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Maximal qubit violations of n-locality in star and chain networks
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The nonlocal correlations of noisy quantum systems are important for both understanding nature and de-
veloping quantum technology. We consider the correlations of star and chain quantum networks in which noisy
entanglement sources are measured by nonsignaling parties. We derive the necessary and sufficient conditions for
when a broad family of star and chain n-locality inequalities achieve their maximal quantum violation assuming
that each party’s dichotomic observables are separable across qudit systems. When pairs of local dichotomic
observables are considered on qubit systems, we derive maximal n-local violations that are larger and more robust
to noise than the maximal n-locality violations reported previously. To obtain these larger values, we consider
observables that we have not found in previous studies. Thus, we gain insights into self-testing entanglement
sources and measurements in star and chain networks.
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I. INTRODUCTION

When two or more nonsignaling parties share an entan-
gled quantum state, the entanglement can be used to generate
nonclassical correlations that defy local realism [1–4]. This
phenomenon, often referred to as Bell nonlocality, provides
operational advantages in information security [5–12], multi-
partite information processing [13–17], and testing quantum
devices [18–25]. In quantum networks, many entangled states
link parties into a complex topology [26–28]. Consequently,
a wide range of theoretical frameworks have been developed
to characterize the nonlocal network correlations and their
operational advantages [25,29–36].

In particular, we consider the framework of non-n-locality
in which a network consists of n independent sources that cor-
relate a collection of nonsignaling parties. Note that the local
(n = 1) case corresponds to the standard setting of Bell nonlo-
cality in which all parties share a single source [see Fig. 1(a)].
Therefore, non-n-locality is a natural extension of Bell non-
locality. In this framework, a network is characterized by its
correlations where classical sources emit shared randomness
and quantum sources emit entanglement. Classical network
correlations are bound by n-locality inequalities, however,
quantum network correlations can violate these inequalities
to demonstrate non-n-locality [35]. Quantum violations of
n-locality are known for many network topologies including
stars, chains, rings, and trees [37–53]. Moreover, non-n-local
quantum correlations have been demonstrated experimentally
[54–60].

We focus on star and chain network topologies [see
Figs. 1(b) and 1(c)]. In quantum networks, these topolo-
gies have important applications in entanglement swapping
[61,62] and long-distance quantum communication [63–65].
A broad family of n-locality inequalities are known to
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bound the correlations of star and chain classical networks
[40,41,45,53]. We study the maximal quantum violations of
these n-locality inequalities in the presence of noise.

Since quantum network hardware is noisy, it is crucial
to understand how non-n-local correlations deteriorate in the
presence of noise. The noise robustness of non-n-locality
is typically investigated with respect to a particular noise
model [39–41,66–68]. However, a more general approach
gives the maximal n-local violation for any ensemble of
mixed states prepared by the sources. For instance, in the
local n = 1 case, the maximal violation of the Clauser-
Horne-Shimony-Holt (CHSH) inequality [69] is known for
any two-qubit mixed state [70]. Likewise, in star and chain
networks, maximal qubit violations of n-locality have been
derived when measuring separable multiqubit observables
obtained by coarse-graining GHZ measurements [71–73].
However, the resulting n-locality violations are not globally
maximal. Recently, numerical variational optimization meth-
ods have shown that larger qubit violations of n-locality can
be achieved using qubit separable measurements [67].

Our goal is to formalize the discrepancy between the
“maximal” violations using local qubit observables derived in
Refs. [71–73] and the larger violations observed in Ref. [67].
Notably, we find that Ref. [45] misses an important condition
for when a star network achieves its maximal n-locality viola-
tion when multiqudit observables are separable across qudits.
For a family of n-locality inequalities, we correct this error by
deriving the necessary and sufficient conditions for achieving
the maximal violation of n-locality. Moreover, when parties
have binary inputs and outputs, we prove that the upper bound
on the n-locality violation can be achieved for all ensembles of
two-qubit mixed states, showing that quantum non-n-locality
has a greater noise robustness than previously known. Our
main observation is that the maximal violation requires the
external parties in a star network to measure observables in
mutually unbiased bases, e.g., X and Z , while previous works
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FIG. 1. Star and chain networks of n sources (green ellipses)
and m = n + 1 nonsignaling parties (rectangles). External parties
are labeled as A (red) or B (blue). Central parties are labeled as C
(purple). The input to each party is specified in the subscript while the
superscript indexes the linked sources. Parties A, B, and C have the
respective classical inputs and alphabets x ∈ X , y ∈ Y , and z ∈ Z .
All parties are assumed to output binary values.

assumed that the central parties measure observables in mu-
tually unbiased bases.

We first formalize the framework of quantum non-n-
locality for general networks of nonsignaling parties. Then,
we lay the foundation for our main results by introducing
an important family of full correlation locality inequalities,
and the maximal qubit violations of the CHSH inequality.
Next, we present our results regarding the maximal quantum
violations of n-locality in star and chain networks where we
assume that measurements are separable across local qudit
subsystems. Finally, we discuss the application of our results
to self-testing, network nonlocality, and maximizing n-local
violations.

II. METHODS

A. Quantum non-n-locality

We consider networks that consist of m nonsignaling par-
ties A1, . . . ,Am that are correlated by n independent sources
�1, . . . , �n. Each party is modeled as a black-box device that
maps a classical input x j ∈ X j to a binary output a j ∈ B ≡
{0, 1}. Furthermore, each source links two parties together
forming a network. A network can be characterized by its cor-
relations CNet ≡ {〈ONet

�x 〉}�x∈XNet where XNet ≡ X1 × · · ·Xm,
the correlator is〈

ONet
�x

〉 =
∑

a1,...,am

(−1)a1+···+amP(�a|�x), (1)

and �a ∈ Bm is the m-bit classical output. Note that we label
parties as Aj for generality, however, it will later be convenient
to label parties as B and C having inputs y ∈ Y and z ∈ Z ,
respectively.

