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Abstract—In this paper we propose QContext, a new com-
piler structure that incorporates context-aware and topology-
aware decompositions. Because of circuit equivalence rules and
resynthesis, variants of a gate-decomposition template may exist.
QContext exploits the circuit information and the hardware
topology to select the gate variant that increases circuit optimiza-
tion opportunities. We study the basis-gate-level context-aware
decomposition for Toffoli gates and the native-gate-level context-
aware decomposition for CNOT gates. Our experiments show
that QContext reduces the number of gates as compared with
the state-of-the-art approach, Orchestrated Trios [12].

Index Terms—quantum computing, circuit synthesis, compiler
optimization

I. INTRODUCTION

Quantum logic gates are the backbones of quantum informa-
tion processing (QIP). The quantum logic gates in a program
typically need to be decomposed to the basis gate set (ISA)
in an assembly language. Since the target hardware may have
limited connectivity, several recent works [10], [12] propose
topology-aware decompositions that minimize the gate cost
when mapping to a target hardware topology. However, these
decomposition approaches use the same template to decom-
pose the same type of quantum gates. Decomposing the gates
with fixed templates lacks the opportunity to fully explore the
circuit optimizations.

Gate context represents the predecessors and the successors
in the directed acyclic graph (DAG) representation of the
circuit. Since the different gate contexts could induce different
circuit optimization opportunities, the quantum gate decompo-
sition should be aware of the context. Here we use an example
to demonstrate the effectiveness of context-aware gate decom-
position. When the Toffoli gate in Figure 1b is decomposed
in the canonical template with six CNOT gates, there is no
gate cancellation and circuit resynthesis opportunity. However,
since the Toffoli gate is a self-inverse gate, inverting all gates
in the canonical template will result in another decomposition
template. As shown in Figure 1b, we can perform gate can-
cellation and two-qubit block resynthesis optimizations when
decomposing the Toffoli with the inversed template. Based on
the circuit equivalence rules and resynthesis, several variants
of a gate-decomposition template might exist. We develop our
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context-aware decomposition approach QContext to identify
the gate context structures and explore the circuit optimization
opportunities.
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(b) Context-aware Toffoli decomposition resulting in seven CNOT gates

Fig. 1: Two Toffoli decompositions with different total CNOT
gate counts
QContext provides both topology-aware and context-aware

decomposition. QContext first finds the gate decomposition
variants compatible with the target hardware topology. Then
QContext selects the best gate decomposition variant based
on successors’ and predecessors’ information in the DAG
representation of the circuit. QContext also performs context-
aware decomposition when decomposing the CNOT gates to
the native cross-resonance (CR) gates and single-qubit gates.
We propose new templates for the CNOT gate to CR gate
decomposition. We implemented QContext in Qiskit-Terra and
compared it with the state-of-the-art approach Orchestrated
Trios. Our experiments show that by combining the basis-
gate-level and the native-level context-aware decomposition,
QContext reduces both two-qubit and single-qubit gate counts
in quantum circuits.

II. BACKGROUND

Basis Gates and Native Gates: In order to run a quantum
program on real hardware, the complex quantum gates need to
be decomposed into the basis gates in an assembly language
such as OpenQASM [8]. The basis gates in OpenQASM
include single-qubit rotations and two-qubit CNOT gates.

However, the CNOT gates may not be natively supported
by the quantum devices. The basis gates in the assembly
language should be decomposed into a sequence of native
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gates supported by the target hardware technology. In this
paper we focus on the CR gate since it is the native gate
for operating fixed-frequency superconducting devices such
as IBM’s superconducting systems. We expect context-aware
decompositions to be applicable to other native gates such as
CPHASE and iSWAP on Google [2] and Rigetti [5] devices.

Quantum Gate Decomposition: Optimal quantum gate
decomposition is crucial for quantum compilation. Extensive
research has been done to find efficient decompositions for
unitary matrices. Besides the generalized decomposition, re-
searchers have proposed structured templates [32], [33] to
decompose certain types of quantum gates.

With the recent development in quantum hardware, several
researchers have proposed topology-aware decompositions [6],
[21] that minimize the gate cost when mapping to a target
hardware topology. Toffoli gate is one of the most com-
monly used three-qubit gates in quantum information pro-
cessing. Duckering et al. [12] proposed a compiler structure
Orchestrated Trios, which efficiently routes and decomposes
the Toffoli gates. They observed that it is more efficient to
preserve the Toffoli gate during routing instead of routing
each individual CNOT gate in the Toffoli gate decomposition.
The approach first decomposes the quantum program to the
one-, two-, and three-qubit gates and routes the gates. Then a
second decomposition step is performed, which decomposes
the Toffoli gate according to the hardware connectivity.

