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Abstract—Modern day quantum devices are in the NISQ
era, meaning that the effects of size restrictions and noise
are essential considerations when developing practical quan-
tum algorithms. Recent developments have demonstrated that
Variational Quantum Algorithms (VQAs) are an appropriate
choice for current era quantum devices. VQAs make use of
classical computation to iteratively optimize parameters of a
quantum circuit, referred to as the ansatz. These parameters are
usually chosen such that a given objective function is minimized.
Generally, the cost function to be minimized is computed on a
quantum device, and then the parameters are updated using a
classical optimizer. One of the most promising VQAs for practical
hardware is the Variational Quantum Eigensolver (VQE). VQE
uses the expectation value of a given Hamiltonian as the cost
function, and the minimal value of this particular cost function
corresponds to the minimal eigenvalue of the Hamiltonian.

Because evaluating quantum circuits is currently very noisy,
developing classical bootstraps that help minimize the number
of times a given circuit has to be evaluated is a powerful
technique for improving the practicality of VQE. One possible
such bootstrapping method is creating an ansatz which can
be efficiently simulated on classical computers for restricted
parameter values. Once the optimal set of restricted parameters
is determined, they can be used as initial parameters for a
VQE optimization which has access to the full parameter space.
Stabilizer states are states which are generated by a particular
group of operators called the Clifford Group. Because of the
underlying structure of these operators, circuits consisting of
only Clifford operators can be simulated efficiently on classical
computers. Clifford Ansatz For Quantum Algorithms (CAFQA)
is a proposed classical bootstrap for VQAs that uses ansatzes
which reduce to clifford operators for restricted parameter values
[1].

CAFQA has been shown to produce fairly accurate initializa-
tion for VQE applied to molecular Hamiltonians. Motivated by
this result, in this paper we seek to analyze the Clifford states that
optimize the cost function for a new type of Hamiltonian, namely
Transverse Field Ising Hamiltonians. Our primary result is
contained in theorem IV.1 which connects the problem of finding
the optimal CAFQA initialization to a submodular minimization
problem which in turn can be solved in polynomial time.

I. INTRODUCTION

Quantum computing (QC) represents a groundbreaking
computational paradigm for solving specific problems that are
traditionally impractical to tackle classically. It is anticipated
that quantum computers (QCs) will wield significant advan-
tages in areas of critical impact such as cryptography [2],
chemistry [3], optimization [4], and machine learning [5].

During the ongoing Noisy Intermediate-Scale Quantum
(NISQ) era, we are set to operate with quantum machines
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equipped with hundreds to thousands of imperfect qubits [6].
In this era, these machines will grapple with limited con-
nectivity and relatively short qubit lifetimes due to design
constraints. Noise remains a major obstacle, preventing current
quantum computers from outperforming classical computers
in nearly all applications. Machines in the NISQ era will be
incapable of executing extensive quantum algorithms like Shor
Factoring [2] and Grover Search [7]. These algorithms neces-
sitate error correction involving millions of qubits to establish
fault-tolerant quantum systems [8]. However, a range of error
mitigation approaches [9]-[16] have been proposed, enhancing
execution fidelity on today’s quantum devices. Nonetheless,
the achieved fidelity still falls short of the requirements for
most practical applications.

In recent times, there has been a growing focus on lever-
aging classical computing support to elevate the applicability
of NISQ applications and devices in the real world. This
effort encompasses various enhancements, such as optimiza-
tions at the compiler level [17], advancements in classical
optimizers [18], circuit segmentation with classical compen-
sation [19], [20], among others. We are currently in the
early stages of exploring this synergistic quantum-classical
paradigm. There exists significant potential for employing
sophisticated classical bootstrapping tailored to specific appli-
cations, thereby pushing the boundaries of NISQ capabilities
forward.

