A7 [dzdya(r,r;o), where A is the unit
area, for the Si/SiOg interface. One can see that the
mixing parameter clearly depends on the position, i.e.,
different for the Si side and for the SiOy side, which is
the unique strength of a local hybrid functional.

Following the same strategy of Ref. 166, Ref. 134 pro-
posed another version of a(r,r’) to be used in Eq. (42):

a(r,r') = ——, (44)

where €(r) is the local dielectric function. Comparing this
equation to Eq. (43), one realizes that Eq. (44) is mo-
tivated by the argument that the Fock exchange mixing
parameter « in a global hybrid functional can be approx-
imated by e7! [c.f. Egs. (36) and (37) and discussions
therein]. The resulting functional is then a dielectric-
dependent local hybrid functional. Ref. 134 further pro-
posed a self-consistent scheme in determining e(r) based
on the finite-field approach. This is achieved by defin-
ing a spatial dependent polarization P(r), which can be
computed from the shift of the centers of the Wannier
functions of the unperturbed system when an external
electric field is applied!™. The €(r) is then computed
from P(r), completing the self-consistent loop.

Fig. 10 shows the performance of the dielectric-
dependent local hybrid functional proposed in Ref. 134.
Similar to Fig. 9 reproduced from Ref. 166, the xy-
averaged dielectric function €(z) depends on the spatial
coordinate and the specific material. It also shows that
the self-consistent determination of e(r) converges in a
few iterations.

Lastly, we discuss a local modified Becke-Johnson
(BJ) XC potential designed for interfacial electronic
structure!™. Although this is not a local hybrid func-
tional, the idea of local mixing closely resembles that in
a local hybrid functional, as we see below.

The modified BJ exchange potential was proposed by
TB09 and has the following form!6?

— 1[5 [2t(x)
BT — cBR () 4 (3¢ — 2)7T\/; )’ (45)

where ¢(r) is the kinetic-energy density used in meta-
GGAs, and v2R(r) is the Becke-Roussel (BR) exchange
potentiall ™3

1
vBR(r) = ——— [1 —e ) —

1:101'(3*””(1")
5 me=], o

2

where z(r) and b(r) can be calculated from n(r), Vn(r),
and V2n(r).
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FIG. 10. zy-averaged dielectric function €(z) and band off-
sets of four interfaces, based on Eqgs. (42) and (44). €(z)
results are shown as a function of the number of iterations.
For the band offsets, comparisons between PBE results (blue
lines) and those from the dielectric-dependent hybrid func-
tional (purple lines) are provided. Reproduced with permis-
sion from Ref. 134: H. Zheng, M. Govoni, and G. Galli, Phys.
Rev. Mater. 3, 073803 (2019). Copyright 2019 American
Physical Society.

Eq. (45) is called the modified BJ exchange poten-
tial because the original BJ potential'™ uses the Slater
potential®! instead of vBR(r) in the first term and sets
¢ = 1. Note that vBR(r) is a model for the exact exchange
potential, and the second term in Eq. (45) can be seen
as a screening that corrects the error of the first term.
Therefore, the parameter ¢ in Eq. (45) is reminiscent
of the Fock exchange mixing parameter found in hybrid
functionals, although Eq. (45) is, strictly speaking, a
meta-GGA. It is due to this similarity that we decide to
keep the discussion of Eq. (45) and Ref. 172 in this part
of the Review. TBO09 further fits ¢ in terms of g defined
in Eq. (40): ¢ = a+ g with @ = 0.488 and 8 = 0.5
bohr.

In Ref. 172, the authors generalized Eq. (45) by mak-
ing the parameter ¢ “local”, i.e., replacing ¢ in Eq. (45)
with ¢(r). The ¢(r) is related to g(r) defined in Eq. (41)
in the same way as c is related to g in TB09. The au-
thors further enforced ¢(r) — 1 in the vacuum region
(recall that this was not possible with the local hybrid
functional proposed in Ref. 166), by slightly adjusting
the definition of g(r) such that ¢(r) — 1 when the den-
sity is below a defined threshold.

The local modified BJ exchange potential shares the
same limitation as TB09 and the local hybrid function-
als proposed in Refs. 134,166, in that it is not a functional
derivative of any density functional. This means that it
violates a few exact conditions and could not be used
to compute total-energy-related properties and thermo-
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chemistry. Nevertheless, these functionals seem to per-
form well as far as interfacial electronic structure is con-
cerned.

