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Abstract

Distributionally robust optimization (DRO) is a powerful
framework for training robust models against data distribu-
tion shifts. This paper focuses on constrained DRO, which
has an explicit characterization of the robustness level. Exist-
ing studies on constrained DRO mostly focus on convex loss
function, and exclude the practical and challenging case with
non-convex loss function, e.g., neural network. This paper de-
velops a stochastic algorithm and its performance analysis for
non-convex constrained DRO. The computational complex-
ity of our stochastic algorithm at each iteration is indepen-
dent of the overall dataset size, and thus is suitable for large-
scale applications. We focus on the general Cressie-Read
family divergence defined uncertainty set which includes -
divergences as a special case. We prove that our algorithm
finds an e-stationary point with an improved computational
complexity than existing methods. Our method also applies
to the smoothed conditional value at risk (CVaR) DRO.

1 Introduction

Machine learning algorithms typically employ the approach
of Empirical Risk Minimization (ERM), which minimizes
the expected loss under the empirical distribution Py of the
training dataset and assumes that test samples are gener-
ated from the same distribution. However, in practice, there
usually exists a mismatch between the training and testing
distributions due to various reasons, for example, in do-
main adaptation tasks domains differ from training to testing
(Blitzer, McDonald, and Pereira 2006; Daume III and Marcu
2006); test samples were selected from minority groups
which are underrepresented in the training dataset (Grother
et al. 2011; Hovy and Sggaard 2015) and there might ex-
ist potential adversarial attacks (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017). Such a mismatch may
lead to a significant performance degradation.

This challenge spurred noteworthy efforts on develop-
ing a framework of Distributionally Robust Optimization
(DRO) e.g., (Ben-Tal et al. 2013; Shapiro 2017; Rahimian
and Mehrotra 2019). Rather than minimizing the expected
loss under one fixed distribution, in DRO, one seeks to op-
timize the expected loss under the worst-case distribution in
an uncertainty set of distributions.
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Specifically, DRO aims to solve the following problem:

inf sup Eg.g l(z;95), (1)

' Q~U(Po)

where U(Fp) is an uncertainty set of distributions centered
at Py, Py is the empirical distribution of the training dataset,
{ is the loss function, and z is the optimization variable. For
example, the uncertainty set can be defined as

UPy) :=1{Q : D(Q[lF) < p}, 2

where D is some distance-like metric, e.g., Kullback-Leibler
(KL) divergence and 2 divergence, and p is the uncertainty
level. In practice, for ease of implementation and analysis,
a relaxed formulation of eq. (1), which is referred to as the
penalized DRO, is usually solved (Levy et al. 2020; Jin et al.
2021; Qi et al. 2021; Sinha et al. 2017):

inf sup Es~q £(z; S) — AD(Q|| Po), 3)
T Q

where A > 0 is a fixed hyperparameter that needs to be cho-
sen manually. In contrast to constrained DRO in eq. (1), a
regularization term is added to the objective function to keep
the distribution ) and the distribution P close, and the hy-
perparameter A is manually chosen beforehand to control the
tradeoff with minimizing the loss. Compared with the penal-
ized DRO setting, the constrained DRO problem in eq. (1)
requires that the distribution @ to be strictly in the uncer-
tainty set, and searches for the optimal solution under the
worst-case distribution in the uncertainty set. Therefore, the
obtained solution from the constrained DRO is minimax op-
timal for distributions in the uncertainty set, whereas it is
hard to get such a guarantee for the penalized DRO relax-
ation. In this paper, we focus on the challenging constrained
DRO problem in eq. (1).

Existing studies on constrained DRO are limited to con-
vex loss functions or require some additional assumptions
(Soma and Yoshida 2020; Hashimoto et al. 2018; Levy
et al. 2020; Duchi and Namkoong 2018; Duchi, Glynn, and
Namkoong 2021; Qi et al. 2022; Wang, Gao, and Xie 2021).
Little understanding on the practical non-convex loss func-
tions, e.g., neural network, is known. In this paper, we focus
on the constrained DRO problem with non-convex loss.