Variational quantum algorithms (VQAs) are anticipated to
align well with NISQ machines, demonstrating a broad array
of applications, including electronic energy estimation for
molecules [21] and approximations for MAXCUT [4]. The
quantum circuit in a VQA is defined by a set of angles,
which are fine-tuned by a classical optimizer across multiple
iterations to reach a specific target objective representing the
VQA problem. These algorithms exhibit greater suitability for
present-day quantum devices due to their ability to adapt to the
idiosyncrasies and noise profile of the quantum machine [21],
[22]. Regrettably, the accuracy achieved by VQAs on exist-
ing NISQ machines, even with error mitigation strategies,
frequently falls significantly short of the exacting accuracy
demands, particularly in domains like molecular chemistry,
especially when dealing with larger problem sizes [3], [13],
[17].

To advance NISQ VQAs towards practical utility, it is
crucial to carefully select the parameterized circuit (ansatz)
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for a VQA and optimize its initial parameters classically
to be as close to optimal as possible before venturing into
quantum exploration. This approach holds the promise of
enhancing accuracy and expediting algorithmic convergence
on the quantum device, even in the presence of noise [23],
[24]. While certain applications may derive advantages from
domain-specific knowledge guiding the choice of particular pa-
rameterized circuits and initial parameters (e.g., UCCSD [25]),
these choices are less appropriate for execution on contempo-
rary quantum devices due to their substantial quantum circuit
depth. Ansatz circuits tailored for today’s devices, often termed
as “hardware efficient ansatz” [3], are typically agnostic to
specific applications and stand to benefit significantly from
judiciously chosen initial parameters. However, accurately
estimating these parameters through classical means can be
a challenging task.

Prominent prior work like CAFQA [1] focuses on initializ-
ing the VQA ansatz through classical simulation. In CAFQA,
the initial parameters for VQA are selected through an efficient
and scalable search within a classically simulable segment of
the quantum space known as the Clifford space, employing
Bayesian Optimization. CAFQA attains remarkable accuracy
during initialization. Specifically, for the crucial chemistry
application involving the estimation of the ground state energy
of molecules, CAFQA restores up to 99.99% of the accuracy
lost in previous state-of-the-art classical initialization, demon-
strating mean improvements of 56x.

Motivated by this result, in this paper we seek to analyze the
Clifford states that optimize the cost function for a new type of
Hamiltonian, namely Transverse Field Ising Hamiltonians. Our
primary result is contained in theorem IV.1 which connects
the problem of finding the optimal Clifford initialization to a
submodular minimization problem which in turn can be solved
in polynomial time. This connection arises by mapping the
problem of finding the Hamiltonian ground state to a graph
theoretic optimization problem, which is submodular. Sub-
modular functions satisfy a criterion formalized in Appendix
B-C. As a result of this property, submodular functions can
be minimized by considering related constrained convex opti-
mization problems [26]. When running numerical experiments,
we consistently obtain Clifford approximations of the ground
state energies that have a relative error varying from roughly 0-
25% when compared to the exact ground state energies. This
error itself is problem dependent and is an indicator of the
true ‘quantum-ness’ of the problem. Once the good Clifford
initialization is found, VQE can be run on future quantum
devices (with reasonably low error rates), to find (nearly) exact
ground state energy estimates.

II. BACKGROUND

Here, we provide a brief overview of VQE. For a more in-
depth overview of VQE see [27]. The variational principle
from quantum mechanics is a statement regarding the expec-
tation value of a Hamiltonian. Given a Hamiltonian H with
ground state Fy, any quantum state |¢)) will satisfy

Ey < (Y[H|y) (1)

2

Thus if the state can be parameterized by a vector parameter
angles 6 € [0,2n)", then

2

Assuming that the parameterization of [¢) is expressive
enough to accurately predict the ground state of the Hamilto-
nian.

A common way to parameterize |¢)) is by using a parame-
terized quantum circuit which implements some parameterized
unitary operator U(6) acting on the initial state |0)®™ where
n is the number of qubits.! Using this parameterization,

) = U(6)|0) 3)

and

(W[H|v) = (0[UT(0)HU (6)|0) )

The circuit which implements the unitary operator U is
called the ansatz, and the choice of ansatz is critial to the
performance of VQAs [28].

