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Abstract—Quantum repeater networks that allow long-
distance entanglement distribution will be the backbone of
distributed quantum information processing. In this paper we
explore entanglement distribution using quantum repeaters with
optimized buffer time, equipped with noisy quantum memories
and performing imperfect entanglement purification and swap-
ping. We observe that increasing the number of memories on
end nodes leads to a higher entanglement distribution rate per
memory and higher probability of high-fidelity entanglement
distribution, at least for the case with perfect operations. When
imperfect operations are considered, however, we make the
surprising observation that the per-memory entanglement rate
decreases with increasing number of memories. Our results
suggest that building quantum repeaters that perform well under
realistic conditions requires careful modeling and design that
takes into consideration the operations and resources that are
finite and imperfect.

I. INTRODUCTION

The ability of quantum networks [1], [2] to distribute entan-
glement will be necessary in order to perform distributed quan-
tum information processing tasks such as distributed quantum
computation [3], distributed quantum sensing [4], and quantum
cryptography [5]. Quantum repeaters [6] are needed in order
to build quantum networks because of lossy transmission of
quantum states over long distances. However, errors that result
in degradation of entanglement quality, coming from memory
decoherence and noisy quantum gates and measurements, are
inevitable in real-world implementations of quantum networks.
These errors must be considered in the evaluation of quantum
network performance. The first-generation (1G) quantum re-
peater networks [7] with probabilistic entanglement generation
and purification will be the most suitable in the near term, for
which we expect that each node in a quantum repeater network
will contain a finite amount of noisy quantum memories and
that physical operations including entanglement purification
and swapping will be prone to errors. Therefore, the study of
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entanglement distribution with quantum repeaters under such
conditions is of great practical importance.

Previous works have studied 1G quantum repeater protocol
performance involving simplified optimization for subclasses
of repeater protocols using specific physical operations [6],
[8]-[10] or optimization using linear programming over a
broader protocol space [11]. Nevertheless, because of the com-
plexity of quantum repeater network protocols (for discussion
see [11]), incorporating all practical imperfections is difficult.
The study of realistic 1G repeaters taking into account both
imperfect quantum memory and entanglement purification has
thus only started to emerge in recent years. For instance,
Goodenough et al. [12] proposed a heuristic algorithm for
optimization of repeater schemes; while both memory storage
noise and entanglement purification were included, results
were based on a simplified assumption of near-deterministic
entanglement generation. Brand et al. [13] addressed the
problem of waiting time and fidelity distribution in quantum
repeater chains by providing explicit algorithms to calculate
those parameters; memory cut-off, an important tool for rate
optimization, was not considered, however. Li et al. [14]
included the cut-off time in secret-key rate optimization.
However, neither [13] nor [14] included imperfect operations
(entanglement swapping and purification), and the repeater
protocols they considered were restricted to a tree-structured
protocol stack. Laurenza et al. [15] considered decoherence
during both storage and entanglement purification, but they
focused on deriving an ultimate limit of network rate without
worrying about specific implementation details.

Our contributions are threefold:

1) We extend the study of a quantum repeater chain archi-
tecture with hierarchically optimized (memory) buffer
time [16] (see a brief introduction in II-E), including
multiple noisy quantum memories and potentially im-
perfect entanglement purification and swapping.

2) We provide explicit analytical modeling of physical pro-
cesses relevant to quantum repeater networks, namely,
entanglement generation, purification, swapping, and
memory decoherence-induced entanglement fidelity de-
cay: these may be incorporated in future simulations.

3) We demonstrate different and interesting phenomena
of entanglement distribution performance under varying
conditions, which both provide practical insight and can
inspire future studies.
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The paper is organized as follows. In Sec. II we provide
explicit analytical modeling of relevant quantum operations
and briefly review the architecture of a quantum repeater with
buffer time. In Sec. IIl we explain the implementation of the
numerical simulation and present our results. We summarize
our work in Sec. IV and discuss future work.