DRO problems under different uncertainty sets are fun-
damentally different. As will be discussed later in related
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works, there is a rich literature on DRO with various uncer-
tainty sets. In this paper, we focus on the general Cressie-
Read family divergence defined uncertainty set (Duchi and
Namkoong 2018; Jin et al. 2021), which includes, e.g., X2
divergence, as a special case (see Section 2 for more de-
tails). We also investigate the smoothed conditional value at
risk (CVaR) DRO problem.

More importantly, we focus on the practical yet challeng-
ing large-scale scenario, where P is the empirical distribu-
tion of N samples and N is very large. In classic stochastic
optimization problems, e.g., ERM, it is easy to get an un-
biased estimate of the gradient using only a few samples,
and therefore the computational complexity at each itera-
tion is independent of the training dataset size. However,
in the DRO problems, due to taking the worst-case distri-
butions in the objective, the problem becomes challenging.
Many existing DRO algorithms incur a complexity that in-
creases linearly (or even worse) in the training dataset size
(Duchi and Namkoong 2018; Namkoong and Duchi 2016;
Ghosh, Squillante, and Wollega 2018), which is not feasible
for large-scale applications. In this paper, we will design a
stochastic algorithm with computational complexity at each
iteration being independent of the training dataset size (Qi
et al. 2022; Wang, Gao, and Xie 2021; Levy et al. 2020).

1.1 Challenges and Contributions

The key challenges and main contributions in this paper are
summarized as follows.

* For large-scale applications, the number of training
samples is large, and therefore directly computing the
full gradient is not practical. Nevertheless, as discussed
above, it is challenging to obtain an unbiased estimate of
the gradient for DRO problems using only a few samples.
For y-divergence DRO problem, the distributions in the
uncertainty set are continuous w.r.t. the training distribu-
tion. Thus the distributions in the uncertainty set can be
parameterized by an N-dimensional vector (Namkoong
and Duchi 2016). Then the DRO problem becomes a
min-max problem and primal-dual algorithms (Rafique
et al. 2022; Lin, Jin, and Jordan 2020; Xu et al. 2023) can
be used directly. Subsampling methods in DRO were also
studied in (Namkoong and Duchi 2016; Ghosh, Squil-
lante, and Wollega 2018). However, all the above stud-
ies require a computational complexity linear or even
worse in the training dataset size at each iteration and
thus is prohibitive in large-scale applications. In (Levy
et al. 2020), an efficient subsampling method was pro-
posed, where the batch size is independent of the train-
ing dataset size. However, they only showed the sampling
bias for x2? and CVaR DRO problems. In this paper, we
generalize the analysis of the bias in (Levy et al. 2020)
to the general Cressie-Read family. We further develop
a Frank-Wolfe update on the dual variables in order to
bound the gap between the objective and its optimal value
given the optimization variable = and the biased estimate.

* The second challenge is due to the non-convex loss func-
tion. Existing studies for the Cressie-Read divergence
family (Duchi and Namkoong 2018; Levy et al. 2020) are
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limited to the case with convex loss function, and their
approach does not generalize to the non-convex case. The
key difficulty lies in that the subgradient of the objective
function can not be obtained via subdifferential for non-
convex loss functions. Instead of explicitly calculating
the worst-case distribution as in (Duchi and Namkoong
2018; Levy et al. 2020), we propose to design an algo-
rithm for the dual problem which optimizes the objective
under a known distribution. Thus the gradient of the ob-
jective can be efficiently obtained.

