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Abstract
Fabrication errors pose a significant challenge in scaling up
solid-state quantum devices to the sizes required for fault-
tolerant (FT) quantum applications. To mitigate the resource
overhead caused by fabrication errors, we combine two ap-
proaches: (1) leveraging the flexibility of a modular architec-
ture, (2) adapting the procedure of quantum error correction
(QEC) to account for fabrication defects.

We simulate the surface code adapted to defective qubit
arrays to find metrics that characterize how defects affect
fidelity. We then use our simulations to determine the im-
pact of defects on the resource overhead of realizing a fault-
tolerant quantum computer on a chiplet-based modular ar-
chitecture. Our QEC simulation adapts the syndrome readout
circuit for the surface code to account for an arbitrary dis-
tribution of defects. Our simulations show that our strategy
for dealing with fabrication defects demonstrates an expo-
nential suppression of logical failure, where error rates of
non-defective physical qubits are ∼ 0.1% for a circuit-based
noise model. This is a typical regime on which we imagine
running the defect-free surface code. We use our numerical
results to establish post-selection criteria for assembling a
device with defective chiplets. Using our criteria, we then
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evaluate the resource overhead in terms of the average num-
ber of physical qubits fabricated for a logical qubit to obtain
a target logical error rate. We find that an optimal choice of
chiplet size, based on the defect rate and target performance,
is essential to limiting any additional error correction over-
head due to defects. When the optimal chiplet size is chosen,
at a defect rate of 1% the resource overhead can be reduced
to below 3X and 6X respectively for the two defect models
we use, for a wide range of target performance. Without
tolerance to defects, the overhead grows exponentially as
we increase the number of physical qubits in each logical
qubit to achieve better performance, and also grows faster
with an increase in the defect rate. When the target code
distance is 27, the resource overhead of the defect-intolerant,
modular approach is 45X and more than 105X higher than
the super-stabilizer approach, respectively, at a defect rate
of 0.1% and 0.3%. We also determine cutoff fidelity values
that help identify whether a qubit should be disabled or kept
as part of the QEC code.
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1 Introduction
Fault-tolerant (FT) quantum computers will enable the im-
plementation of large-scale quantum algorithms such as
search [31] and factoring [18]. These machines are designed
to protect quantum information by encoding logical qubits
in quantum error-correcting codes that consist of a large
number of interacting physical qubits.
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Achieving fault tolerance requires a practical way to man-
ufacture physical qubits. One leading approach is to manufac-
ture a large planar array [11] of qubits in a solid-state system
such as superconducting [1, 25, 37] or spin qubits [12, 19]. In
these hardware architectures, Ref. [30] estimates that over
a million high-fidelity qubits will be required for FT quan-
tum applications. However, scaling a quantum device to this
magnitude presents significant challenges.
The fabrication of large-scale solid-state devices encoun-

ters additional complexities due to fabrication errors. There
are many steps in processing where a slight deviation from
the target specification occurs due to process imprecision or
stochastically appearing impurities or imperfection[20, 24].
As a result, variation in the quality of qubits, as well as the
links along which qubits interact, is inevitable. On quantum
devices, physical qubits will exhibit inhomogeneous charac-
teristics, including variations in gate success, measurement
fidelity, and coherence, and will likely contain faulty (de-
fective) qubits — qubits with severely limited functionality.
With today’s technology, [33] estimated that ∼ 2% of the
qubits on a transmon device would be faulty.

To effectively scale up solid-state quantum devices in the
presence of fabrication errors, we combine two approaches:
(1) Leveraging the flexibility of a modular architecture, which
offers greater adaptability compared to a monolithic archi-
tecture by enabling the post-selection of individual chiplets
prior to their integration into a larger device. (2) Adapting
QEC codes to defective qubit arrays, which enables the uti-
lization of some defective chiplets. The combination of these
two strategies helps mitigate the additional resource over-
head caused by fabrication errors, but it requires a thorough
understanding of the performance of an adapted surface
code, and how the overhead is affected by design choices. Im-
portantly, establishing an informed post-selection criterion
that accounts for how each chiplet is affected by its defects
requires identifying performance indicators specific to the
adapted surface code. This also helps us understand how the
logical fidelity of an adapted surface code compares with
that of a standard surface code.
An adapted surface code can be implemented on a defec-

tive chiplet by employing “super-stabilizer measurements,”
which are capable of detecting errors in proximity to de-
fective areas, as outlined in previous studies [2, 34–36]. We
illustrate the construction of super-stabilizers in Fig. 1. Con-
veniently, these super-stabilizers can be measured in a timely
manner using the operational qubits adjacent to the defec-
tive region [2, 34, 35]. It has been shown, in theory, that this
approach can scale on a large lattice [36]. However, there is
a noticeable gap in existing research regarding the compar-
ative performance and resource overhead of such adapted
codes relative to the standard, defect-free surface code. To
address this, we conduct numerical simulations. And to fa-
cilitate our numerical simulations, we develop an automated
method to map surface code to defective grids by deforming

boundaries and forming super-stabilizers. Notably, our au-
tomated method can define a surface code for an arbitrary
configuration of defects.
Using our numerical results, we identify two key figures

of merit that characterize the fidelity of a surface code on a
defective chiplet. The first is the distance on the defective
patch 𝑑 , the least number of physical errors that can lead to a
logical failure. In the regime of low error rate per gate, 𝑝 , we
find that to leading order, the logical failure rate decays like
𝑂 (𝑝𝑑/2), just as for defect-free chiplets. Remarkably, we iden-
tify this scaling when physical errors occur at a rate 𝑝 ∼ 10−3,
the regime where we expect a defect-free chip to be operable.
This implies that the defective chips are functionally similar
to the defect-free ones with the same 𝑑 , except that they cost
more physical qubits. Aside from this scaling, we identify
variation in surface codes with equivalent code distances.
We find a second figure of merit that differentiates among
these codes. Specifically, we find that the logical failure rate
will scale with the number of different ways that a logical
failure can occur with 𝑑 physical errors. Both of these figures
of merit can be efficiently computed after the surface code
is adapted to a defective grid.