II. SYSTEM MODEL
A. Entanglement generation

Quantum memories on remote nodes have no direct physical
interaction, which is typically required for entanglement gen-
eration between local subsystems through system evolution.
Therefore, the generation of entanglement between memories
on remote nodes is usually achieved through photon-mediated
processes. In general, remote entanglement generation involves
local photon-matter entanglement generation on both nodes to
be entangled. This process is followed by photon interference
to erase the “which-way” information at a middle station.
This station will also communicate measurement results back
to the two nodes, so that both ends know when entangle-
ment generation is successful (called heralded entanglement
generation). A complete cycle of an entanglement generation
attempt thus includes transmission of the photonic signal from
two adjacent repeater nodes to the middle interference station
and classical communication of measurement results from the
middle station back to the repeaters. The ultimate lower bound
of one entanglement generation cycle is 7 = Lo /e, where Lg
is the distance between neighboring nodes and c is lightspeed.
In practice, an entanglement generation cycle time will be
constrained by the quantum memory (reuse) frequency, which
can be on the order of 10 kHz [17].

The initial fidelity of the entangled state upon successful
generation (raw fidelity) is determined by all physical pro-
cesses involved in the generation and is abstracted as a single
parameter Fy. In this work we focus on two specific families
of noisy entangled states, namely, the two-qubit dephased
Bell states pgp(F) = F®* + (1 — F)®~ and the two-
qubit Werner states (depolarized Bell states) [18] py,(F) =
Fot+(1—F)(®~+¥*T+U~)/3, where F is entanglement
fidelity with respect to &+ state and &+, &~ , U+ U~ are
density matrices corresponding to four pure Bell states. Sim-
ilarly, the generation success probability p, will be generally
determined by the properties of photon transmission channels,
photonic coupling, and photon detectors. While the last two
are local hardware and their imperfections can be described by
a single combined hardware efficiency parameter 0 <, < 1,
transmission performance is determined by channel length.
Furthermore, since both remote nodes need to transmit their
photonic modes, the success probability is proportional to the
square of the transmission probability n¢. Thus, p, = 127,
where n; = exp(—L/Lgs) is a function of channel length
L and the characteristic attenuation length for optical fiber
i Lats ~ 20 km. We assume that the interference station
is positioned in the middle of two repeater nodes, and thus
the optical fiber between repeater node to the station is half
the elementary link length L = Lg/2. We may therefore

rewrite the entanglement generation success probability as
pg = exp(—Lo/Latt)in-

B. Entanglement swapping

Entanglement swapping is performed on an intermediate
repeater node, which holds two quantum memories that are
respectively entangled with quantum memories on different
remote nodes. A successful entanglement swapping will estab-
lish a longer entanglement “link”™ between the remote nodes. In
reality, entanglement swapping will succeed with probability
pe while imperfect physical operations will introduce addi-
tional errors to the extended entanglement link. We assume
that entanglement swapping succeeds with probability p, and
fails with probability 1 — p,, in which case the two Bell
pairs are assumed to be discarded. The assumed probabilistic
nature requires classical communication of the success/failure
of swapping to two end nodes, introducing another T = Lg/c
time. When operations during entanglement swapping are
perfect, Bell states will preserve their form after successful
swapping; that is, two dephased/depolarized Bell states will
be swapped to a new dephased/depolarized Bell state. The
fidelities of the new states after swapping are then

st.dp:F1F2+(1_F1)(1_F2) (1)
1— Fi)(1-F:
Foww=FiFa+ ( ‘)3( 2) (2)

For imperfect operations, we consider two-qubit gate and
single-qubit measurement error models as in [6], ﬁijpﬁé- =
pUsipUf; + 1521 @ trijp and Pimgq = nli)(i| + (1 —
n)|1 —2){1 — 4|, where tr;;(-) represents partial tracing over
qubits 4,7, U; is an ideal qubit unitary, and U;; is an
imperfect implementation of U;;, which has p probability of
perfect implementation and (1 — p) probability of resulting
in depolarizing error. P,_o1 is the POVM corresponding to
imperfect implementation of single-qubit projective measure-
ment P; = |7)(i|, which has 5 probability of giving a correct
measurement outcome. Note that although the POVMs alone
cannot determine postmeasurement states, in our case the
measured qubits are discarded (traced out), and we are only
interested in the reduced state of the remaining subsystem.
We provide an explicit formula of the fidelity of the swapped
entangled state when the two input states are in Werner form,

1—
st,w = Tp +p [?}2 (FIFQ + 36182)
+(1—n?) (Fiez + e1Fa + 2e1e3)]

3)

where we have defined e; = (1 — F;)/3 to simplify notation.
We note that the output state preserves Werner form under this
specific operation error model.