The Variational Quantum Eigensolver (VQE) begins with
some set of parameters 6; and some ansatz U(6). It then
repeatedly computes the expectation value of the Hamiltonian
on U(6)]0) using a quantum circuit derived from the ansatz.
Between each computation, the parameters are updated using
a classical optimizer. The benefit of using quantum devices to
find expectation values is that the gate depth of such circuits
(both the gates required to construct the ansatz and those
required to compute the expectation value once the ansatz has
been applied) grows polynomially with n whereas using purely
classical simulation will require matricies of size 2™ x 2" at
minimum.

CAFQA’s primary proposal is to make use of an ansatz
which lends itself to a classical initial search before requiring
the usage of a quantum computer [1]. It has been shown that
circuits which are composed entirely of Clifford Gates can be
simulated in polynomial time using the stabilizer technique
[29] [30]. The states obtained from applying Clifford Gates
are called Stabilizer states or Clifford states.’

From here on, we will assume that the ansatz under consid-
eration will be able to reach every n-qubit clifford state. With
this assumption, determining the best CAFQA initial value is
the same as determining the best clifford state initial value.

From here on

e |¢) will represent an arbitrary state

e |p) will represent an arbitrary Clifford state.

e |thg) will be the ground state for a given Hamiltonian H

e |po) will represent the Clifford state that minimizes

(p|H|p) over all Clifford states |¢).

III. MATHEMATICAL PREREQUISITES

Before moving onto determining the optimal clifford states
for a given Hamiltonian, we require the development of some
prerequisite theory.

'From here on we use the shorthand |0)®™ = |0). Generally, context will
make it clear how many qubits we are considering.
2We will use these two terms interchangeably.
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A. Graph Theory

In this section we review the required graph theory concepts
the notations that we will use. For a fuller overview of
graph theory alongside proofs of some of the corollaries left
unproven here, see [31].

Definition III.1. A graph G is given by a set of vertices Vi
and a set of edges Eg. We write this as G = (Vg, Eg). *

The particular graphs that we will use for computations
later on are defined in Appendix A.For our purposes, Vg =
{90,91,G2,--.,qn—1} with N > 2. This labelling provides a
natural correspondence between node ¢; and qubit ¢;. An edge
between nodes ¢; and ¢; will be denoted as (g;,q;) = (g;, ¢)
4. Furthermore, we only consider graphs with edges between
distinct nodes.

Definition IIL.2. A subgraph S = (Vg, Es) of a given graph
G is a new graph satisfying Vs C Vg and Eg C V. We write
S C G to say that S is a subgraph of G.

There’s a special type of subgraph that will play a special
role later on.

Definition III.3. Given a set of nodes {q;, , Gi,, - - . } of a graph
G, the subgraph S induced by {qi,,¢i,, .-} is the subgraph
with Vs = {qi,, ¢i,, ... } and Eg equal to the set of all edges
in Vi between nodes in {g;,, ¢i,, - - - }- We will write E(5S) to
denote the edges induced by vertex set S.

Given a graph G and two nodes ¢; and g;, we can define
whether or not g; or g; are connected as follows.

Definition IIL.4. Nodes ¢; and g; are G-connected if either
of the two following statements are true
° <q17 q]> S EG
o There exists a sequence of nodes g, , qk,, - - -
that

s qk,, such

<qi7q1€1>7 <qk17qk2>7 ey <q7€m7qj> S EG

A graph G is called connected if every element of Vg is G-
connected to every other element in V.

Corollary IIL.5. The following two immediately follow from
Definition III.4 and Definition.
e ¢; being G-connected to g; is equivalent to ¢; being G-
connected to ¢; (reflexivity).
o If g; is G-connected to g; and g; is G-connected to gy,
then ¢; is G-connected to gj, (transitivity).

Corollary IIL.6. Every graph G is the union of £ > 1 disjoint
connected subgraphs called connected components. In other
words, there exists a set of graphs Cy,Cs,...,Cy C G such
that

« Vo=UL, Ve,

3Graphs will always be denoted with capital letters.

4In general graph theory it’s often useful to assign a real number weight to
each edge. Furthermore, there are times where (g;, q;) # (q;, ;) is a more
natural choice. However, here we consider unweighted and undirected graphs,
neglecting these alternate definitions.