These two indicators enable us to rapidly assess the quality
of individual defective chiplets. This is necessary for estab-
lishing a post-selection criterion for the modular chiplet
architecture, and also for resource overhead evaluation. Our
numerical results demonstrate that our post-selection crite-
rion is more effective than the natural strategy to select the
chiplets with the fewest defects.
We quantify the resource overhead by the total number

of fabricated physical qubits per logical qubit, including the
qubits on the chiplets that are not selected. In Fig.12b,13b,
and 17b, we show the factor of resource overhead relative to
the ideal no-defect case. Our results show that it is important
to select the chiplet size based on the fabrication error rate,
in order to achieve a balance between having a high yield
(proportion of chiplets that meet the standard) and using a
small number of physical qubits per patch of code. When
the optimal chiplet size is chosen based on the results, the
resource overhead is below 3X and 6X respectively for the
two defect models we study (defective links only v.s. same
rate of defect on links and qubits), when the defect rate is
below 1%. This holds for a wide range of performance targets.
Without the ability to tolerate defects, the resource overhead
grows exponentially with the number of physical qubits
in a logical qubit (which increases for higher performance
targets) and also grows faster with the defect rate.

We also evaluate the sensitivity of the yield to two design
choices: what boundary constraint is imposed on each patch,
and whether the chiplet design allows the data and syndrome
qubits to be swapped by rotating a chiplet. When the archi-
tecture allows swapping the assignment of syndrome and
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Figure 1. Examples of super-stabilizers and boundary defor-
mations. The faulty qubits are marked with a red ‘x’, and the
excluded part in a patch is represented by lighter color. (a)
One broken data qubit in the interior, handled by a super-
stabilizer. (b) One broken syndrome qubit in the interior,
handled by larger super-stabilizers. (c)(d) Broken qubits near
the boundary require boundary deformations.

data qubits for individual logical qubits, for example by ro-
tating a chiplet, the yield can be improved. Although in this
paper we mainly evaluate each patch by its capacity to store
a logical qubit, a boundary constraint can ensure the quality
of multi-qubit logical gates.

Finally, we identify cutoff fidelity values for determining
whether a qubit should be treated as faulty or kept in the
code. This is important in the practical setting because the
impact of fabrication errors varies and there’s not always a
clear line between faulty and good qubits.

Summary of contributions and results:
• We develop an automated method that adapts the ro-
tated surface code to a grid with an arbitrary distribu-
tion of defects using super-stabilizers. Our automated
method produces a simulation of active error correc-
tion that is implemented on Stim [14]. Our code and
a demo notebook is available at https://github.com/
SophLin/superstabilizer_demo.

• Using our numerical simulations, we identify effective
indicators for assessing the fidelity of a surface code
adapted to defective chiplets.

• We present the first evaluation of the impact of fabri-
cation defects on the resource overhead of quantum
error correction. Our focus is on the modular chiplet
architecture where one logical qubit is allocated on
each chiplet. We quantify the resource overhead as
the average number of physical qubits fabricated for a

logical qubit, and evaluate its sensitivity to system pa-
rameters. We show that the post-selection of chiplets
and the ability to use defective chips are both critical
for reducing the extra overhead caused by fabrication
errors.

• We identify cutoff fidelity values for determiningwhether
a qubit with worse performance than its neighbors
should be treated as faulty or kept in the code.

2 Background
2.1 Fabrication errors and variations on

transmon-based quantum devices
In this section, we discuss some of the sources of fabrication
errors and variation for transmon qubits. Although our dis-
cussion is not exhaustive, it is meant to give some intuition
for why current chips see a 2% defect rate.

Imprecision in the fabrication of Josephson Junctions (JJs)
is a source of varied qubit performance. A JJ, two supercon-
ductors separated by a thin metal-oxide insulator, is the heart
of a transmon qubit [13]. JJs have incredibly small feature
sizes that are hundreds of nanometers in scale [20], smaller
than the wavelengths used during optical lithography. Thus,
slight imperfections that appear in JJ positioning, compo-
nent dimension, or surrounding layers influence operational
characteristics of the transmon [24].

On fixed-frequency transmons with fixed couplers, one of
the most commonly used superconducting qubits, frequency
collision is a dominant type of fabrication error. Fabrication
variation can deviate a qubit’s frequency from the ideal fre-
quency, resulting in spectral overlaps that cause frequency
collisions. This variation is stochastic, causing the resulting
frequency profile of each chip to be unique.
Another type of unintended defect that frequently and

stochastically appears across a quantum chip during pro-
cessing is a two-level system (TLS) [28]. A TLS is caused by
impurities inside materials or irregularities within atomic
crystalline lattice structures appearing unexpectedly in oxide
layers or on the surface of the chip. Because of the layered
approach associated with transmon processing, there are
many opportunities for TLSs to appear during fabrication.

2.2 Surface code
The surface code [9, 11, 23] is one of the most practical quan-
tum error-correcting codes for physical realization due to its
implementation using a two-dimensional nearest-neighbor
qubit layout, and its high tolerance to noise. It can perform a
universal set of logic gates while maintaining its local planar
layout. One can use lattice surgery to perform entangling
operations [8, 22, 26] and magic state distillation [5, 17] to
perform non-Clifford gates. For most of this work, we will
concentrate on the performance of the surface code storing
a logical qubit over time. In this paper, we use the rotated
planar surface code due to its low qubit overhead [3, 4, 10].
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We define the surface code with code distance 𝑑 on a 𝑑 × 𝑑

grid of data qubits. The errors on the data qubits are detected
using 𝑑2−1measurement qubits, otherwise known as ancilla
qubits or syndrome qubits. More specifically, a measurement
qubit is placed on either a red or a blue face of the grid of
data qubits, as in Fig. 2. Note also that the faces at the lattice
boundary each touch two data qubits.
We measure stabilizers to detect errors that qubits ex-

perience. Stabilizers are measured repeatedly in cycles to
determine the locations of errors that occur over time. In
each cycle, each measurement qubit is used to measure ei-
ther a Pauli-X stabilizer, 𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑 , or a Pauli-Z stabilizer
𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑 , depending on the color of the lattice face on
which the measurement qubit lies. The measurement qubits
on the boundary only acts on two data qubits, and therefore
measure stabilizers of the type 𝑋𝑎𝑋𝑏 or 𝑍𝑎𝑍𝑏 . Stabilizers are
measured with circuits that are detailed in, e.g., Ref. [39].
In practice, to deal with the errors that occur on data

qubits, as well as errors that occur on measurement qubits
that may cause stabilizer circuits to give unreliable outcomes,
we compare a stabilizer reading at cycle 𝑡 to the reading of
the same stabilizer made at cycle 𝑡−1. A difference in reading
gives rise to an error detection event.