C. Entanglement purification

Entanglement purification protocols take multiple copies
of entangled states as input and output smaller amounts of
entangled states upon success. Typically, a successful output
will be of higher quality than the input states. In this work
we consider specifically 2-to-1 recurrence protocols, namely,
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BBPSSW [19] and DEJMPS [20] with (almost) the same
circuit. Moreover, as mentioned in Sec. II-A, we focus only on
dephased Bell states pgp and Werner states p,,. We consider
two imperfect Bell pairs with fidelities F; and F as the input
to the purification protocol. When no imperfect operations are
considered, the output fidelity upon success and the success
probability can be given in the following formulae: when input
states are in dephased Bell state form,

FF
Fr(Fy Fy) = 4
dp( 1, 2) F1F2+(1—F1)(1—F2) ( )
pap(F1,F2) = FiFa+ (1 - F1)(1 - Fy), (5)

and when input states are in Werner form,

F]_F‘Z + (I—Fl)g(].—Fz)

F;u(Flsz) = F1F2 i Fl(l—Fz)-:‘;(l—FI)Fg e 5(1—1-7'19)(]_1-7‘2) 1
©)
polFL ) = FiF, + DU - F)+(-F)F o

3

ap: 51-FR)(1-F)
9

To demonstrate the effect of imperfections in the purification
protocol, we use the same error models as for entanglement
swapping. The major difference here is that for the considered
purification protocol two CNOT gates are needed instead of
only one for swapping. Here we provide explicit formulae
of success probability and output fidelity upon success for
purification of depolarized Bell states assuming identical gate
success probability p and measurement success probability 7
on both repeater nodes:

Psw = p°[n* + (L — )2 (F1Fz + Fiez + e1 F + 5erea)
= 2
+2p°n(1 — n)(2F1e2 + 261 F» + deqes) + Tp, (8)

% + (1 — n)*|(F1F> + e1e2)

=
+2n(1 — n)(Fiez +ere2) + —p’f
Fs.'w T
[7° + (1 —n)*)(FLFs + Fiea + e1F + bees)
j = 2
+ 2n(1 — n)(2F1e2 + 261 F; + dejes) + T@f'
9)

Note that different from swapping, the output state upon
successful purification is not necessarily in Werner form, and
twirling will be needed to transform the state back to Werner
form.

D. Fidelity dynamics under memory decoherence

Entangled states are stored in quantum memories before
being utilized later. Decoherence in quantum memories results
in the degradation of stored entangled states. As we study
quantum repeater chain where end nodes do not have direct
physical interaction, we consider an uncorrelated single-qubit
error model, pap(t) = (Es ®@Eg)[pan(0)], where Ex(g)[-] is

the quantum channel representing an error process on memory
(qubit) A (B). Specifically, for single-qubit dephasing (single
Pauli) and depolarizing channels, we have the following ana-
lytical expressions of entanglement fidelity dynamics:
n mn
Fup(t) = Fap0) 22 + 122
1-pn
4 ]
where we have assumed that both quantum memories undergo
a decoherence channel with the same amplitude characterized
by decoherence rate x, and we have further redefined the
memory quality factor 8 = exp(—2x7), while n = t/7
corresponds to time steps in simulation. Note that for the
analytical formulae we have assumed that the initial state is
also of dephased/depolarized Bell state form.