Quantum Optimization: The state-of-the-art quantum
compilers mostly exploit circuit optimizations at the basis gate
level. The Qiskit [1], ¢|ket) [34], and Cirq [7] compilers
contain optimization passes that identify multiqubit blocks
and resynthesize the blocks with KAK decomposition [23]
to reduce circuit cost. Gate cancellation [24] is another useful
optimization. Quantum gates may commute, and the compiler
can reorder the gates to optimize the circuits and improve
routing with gate cancellation [25]. Other optimizations in-
clude cross-talk mitigation [28], peephole optimization [29],
and dynamical decoupling [30].

I1I. QCONTEXT

QContext performs basis-gate-level context-aware decom-
position for the Toffoli gates and performs native-gate-level
context-aware decomposition for the CNOT gates. Figure 2
shows the compilation flow of QContext. The boxes with the
grey color backgrounds are the original compilation steps in
Trios and Qiskit. The boxes with the orange color backgrounds
are the compilation steps introduced and modified in QCon-
text. Given an input quantum program, QContext first decom-
poses the gates to 1-qubit gates, 2-qubit gates, and Toffoli
gates. Not decomposing the Toffoli gate allows the routing
algorithm to capture the program structure and reduce the
routing overhead [12]. The compiler performs qubit mapping
and routing for the gates. We propose a gate library that
contains the gate decomposition variants for the Toffoli and
CNOT gates. The gate library contains 32 Toffoli gate variants
and 14 CNOT gate variants. Each gate variant is associated
with a variant_tag. The compiler specifies searches in the

library and returns the best matching gate variant based on the
hardware topology and the gate context. Then, the compiler
performs circuit optimizations. After the optimizations, the
basis gates need to be decomposed into native gates. For each
CNOT gate in the circuit, the compiler finds the CNOT gate
variant that minimizes the number of single-qubit rotations
after optimization.

Input: quantum program

Decompose to 1-, 2-
qubit, and Toffoli gates

Qubit mapping and
routing
Search for variant_tag based

on topology and context Pre

“Topology- and context- |
[awam decomposition for |
Toffoli gate J€
Return gate variant
‘Quantum gate
Circuit optimization variants
library
Search for variant_tag
based on context
| Context-aware
rdewwmusiﬁon for CNOTs
. Return gate variant ~
Gate scheduling

Y
Qutput: execmabre quantum circuit

Fig. 2: Compilation flow of QContext. The steps introduced
by QContext are marked with an orange background.

IV. BASIS-GATE-LEVEL DECOMPOSITION

We use the Toffoli gate as an example to discuss the format
and the strategies for generating gate variants.

A. Variant_tag

‘We label the gate variants with different tags to differentiate
them. The variant_tag for an n-qubit gate is a tuple with five
elements:

variant_tag = (pre_tag, suc_tag, design_tag, topo_tag, opt_tag) (1)

The first element pre_tag indicates the position of the CNOT
gates at the beginning of the circuit that can be canceled or
optimized with the predecessors. As shown in Figure 3, the
first CNOT gate is between q0 and q2. The pre_tag is set
to “02” for this gate variant. The second element suc_tag
indicates the position of the CNOTs at the end of the circuit
that can be canceled or optimized with the successors. The
last two CNOTs in the figure are between qO and ql, and
the suc_tag is set to “10.” The order of the bits indicates the
control qubit and the target qubit.

The design_tag is an integer that indicates the basic de-
sign of the template. The gate variants that are generated
by applying the equivalence rules to the canonical Toffoli
decomposition will have the same design_tag = 0. However,
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the gate variants based on resynthesis will have different
designs and should have different design_tag. The topo_tag
suggests the connectivity of the physical qubits. topo_tag can
have four values: F, LO, L1, and L2. “F” or “L” indicates
that the three qubits are fully connected or linearly connected.
The integer represents the id of the qubit that is connected
to the other two qubits. The last element opt_tag is used to
differentiate the gate variants with similar structures but with
different optimization opportunities. opt_tag can be either “O”
or “I,” which differentiates the original decomposition and the
inversed decomposition. The variant_tag provides an efficient
way of defining and searching gate variants.
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Fig. 3: Fully connected Toffoli variant by permuting control qubits,
variant_tag = (02, 10,0, F, O)

B. Toffoli Gate Variants

We can generate the gate variants based on the circuit equiv-
alence rules [14] and resynthesis. We used three strategies
described below to find gate variants.

1) Self-inverse: For the gates that are self-inverse, we can
place the gates in the decomposition template in a reversed
order and inverse each gate to get a new gate variant. Since
the front layer of the circuit permutes with the last layer of the
circuit, the variant_tag after inversion is specified by permuting
pre_tag with suc_tag. The opt_tag changes from “O” to “L.”
Other self-inverse gates include the CNOT gate, SWAP gate,
Bridge gate, and Fredkin gate.