By performing multiple cycles, we obtain a history of de-
tection events over time that we call the error syndrome.
In general, we can regard errors as string-like objects in
this error syndrome, where detection events occur at the
end-points of these strings. See e.g. Refs. [7, 9, 11, 40] for
details. Using the error syndrome, we can obtain a correc-
tion to recover encoded information using minimum-weight
perfect-matching algorithm [7, 9, 11, 21, 40], where we deal
with detection events due to Pauli-X stabilizers and Pauli-Z
stabilizers separately. We concentrate on only Pauli-Z sta-
bilizers throughout this work, but note that an equivalent
analysis will hold for the alternative stabilizers.
A logical error is introduced into the surface code when

at least 𝑑/2 errors occur along a non-trivial path over the
surface code error syndrome history [3, 9, 11, 40]. If we
assume that an individual error occurs with probability𝑂 (𝑝),
then in the limit that 𝑝 is small, we can fit the logical error
rate to the ansatz

𝐿𝐸𝑅 = 𝛽 (𝑁𝑝)𝛼𝑑 , (1)

where 𝑁 and 𝛼 ≤ 1/2 are constants to be determined [3, 6,
9, 11, 40, 41].

3 Deforming boundary and forming
super-stabilizers

Faulty qubits and links can be particularly harmful to the
implementation of topological QEC codes if they are not
handled correctly. This is because qubit errors in the vicinity
of fabrication defects may not be detected. Given a finite
density of fabrication defects, this will inhibit the decay of

Figure 2. Rotated surface code with d=3. The black dots
represent the data qubits, and each red (blue) face represents
an X (Z) stabilizer. Each stabilizer requires an ancilla qubit.

Surface code
mapped to a

grid

No

Defect near boundary?
Deform boundary,
clear the tentative
super-stabilizers

No

Yes Unaddressed defects
 in the interior?

Tentatively handle
interior defects

with super-stabilizers

Adaptation
complete

Yes

Figure 3. Algorithm for mapping rotated surface code to a
defective grid by deforming boundaries and forming super-
stabilizers.

logical failure rate as we increase code distance, if we do not
deal with these defects correctly.
Building upon the theory in Ref. [36], we develop and

implement an automated method that adjusts a surface code
for arbitrary defect distributions. Our algorithm includes de-
forming boundaries of a code and forming super-stabilizers
in the interior. A flowchart is shown in Fig. 3. Our code takes
the chiplet size 𝑙 and a list of defects as input, then adapts a
surface code to the defective grid and generates a stabilizer
measurement circuit compatible with the Stim[14] simulator.

We learn the occurrence of errors close to fabrication de-
fects by forming super-stabilizers around them. The values
of these super-stabilizers can be inferred from local measure-
ments around the defects [2, 34, 35]. Furthermore, we repeat
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the local measurements used to obtain the super-stabilizer
for an elongated time, over a timescale that is commensurate
with the size of the super-stabilizer that are defective [36].
A measurement schedule with this feature is adopted in
Ref. [36] to demonstrate the procedure helps achieve a thresh-
old — when the physical errors on the non-faulty qubits is
lower than the threshold, one can expect the quality of the
logical qubit to improve as it is encoded with more physical
qubits.

As an example, we show how we can construct a weight-
6 X and Z super-stabilizer around a single faulty qubit in
the interior of the code in Fig. 1a). The value of the X (Z)
super-stabilizer can be computed from the direct product
of the two weight-3 broken X (Z) stabilizers used as gauge
operators. The X and Z gauges anti-commute, so they cannot
be measured in the same cycle. Instead, they are measured
in alternate cycles.

Another important example is the case where a measure-
ment qubit in the interior of the qubit grid is faulty (Fig. 1b).
All of its neighboring data qubits are disabled and larger
super-stabilizers (each consisting of 4 gauge operators) are
formed. Around a larger defect cluster like this, instead of
measuring the X and Z gauges in alternate cycles (XZ...),
we repeat one type of measurement several times before
switching to the other (e.g. XXZZ...) following [32, 36]. The
number of repetitions should scale with the size of the clus-
ter [32, 36]; here we set the number of repetitions equal to
the diameter of the defect cluster.
Note that when forming super-stabilizers in the interior,

we not only need to disable the data qubits connected to
defective syndrome qubits, but also need to disable syndrome
qubits due to defective data qubits in some cases. It is obvious
that a syndrome qubit connected to no more than one active
data qubit needs to be disabled. When a syndrome qubit is
connected to two active data qubits but the three qubits are
on the same diagonal line, it also needs to be disabled.
If a faulty qubit is too close to the boundary to be sur-

rounded by gauge operators, it cannot be handled by super-
stabilizers. In this case the boundary of the patch needs to
be deformed to exclude the faulty qubit. Although [2] ad-
dressed the boundary deformation for a surface code with a
different lattice geometry, the rotated surface code has more
complicated boundaries and we develop a new algorithm for
handling the defects near boundary.
To illustrate a boundary deformation, four examples are

shown in Fig. 1 (c) and (d). On the right side of (d) is a faulty
syndrome qubit near a boundary of different color. Two data
qubits are disabled along with it, because they are no longer
included in any Z stabilizer. Then the X syndrome qubit
on its right is also disabled, because it no longer has any
data qubits to measure. If any of these three qubits were
the faulty one, the same boundary deformation would apply.
If a faulty syndrome qubit is near a boundary of the same
color, as is the case on the left of (c), more qubits need to be