(10)

Fy(t) = Fu(0)8™ + (11)

E. Nested repeater chain architecture with buffer time

Here we briefly describe the nested quantum repeater
chain architecture with hierarchically optimized buffer time
proposed in [16] and explain the inclusion of entanglement
purification when multiple quantum memories are available.
Consider a quantum repeater chain with 2" +1 nodes including
two end nodes and 2" elementary links of distance Lp. In
a nested repeater architecture, Bell pairs are probabilistically
generated over elementary links, and buffer time comes into
play due to the probabilistic nature of entanglement genera-
tion; in a repeater with buffer time, entanglement generation
can be re-attempted within every single (first level) buffer
time and at the end of each buffer time if both sides of a
first-level entanglement swapping station have received a Bell
pair, entanglement swapping is performed. Conditioned on
successful entanglement swapping, the entanglement link is
extended to length 2L, and is transferred to another set of
quantum memories for the second nested level. In general,
the successful entanglement swapping on level ¢ can be
understood as a successful entanglement generation on level
i+ 1, demonstrating that the nested architecture is self-similar
(recursive). In this way, the buffer time for repeater level n+1
will in general be in unit of buffer time for repeater level n.
The process is hierarchically continued until the entanglement
swapping on the highest nested level succeeds, which rep-
resents the successful distribution of one Bell pair between
two end nodes of the repeater chain. The hierarchical buffer
times can then be optimized by choosing buffer times that
can maximize certain figure of merit, e.g. entanglement rate,
on corresponding levels. Furthermore, when multiple quantum
memories are available for entanglement generation on one
link, it is possible to generate multiple entanglement links
during one buffer time, allowing entanglement purification.
We assume that entanglement purification will be performed
as soon as two entanglement links are generated, considering
both success probability and potential fidelity improvement',
and the later generated pair will be kept upon successful

"Manuscript in preparation.
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purification, which will offer higher fidelity when purification
is imperfect.

Note that buffer time considered here is similar in spirit
to cut-off considered in [14] since both protocols are aimed
at lowering the idling time of generated entanglement links.
However, they are different in that the cut-off protocol ex-
amines the difference between generation times of any two
entangled pairs whereas buffer time sets a fixed time range.
We also emphasize that in the hierarchical buffer time ar-
chitecture, entanglement purification is not strictly stacked
upon entanglement generation before entanglement swapping
since it is always possible that only one entanglement link is
generated within one buffer time, which is different from the
tree-structured repeater protocol considered in [13], [14] where
the lower protocol must be successfully performed before the
higher protocol starts.

III. RESULTS

We use an ad hoc numerical simulation? based on the
analytical modeling described in Sec. II to study entanglement
distribution in the simplest quantum repeater chain, namely,
a first-level quantum repeater with two end nodes and only
one middle swapping station node. It is noteworthy that for
hierarchical repeater chain architectures even the first level
analysis will offer valuable insight on the overall performance,
as every level is self-similar (recursive).

A. Simulation implementation

We assume that each end node has M quantum memories
available for entanglement generation and that the middle
station has 2M quantum memories. The M = 2 scenario is
illustrated in Fig. 1.

As a preliminary exploration of realistic scenarios with
multiple available quantum memories, available entanglement
purification, and imperfect quantum operations, in this work
we fix a few system parameters: the length of one elementary
link of repeater (distance between an end node and the
middle node) is chosen to be optical fiber attenuation length,
Ly = Lgaie = 20 km, which gives the photon loss factor
n: = 1/e =~ 0.37 and one-way classical communication time
7. = 10~ %s. For quantum memory we consider a modest reuse
frequency of 1 kHz, which gives 7, = 1073 s > 10™* s, and
thus we choose the entanglement cycle time as 7 = 1073 s.
We consider the quantum memory coherence time k! =1 s,
which gives a memory quality factor 8 = exp(—0.002) =
0.998. When imperfect operations are included, the operation
success probability is assumed to be a modest value of 0.9.
Regarding entanglement generation, in the following the raw
fidelity of entangled state is assumed to be 1 corresponding to
the best possible scenario.