3

. Eq=U/, Ec,

e Each C; is connected

o Vo, NV, =0ifi#y

Connectivity allows us to define spanning trees as follows.

Definition IIL7. Given a connected graph S, we call any
connected subgraph M C S a spanning tree of S if M is
connected and satisfies the following properties.
o If (gi,q;) € FEu, then there exists no sequence
Aky s 9k Ak, with

(@ir Gy ) (Qrr s Q)5 - - - (> G5) € B

If S is disconnected but the union of disjoint connected
subgraphs C;, then we define a spanning tree on .S as

M = <VS,L7:JEM1>

Where M; is a spanning tree for C;.°

(&)

The following facts about spanning trees are well known
[32].

Lemma IIL8. If M is a spanning tree of a graph S with k
connected components, then |Eyf| = |Vs| — k. Furthermore,
every graph S contains at least one spanning tree M.

Given a graph S = (Vg, Eg), there is an algorithm that
runs in O(|Vs|+|Esg|) that can always find the spanning tree
for S.

The following function will be a useful theoretical tool later
on.

Definition IIL.9. Given a graph G, let the sequence of sets
Q,, for 2 < n < N be defined as®

9, = {S € P(Vg) such that |S| < n} (6)

We define the following function as the edge-function
E(n) = E(S 7
(n) = max |E(S) ™

For completeness we define £(0) = £(1) = 0.

If S is a set of vertices that maximizes |E(S)|
can S an n-optimal vertex set.

Notice that for fixed n, there may be multiple n-optimal
vertex sets. For completeness, we make the empty set the 0-
optimal vertex set and {g;} for 0 < k < N the 1-optimal
vertex sets.

over Q,,, we

B. Stabilizer States

The result of a Clifford Circuit will always be a stabilizer
state, which can be equivalently defined as below:

Definition III.10. A n-qubit stabilizer state |p) is a state
which has a stabilizer group consisting of 2" elements of the
n-qubit Pauli group.

SSometimes spanning trees for disconnected graphs are called spanning
forests. Here we will not distinguish them.
5We use P(S) to denote the power set of S.
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In other words, every operator O satisfying O|p) = |¢) is
an element of the n-qubit Pauli Group and there are 2" such
operators.

It’s well known that the stabilizer group for state |), which
will be denoted by S, can always be generated by n operators
as described in the Theorem below.

Theorem IIL11. For any stabilizer state |p), S, can be
written as (G,) where G, = {01,03,...,0,} consists of
n elements of the n-qubit Pauli group, each of which satisfies
o O, ¢ (G,\O;).
e [0;,0,]=01ifi#j.
This theorem has the immediate corollary

Corollary ITI.12. Given qubit indices i,j,k with i # j,
+7;Z; and £ X, cannot simultaneously be in G, for any state
lp) if k € {i,5}.

Given distinct indices [ and s, no sequence of operators of
the form Z,Zy,, Zx, Zy,, Zky Ly, - - - Lk, Zs can be in G, if
7,7, is and vice versa.’

The other well known result that will be used is the following.

Theorem II1.13. Given an operator O in the n-qubit Pauli
group and a n-qubit stabilizer state [¢)), the expectation
value (10|O|y) is always 0, £1, or £i. Furthermore, if O is
Hermitian, then the only possible expectation values are 0 and
+1.

Proofs of Theorems III.11 and III.13 can be found in [29].
The following lemma is inspired by III.13.

Lemma IIL.14. If |x) is stabilized by X; and |y) is stabilized
by Z;7;, then

o (X|ZiZjlx) =0

o {plXjle) =0

Proof. The eigenspace of X; is spanned by states of the form
|b0b1b2 e bj_1> & |+> ® |bj+1bj+2 Ce bN>

Applying Z; Z; results in one of the following states depending
on whether 7 > j or ¢ < j.

o |bob1...bi—1) ®[(1=10;)) @ |biy1biga...bj—1)®|—) ®

|bj+1bj+2 ce bN> ife <y

o |bob1...bj—1) ®[=) @ bjr1bja. .. bi—1) ® (1= b)) @

|bi+1bi+2 Ce bN> ifi>jg
It immediately follows that for every basis state of the +1
eigenspace of X, (¢¥|Z;Z;|¢) = 0. It follows that for any
state |x) satisfying X;[x) = [x), (x|ZiZ;[x) = 0.