Ref. 172 used the same test systems as Ref. 166, and
its performance is shown in Fig. 11. Similar to the be-
havior of @y (%) in Fig. 9, here the &;,(2) also shows
a clear difference for the two sides of the interface, jus-
tifying the necessity of a local mixing parameter. The
performance of this functional was further extensively
tested for a broad range of semiconductor-semiconductor
interfaces!”™, against other meta-GGA functionals and
GW . The authors concluded that meta-GGA function-
als are promising alternatives to GW in estimating the
band offsets in semiconductor heterostructures.
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FIG. 11. Top: zy-averaged mixing parameter ¢qy(z) for dif-
ferent values of o given in bohr. Middle: atomic structure of
Si/SiO2 interface (Si: blue; O: red). Bottom: logarithm of
the local density of states averaged in the zy plane (yellow:
high value; violet: low value) calculated with o = 3.78 bohr,
showing the band offset at the interface. Reproduced with
permission from Ref. 172: T. Rauch, M. A. L. Marques, and
S. Botti, J. Chem. Theory Comput. 16, 2654 (2020). Copy-
right 2020 American Chemical Society.

V. CONCLUDING REMARKS

We started this Review by explaining the physics
behind surface and interface electronic structure using
quantities defined in MBPT: the screened Coulomb in-



teraction W. We discussed the spatial dependence of W,
whose long-range limit admits the image-potential form.
We also discussed the orbital dependence of W, which
leads to the energy and gap renormalization at an inter-
face. After that, we reviewed early efforts in the DFT
community to understand the surface in terms of quanti-
ties defined in DFT: the XC hole and the XC potential.
We discussed the evolution of the shapes of the exact ex-
change hole and the XC hole as the reference electron is
taken away from the metal surface. We also discussed the
relationship between the XC potential and the image po-
tential, as well as different perspectives in the literature
on understanding this relationship, making connections
between quantities defined in DFT and those defined in
MBPT. In the last part, we surveyed modern develop-
ments of density functionals for accurate interfacial elec-
tronic structure. We focused on two types of functionals:
dielectric-dependent hybrids and local hybrids. In both
types, the key strategy is to build in certain ingredients
related to dielectric screening and its spatial variance,
again making connections between MBPT concepts and
the DFT language.

We stress again that although there is no formal jus-
tification for interpreting eigenvalues from static DFT
calculations as quasiparticle energy levels, it is of great
practical interest to develop density functionals as alter-
natives to MBPT to describe the quasiparticle electronic
structure at heterogeneous interfaces. In fact, it has been
argued that the XC potential in KS DFT is the best ap-
proximation to the self-energy in MBPT!76:177, Further-
more, compared to MBPT, it is easier to perform self-
consistent density functional calculations with moderate
computational cost. It is also easier to incorporate other
physics than the dielectric screening into the functional
development, such as van der Waals interactions and the
strong correlation associated with transition metal ele-
ments. Moreover, it is technically simpler to reach con-
vergence in density functional calculations, as they are
governed by fewer parameters than in MBPT calcula-
tions.

Looking forward, novel functionals are being devel-
oped to improve the description of interfacial electronic
structure within the DFT framework, without invok-
ing MBPT but borrowing MBPT concepts into density
functional developments, which blurs the boundary be-
tween these two theories in a healthy way. Most func-
tionals we reviewed in Sec. IV have been tested using
semiconductor-semiconductor interfaces, and it is yet to
be seen how these functionals, or their improved ver-
sions, work for molecule-semiconductor interfaces, which
are more heterogeneous due to the vast difference in di-
electric effects between a molecule and a semiconductor.
Furthermore, it is yet to be seen how one can adopt the
old wisdom of the surface XC hole and/or the XC poten-
tial discussed in Sec. III into functional developments.
Can one use the expected behaviors of the surface XC
hole and/or the XC potential as exact conditions? Are
these conditions on the surface XC hole and/or the XC
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potential enough to guarantee accuracy in describing the
electronic structure at an interface? Can one go beyond
the idea of using the screened exchange to describe the
long-range correlation across the interface, and directly
develop non-local correlation functionals that capture the
heterogeneity in the interfacial dielectric properties? We
may not be able to reach satisfactory solutions to all these
questions very soon, but the approaches taken to answer
these questions will surely lead to the novel development
of functionals for a better description of interfacial elec-
tronic structure within the framework of DFT.
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