In the classical case, sources can distribute an unbounded
amount of shared randomness to neighboring parties. As a
result, the network’s transition probabilities decompose as
[35,43,44]

P(�a|�x) =
∑

λ1,...,λn

n∏
i=1

P(λi )
m∏
j=1

P(a j |x j, �λ j ), (2)

where �λ j = (λi )i∈Lj is the set of random values received by
party Aj and Lj ⊆ [n] indexes sources linked to Aj . In Eq. (2),
the nonsignaling constraint is enforced by the product of
P(a j |x j, �λ j ) and the product of P(λi ) enforces the indepen-
dence of sources.

For a given network topology, we define the set of classical
network correlations as LNet where CNet ∈ LNet if the net-
work’s transition probabilities decompose as in Eq. (2). The
independence between sources causes LNet to be nonconvex,
meaning that LNet is bound tightly by nonlinear n-locality in-
equalities [35], SNet(CNet) � β where SNet(CNet) is a nonlinear
function and β is its classical upper bound. These n-locality
inequalities are satisfied by all CNet ∈ LNet, hence their viola-
tion can witness non-n-local correlations.

In the quantum case, each source emits a two-qudit
mixed state, which is represented as the density operator
ρi ∈ D(HAi

d ⊗ HBi
d ) where HAi

d and HBi
d denote the respective

Hilbert spaces for the qudit subsystems of state ρi. Each party
measures their local qudits using a dichotomic Hermitian
observable Oj

xj that has ±1 eigenvalues and is conditioned
upon the classical input x j . In aggregate, the network prepares
the state ρ[n] ≡ ⊗n

i=1 ρi and measures the observable ONet
�x =⊗m

j=1 O
j
xj where the tensor product enforces independence be-

tween sources and parties, respectively. We then define the set
of quantum network correlations as QNet where CNet ∈ QNet

if the network correlator can be expressed as〈
ONet

�x
〉
ρ[n]

= Tr
[
ONet

�x ρ[n]
]
, (3)

where care is taken to ensure that each party measures the
qudits from the appropriate sources.

A quantum network can produce non-n-local correlations
that cannot be reproduced by a classical network having the
same topology. Formally, quantum correlation CNet ∈ QNet

are non-n-local if CNet 	∈ LNet and non-n-local correlations
are witnessed via the violation of an n-locality inequality
SNet(CNet) > β [4,35]. It is then our main goal to find the
maximal n-local network score that can be achieved for a
given state

S�
Net(ρ[n] ) ≡ max{ONet

�x }�x∈XNet

SNet(CNet), (4)

where CNet = {Tr[ONet
�x ρ[n]]}�x∈XNet and the optimization is

over all observables ONet
�x = ⊗m

j=1 O
j
xj .

Similarly to previous works [71–73], we consider the set-
ting in which multiqudit observables are separable across
qudit subsystems as Oj

xj = ⊗
i∈Lj

Oi
yi=x j where the ±1 eigen-

values of Oj
xj correspond to the parity of the |Lj |-qudit

measurement result and Lj ⊆ [n] indexes the linked sources.
As a consequence, each two-qudit mixed state ρi is measured
using dichotomic qudit observables Ai

xi and Bi
yi and the net-

work correlator factors across all two-qudit pairs as

〈
ONet

�x
〉
ρ[n]

=
n∏

i=1

〈
Ai
xi ⊗ Bi

yi

〉
ρi
, (5)

where 〈Ai
xi ⊗ Bi

yi〉ρi = Tr[Ai
xi ⊗ Bi

yiρi] and the inputs xi and yi
are set as their corresponding party’s input (see Fig. 2). The
setting of separable multiqudit measurements is important
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FIG. 2. Quantum sources (ellipses) distribute entangled qudits
to linked parties (rectangles). Qudit observables are labeled using
A (red) or B (blue), while multiqudit observables are labeled using
C group together separable qudit observables (purple dashed). The
n-locality inequalities bounding the chain network assume that all
multiqudit observables are conditioned on the same value, z = z j ∈
Z , which is passed to each local qudit observable contained by the
multiqubit observable, e.g., C1,2

z = B1
z ⊗ A2

z .

because it is both experimentally tractable and leads to conve-
nient theoretical simplifications [45,58,72]. However, a more
general analysis would also consider nonseparable multiqudit
observables.

B. Full-correlation locality inequalities and the maximal qubit
violation of the Clauser-Horne-Shimony-Holt inequality

As an important example, we consider the local (n =
1) case where one source links two parties A and B [see
Fig. 1(a)]. The resulting local set LAB forms a convex poly-
tope, which is tightly bound by linear locality inequalities,
also referred to as Bell inequalities [4]. These locality in-
equalities and their quantum violations form the basis of our
quantum non-n-locality results in star and chain networks.

We consider a family of bipartite full-correlation locality
inequalities having the form [45]

G(CAB) ≡
∑
y∈Y

〈
OAB

y

〉
ρ
� γ , (6)

where
〈
OAB

y

〉
ρ

=
∑
x∈X

Gx,y〈Ax ⊗ By〉ρ, (7)

where γ � 0 is the classical bound and Gx,y ∈ R. When max-
imizing the observables Ax and By to obtainG�(ρ), observable
By can always be selected such that 〈OAB

y 〉ρ � 0. In the qubit

case, the two observables are Ax = �αx · �σ and By = �βy · �σ
where |�αx| = |�βy| = 1, �σ = (X,Y,Z) are the Pauli observ-
ables. Entangled qudit states are sufficient to achieve the
maximal violation when each party receives a binary input,
however, the maximal violation may require entangled qudit
states having dimension larger than two when |X | � 3 or
|Y| � 3 [52].

The CHSH inequality is an important example of a full-
correlation locality inequality where each party has binary
inputs X = Y = B and the maximal quantum violation can
be achieved with a two-qubit state. Then, the local correlations
CAB ∈ LAB satisfy the CHSH inequality [69]

GCHSH(CAB) ≡
∑
y∈B

〈
OCHSH

y

〉
� 1, (8)

OCHSH
y = 1

2
[A0 + (−1)yA1] ⊗ By, (9)

where Gx,y = 1
2 (−1)x∧y and γ = 1. Note that, without loss of

generality, we have scaled the CHSH inequality by a factor
of 1

2 from its typical local bound of γ = 2. Furthermore, the
GCHSH(CAB) quantifies the performance in a game where the
goal is to maximize the likelihood that the inputs and outputs
satisfy a ⊕ b = x ∧ y [4].