The metrics of interest for repeater performance are the
average entanglement distribution rate and fidelity distri-
bution of successfully distributed states. The average en-
tanglement distribution rate is Raye, which is defined as
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Fig. 1: Illustration of different working scenarios for a repeater
with buffer time. The first-level repeater involves two end
nodes (A and C) and a middle swapping station B. Nodes
A and C have two quantum memories, while node B has
four, and we assume memory multiplexing for entanglement
swapping. The buffer time is chosen to be equal to the time
needed for 4 entanglement generation attempts. In (a) we
show the probabilistic nature of entanglement purification,
which gives rise to the possibility that after failed purification
no more entanglement is generated before the end of the
buffer time. In (b) the effect of probabilistic entanglement
swapping is revealed, while demonstrating the possibility of
entanglement pumping, that is, after successful entanglement
purification the reinitialized memory can further generate new
entanglement links to be purified. In (c) we show explicitly
the difference between the repeater with buffer time and
the repeater with tree-structured protocols; in other words,
entanglement swapping can be performed whether or not any
purification has been done.

Ravg = PsuccR(p)/tousiers Where pguce is the probability
that an entangled state is successfully distributed between
two end nodes within one buffer time, R(p) is the Rains
(upper) bound [21] of distillable entanglement for average
distributed state with g being the average of all successfully
distributed states over 100,000 repetitions of the simulation,
and tpumer 15 the buffer time. Note that the Rains bound is
tight for dephased Bell states and is dependent only on fidelity
for Bell diagonal states: R(ppps(F)) = 1 — Hy(F), where
Hy(p) = —plogp — (1 — p)log(1 — p) is standard binary
entropy function (according to Theorem 8 in [21]). Since in
our study the distributed states are in identical form, either
dephased or depolarized Bell states, the fidelity of the average
state is equal to the average of fidelity F.

For every specific choice of parameters, simulation of one
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buffer time will be repeated 100, 000 times to obtain statistics
of average entanglement rate. The operation of repeater is dis-
cretized into time steps corresponding to the time required for
each entanglement generation attempt. During one time step,
the simulator will first check whether multiple entangled pairs
are generated on the left and right links. If so, entanglement
purification will be performed on the generated pairs until at
most one pair remains. Although entanglement purification
also needs classical communication of results, we assume
that the classical communication time is negligible, because
purification is performed less frequently than entanglement
generation. After this first phase, the rest of the available mem-
ories will attempt entanglement generation. The entanglement
generation will potentially create new entangled pairs that
enable entanglement purification, and similarly purification
will be performed at the beginning of the next simulation time
step. After Npumer time steps the simulator will check the
system state to evaluate the applicability of the final entangle-
ment swapping. One final round of entanglement purification
will be performed if needed to make sure that at most one
pair remains on each side of the repeater. The probabilistic
entanglement swapping will be performed as long as both sides
have one entangled pair ready. If the swapping is successful,
the fidelity of the distributed entangled pair will be recorded;
otherwise an unphysical value of fidelity —1 will be recorded
to indicate the failure of entanglement distribution in this
trial. Note that the fidelity of a stored entangled pair matters
only when it is involved in quantum operations. Therefore the
entanglement fidelity will be updated only before (to reflect the
effect of memory decoherence) and after (to reflect the effect
of operation) the application of entanglement purification and
swapping.

B. Advantage from additional physical resources

In this section we present our simulation results on the
optimal entanglement distribution rate and optimized buffer
time versus the number of available quantum memories. Ad-
ditionally, we also present the probability density of entan-
glement fidelity conditioned on successful distribution. Here
no imperfect operations are considered, and memory size
on each end node varies from 1 to 5, with entanglement
generation hardware efficiency 77, = 0.1 and swapping success
probability p, = 0.5. We note here that although the process
of buffer time optimization is not explicitly demonstrated, it
is achieved by evaluating entanglement distribution rate for
buffer time (in unit of entanglement generation cycle time)
Npufter € Z+ ranging from 1 to 30 (30 here is only a cutoff for
numerics and is justified by presented results as optimal buffer
times are all below 30) and then choosing the buffer time
which maximizes entanglement distribution rate. The results
for dephased Bell states are shown in Fig. 2 while those for
Werner states are presented in Fig. 3.