The eigenspace of Z;Z; is spanned by states of the form
|bob1 . .. bn) where b; = b;. Acting with X; on this state flips
b;, and it follows that (¢)|X|¢)) = 0 for any [¢) in the basis
for the 1 eigenspace of Z;Z;. Thus for any state |¢) satisfying

ZiZjle) = ), (ol Xjle) = 0. O

"Notice the edges in a spanning tree follow a similar requirement.
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IV. THE TRANSVERSE ISING HAMILTONIAN

Given a graph G, the Transverse Ising Hamiltonian on graph
G can be defined as the following N-qubit Hamiltonian,

H=-J > ZiZ-h Y X (8)
(gi,95)€Ec 3. €Va
For our purposes we rescale this Hamiltonian as
H=- Y ZiZ-g)Y X 9)

(gi,95)€Ec 4 €Va

for some non-negative dimensionless g = % This rescal-
ing has the effect of normalizing all eigenvalues by J. An
overview of Transverse Ising models on L, and P, can be
found in [33] while an overview of Transverse Ising Models on
random graphs can be found in [34]. A more general overview
can be found in [35].

Minimizing the expectation value of H acting on Clifford

state |¢) then corresponds to minimizing the following,

(plHIp) == > (el ZiZilo) =g Y (ol Xile)
(9i,4;)€EEa 4 €Ve
(10)

Because all the Pauli operators above are Hermitian, every
expectation value in the above expression is either £1 or
0. The following theorem defines a method for computing
(po|H|po) by solving a related graph theoretic problem.

Theorem IV.1. Given

V = argmin —|E(S)| - g|Vo\S| (1)
SeP(Vg)
we can use V to find ¢y which satisfies
(polH]po) = =[E(V)| = g|Va\V| (12)

This theorem will follow from the proofs of Lemmas IV.2
and IV.3 below.

Lemma IV.2. Given an arbitrary vertex set V € P(Vg), we
can always find a state o such that

(plH|p) = =[E(V)| = g|Va\V| (13)

Proof. Let S be the subgraph induced by V. By Lemma III.8,
there must be some spanning tree M with |Ey| < |S].

By definition, there cannot exist a sequence of edges of the
form (i, . )s @y s Qha)s - - -+ (T @) i (Girq5) € Enr and
vice versa. Thus it’s possible to have a state ¢ with Z,Z; € G,
for all (g;,q;)En without violating Corollary IIT.12.

If we include all these Z;Z; terms, then we can also include
X; € G, if ¢; ¢ Vs without violating Corollary IT1.12.

Totalling the number of Z;Z; and X; terms gives |Ep| +
|[Ve\S| many terms, which is clearly less than N. This
suggests that we can compute a state |¢) such that

. XiEGip 1fqzq_fVM

. ZZ‘Z]' S th for all (qi,qj> € FEy
It can be verified via direct computation that the state

) =11 & (3)

a; &V

0) (14)

|
J
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Satisfies the desired operators being in G.,.

Furthermore, this state |p) satisfies the following (which
can again be verified by direct computation).

o (plZiZjlp) =1 %f (gi,q5) € E(V)

o (#lZiZjlp) = 0if (giq5) ¢ E(V)

o (Pl Xilp) =Tif g ¢V
Thus, (p|H|p) = —|E(V)] = g[Va\V| 0

Lemma IV.3. Given a state |¢), we can always find a vertex
set V € P(Vg) such that

(plH|p) = =|E(V)| = g|Va\V]| (15)
Proof. Let
X ={Xo,X1,..., Xn-1} (16)
And suppose that for some state ¢,
SgoﬂX:{Xkl,sz,...,ka} a7
Let V. = Ve\{q+kss---,Gr, - By Lemma IIL14,
(plZiZjle) = 0if qisqj € {qrs, Qar - -+ Thon }-

It follows that the minimum possible value of (p|H|p) is
clearly —|E(V)|—g|V&\V|. Thus, V is the vertex set desired.
O

The benefit of mapping the problem of finding |pg) to
minimizing —|E(S)| — g|Ve\S| is that the latter is a sub-
modular function of S. It’s well known that there exists a
polynomial time algorithm that can be used to minimize these
functions. Appendix B discusses algorithms which can be used
to minimize such functions.