The nonlocal content of a two-qubit mixed state ρ is found
in its correlation matrix, Tρ ∈ R3×3, that has elements T (k,
)

ρ =
Tr[σk ⊗ σ
ρ] ∀ σk, σ
 ∈ �σ . For an arbitrary mixed state ρ̃ ∈
D(HA

2 ⊗ HB
2 ), the correlation matrix can be diagonalized as

[74]

Tρ = diag(�τ ) = RATρ̃ (R
B)T , (10)

where RA,RB ∈ SO(3) and �τ ∈ R3 where 1 � τ0 � τ1 �
|τ2| � 0 are the singular values of Tρ̃ . If RA and RB are
chosen freely, the values τ j ∈ �τ can be permuted and/or
sign-flipped as long as the constraint holds that det(Tρ̃ ) =
det(Tρ ) = ∏3

j=1 τ j . We choose to order the singular values as
�τ = (τ1, τ2, τ0) so that our results are consistent with standard
examples of non-n-locality in star and chain networks where
the optimal measurements are expressed in the xz plane of
Bloch sphere. Note that a homomorphism maps SU(2) to
SO(3) [75] such that the rotations RA and RB correspond to
qubit unitaries V A and V B ∈ SU(2), hence Eq. (10) becomes
ρ = V A ⊗V Bρ̃(V A ⊗V B)†. Since we allow measurements to
vary freely over local qubit unitaries, we assume without loss
of generality, that ρ satisfies Tρ = diag(�τ ).

In the CHSH scenario, all quantum correlationsCAB ∈ QAB

satisfy GCHSH(CAB) �
√
2 [76] and, for any two-qubit mixed

state ρ, the maximal CHSH score is [70]

G�
CHSH(ρ) =

√
τ 2
0 + τ 2

1 , (11)

where τ j are the singular values of Tρ . Note that ρ can be used
to generate nonlocal correlations if and only if τ 2

0 + τ 2
1 > 1.

Hence we define a classical state σ where Tσ = diag(0, 0, 1)
such thatG�

CHSH(σ ) = 1. Examples include the product of two
pure qubit states, σ = |ψ〉〈ψ | ⊗ |φ〉〈φ|, or a shared coin flip,
σ = 1

2 (|00〉〈00| + |11〉〈11|).
To obtain G�

CHSH(ρ), there are two choices of optimal qubit
observables,⎧⎪⎨⎪⎩A�

x = (1 − x)Z + xX, B�
y = τ0Z + τ1(−1)yX√

τ 2
0 + τ 2

1

⎫⎪⎬⎪⎭, or (12)

⎧⎪⎨⎪⎩A
�

x = τ0Z + τ1(−1)xX√
τ 2
0 + τ 2

1

, B
�

y = (1 − y)Z + yX

⎫⎪⎬⎪⎭, (13)

where the choices yield the respective expectations〈
OCHSH

y

〉�
ρ

= 1

2

√
τ 2
0 + τ 2

1 = 1

2
G�

CHSH(ρ), (14)〈
O

CHSH
y

〉�
ρ

= 1√
τ 2
0 + τ 2

1

[
τ 2
0 (1 − y) + τ 2

1 y
]
. (15)

To achieve G�
CHSH(ρ), one party must measure observables in

mutually unbiased bases, e.g., X and Z , while the other party’s
observables might be nonorthogonal, e.g., |Tr[B0B1]| > 0.
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Moreover, Eqs. (12) and (13) shows that the optimal mea-
surements can be swapped between the two parties. A fact
that follows from Tρ being symmetric and the two parties
being indistinguishable. From a self-testing perspective, this
symmetry implies that a maximal CHSH score, G�

CHSH(ρ), is
insufficient on its own to determine with certainty which of the
two parties measured in mutually unbiased bases. As we will
see, this symmetry is broken in the star and chain networks.

III. RESULTS

A. Maximal qubit violations of star n-locality

Consider the star network as depicted in Fig. 2(a) where
each party outputs a binary value. We introduce a family of
star network n-locality inequalities

S{Gi}ni=1
(CNet) ≡

∑
z∈Z

|In,z(CNet)| 1
n � β, (16)

In,z(CNet) ≡
∑

�x∈XNet

(
n∏

i=1

Gi
xi,z

)〈
OStar

�x,z
〉
ρ[n]

, (17)

where OStar
�x = (

⊗n
i=1 A

i
xi ) ⊗C[n]

z and C[n]
z is an n-qubit ob-

servable having ±1 eigenvalues. The inequality in Eq. (16)
is constructed from a set of bipartite full-correlation locality
inequalities {Gi}ni=1 and the n-local bound is β = ∏n

i=1(γ
i )

1
n ,

the geometric mean of the upper bounds across all locality
inequalities in {Gi}ni=1.

When considering local qudit observables, the central
party’s observable factors as C[n]

z = ⊗n
i=1 B

i
yi=z where the

±1 eigenvalues of C[n]
z correspond to the parity of the n-

qudit measurement result. The star network observable is then
OStar

�x ≡ ⊗n
i=1 A

i
xi ⊗ Bi

z where the vector �x ∈ XNet ≡ X1 ×
· · · × Xn × Z contains each party’s input. The star network
correlator then factors as in Eq. (5), allowing Eq. (17) to be
rewritten as [45]

In,z(CNet) =
n∏

i=1

〈
OAiBi

z

〉
ρi
, (18)

where 〈OAiBi
z 〉ρi is defined in Eq. (7). Next, inserting Eq. (18)

into Eq. (16), we obtain the star n-locality inequality for local
qudit observables

S{Gi}ni=1
(CNet) =

∑
z∈Z

n∏
i=1

∣∣〈OAiBi
z

〉
ρi

∣∣ 1
n � β. (19)

Furthermore, for the set {Gi}ni=1, the geometric mean of bipar-
tite full-correlation locality scores must satisfy

n∏
i=1

Gi(CAiBi )
1
n =

n∏
i=1

⎛⎝∑
z∈Z

∣∣〈OAiBi
z

〉
ρi

∣∣⎞⎠
1
n

� β, (20)

leading to the following inequality that holds for any fixed set
of correlators 〈OAiBi

z 〉ρi [40,45]:

∑
z∈Z

n∏
i=1

∣∣〈OAiBi
z

〉
ρi

∣∣ 1
n �

n∏
i=1

⎛⎝∑
z∈Z

∣∣〈OAiBi
z

〉
ρi

∣∣⎞⎠
1
n

. (21)

We now prove the conditions for which equality is obtained in
Eq. (21).