2) Permute control and target qubits: For a gate with
multiple control qubits, we can permute the control qubits in a
template to generate new gate variants. Figure 3 shows the gate
variant that is generated based on the canonical decomposition
and the permutation of control qubits ¢0, g1. The variant_tag
is specified by switching the associated qubits in the pre_tag
and suc_tag. The design_tag, topo_tag, and opt_tag remain
to be the same after permutation.

When the target gate is a NOT gate, we can also permute
the control qubit with the target qubit by converting the
multicontrolled NOT gate to the multicontrolled Z gate [14].
The multicontrolled Z gates are symmetrical; thus any qubit
can be the target qubit.

3) Resynthesis: Based on equivalence rules, we can find
many gate variants. However, some structures cannot be gen-
erated with the equivalence rules. One solution is to resynthe-
size [10], [35] the unitary matrix to the quantum circuit with
the expected structures. A new design_tag will be assigned
to the synthesized template.

We can apply the equivalence rules to the canonical 8-
CNOT linear Toffoli decomposition to generate gate variants
with linear connectivity. The 8-CNOT linear Toffoli decom-
position is assigned with a design_tag equal to 1, since it is

different from the fully connected design. Figure 4 shows one
of the linear Toffoli gate variants. Since q2 is connected to q0
and ql, the fopo_tag is set to “L2”

i Tt
n T T ]

Fig. 4: Toffoli gate variant with linear connectivity,
variant_tag = (21,02,1, L2, 0)

C. Variant_tag Calculation

Here we describe the method to specify the variant_tag
based on hardware topology and gate context. For each Toffoli
gate node in the DAG, the compiler first determines the
topo_tag based on the connectivity of the physical qubits.
Then for each gate variant with the ropo_tag, we can estimate
the CNOT gate count reduction after optimization. Since the
number of three-qubit gate variants is limited, the compiler
performs an exhaustive search in the library and returns the
gate variant with the maximum CNOT gate count reduction.

V. NATIVE-GATE-LEVEL DECOMPOSITION
A. Variant_tag

First, we introduce the format of the CNOT gate variant_tag.
Two orientations of the CR gate are possible. The generalized
CNOT gate decomposition circuit is a CR gate sandwitched
by four U3 gates. The U3 gate is the generic single-qubit
rotation gate with three angles 6, ¢, and A. Since the physical
qubit connectivity for the CNOT gate is always linear, we do
not need the ropo_tag and opt_tag. The CNOT gate variant
tag is a tuple with twelve elements that specify the four U3
gates in the template and an ori_tag to specify the orientation
of the CR gate.

variant_tag = (01, ¢1, A1, .-, 01, 4, A4, 0ri_tag)

The variant_tag allows us to quickly find the inverse gate
and calculate the native gate count. U3(—6,—)\, —¢) is the
inverse gate of U3(8, ¢, ). The generalized U3 gate requires
two Rz(90) pulses and three Rz gates. The Rz gates [26]
are implemented in software by frame change and do not
introduce any noise. When decomposing the CNOT gate, the
compiler first specifies the ori_tag based on the orientation of
the target physical qubit connection. Then, for each variant_tag
that contains the correct ori_rag, the compiler estimates the
total number of Rz(90) pulses after optimization and selects
the one with the fewest Rxz(90) gates.

B. CNOT Gate Variants

We have three strategies for finding CNOT gate variants.
1) Self-inverse: The CNOT gate is a self-inverse gate. We
can place the native gates in a reversed order and invert each
native gate to get a new gate decomposition variant.

2) Polarity switch: The CR native gate is implemented
with a positive half-CR and a negative half-CR gate to mitigate
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noise [36]. We can instead implement the CR gate as a negative
half-CR followed by a positive half-CR gate. This polarity
switch [16], [17] introduces a side effect that appends two
Rz(180) gates to the left and the right of the CR native gate.
We can also combine the polarity switch and the gate inverse.

3) Resynthesis: We used a numerical optimization approach
to find novel CNOT gate decompositions. We may treat
the discovery of novel decomposition of the CNOT unitary
matrix as a nonlinear least-squares optimization problem. An
objective function can be defined as the square of the Frobe-
nius norm of the difference between the parameter-generated
unitary matrix and the target unitary matrix, where the U3
parameters are adjusted to minimize the objective function.
Several standard least-squares optimization algorithms such as
Levenberg—Marquardt [27] and Broyden—Fletcher—Goldfarb-
Shanno [20] can be used.

We found gate variants that have more gate optimization
opportunities. For instance, the ladder-shaped circuit structure
shown in Figure 5 widely exists in quantum circuits [22]. Here
we use a numerical approach to find the gate variant that has
X gate on the top left and another X gate on the bottom right
corner. When there is a sequence of CNOTs, the X gates in
between will cancel out. In Figure 5, the single-qubit gates
that can be optimized are marked with a dashed box.