excluded from the patch to ensure that all stabilizers on the
boundary are of the same color. In particular, the neighboring
syndrome qubits of different type than the boundary need
to be excluded from the patch. If a data or syndrome qubit
at a corner is faulty, then only one other qubit needs to be
excluded (lower right of (d)). If any faulty qubit is too close
to the new boundary, it must be excluded too. To the lower
left of (c), such an example is shown. The faulty data qubit
on the original boundary leads to an excluded region that is
similar to the one on the right edge of (d). Then since a data
qubit on the new boundary is faulty, the lower boundary is
further deformed. Note that the second faulty qubit in this
region was part of three stabilizers that remained active after
the first deformation, but only the one of different color than
the lower boundary is excluded in the second deformation.
The code distance 𝑑 is the length of the shortest unde-

tectable error chain on a patch of QEC code, and is equivalent
to the length of the shortest X or Z logical operator. As we
will show in Sec. 4, it not only characterizes the defect-free
codes, but also serves as a primary indicator for the fidelity
of defective patches. On a 𝑙 × 𝑙 patch, we have 𝑑 = 𝑙 only if
there is no defect; a defective patch has 𝑑 < 𝑙 . In Fig. 1 (a),
𝑙 = 5 and 𝑑 = 4 along both directions. In (b), we have 𝑙 = 7
and 𝑑 = 5. In (c) and (d), 𝑙 = 9. The code distance is 7 in (c).
In (d), the distance is different along each direction: 𝑑 = 9
vertically and 𝑑 = 8 horizontally.

4 Building a device with defective qubits
In this section, we move on to the setting where the goal is to
build a large FT device with an array of rotated surface code
patches. We first propose a modular architecture and discuss
design choices, then identify a post-selection criterion for
evaluating the quality of defective chiplets.
For the simulation, we use two models of fabrication er-

rors: one with links set to be faulty at random, and one with
links and qubits both set to be faulty at the same probability.
The first one models fixed-frequency transmon qubits with
fixed couplers, where frequency collision is the dominant
type of fabrication error. The latter models tunable transmon
qubits, where links are as intricate as qubits. When using the
super-stabilizers, a faulty link can be handled by disabling
either of the two qubits that it connects. Faulty syndrome
qubits lead to greater damage as explained in the last section,
so we choose to disable the data qubit connected to a faulty
link unless the syndrome qubit on the other end is already
disabled.

We use a circuit-level noise model for the physical errors
on the non-defective qubits, where the two-qubit gate er-
ror is 𝑝 , the one-qubit gate error is 0.8𝑝 , and the readout
error is 8

15𝑝 . We use standard measurement circuits for the
syndromes [39].
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Figure 4. Schematic of a chiplet architecture.

4.1 A modular architecture for rotated surface code
The modular architecture we simulate in this project is an
array of chiplets similar to the ones in [33]. We allocate one
patch of surface code on each chiplet, as in Fig. 4. The qubits
on adjacent chiplets can communicate via the inter-chip links
(shown in dashed lines), but these links are currently ∼ 3𝑋
worse than on-chip links[33]. Since no patch is defined across
multiple chiplets, the inter-chip links are not used when a
patch is idle. We assume the physical qubits on each chiplet
has the grid connectivity, which is the one that naturally
supports the surface code.
In Fig. 4, we show a design that allows one to swap the

assignment of the data and syndrome qubits on a chiplet by
rotating the chiplet by 180°. When a chiplet contains more
faulty syndrome qubits than faulty data qubits, this will likely
improve the quality of the code, because faulty syndrome
qubits generally cause more significant drop in fidelity. In
Sec. 5.1, we will evaluate how much advantage this degree
of freedom translates to.

4.2 Post-selection criterion: assessing the quality of
defective chiplets

When building a modular device, one has the opportunity to
select the chips with better quality, and arrange them in a
way that maximizes the fidelity. In [33], only the defect-free
chiplets are kept, and then they are combined in a way that
avoids frequency collisions along inter-chip links. When the
goal is to support the surface code, we need different post-
selection criteria. The chiplets that support higher-quality
surface code patches should be kept, and they should be
arranged to ensure that they can communicate at full code
distance via lattice surgery.
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Figure 5. Slopes of the log-log LER v.s. 𝑝 plots, from ran-
domly sampled defective rotated surface code patches with
𝑙 = 11. For each value of 𝑑 , 50 defective patches are sampled,
with the same probability for link failure and qubit failure.

For the purpose of selecting and arranging chiplets, we
need to find good indicators for the ability of a defective chip
to support a good surface code encoding and lattice surgery.
This is because in a realistic setting, it might be impracti-
cal to experimentally measure the fidelity of surface code
patches encoded on each chiplet before deciding which ones
to use. Experimentally testing the fidelity of lattice surgery
operations between patches on different chips is even less
practical, since it requires repeatedly connecting and discon-
necting chiplets to iterate through different combinations.
When the target logical error rate (LER) is tiny, the cost of
running simulations (e.g. a memory experiment) to estimate
fidelity is also formidable. This is because when the LER is
small, it takes too many shots to observe enough instances
of logical errors.
To investigate the relevance of different figures of merit

for many sample chiplets, we need a way of evaluating the
quality of individual chiplets. We adopt Eqn. (1) to devise
one such quantity. Specifically, we look to find the exponent
𝛼𝑑 of this expression. To obtain this number, for each sample
chiplet, we evaluate the logical failure rate as a function
of 𝑝 for values of 5 × 10−4 ≤ 𝑝 ≤ 2 × 10−3 where logical
failure rates are determined using Monte Carlo methods.
This is a typical regime where the defect-free surface code is
studied [11]. The value𝛼𝑑 is the gradient of the logical failure
rate shown as a function of 𝑝 plotted with logarithmic axes.
As such we will refer to this value as ‘the slope’. We show
logical failure rates plotted as a function of 𝑝 in Fig. 6. The
straight lines given in the plot indicate that we are sampling
in a low 𝑝 regime where Eqn. (1) is valid.