We can also maximize over all subsets of a fixed size,
which gives the following corollary relating this result to edge
functions,

Corollary IV4. The following statements follow from the
proof of Theorem IV.1

(p|lH|p) =

min

_ — (N —
ne{0,1,...N} £(n) =g n)

(18)
The vertex set minimizing —|E(S)| — g|V\S| will always be
an n-optimal vertex set for some 0 < n < N.

While computing edge functions for specific values of n
is still NP-hard, maximizing functions of the above form is
always possible in polynomial time.

Appendix B discusses algorithms connected to minimizing
submodular functions and computing edge functions.

There are two regimes of g-values for which H can be
approximated as Hamiltonians for which the ground state is
clearly Clifford.

o If g — 0, then

H%HO:—

>

(qi,95)€EEc

Z: 7, (19)

|0) is clearly a ground state of H.

o If g — o0, then

HxHe=-g Y X (20)
2:€Va
|[4+)®N is clearly a ground state of H.
For convenience, let
C(n) =&(n)+g(N —n) @21

Since N — n controls the number of X; terms in G, we
expect that for small g, n = N will be optimal while for large
g we expect n = 0 to be optimal.

The following Lemma verifies this behavior.

Lemma IV.5.

L EWNV) =€)
< —_ 22
9= ognen N-n (22)
If any only if N maximizes C(n).
On the other hand,
&(n)
>
0z mx @
If any only if 0 maximizes C'(n).
Proof. Suppose that
. EN)—=E&(n)
< —_ 24
9= ognen N-n 9
This is equivalent to the following holding for all 0 <n < N
E(N) —&(n)
< 25
9=~ N_n (25)
E(N)>g(N —n)+E&(n) (26)
C(N)>C(n) (27
Which is then equivalent to n = N being optimal.
Now suppose that
E(n)
> —_— 7
Y= oisn (28)

This is equivalent to the following holding for all 0 <n < N

PR (29)
n
gN > g(N —n) +&(n) (30)
C(0) > C(n) 31y
Which is then equivalent to, n = 0 being optimal. O
This Lemma has the following corollary

Corollary IV.6. If 00 > €0 for 0 < p < N, then

0<n<N g(]\J[\; — i(”) - 5(13[) (32)
and furthermore,

(ool H|io0) = {_;(VNR;Z";%J? (33)

Authorized licensed use limited to: University of lllinois. Downloaded on May 09,2024 at 19:01:16 UTC from IEEE Xplore. Restrictions apply.



9 Qubit Linear Chain 9 Qubit Linear Chain Relative Error
T

Ground state [J]
Relative Error (%)

16 N,

\.
—— clifford Optimal Approximation Y,
—-- Exact Ground State N,
—-- Transistion Value "
L
10

—e— Relative Error
0 -=- Transistion Value

0.0 05 15 0.0 0.5 10 15 20

9
9 Qubit Periodic Chain

9
9 Qubit Periodic Chain Relative Error
T

-10 RNy 20
12 AS
=" S 15
= AN £
4 [N 5
0 -14 I \ &
H ! \ g0
5 \, 35
g | N &
]
© 16 ! AN =
i N 5
1 \
—— Clifford Optimal Approximation \\
~181 - Exact Ground State \ —e— Relative Error
—-- Transistion Value \ 0 --- Transistion Value
0.0 05 10 15 2.0 0.0 05 10 15 2.0
9 g9
9 Qubit Fully Connected Graph 9 Qubit Fully Connected Graph Relative Error
T

———— 200

~ 1.5
\, 15.0
12.5

10.0

Ground State [J]
Relative Error (%)

— Clifford Optimal Approximation "\

—-- Exact Ground State A i —e— Relative Error
—-- Transistion Value M) 00 --- Transistion Value
=75 .
[ 2 4 6 8 o 2 4 6 8
g a

Fig. 1. Comparison of the optimal Clifford state to the true ground state
expectation for the selected 9 qubit graphs. Notice that the maximal errors line
up with the transition values and that all of these graphs are two segmented.