—-EmY HEE)
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e A 1ter,
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Fig. 5: Ladder-shaped CNOT structure and gate decomposition

VI. METHODOLOGY

Implementation: We implement our QContext framework
on the open-source quantum computing framework Qiskit [1].
The version of Qiskit-Terra is 0.18.3, and our implemen-
tation is publicly available at https://github.com/revilooliver/
context-aware-decomposition. We compare our results with
the Orchestrated Trios compiler implemented in Qiskit.

Benchmarks: The benchmarks in our experiments are de-
rived from the Toffoli benchmarks in Orchestrated Trios [11]
and the reversible circuits [39]. Besides the benchmarks with
Toffoli gates, we include the VQE UCCSD ansatz for LiH [31]
and QAOA for Max-Cut [13].

VII. EVALUATION AND DISCUSSION

In this section we show the single- and two-qubit
gate numbers using QContext compared with Trios on
ibmg_montreal which has heavy-hex topology.

The CR gate and single-qubit gate reductions are shown
in Table I. All the Toffoli gates are decomposed into the
linearly connected gate variants with 8 CNOTSs. Since our
optimization focuses on the Toffoli gates and the CNOT gates,
to distinguish the effect of qubit routing and our approach, we
separate the CR gates for qubit routing and the CR gates for

the benchmark. C'R, represents the CR gates that form the
SWAP gate and are not involved in the optimization. A better
routing algorithm may reduce the C'R, number, but that is
beyond the scope of the current discussion. CR, represents
the number of CR gates that are needed for implementing the
benchmark. ACR; is the percentage change in the number
of CRy: ACRy = 1-CRy(QContext)/CRy(Trios). Ad#sx is
the percentage change in the number of total sx rotations:
A#tsx = 1 — #sx(QContext) /#sx(Trios). In the native gates,
only the 90-degree x-axis rotation sz and the 180-degree x-
axis rotation z gate will introduce noise. Here we calculate
the total number of x-axis 90-degree rotations as #sx. An x
gate is counted as two sz gates. The CNOT gate context-aware
decomposition also optimizes the inserted SWAP gates, so we
do not differentiate the routing circuit when calculating #szx.

TABLE I: Number of CR gates of QContext in comparison
with Trios [12] on ibmg montreal

Circult Trios QContext Comparison
benchmark #Q | CR, | CRy | #sz | ORy [ #sz | ACRy | Asr [ T./T:
cnx_hall [15] 5 0 35 112 29 64 17.01% | 429% | L14
sym6 [39] 10 99 128 | 631 100 | 402 | 219% [ 217% | 1.09
cnx_dirty [3] I1 102 146 | 666 119 | 520 | 185% [ 21.9% | LO2
cnx_half [T5] 19 137 [ 280 [ 1204 | 230 | &7 | 204% [ 30.0% | 126 |
cnx_log [4] 1] 195 163 | 972 129 [ 799 | 205% | I7.8% | 132
c_adder [9] 20 507 196 [ 1828 [ 184 [I579 ] 6.0% [ 136% | L1I9
_adder [37] 20 | 483 [ 220 [ IB59 | 191 [ 1532 [ 132% [ 17.6% | L04
i [15] E 105 | 461 | 1585 [ 421 [ 1114 | 87% [297% [ 1.02
grover [18] 9 201 724 [ 2524 | 609 [ IR48 | 159% [ 26.8% | Lla
QAOA [13] 10 168 96 672 96 592 — 11.9% | Lo4
UCCSD [31] 8 654 | 274 [ 2348 274 | 2022 — 139% | LID
Geo mean 147% [209% [ LI12

#Q denotes the number of qubits. t adder is the takahashi_adder [37].
c_adder is the cuccaro_adder [9].
T./T: is the ratio between total transpilation time of QContext and Trios.

As shown in Table I, QContext reduces the number of
single-qubit rotations # sz for all the benchmarks and reduces
CR, for all the benchmarks that contain Toffoli gates. The
geometric mean of ACR, for the benchmarks that contain
Toffoli gates is 14.7%. The geometric mean of Asz is 20.9%.
The results for the QAOA benchmark and the UCCSD bench-
mark show the effectiveness of CNOT gate context-aware de-
composition. Note that QAOA and the UCCSD benchmark do
not contain any Toffoli gate, therefore, they will not have any
CNOT gate reduction. We also compare the compilation time.
The choice of using a library of pre-synthesized templates
makes QContext more scalable in terms of compilation time.

VIII. CONCLUSION

In this paper we propose QContext, a new compiler structure
that incorporates context-aware and topology-aware decompo-
sitions. We highlight that quantum gate decomposition should
be aware of the context. QContext reduces both the single- and
two-qubit gate counts by being aware of the basis-gate-level
and native-gate-level gate context.
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