We explored various possible indicators including 𝑑 of the
defective patches, the total number of qubits that get disabled
(a quantity that is generally higher than the number of faulty
qubits), the size of the largest cluster of disabled qubits. The
code distance of a defective surface code patch is the best in-
dicator we find (Fig. 5). Although [2] suggests that defective
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1Figure 6. Logical error rate v.s. physical error rate at low
physical error rates (5 × 10−4 to 2 × 10−3), for defect-free
patches of rotated surface code, and examples of defective
patches with 𝑙 = 11. The shaded regions represent the 95%
confidence intervals for each value.

patches are outperformed by defect-free patches with the 𝑑 ,
their data (Fig. 14 in [2]) only supports this claim for physical
error rates ≥ 3 × 10−3. Instead, we find that the defective
patches generally have higher slopes than the defect-free
patches with the same 𝑑 (Fig. 5). This means although the
defective patches perform worse than the defect-free coun-
terparts at higher 𝑝 , they generally perform better at lower
𝑝 .

To explain the variation among patches with the same 𝑑 ,
we identified a secondary indicator, the number of unique
weight𝑑 logical operators. In other words, it is the number of
different ways that a logical failure can occur with 𝑑 physical
errors. It can be evaluated efficiently with a modified version
of breadth-first search on a graph where the nodes are the
physical qubits on a surface code. As shown in Fig. 7, this
helps to identify the outliers that significantly overperforms
or under-performs compared to the defective patches with
the same 𝑑 . This indicator also helps us to understand why
defective patches generally outperform defect-free counter-
parts with the same𝑑 : a defect-free patch hasmore symmetry
in its shape so it has a large number of unique minimum-
weight logical operators.

In Fig. 8 and 9, we evaluate two other indicators that we
tested. The size of the largest defect cluster does not help
predict the slope. The proportion of disabled data qubits is
inversely correlated with the slope, but does not provide
extra information that one cannot tell from the 𝑑 .
Now, we compare our post-selection criterion against a

baseline indicator, the number of faulty qubits on a chiplet.
Although there is a visible negative correlation between this
quantity and the slope in Fig. 10, it is not as effective as the
indicators we choose in Fig. 11.
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Figure 7. Slopes of LER v.s. 𝑝 , from the same defective
patches used in Fig. 5, grouped by 𝑑 and plotted against
the log of the number of shortest logical X.
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Figure 8. Slopes of LER v.s. 𝑝 , from the same defective
patches used in Fig. 5, grouped by 𝑑 and plotted against
the proportion of disabled physical qubits on a patch.
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patches used in Fig. 5, grouped by 𝑑 and plotted against
the diameter of largest cluster of disabled qubits.
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Figure 10. Slopes of LER v.s. 𝑝 , from the same defective
patches used in Fig. 5, plotted against the number of faulty
qubits on a patch.
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1Figure 11.Mean and worst slopes of selected patches, when
the proportion selected is varied. The baseline only uses the
number of faulty qubits (Fig. 10); the "chosen indicators” use
𝑑 as primary indicator and the number of shortest logical
operators to break ties.

5 Impact on resource overhead
In this section, we show how design choices affect the re-
source overhead of building a large quantum computer to
support a surface code.

5.1 Resource overhead and sensitivity analysis
In this section, we show how fabrication errors increase the
resource overhead of the surface code, and show that a mod-
ular architecture design and super-stabilizers successfully
mitigate the cost.

When the goal is to match the fidelity of the 𝑑 = 9 defect-
free patch, we have the choice of using chiplets of width 9, 11,
or larger. What chiplet size is more resource-efficient? If we
make larger chiplets, each patch has a higher 𝑙 . Then under
the same fabrication error rate, we expect more chiplets to
meet the standard. With smaller chiplets, we have a lower
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Figure 12. Defective links only. (a) Proportion of chiplets
that support a rotated surface code patch that performs as
well as a defect-free patch of distance 9, evaluated with the
two metrics in 7. (b) As for (a) but showing the average
number of fabricated physical qubits per logical qubit scaled
by the number in the no-defect case.

yield, and for the baseline where 𝑙 = 9, we cannot tolerate
any defects. But each larger chiplet is made with more re-
sources, which we quantify as the number of physical qubits.
In Fig. 12(a), we show the yields, and in (b), we show the
average number of fabricated physical qubits for a logical
qubit, which is obtained by dividing the number of qubits
on each patch by the yield. The simulation is run with the
model that only has faulty links, and each data point is col-
lected from a 10000-shot simulation. From Fig. 12(b) we can
tell that below a fabrication error rate of ∼ 0.1%, we should
choose the baseline. From ∼ 0.1% to ∼ 0.6% and from ∼ 0.6%
to ∼ 1.1%, we should choose 𝑙 =11 and 13 respectively. When
the fabrication error rate is above ∼ 1.1%, we should choose
𝑙 = 15 or higher. The overhead factor of the baseline ap-
proach rises out of the figure at higher defect rates. It is 18X
and 336X respectively at 1% and 2% defect rates.
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Figure 13. Links and qubits are assigned faulty at the same
rate. (a) Proportion of chiplets that support a rotated surface
code patch that performs as well as a defect-free patch of
distance 9, evaluated with the two metrics in 7. (b) The same
as for (a) but showing the average number of fabricated
physical qubits per logical qubit scaled by the number in the
no-defect case.

When we use the model where links and qubits have the
same defect rate (Fig. 13), instead of the link-defect-only
model, the yields are lower than in Fig. 12 and the advantage
of using larger 𝑙 start from a lower defect rate. At a 1% defect
rate, the overhead factor of the baseline approach (𝑙 = 9) is
91X.

For most of the paper, we focus on the fidelity of an individ-
ual patch. Here, we briefly discuss how certain deformations
on the boundary would result in a drop in code distance
during lattice surgery, and evaluate the cost of avoiding such
chiplets.