Lemma 1. Consider a matrix M ∈ Rm×n where Mz,i � 0.
MatrixM satisfies the following inequality,

0 �
m∑
z=1

(
n∏

i=1

Mz,i

) 1
n

�
n∏

i=1

⎛⎝ m∑
z=1

Mz,i

⎞⎠
1
n

, (22)

where equality is obtained if and only if either Rank(M ) = 1,
or for some i ∈ [n],Mz,i = 0 for all z ∈ [m].

Proof. LetMz,i = azbi where az, bi � 0, then using Lemma
1 of Ref. [40], the inequality in Eq. (22) holds. We show the
left-hand side (LHS) and right-hand side (RHS) of Eq. (22) to
be equal as follows:

m∑
z=1

(
n∏

i=1

Mz,i

) 1
n

=
m∑
z=1

(
n∏

i=1

azbi

) 1
n

(23)

=
⎛⎝ m∑

z=1

az

⎞⎠(
n∏

i=1

bi

) 1
n

(24)

=
n∏

i=1

⎛⎝ m∑
z=1

azbi

⎞⎠
1
n

(25)

=
n∏

i=1

⎛⎝ m∑
z=1

Mz,i

⎞⎠
1
n

. (26)

Since equality holds when M = �a · �bT for non-negative vec-
tors �a ∈ Rm and �b ∈ Rn, any matrixM that has Rank(M ) = 1
achieves equality. As an edge case, equality is also obtained
when, for some i ∈ [n], Mz,i = 0 for all z ∈ [m] because
the upper bound on the RHS becomes zero,

∑m
z=1 Mz,i = 0.

Finally, if Mz,i 	= azbi for all z ∈ [m] and i ∈ [n], then the
inequality in Eq. (22) is strict because the sum and product
cannot be interchanged. �

Note that Ref. [45] presents a similar result to Lemma 1,
however, the authors incorrectly state that equality is obtained
if and only if Mz,i = Mz,i′ for all i, i′ ∈ [n]. While the example
matrixM is rank-one, the authors’ equality condition neglects
a large number of rank-one matrices. Indeed, these matrices
correspond to correlations that lead to greater violations of
star n-locality than previously known.

Theorem 1. For any ensemble of two-qudit mixed states
ρ[n] = ⊗n

i=1 ρi where ρi ∈ D(HAi
d ⊗ HBi

d ), the maximal star n-
locality score obtained using local qudit observables satisfies

S�
{Gi}ni=1

(ρ[n] ) �
n∏

i=1

Gi�(ρi )
1
n , (27)

where equality occurs if and only if the conditions in Lemma
1 are satisfied by the matrix M ∈ R|Z|×n where Mz,i =
〈OAiBi

z 〉�ρi
� 0 are the correlators that maximize Gi�(ρi ) for all

i ∈ [n].
Proof. For any set of correlators {〈OAiBi

z 〉ρi}i∈[n],z∈Z where
〈OAiBi

z 〉ρi is defined in Eq. (7), the inequality in Eq. (21)
must hold. Thus, if the set of correlators {〈OAiBi

z 〉�ρi
}i∈[n],z∈Z
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maximize the star n-locality score, then

S�
{Gi}ni=1

(ρ[n] ) �
n∏

i=1

⎛⎝∑
z∈Z

〈
OAiBi

z

〉�
ρi

⎞⎠
1
n

, (28)

where we may assume that 〈OAiBi
z 〉�ρi

� 0 because the
qubit observable Bi

z may be selected to ensure non-
negativity. However, this set of observables is not guaranteed
to maximize each respective locality inequality, implying
that S�

{Gi}ni=1
(ρ[n] ) �

∏n
i=1 G

i�(ρi )
1
n . Now let M be a matrix

with elements Mz,i = 〈OAiBi
z 〉�ρi

� 0. Then, using Lemma 1,

S�
{Gi}ni=1

(ρ[n] ) = ∏n
i=1 G

i�(ρi )
1
n if and only if either Rank(M ) =

1 or, for some i ∈ [n], 〈OAiBi
z 〉�ρi

= 0 for all z ∈ Z. �
While Theorem 1 applies broadly to a family of star n-

locality inequalities, it fails to dictate whether there exist local
qudit observables that achieve the upper bound. However, we
make an interesting observation when all parties are given
binary inputs whereXi = Z = B for all i ∈ [n]. In this setting,
the CHSH inequality in Eq. (8) is considered for each source
such that

∏n
i=1 G

i
xi,z = ∏n

i=1
1
2 (−1)xi∧z and β = 1. Inserting

these values into Eq. (17) and considering local qubit observ-
ables, we find [40]

In,z(CNet) =
n∏

i=1

〈
OCHSHi

z

〉
ρi
, (29)

where OCHSHi
z = 1

2 [A
i
0 + (−1)zAi

1] ⊗ Bi
z. Thus we define the

star n-locality CHSH inequality

Sn-CHSH(CNet) ≡
∑
z∈B

∣∣∣∣∣
n∏

i=1

〈
OCHSHi

z

〉
ρi

∣∣∣∣∣
1
n

, (30)

where Eq. (30) quantifies the likelihood that
⊕n

i=1(ai ⊕ bi ) =⊕n
i=1(xi ∧ z), which is the XOR of CHSH games each played

using an independent source. Note that S1-CHSH(CNet) =
GCHSH(CNet) [69], and that S2-CHSH(CNet) is the bilocal score
[37,39].