Qualitatively, we can see that for the two forms of noisy
Bell states, both the optimal entanglement rate and optimized
buffer time vary as the number of quantum memories varies,
whereas for the fidelity probability density they are similar.
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Fig. 2: Results for dephased Bell states (7, = 0.1, p; = 0.5)

s il 120
[ rate - buffer time | 222 M=1 |
£ | — ratepermemo - i20.0 100 M=2
N o -— -
3o \ P -1?5E ., B0 M=3
2 P = M=4
i ] g 1150 & [
= 20 3 = ¢ 80
@ e c B M=5
g1 Pt B5g © g
=3 A U A _—
£ 10 > 20 e
i el B = 175
§ sl = o e
1 3 3 ] L) 090 092 084 096 0
num, of mem. per end node fidelity

(a) Optimal rate and buffer time (b) Fidelity probability density

Fig. 3: Results for Werner states (1, = 0.1, ps = 0.5)

We can also observe that the optimal rates for dephased Bell
states are higher than for Werner states and that the peaks
of fidelity density for dephased Bell states are also closer to
one. These phenomena demonstrate that entanglement decays
faster when the decoherence channel is depolarizing rather
than dephasing when the decoherence amplitude « is fixed, as
seen from Eq. 10 and 11. Furthermore, the figures of merit
demonstrate interesting behaviors with varying number of
available quantum memories. The decaying optimized buffer
time as available memories increase reveals the effect of
multiplexing: when more memories can attempt entanglement
generation, less time is needed for successful generation.

As expected, when more memories are available entan-
glement purification is possible, and the entanglement rate
increases. More interesting is the increase of entanglement
purification rate per quantum memory. The latter phenomenon
suggests that combining additional physical resources (mem-
ories and thus entanglement purification) results in additional
advantage in comparison with simply in-parallel operation
of single-memory no-purification repeaters with the same
amount of memories. Additionally, since realistic distributed
quantum information processing tasks will always set certain
requirements, especially lower threshold, on the entanglement
fidelity of each distributed entangled pair to be utilized, the
probability density function of entanglement fidelity upon
successful distribution demonstrates the beneficial effect of
incorporating more physical resources, in that the peak of
probability density function becomes closer to one, suggesting
higher probability of distributing high-fidelity entanglement.

C. Effect of imperfect operation

In comparison with the preceding section where no im-
perfect operations are included, here we consider two-qubit
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gate and single-qubit measurement success probability pgate =
Pmeas = 0.9, without changing other parameters for the
Werner state. Fig. 4 shows the simulation results.
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Fig. 4: Results for Werner states with operation imperfection
(nn = 0.1, ps = 0.5, pgate = Pmeas = 0.9)

We observe that the trends of optimal entanglement rate
and optimized buffer time with varying memory number do
not change qualitatively; the optimal entanglement rate still
increases when more memories are available, while the opti-
mized buffer time decreases. However, an important difference
is in the behavior of the entanglement rate per memory. The
per-memory rate surprisingly falls below the single-memory
rate when more memories are incorporated, which means that
now simply operating the single-memory repeater in parallel
will outperform combining available memories together and
including imperfect entanglement purification. Additionally,
we can obtain further information about the imperfect repeater
from the fidelity probability density. We observe more than one
peak for multiple memories, which represent different times
of entanglement purification that were performed. Notably, the
highest peak for multiple memories is still closer to one when
compared with the one-memory case, which corresponds to
the case when no purification is performed. When purification
is performed, however, such cases correspond to lower peaks
that are farther from one, demonstrating the harmful effect of
imperfect operations to quantum repeater.

IV. CONCLUSION

In this paper we study entanglement distribution in a simple
quantum repeater chain with optimized buffer time that has
only three nodes with a few noisy quantum memories and al-
lows entanglement purification. We demonstrate the additional
advantage in per-memory entanglement distribution rate that
can be obtained by incorporating more quantum memories
and including entanglement purification when all operations
are perfect even under memory decoherence, compared with
parallel operation of separate repeaters. Surprisingly, however,
we observe that this advantage is lost when imperfect oper-
ations are considered. Our results demonstrate the existence
of rich and interesting phenomena in quantum repeaters with
finite, imperfect resources, even in the simplest setup, and offer
insight on near-term, real-world implementation of quantum
repeater networks.

The results reported in this paper are preliminary, and we
will perform further detailed analysis on broader parametric

spaces to explore and demonstrate richer phenomena and will
provide more comprehensive explanations based on additional
theoretical models.
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