Lattice surgery involvesmerges and splits between patches
of the planar surface code. In Fig. 14we show an example case
where a deformed boundary only leads to a small decrease
in the distance of the individual patch, but causes a larger
decrease of code distance after a merge. In this example, the

x

x

x

x

Figure 14. An example where the code distance drops after
a merge.

two merging edges are deformed at the same place. When
the deformations are not aligned, there can be a greater drop
in code distance after the merge. A low-distance merge has
lower fidelity, so when this type of patch is used, the com-
piler should try to schedule lattice surgery operations on its
other edges. Then, the programs would be compiled to more
layers. Alternatively, one can avoid using patches with such
an edge, which may result in a lower yield.
Note that we did not run simulation to compute the fi-

delity of lattice surgery operations between defective patches.
Therefore, it is only our speculation that the code distance
of the merged patch is sufficient to predict the fidelity of the
logical operations.
In Fig. 15, we show how the yield changes after a bound-

ary constraint is imposed. We have two types of boundary
constraints for an edge of a surface code patch: (a) where
we are free of deformations (in this case we do not need to
form any new super-stabilizer during lattice surgery), and
(b) where the total width of deformations along the edge
is not enough to decrease the code distance after a merge.
Then, we have the choice of imposing the constraint on (c) all
four edges of a patch, or (d) on only two edges (at least one
X-edge and at least one Z-edge, for the convenience of sched-
uling lattice surgery operations). From these, we get four
different boundary constraints. The yield drops significantly
only when we impose the strictest constraint (standard 1,
or a and c). The drop is negligible for standard 4, when we
impose (b) and (d). When we impose standard 2 or 3, the
drop is visible but small. Given the results, we should apply
standard 3 if we are willing to form new super-stabilizers
along the merging/splitting edges; if not, we should apply
standard 2.
The way we propose to allocate a surface code patch on

a chiplet (in Sec 4.1) allows the freedom to swap the as-
signment of data/syndrome qubits by a 180°rotation. Alter-
natively, this freedom can be achieved by translating the
position of the logical qubit by one physical qubit, but this
translation needs to be coordinated so that the adjustments
to neighboring patches do not conflict. We observe an im-
provement in yield when we have such a freedom (Fig. 16),
when qubit defects are present. Some techniques to reduce

224



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Lin et al.

0.000 0.002 0.004 0.006 0.008 0.010

Fabrication Error Rate

0.0

0.2

0.4

0.6

0.8

1.0
Yi
el
d

No requirement
Standard 1
Standard 2
Standard 3
Standard 4

1Figure 15. The change in yield after imposing different stan-
dards on boundaries of patches. Standard 1: No deformation
on any boundary; standard 2: at least 2 boundaries of differ-
ent types have no deformation; standard 3: all 4 boundaries
support lattice surgery without decreasing distance; stan-
dard 4: at least 2 boundaries of different types support lattice
surgery without decreasing distance.
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1Figure 16. Improvement in yield when there is freedom to
rotate the chiplets. Links and qubits are assigned faulty at
the same rate.

leakage errors involve swapping data and ancilla qubits [27],
which might not work well with this design. Handling leak-
age errors is outside the scope of this paper, however.
In Fig. 17, we show the cost of making higher-quality

logical qubits. For this set of simulations, instead of matching
the fidelity of the 𝑑 = 9 defect-free rotated surface code, the
goal is to match the 𝑑 = 17 defect-free code. The trends we
observe are qualitatively the same. Note that at 1% defect
rate, the factor of resource overhead from the 𝑙 = 17 defect-
intolerant baseline is over 56000X. In fact, when the defect
rate is fixed, the resource overhead increases exponentially
with the number of physical qubits in a logical qubit.

On Fig. 12b,13b, and 17b, if we take the minimum of all
curves at each fabrication error rate, we obtain the minimum
extra resource overhead (due to defects) that can be achieved
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Figure 17. Yields for larger chiplets. Defective links only. (a)
Proportion of chiplets that support a rotated surface code
patch that performs as well as a defect-free patch of distance
17, evaluated with the two metrics in 7. (b) The same as for
(a) but showing the average number of fabricated physical
qubits per logical qubit scaled by the number in the no-defect
case.

by the chiplet architecture considered in this work. In Fig.
18, we show how this factor is affected by the fabrication
error rate and the target code fidelity. When the fabrication
error model consists of defective links only, the curves for
different target fidelity coincide. It is ∼ 2𝑋 at a 0.5% defect
rate, and below 3𝑋 at 1% defect rate. When we model both
defective qubits and links, the curves coincide at low defect
rate and diverge a small amount at higher defect rate. The
factor of overhead is ∼ 3𝑋 at a 0.5% defect rate and 5X to
6X at 1% for the range of fidelity targets we set. With the
freedom to swap the assignment of data and ancilla qubits,
the resource overhead can be lower, as shown in Fig. 18c.

Fig. 18 shows that, even with a method to implement QEC
in the presence of fabrication errors, it is still important
to reduce the defect rate by adopting improved designs for
qubits or fabrication. Limiting the factor of overhead to below
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2X requires a defect rate below∼ 0.5% for the link-defect only
model, and below ∼ 0.3% for the model with both defective
links and qubits.

5.2 Limit of the monolithic architecture
The results in Sec. 5.1 demonstrate that the ability to imple-
ment the surface code on defective grids is necessary for
containing its resource overhead, by comparing against a
baseline design that uses modular chiplets but only accepts
defect-free surface code patches. What if we choose a mono-
lithic architecture but accept defective patches?
The monolithic design does not allow for post-selection

of chiplets, thus the resulting chip will contain regions that
cannot support logical qubits that meet the requirement.
Furthermore, without the freedom to arrange the chiplets,
one cannot avoid the situation in Fig. 14 and ensure that
each patch can interact with neighboring patches with high
fidelity.

As the next section (Section 5.3) will demonstrate through
a case study, if the suboptimal regions of a monolithic de-
vice are used, then they will lower the application fidelity.
Alternatively, one can restrict the compiler to only use the
patches that meet the requirement. However, this constraint
effectively reduces the connectivity between logical qubits.
This will increase the number of time steps that it takes to
run the program, hence reduce the program fidelity.

5.3 Resource overhead and fidelity estimation for an
example application

In Section 5.1, the quantity we use for evaluating each ap-
proach is the factor of extra resource overhead relative to
the ideal defect-free case. In this section, we estimate the re-
source cost and application fidelity of an example application
in the presence of defects.