Theorem 2. For any ensemble of two-qubit mixed states
ρ[n] = ⊗n

i=1 where ρi ∈ D(HAi
2 ⊗ HBi

2 ), the maximal CHSH
n-locality star score obtained using local qubit observables is

S�
n-CHSH(ρ[n] ) =

n∏
i=1

G�
CHSH(ρi )

1
n , (31)

where G�
CHSH(ρi ) = (τ 2

i,0 + τ 2
i,1)

1/2 as in Eq. (11).
Proof. By Theorem 1, S�

n-CHSH(ρ[n] ) �
∏n

i=1 G
�
CHSH(ρi ). To

prove equality, consider the optimal CHSH observables Ai�
xi

and Bi�
z from Eq. (12). Since the expectations in Eq. (14)

satisfy 〈OCHSHi
0 〉�ρi

= 〈OCHSHi
1 〉�ρi

for all i ∈ [n], the matrix
M with elements Mz,i = 〈OCHSHi

z 〉�ρi
� 0 has Rank(M ) = 1.

Thus, Lemma 1 is satisfied, implying that S�
n-CHSH(ρ[n] ) =∏n

i=1 G
�
CHSH(ρi )

1
n . �

Theorem 2 contrasts with previous results, which assume
that the multiqubit observables are in the mutually unbiased
bases

Ĉ[n]
z = (1 − z)

n⊗
i=1

ZBi + z
n⊗

i=1

XBi . (32)

This choice of observables has physical significance because
they can be obtained by coarse-graining the outcomes of the
GHZ measurement, which is necessary for generalized entan-
glement swapping the star network [62]. The observables Ĉ[n]

z
lead to the maximal n-local star score [71–73]

Ŝ�
n-CHSH(ρ[n] ) =

√∏n

i=1
τ
2/n
i,0 +

∏n

i=1
τ
2/n
i,1 , (33)

where each external party measures the qubit observables

Âi
xi =

∏n
i=1 τ

1/n
i,0 Z + (−1)xi

∏n
i=1 τ

1/n
i,1 X√∏n

i=1 τ
2/n
i,0 + ∏n

i=1 τ
2/n
i,1

. (34)

In general, Ŝ�
n-CHSH(ρ[n] ) � S�

n-CHSH(ρ[n] ) where taking the
square of both sides and substituting Eqs. (33) and (31) yields
the inequality in Eq. (22):∏n

i=1
τ
2/n
i,0 +

∏n

i=1
τ
2/n
i,1 �

n∏
i=1

(
τ 2
i,0 + τ 2

i,1

) 1
n . (35)

Applying Lemma 1, we derive the condition for equality be-
tween these two contrasting n-local star scores.

Corollary 1. S�
n-CHSH(ρ[n] ) = Ŝ�

n-CHSH(ρ[n] ) if and only if
either Rank(M ) = 1 where Mz,i = τ 2

i,z, or τi,0 = 0 for some
i ∈ [n].

Proof. Let Mj,i = τ 2
i, j � 0, then using Lemma 1 equality

holds in Eq. (35) when Rank(M ) = 1, or when τi,0 = 0 be-
cause τi,0 � τi,1 = 0. �

In theoretical works, the conditions in Corollary 1 are often
assumed to hold. For instance, equality holds when all sources
emit the same mixed state, or when white noise is modeled on
sources. However, these examples of equality are exceptions
that would rarely occur in general ensembles of two-qubit
mixed states.

While Ŝ�
n-CHSH(ρ[n] ) is not globally maximal, it is maximal

under the assumption that the central party measures local
qubit observables in Eq. (32), which are in mutually unbiased
bases. On the contrary, S�

n-CHSH(ρ[n] ) is globally maximal for
all mixed state ensemble where S�

n-CHSH(ρ[n] ) is achieved when
the external parties each measure their qubit observables in
mutually unbiased bases, e.g., Ai

xi ∈ {X,Z}. As noted earlier,
a CHSH violationG�

CHSH(ρ) > 1 is alone insufficient to deter-
mine which qubit was measured in mutually unbiased bases.
However, this is not the case in the star network because the
maximal violation S�

n-CHSH(ρ[n] ) > Ŝ�
n-CHSH(ρ[n] ) for a known

state ρ[n] requires the external parties to measure observables
in mutually unbiased bases. This fact could be used to self-
test whether the external parties are measuring in mutually
unbiased bases.

Overall, the n-local violations of S�
n-CHSH(ρ[n] ) are more

robust to noise than Ŝ�
n-CHSH(ρ[n] ). In Fig. 3, we illustrate

the separation between S�
n-CHSH(ρ[n] ) and Ŝ�

n-CHSH(ρ[n] ). In the
left plot, we consider k sources to be affected by noise that
dampens τi,1 but preserves τi,0, while the remaining sources
are noiseless. As τi,1 becomes small, a large separation exists.
In the right plot, we consider a case where Corollary 1 does
not hold. That is, for all i ∈ [n], G�

CHSH(ρi ) is constant, but the
pair τi,0 and τi,1 are unique. We thus construct examples where
S�
n-CHSH(ρ[n] ) > 1 > Ŝ�

n-CHSH(ρ[n] ).
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FIG. 3. We compare S�
n-CHSH(ρ[n] ) (solid) with Ŝ�

n-CHSH(ρ[n] )
(dashed). In both plots, the n-local bound is shown by the blue dash-
dotted line and the solid or dashed curves are ordered from top to
bottom as shown by the legend. (left) We consider k < n = 12 noisy
sources that have τi,0 = 1 and τi,1 ∈ [0, 1]. The remaining (n − k)
sources have τi,0 = τi,1 = 1. Note that, for each k, each solid line has
a corresponding dashed line that lies just below it. (right) For all i ∈
[n], we consider 1

2G
�
CHSH(ρi ) = β� ∈ [1.0, 1.1] while τ 2

i,1 = (β�)2 −
τ 2
i,0 where τ 2

i,0 are evenly spaced in [
1
2 (τ

2
i,0 + τ 2

i,1),min{1, τ 2
i,0 + τ 2

i,1}].
Note that, for all n, S�

n-CHSH(ρ[n] ) achieves the solid orange line while
the dashed lines plotting Ŝ�

n-CHSH(ρ[n] ) achieve smaller scores.