We call graphs for which % > @ for 0 <n < N
two-segmented because of the result in Corollary IV.6. For

two segmented graphs, we call £V) the transition value.

N
It turns out, computing the maximal value of % alongside
the maximal vertex set associated with this maximum is

possible in polynomial time as discussed in Appendix B.

V. NUMERICAL EXPERIMENTS

In this section we compare the optimal Clifford solution via
our proposed method to ground states of Ising Hamiltonians
obtained via exact diagonalization.

A. Linear Chains and Fully Connected Graphs

Figure 1 plots a comparison between (@o|H|po) and
(Yo|H |1o) for the Hamiltonians obtained from Lg, Py, and
Ky for different values of g.

Figure 2 plots the relative error for L,,, P,, K, with 4 <
n < 20 at the transition value of g.

B. Other Graphs

Figure 4 plots the value of (1| H 1) versus (wo|H |po)
for Gy, G5, G5 for a range of g values.
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Fig. 2. Plot of the relative error for Ly, Py, and K, for a range of values
for n. Notice that all of the relative errors decrease with n and eventually
begin plateau.

C. Randomized Graphs

Figure 3 plots the average relative error for random graphs.
For 4 < N < 17, 100 N vertex graphs were generated by
randomly placing a node between every pair of vertices with
probability 0.5. If the graph with no edges was obtained, this
distribution was resampled.

VI. FURTHER RESEARCH

A. Other Hamiltonians

Here we studied a specific spin-hamiltonian. There are
multiple generalizations that could have been considered.

1) Weighted Ising Hamiltonians: The most natural gen-
eralization of the Ising Hamiltonian considered here is the
following

>

(gi,95)€Ec

H=— JijZiZi = Y JiX;

¢ €V

Assuming that J;; and J; are both positive for all values of
i, j, we can once again tie the minimization of (p|H|p) to the
minimization of a submodular function by incorporating these
terms into the cost function.

Corollary VL1. For a set of coefficients J;; and J;,

(w0l Hlpo) = D T

(g:,95)EE(V) ¢ €Va\V

min
VeP(Vg)

Where the function on the right side is a submodular function
of V.

An example of an application of this modified Transverse
Ising Hamiltonian, which accounts for different strength spin
couplings can be found in [36]. In the case where J;;, J; are
arbitrary, more careful analysis is required to handle negative
coefficients because these can cause the corresponding graph
theoretic function to no longer be submodular.
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Fig. 3. Plot of the mean relative error for different amounts of vertices. Notice that the value of g for which the maximum mean relative error is obtained

increases with N as expected.
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An interesting variation of this Hamiltonian is the version
with the X; terms each replaced with Z;. Such Hamiltonians
often arise from QUBOs [37] [38] [39]. These Hamiltonians
are generally constructed so that all of their eigenvalues are
Clifford, which generally implies that there is no non-NP-
hard algorithm to find the optimal Clifford State for these
Hamiltonians.

2) Heisenberg Hamiltonians: The general Heisenberg
Hamiltonian can be defined as follows [40]

H== )Y JL.XX;+J)Y;Y;+J.2:Z
(ai,a;5)

For arbitrary coefficients J, Jy, J..

In the case where J, = J, = J, = 1, we obtain the X X X
model, and in the case where J, = J, = 1 we obtain the
XX Z model.

Using methods similar to those in [41], it can be shown
analytically that the ground state of the X X X model and the
XXZ model with J, > 1 is always the Clifford state |0)
regardless of the underlying graph G.

Finding the optimal Clifford state for a generalized Heisen-
berg Hamiltonian on an arbitrary graph will likely correspond
to minimizing some constrained submodular function because
of the additional restrictions on which terms in the Hamilto-
nian can simultaneously be in a given stabilizer. Unfortunately,
this means that finding the optimal Clifford state for these
problems may be NP-Hard [42].