The application we choose is Shor’s algorithm applied to
2048-bit integers, whose implementation with surface code
(in the no-defect setup) is optimized and analyzed in [16]. It
requires a 226 · 63 grid of distance-27 surface code patches,
and about 25 billion surface code cycles, according to [16].
In Table 1 and 2, we show cost estimates for building a

modular device that supports the application, at a defect rate
of 0.1% and 0.3% respectively (on both qubits and links). To
compute the cost of the super-stabilizer approach, we use
the steps in Section 5.1, and find the optimal choice of 𝑙 that
minimizes the factor of resource overhead for a target code
distance of 27. The no-defect baseline is for the ideal case
where no defects arise, and the defect-intolerant baseline is
for the design choice to only use defect-free chiplets. The
results show that the defect-intolerant approach makes the
already tremendous resource requirement for the algorithm
orders of magnitude higher, while the super-stabilizers help
lower the factor of resource overhead to a small number (45X
better for the 0.1% defect rate and more than 105X better
when the defect rate is 0.3%). This example also demonstrates
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(a) Defective links only.
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(b) Defective links and qubits, without swapping data and syn-
drome qubits.
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(c) Defective links and qubits, with the option to swap the as-
signment of data and syndrome qubits.

Figure 18. The extra resource overhead due to defects, for
different target logical error rates. The y-axis is the average
number of fabricated qubits for a logical qubit, scaled by the
number in the ideal no-defect case. The target logical error
rate is the fidelity of the defect-free rotated surface code of
code distance 𝑑 .
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the importance of reducing the defect rate. When the defect
rate is increased from 0.1% to 0.3%, the cost increases by 40%
even when the super-stabilizers are applied.

No-defect
Defect-

intolerant
Super-

stabilizer

𝑙 27 27 33
Yield 100% 1.4% 94.5%

Overhead 1 71.32 1.58
Qubits 2.1 × 107 1.5 × 109 3.3 × 107

Table 1. Resource estimation for building a device that sup-
ports a 226 · 63 grid of distance-27 surface code patches, for
a defect rate of 0.001 on both qubits and links. No-defect
is the ideal setting without fabrication defects, not an ap-
proach to handle defects. Both the defect-intolerant and the
super-stabilizer approaches here post-select chiplets to make
a modular device. Overhead is the factor of resource over-
head, determined by the yield and the size of each chiplet;
Qubits is the total number of physical qubits fabricated for
the application.

No-defect
Defect-

intolerant
Super-

stabilizer

𝑙 27 27 39
Yield 100% 2.7 × 10−6 94.6%

Overhead 1 3.67 × 105 2.21
Qubits 2.1 × 107 7.6 × 1012 4.6 × 107

Table 2. Same as Table 1 but for a defect rate of 0.003.

The fidelity of a large-scale fault-tolerant application can
be roughly estimated with the topological error rate, as in
Section 2.13 of [16]. We follow their method to estimate the
fidelity of the application, assuming the physical gate er-
ror on the device is 10−3. In the calculation, we account for
the code distance distributions for the adapted surface code
patches (see Fig. 19). The distributions are each obtained
from a sample size of 10000. Recall that based on the results
in Section 4.2, code distance is the most important indicator
for the performance of an adapted surface code patch. Fur-
thermore, the logical error rate of the adapted surface code
is generally lower than that of the defect-free patch with the
same code distance. Therefore, using code distance to esti-
mate the performance of each patch does not underestimate
the failure rate for the super-stabilizer approach.
Estimates for the application fidelity are shown in Table

3 and 4. Note that the device from the ideal no-defect case
(all patches are exactly distance 27) would have a fidelity of
∼ 73%. In the case where we use a modular device with super-
stabilizers, all the patches are at least distance 27 and most
of them have larger code distances. Therefore, the estimated
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(a) 𝑙 = 33, defect rate at 0.1% for both links and qubits.
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(b) 𝑙 = 39, defect rate at 0.3% for both links and qubits.

Figure 19. Distribution of code distance. In orange: propor-
tions of patches with 𝑑 ≥ 27; in blue: proportions of patches
with 𝑑 < 27. The results are obtained without reassigning
data and syndrome qubits.

application fidelity is higher, albeit at a higher resource cost
than the ideal no-defect case.
We compare our approach against two baselines while

holding the resource overhead constant. The first baseline’s
goal is to build a modular, defect-free device from defective
qubits. For this baseline, we need to lower the resource over-
head to be the same as the super-stabilizer approach. We
do this by reducing the size of the chiplets. The factor of re-
source overhead for building this modular defect-free device
from defective qubits (relative to the distance-27, ideal no-
defect case) is 1.12 for 𝑑 = 15 and 2.09 for 𝑑 = 17, at a defect
rate of 0.1%. To match the resource overhead of our approach
(1.58), one would use a mix of 𝑑 = 15 and 𝑑 = 17 defect-free
patches. However, these code distances are insufficient for
the application; they both result in an estimated fidelity of
effectively 0. Furthermore, when the defect rate is 0.3%, the
defect-intolerant baseline can only afford patches of distance
11 and 13, which is even farther below the requirement.

The second baseline is the monolithic device with the
super-stabilizers applied. There is no post-selection of chiplets
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baseline1 baseline2
Modular &

super-stabilizer

𝑙 15 ∼ 17 33 ∼ 35 33
Overhead 1.58 1.58 1.58
Estimated
fidelity 0 79.9% 88.5%

Table 3. Application fidelity estimated with the topologi-
cal error. Baseline1: modular, defect-intolerant. Baseline2:
monolithic, uses super-stabilizers to handle defects.

baseline1 baseline2
Modular &

super-stabilizer

𝑙 11 ∼ 13 39 ∼ 41 39
Overhead 2.21 2.21 2.21
Estimated
fidelity 0 76.1% 91.7%

Table 4. Same as Table 3 but for a defect rate of 0.003.

for the monolithic device, so its resource overhead is lower if
the same 𝑙 is used. In order to match the resource overhead
factor of our approach, we increase 𝑙 for a proportion of the
patches. For the case with a 0.1% defect rate, we keep 53%
of the patches at 𝑙 = 33 and use 𝑙 = 35 for the rest. For the
defect rate= 0.3% case, we keep 47% of the patches at 𝑙 = 39
and expand the rest to 𝑙 = 41. Our calculation shows that
even with the increased code distance, the expected failure
rate of this baseline is ∼ 1.8X and ∼ 2.9X higher than the
modular, super-stabilizer approach for the two cases. This is
because the logical qubit patches with 𝑑 < 27 contribute to
the error rate on the monolithic device, negatively impacting
fidelity, but they are discarded in the modular case.