In Ref. [67], an extreme example is noted where
S�
n-CHSH(ρ[n] ) > 1 � Ŝ�

n-CHSH(ρ[n] ) where k ∈ [1, n) sources
each emit the classical state σi = |00〉〈00| while the remaining
sources each emit maximally entangled states. In this case,

S�
n-CHSH(ρ[n] ) = 2

n−k
2n > 1 = Ŝ�

n-CHSH(ρ[n] ), (36)

thus showing an example where significant n-local violations
occurs where no violation is predicted by previous results
[72]. We now use Theorem 2 to generalize this example.

Corollary 2. For two-qubit states σi, ρi ∈ D(HAi
2 ⊗ HBi

2 ),
consider the ensemble of k classical states σ[k] = ⊗k

i=1 σi

where Tσi = diag(0, 0, 1), and the ensemble of general mixed
states ρ[k+1,n] = ⊗n

i=k+1 ρi. Then, Ŝ�
n-CHSH(σ[k] ⊗ ρ[k+1,n] ) �

1 � S�
n-CHSH(σ[k] ⊗ ρ[k+1,n] ) = S�

(n−k)-CHSH(ρ[k+1,n] )
n−k
n .

Corollary 2 leads to bounds whose violation witnesses
full quantum network nonlocality, in which all sources are
verified to be nonclassical [34]. Namely, if k = 1, then the
maximal n-local violation is bounded as S�

n-CHSH(ρ[n] ) � 2
n−1
2n .

Thus, if Sn-CHSH(CNet) > 2
n−1
2n , then all sources are nonclas-

sical. Similarly, if the central party measures the observable
Ĉ[n]
z such that Ŝ�

n-CHSH(ρ[n] ) is maximal, then the violation
Ŝ�
n-CHSH(ρ[n] ) > 1, witnesses all sources to be nonclassical.
Thus for either choice of observables, a sufficiently large
n-local violation asserts that no classical sources are present.

B. Maximal qubit violations of chain n-locality

Consider the n-local chain network as depicted in Fig. 2(b)
where each party outputs a binary value. We introduce a
family of chain network n-locality inequalities:

K{G1,Gn}(CNet) =
∑
z∈Z

∣∣Jn,z(CNet)
∣∣ 1
2 � β, (37)

Jn,z(CNet) =
∑
x∈X

∑
y∈Y

G1
x,zG

n
y,z

〈
OChain

x,y,z

〉
, (38)

where OChain
x,y,z = A1

x ⊗ (
⊗n−1

i=1 C
i,i+1
z ) ⊗ Bn

y with Ci,i+1
z = Bi

z ⊗
Ai+1
z and the coefficients for the bipartite full-correlation lo-

cality inequalities are G1
x,z,G

n
y,z ∈ R. The n-local bound of

β = (γ 1γ n)1/2 is derived by assuming that each party’s corre-
lator satisfies A1

x,B
n
y ,C

i,i+1
z ∈ {±1} and is separable from the

other parties [41,45,53].
When considering local qudit observables, the central ob-

servables in the chain network are Ci,i+1
z = Bi

z ⊗ Ai+1
z . Then,

using Eq. (5), we rewrite Eq. (38) as

Jn,z(CNet) =
∏

i∈{1,n}

〈
OAiBi

z

〉
ρi

n−1∏
i=2

〈
Ai
z ⊗ Bi

z

〉
ρi
, (39)

where 〈OA1B1
z 〉ρ1 = ∑

x∈X G1
x,z〈A1

x ⊗ B1
z 〉ρ1 and 〈OAnBn

z 〉ρn =∑
y∈Y Gn

y,z〈An
z ⊗ Bn

y〉ρn are full-correlation observables de-
fined in Eq. (7). Next, we insert Eq. (39) into Eq. (37) and
note that

∏
i∈{1,n}〈OAiBi

z 〉ρi = I2,z(C1,n) to find

K{G1,Gn}(CNet) =
∑
z∈Z

∣∣∣∣∣I2,z(C1,n) n−1∏
i=2

〈
Ai
z ⊗ Bi

z

〉
ρi

∣∣∣∣∣
1
2

, (40)

where C1,n denotes the correlations of sources 1 and n.
We now derive an upper bound on the maximal chain n-

locality score in Eq. (40) for any quantum correlations CNet ∈
QNet. First, since 〈Ai

z ⊗ Bi
z〉ρi � τi,0 for all z ∈ Z , it follows

that

K{G1,Gn}(CNet) �
∑
z∈Z

∣∣I2,z(C1,n)
∣∣ 1
2

n−1∏
i=2

√
τi,0

� S�
{G1,Gn}(ρ1 ⊗ ρn)

n−1∏
i=2

√
τi,0, (41)

where in the second line
∑

z∈B |I2,z(C1,n)| 1
2 =

S{G1,Gn}(C1,n) � S�
{G1,Gn}(ρ1 ⊗ ρn). When the number of

inputs for a party exceeds three, sources i ∈ {1, n} may need
to prepare bipartite entangled states of dimension larger than
two to obtain the maximal quantum violation [53]. However,
as shown in the following theorem, the maximal violation
of the chain n-locality inequalities can be obtained when
the central sources i ∈ [2, n − 1] prepare classical two-qubit
states.