VII. CONCLUSION

In this work we outlined an efficient method for finding the
optimal Clifford ground state of a given transverse field Ising
Hamiltonian on an arbitrary graph. Our numerical estimates
suggest that these optimal Clifford ground states are generally
fairly accurate (with errors always less than 25%), suggesting
that CAFQA-inspired approaches to VQE problems are useful
initialization techniques for these Hamiltonians.
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APPENDIX A
GRAPH LIST

The following graphs are used throughout for computations.
Notice every graph here is connected.

A. Linear Chains

The n-vertex open linear chains, L,,, with n > 2 will be
defined as the graphs with nodes {qo, q1,-..,¢n—1} and only
edges from ¢; to g;41 for 1 < ¢ < N. Figure 5 shows the
first 5 open linear chains. The n-vertex periodic linear chains,
P,,, with n > 3 will be defined as L,, with the additional
edge from ¢,_1 to q;. The first 5 periodic chains are drawn
in Figure 6.

B. Fully Connected Graphs

The fully connected graph with K4 with n > 4 will be
defined as the graph with vertices {qo,q1,-..,¢n—1} and an
edge between every pair of vertices. Figure 7 shows the first
3 fully connected graphs.

C. Miscellaneous Graphs

The following graphs (Figure 8) are designed to have
subgraphs which are more dense than the entire graph, and
thus are all not two-segmented. These graphs will be referred
as G1,Gs, and G3.
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Fig. 6. First 5 periodic linear chains

APPENDIX B
OVERVIEW OF RELEVANT ALGORITHMS

In this appendix we provide a brief overview of the relevant
algorithms used in this paper. All relevant code can be found
at [43].

A. Edge Functions (DkS)

The densest k-subgraph (DkS) problem can be defined as
the problem of finding the vertex set V' C Vg with |V| =k
for fixed k such that |E|§/V‘)‘ is maximized. This algorithm is
known to be NP-hard [44].

Clearly, computing £(n) forn € {0,1,..., N} is equivalent
to solving DkS for k& € {0, 1, ..., N}, meaning that computing
all of the values for £(n) is an NP-hard problem.

Currently, the best known approximate algorithm for DkS
was introduced in [45], and computes an O(nl/ 4+¢) approxi-
mation in O(n'/¢).

Although edge functions are useful theoretical tools, we
generally don’t need to consider specific values of £ when
searching for the optimal Clifford state, meaning we can avoid
this NP-Hard problem.

B. Two-Segmented Testing (DSP)

The densest subgraph problem (DSP) can be defined as the
problem of finding the vertex set V' C Vi such that ‘Ei,vl)l
is maximized. It is well known that the Densest Subgraph
Problem can be solved in polynomial time [44].

One solution method uses a linear programming problem in
N + |E¢| variables, which was introduced in [46]. Another
polynomial time solution was introduced in [47] and uses
maximum-flow computations.

Starting with an arbitrary graph G, we can always run a
solution to DSP on it, and if the obtained vertex set V' satisfies
|E|§/V‘)‘ = |E|§\],\‘f)‘, we immediately know that G must be two
segmented.

C. Submodular Minimization

The most important algorithm used here is the algorithm to
minimize the function

)

—|[E(V)| = glVa\V]|
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Fig. 8. Various non two-segmented graphs.

The following corollary immediately follows from the defini-
tion f,

Corollary B.1. For any sets A, B C Vg,

f(A)+ f(B) < f(ANB) + f(AU B)

Functions f which satisfy corollary B.1 are called sub-
modular functions. A comprehensive overview of submodular
functions can be found in [48].

One of the most important properties of submodular func-
tions is that they can always be minimized in polynomial
time. The first algorithm to do so was introduced in [49] and
[50], but this algorithm is seemingly too slow for practical
applications. Another independent algorithm was introduced in
[51], which uses an algorithm to minimize the norm of a point
in a polyhedra introduced in [52] and theory developed in [53].
An approximation for the performance of this algorithm was
obtained in [26], which provided a pseudopoynomial bound
on the runtime of this algorithm.
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