6 What counts as a fabrication error
So far we have been using a simple model for defects, where
each qubit or link is labeled directly as “faulty” or “non-
faulty”. In real life, there are scenarios where it is not clear
whether a qubit should be viewed as faulty. For example, on
a device with a average 2-qubit gate fidelity of 99.9%, should
we disable a qubit that only supports 2-qubit gates with
97% fidelity? If the cutoff is set too high, we lose too many
physical qubits and suffer a decrease in code performance; if
the cutoff is too low, the inferior qubits will also damage the
code.

To identify cutoff fidelity values for labelling a qubit faulty,
we need to compare the logical performance when we keep
the faulty qubits against the results from disabling them.
We use the stability experiment [15] instead of the more

standard memory experiment that we used in the previous
sections. While the memory experiment quantifies how well
a logical observable is maintained by the code, the stability
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1Figure 20. Stability experiment results from keep-
ing/disabling a bad data qubit on a 𝑑 = 5 surface code. The
x-axis is the physical error rate of the good qubits.

experiment evaluates how well a logical observable can be
moved (a capacity that is needed for logical operations). As
explained in [15], measurement errors can’t cause logical
errors in memory experiments except by creating confusion
that hides the key data errors. Since errors caused by a faulty
qubit look like repeated measurement errors, the memory
experiment is unable to show the damage of faulty qubits.

In Fig. 20, we show the results from a stability experiment
where the data qubit in the center of a 𝑑 = 5 surface code
has higher error rate than the rest. We set the value of 𝑝 , the
two-qubit error rate of the worse qubit, to values from 5%
to 15% (the other errors on it scale accordingly). Then, we
compare the results against the one from disabling the worse
qubit and using super-stabilizers around it. The figure shows
that when 𝑝 of the bad qubit is above ∼ 10%, we should
disable it regardless of the quality of the other qubits. When
𝑝 is below 5%, it is preferable to keep it unless the error rate
on the other qubits is below the range in the plot. Finally,
when 𝑝 = 8%, we should disable the qubit if the error rate
on the other qubits is below ∼ 0.45%.

7 Related work
To the best of our knowledge, [33] is the only prior paper
that also advocates for a modular quantum chiplet design
to mitigate fabrication defects. They analyze how to reduce
the resource overhead in the pursuit of making a defect-
free device. In contrast to [33], which does not specialize in
any particular application, our research specifically targets
quantum error correction. This focus allows us to utilize
some defective chiplets, significantly reducing the resource
overhead compared to [33].
Our method for adapting the surface code to defective

qubit arrays builds upon earlier work on super-stabilizers [2,
32, 36]. However, prior studies did not establish a post-selection
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criterion applicable to modular chiplets, nor did they per-
form an analysis of the associated resource overhead. [2]
proposed to correct errors that occur near to defects using
super-stabilizers. The idea was built from [34, 35] where
super-stabilizers are constructed to correct for an idealized
noise model that introduces loss errors. As the authors of [2]
point out, it is not clear if their measurement schedule to
read out super-stabilizers will give rise to a threshold. [2]
also introduced a protocol for adapting the surface code to
arbitrary defect distributions, but the boundary deformation
in the protocol only applies to the unrotated surface code,
which uses ∼ 2𝑋 more physical qubits per logical qubit for
a commensurate code distance with the rotated code used
in this paper. Our simulator includes a new algorithm for
deforming boundaries due to the more complicated bound-
ary of rotated surface code. Another difference is that we
implement the shells proposed in [36] to mitigate clustered
defects.
Some other methods have also been proposed to handle

faulty qubits. Nagayama et al. [29] also formed large stabi-
lizers around the defects. They use SWAP gates to collect all
the syndrome information onto one qubit, while we adopt
the approach that takes the product of gauge operators. Wu
et al. [42] developed an algorithm to adapt surface code to
devices with sparse connectivity such as the current IBM
devices. According to our correspondence with them, their
method is more suitable for highly symmetric lattices and is
less suitable for handling arbitrary defect distributions.
We focus on static defects in this paper, but transient

events such as cosmic rays could result in temporary defects.
There are some strategies [38] that are specifically designed
for transient defects on QEC code. [32] recently considered
producing shells around large clusters of transiently defec-
tive qubits introduced by cosmic rays. This work identified
the importance of varying the schedule of super-stabilizer
measurements for clustered defects.

8 Conclusion
Building a large device with modular chiplets provides the
flexibility to throw away unwanted chiplets and arrange the
rest. Such flexibility is crucial for scaling up quantum devices
to support QEC in the presence of fabrication defects. In this
work, we implement an automated method to adapt a ro-
tated surface code to a defective grid and generate syndrome
measurement circuits. Then, we run numerical simulations
to identify effective indicators for assessing the performance
of defective chiplets relative to defect-free chiplets. With
these indicators, we evaluate the resource overhead of im-
plementing an array of logical qubits with different target
fidelity and under different defect rates. We also analyze how
the overhead is affected by factors like the chiplet size. We
found that with modularity and the super-stabilizers, the
increase of resource overhead due to defects can be limited

to a small factor, which is orders of magnitude better than
the defect-intolerant baseline.

We have focused on the design that allocates one patch of
a surface code on each chiplet. Dividing each patch onto mul-
tiple chiplets would increase the flexibility in post-selection.
However, since inter-chip links are currently ∼ 3𝑋 worse
than on-chip links[33], this decision might increase the log-
ical error rates. Whether further division of chiplets can
reduce the overhead could be an interesting subject for fu-
ture work.
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