Theorem 3. For any ensemble of two-qudit mixed states
ρ[n] = ⊗n

i=1 ρi where ρi ∈ D(HAi
d ⊗ HBi

d ), the maximal n-
local chain score obtained by measuring local dichotomic
observables is

K�
{G1,Gn}(ρ[n] ) = S�

{G1,Gn}(ρ1 ⊗ ρn)
n−1∏
i=2

√
τi,0, (42)

where S�
{G1,Gn}(ρ1 ⊗ ρn) is the maximal bilocal star score using

local qudit observables.
Proof. For all sources i ∈ [2, n − 1], let ρi ∈ D(HAi

2 ⊗ HBi
2 )

be measured by the observable Ai
z ⊗ Bi

z = Z ⊗ Z such that
〈Ai

z ⊗ Bi
z〉ρi = τi,0 for all z ∈ Z . Then, for the two sources

i ∈ {1, n}, consider the optimal full-correlation observables
〈OAiBi

z 〉�ρi
that maximize the bilocal star score to obtain

K�
{G1,Gn}(ρ[n] ) = S�

{G1,Gn}(ρ1 ⊗ ρn). Inserting these observables
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into Eq. (40) yields the upper bound on the n-local chain score
in Eq. (41). �

Theorem 3 shows that to obtain the maximal n-local chain
score, it is sufficient to measure all central sources i ∈ [2, n −
1] using the fixed local qubit observable Z ⊗ Z . Only the mea-
surements that share a source with an external party depend
on z. Thus, the maximal n-local chain score can be achieved
even when all sources i ∈ [2, n − 1] emit a classical state such
as γ where Tγ = diag(0, 0, 1). Similarly, consider the single-
outcome observables Ai

z ⊗ Bi
z = Id ⊗ Id measured on sources

i ∈ [2, n − 1], then for any mixed state ρi, 〈Ai
z ⊗ Bi

z〉ρi = 1 for
all z ∈ Z and

K�
{G1,Gn}(ρ[n] ) = S�

{G1,Gn}(ρ1 ⊗ ρn). (43)

That is, the maximal violation of chain n-locality is achieved
by disregarding all sources i ∈ [2, n − 1] and replacing their
measurements with a constant output.

Consider now the special case where all inputs are binary
X = Y = Z = B. The n-local chain inequality then becomes
a generalization of the CHSH inequality in Eq. (8). Since
all inputs are binary, the maximal n-local chain score can be
obtained using maximally entangled two-qubit states [53]. In
this setting,G1

x,zG
n
y,z = 1

4 (−1)x∧z(−1)y∧z and β = 1. Inserting
these values into Eq. (38) and considering local qubit observ-
ables we find

Jn,z(CNet) =
∏

i∈{1,n}

〈
OCHSHi

z

〉
ρi

n−1∏
i=2

〈
Ai
z ⊗ Bi

z

〉
ρi
, (44)

where OCHSHi
z = 1

2 [A
i
0 + (−1)zAi

1] ⊗ Bi
z as in Eq. (9). It fol-

lows that

Kn-CHSH(CNet) ≡
∑
z∈B

∏
i∈{1,n}

∣∣〈OCHSHi
z

〉
ρi

∣∣ 1
2

×
∣∣∣∣∣
n−1∏
i=2

〈
Ai
z ⊗ Bi

z

〉
ρi

∣∣∣∣∣
1
2

. (45)

Theorem 4. For any ensemble of two-qubit mixed states
ρ[n] = ⊗n

i=1 ρi where ρi ∈ D(HAi
2 ⊗ HBi

2 ), the maximal n-
local chain score obtained by local qubit observables is

K�
n-CHSH(ρ[n] ) =

∏
i∈{1,n}

√
G�

CHSH(ρi )
n−1∏
i=2

√
τi,0. (46)

Proof. By direct application of Theorem 3, K�
n-CHSH(ρ[n] ) =

S�
2-CHSH(ρ1 ⊗ ρn)

∏n−1
i=2

√
τi,0, then using Theorem

2 we recover Eq. (46) because S�
2-CHSH(ρ1 ⊗ ρn) =∏

i∈{1,n}
√
GCHSH(ρi ). To achieve the maximal score,

the central sources i ∈ [2, n − 1] are measured by
the observables Ai

z ⊗ Bi
z = Z ⊗ Z for all z ∈ B while

sources i ∈ {1, n} are measured by the observables
described in the proof of Theorem 2. That is, the
external parties measure A1

0 = Bn
0 = Z and A1

1 = Bn
1 = X ,

while B1
z = [τ1,0Z + τ1,1(−1)zX ]/(τ 2

1,0 + τ 2
1,1)

1/2 and
An
z = [τn,0Z + τn,1(−1)zX ]/(τ 2

n,0 + τ 2
n,1)

1/2. �
The maximal n-local chain score K�

n-CHSH(ρ[n] ) derived in
Theorem 4 is distinct from previous results that assume the
central parties to measure the observables [73]

Ĉi,i+1
z = (1 − z)Z ⊗ Z + zX ⊗ X. (47)

FIG. 4. For various n, K�
n-CHSH(ρ[n] ) (solid) is compared with

K̂�
n-CHSH(ρ[n] ) (dashed). In both plots, the n-local bound is given by the

dash-dotted blue line and, when n = 2, K�
2-CHSH(ρ[n] ) = K̂�

2-CHSH(ρ[n] )
both follow the solid orange line plotting the largest n-local violation.
Furthermore, the curves are ordered from top to bottom as shown by
the legend. (left) We set τ 2

i,0 = 1 and vary τ 2
i,1 ∈ [0, 1]. Note that for

all n, K�
n-CHSH(ρ[n] ) achieves the solid orange line while K̂�

n-CHSH(ρ[n] )
is necessarily smaller for all n > 2. (right) We set τ 2

i,0 = 3
4 + 1

4 τ
2
i,1

and vary τ 2
i,1 ∈ [0, 1]. Note that for each n, the dashed line lies just

below the solid line while having the same value at τ 2
i,1 = {0, 1}.

This choice of observable is physically motivated because it
can be implemented as a coarse-graining on the outputs of a
Bell state measurement, which is important for entanglement
swapping [61]. However, these observables lead to a subopti-
mal n-local chain score

K̂�
n-CHSH(ρ[n] ) ≡

√√√√ n∏
i=1

τi,0 +
n∏

i=1

τi,1, (48)

where the two external parties measure the observables

Â1
x =

∏n
i=1

√
τi,0Z + (−1)x

∏n
i=1

√
τi,1X√∏n

i=1 τi,0 + ∏n
i=1 τi,1

, (49)

and similarly for B̂n
y . In general,K

�
n-CHSH(ρ[n] ) � K̂�

n-CHSH(ρ[n] )
where equality occurs only in special cases.

Corollary 3. K�
n-CHSH(ρ[n] ) = K̂�

n-CHSH(ρ[n] ) if τi,0 = τi,1 for
all i ∈ [2, n − 1] and S�

{G1,Gn}(ρ1 ⊗ ρn) = Ŝ�
2-Star(ρ1 ⊗ ρn).

The result Corollary 3 was observed in Ref. [67]
where significant chain n-locality observations were
obtained when K̂n-CHSH(CNet) � 1. For instance, let
ρ[n] = ρ1 ⊗ (

⊗n−1
i=2 γi) ⊗ ρn where Tγi = diag(0, 0, 1), then

K�
n-CHSH(ρ[n] ) = S�

2-CHSH(ρ1 ⊗ ρn) and K̂�
n-CHSH(ρ[n] ) � 1.

However, if the central parties measure the observables Ĉ(i,i+1)
z

as in Eq. (47), then an n-local violation K̂n-CHSH(CNet) > 1
asserts that each source is nonclassical. As a consequence,
full quantum network nonlocality [34] cannot be witnessed
in the chain network with respect to local qubit observables
but can if central parties measure their qubits in mutually
unbiased bases.

Overall, the n-local violations of K�
n-CHSH(ρ[n] ) are more

robust to noise than the n-local violations of K̂�
n-CHSH(ρ[n] ).

In Fig. 4, we illustrate cases where K�
n-CHSH(ρ[n] ) >

K̂�
n-CHSH(ρ[n] ). In both plots, we consider uniform noise

on all sources such that Corollary 1 is satisfied such that
S�
2-CHSH(ρ1 ⊗ ρn) = S�

2-CHSH(ρ1 ⊗ ρn). Thus, we ensure that
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the separation between K�
n-CHSH(ρ[n] ) and K̂�

n-CHSH(ρ[n] ) is in-
herent to the chain network. In the left plot, we consider
noise where τi,0 is preserved but τi,1 is damped. For all n > 2,
we find K�

n-CHSH(ρ[n] ) = S�
2-CHSH(ρ1 ⊗ ρn) � K̂�

n-CHSH(ρ[n] ) �
1 where the separation increases with n. In the right plot, we
consider noise such that τi,0 is also damped, but the bias τi,0 >

τi,1 is preserved. For all n > 2, we find that S�
2-CHSH(ρ1 ⊗

ρn) > K�
n-CHSH(ρ[n] ) � K̂�

n-CHSH(ρ[n] ) and we find examples
where K�

n-CHSH(ρ[n] ) > 1 > K̂�
n-CHSH(ρ[n] ). Hence the local

qubit measurement strategy discussed in Theorem 4 lead to
n-locality violations in noisy settings when the results of pre-
vious works predict the correlations to be local [73].

IV. DISCUSSION

In this work, we investigate the non-n-local correlations
that form in noisy star and chain quantum networks when
separable multiqubit observables are measured. In Lemma 1,
we present a general condition for equality between n-locality
scores and their upper bounds, broadening significantly the
optimality condition derived in Ref. [45]. We apply Lemma 1
in Theorems 1 and 3 to derive general conditions that assert
when local qudit observables achieve their maximal n-locality
violation for a given state ρ[n]. In Theorems 2 and 4, we derive
the maximal n-local star and chain scores S�

n-CHSH and K�
n-CHSH

for any ensemble of two-qubit mixed states measured using
local qubit observables. The derived maximal n-local scores
are larger and more robust to noise than Ŝ�

n-CHSH and K̂�
n-CHSH

derived in previous works [72,73].
The optimal observables for these distinct n-local viola-

tions can be used to test the sources and measurements of star
and chain networks. In particular, a maximal n-local violation
satisfying S�

n-CHSH(ρ[n] ) > Ŝ�
n-CHSH(ρ[n] ) requires the external

parties to apply qubit observables in mutually unbiased bases,
X and Z . A fact that could be used in self-testing measure-
ments. Furthermore, our results relate to the framework of full
network nonlocality [34] where a sufficiently large violation
indicates that no classical sources are present.

An advantage arises when optimizing a network’s observ-
ables for the maximal n-local violation given uncharacterized
sources. Namely, to achieve Ŝ�

n-CHSH and K̂�
n-CHSH, the qubit

observables of external parties depend on the states emitted
from all sources, as shown in Eqs. (34) and (49). Thus, when
optimizing a single qubit observable, the network must be
considered as a whole. In contrast, to achieve S�

n-CHSH and
S�
n-CHSH, the optimal qubit observables depend only on the
state they measure, allowing the observables on each source
to be optimized as independent CHSH violations. This dis-
tinction simplifies the practical task of optimizing nonlocal
correlations on quantum hardware [67,77,78].

Although Ŝ�
n-CHSH and K̂�

n-CHSH are only maximal in spe-
cial cases, we find that most results applying these quantities
still hold. Mainly, either the central parties are explicitly
assumed to measure in mutually unbiased bases, or Corol-
laries 1 or 3 hold inadvertently due to the presence of
uniform state preparations or white noise. Regardless, the
fact that S�

n-CHSH(ρ[n] ) � Ŝ�
n-CHSH(ρ[n] ) and S�

n-CHSH(ρ[n] ) �
K̂�
n-CHSH(ρ[n] ) is important to networking applications that

rely upon non-n-locality such as information security [11,12],
self-testing [21–25], nonlocality sharing [79–82], and quan-
tum steering [83]. In future works, it would be interesting
to consider explicitly the optimal observables of n-locality
inequalities where parties have more than two inputs or out-
puts, or for topologies beyond stars and chains. Additionally,
it is still an open question whether there exist nonseparable
observables leading to larger violations of n-locality in noisy
star and chain networks. Finally, we expect that variational
optimization techniques for quantum networks [67] will lead
to further theoretical insights, and should be applied more
broadly.
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