The third challenge is that the dual form of constrained
DRO is neither smooth nor Lipschitz, making the con-
vergence analysis difficult. Existing studies, e.g., (Wang,
Gao, and Xie 2021), assume that the optimal dual vari-
able is bounded away from zero, i.e., A* > Ao for some
Ao > 0, so that it is sufficient to consider A > \g.
However, this assumption may not necessarily be true
as shown in (Wang, Gao, and Xie 2021; Hu and Hong
2013). In this paper, we generalize the idea in (Qi et al.
2022; Levy et al. 2020) to the general Cressie-Read di-
vergence family. We design an approximation of the orig-
inal problem, and show that it is smooth and Lipschitz.
The approximation error can be made arbitrarily small so
that the solution to the approximation is still a good so-
lution to the original. We prove the strong duality of the
approximated problem. We add a regularizer to the ob-
jective and at the same time we keep the hard constraint.
In this way, we can guarantee that its dual variable A has a
positive lower bound. Moreover, our strong duality holds
for any ¢-divergence DRO problem.

* We design a novel algorithm to solve the approximated
problem and prove it converges to a stationary point
of the constrained DRO problem. The general Proximal
Gradient Descent algorithm (Ghadimi, Lan, and Zhang
2016) can be used to solve this approximated problem
directly. However, it assumes the objective is non-convex
in all parameters and does not provide a tight bound on
the bias due to subsampling. We take advantage of the
fact that the objective function is convex in A and thus
the bias due to subsampling can be bounded in a tighter
way. Our proposed algorithm converges to a stationary
point faster than existing methods.

1.2 Related Work

Various Uncertainty Sets. -divergence DRO problems
(Ali and Silvey 1966; Csiszar 1967) were widely studied, for
example, CVaR in (Rockafellar, Uryasev et al. 2000; Soma
and Yoshida 2020; Curi et al. 2020; Tamar, Glassner, and
Mannor 2015), x2-divergence in (Hashimoto et al. 2018;
Ghosh, Squillante, and Wollega 2018; Levy et al. 2020), KL-
divergence in (Qi et al. 2021, 2022; Hu and Hong 2013)
and Sinkhorn distance (Wang, Gao, and Xie 2021), a vari-
ant of Wasserstein distance based on entropic regulariza-
tion. However, the above studies are for some specific di-
vergence function and can not be extended directly to the
general Cressie-Read divergence family.

Penalized DRO. The general -divergence DRO problem
was studied in (Jin et al. 2021) where the proposed algorithm
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works for any divergence function with a smooth conjugate.
The authors also designed a smoothed version of the CVaR
problem and showed their method converges to a stationary
point. However, their method is for the penalized formula-
tion and does not generalize to the constrained DRO. In this
paper, we focus on the challenging constrained DRO, the
solution of which is minimax optimal over the uncertainty
set. Our proposed algorithm can also be applied to solve the
smoothed CVaR problem in the constrained setting.

Constrained DRO With Convex Loss. The general
(p-divergence constrained DRO problem was studied in
(Namkoong and Duchi 2016). Instead of optimizing from
the dual form, the authors treat the worst-case distribution as
a N-dimentional vector and implement a stochastic primal-
dual method to solve the min-max problem. However, the
computational complexity at each iteration is linear in the
number of the training samples and can not be used in large-
scale applications. The same problem was further studied in
(Duchi, Glynn, and Namkoong 2021). The authors pointed
out that minimizing constrained DRO with ¢-divergence
is equivalent to adding variance regularization for the Em-
pirical Risk Minimization (ERM) objective. The general
Cressie-Read divergence family DRO problem was studied
in (Duchi and Namkoong 2018), where the basic idea is
to calculate the worst-case distribution for the constrained
DRO first and then use the subdifferential to get the subgra-
dient. Furthermore, the x? and CVaR DRO problems were
studied in (Levy et al. 2020). Compared with the method in
(Duchi and Namkoong 2018), they calculate the worst-case
distribution for the penalized DRO and then optimize both
the Lagrange multiplier and the loss function. This approach
converges to the optimal solution with a reduced complex-
ity. Their method can be extended to the general Cressie-
Read divergence family. However, all the above papers are
limited to the case with convex loss function. To the best
of our knowledge, our work is the first paper on large-scale
non-convex constrained DRO with the general Cressie-Read
divergence family. We note that the KL DRO was studied in
(Qi et al. 2022), which however needs an exponential com-
putational complexity. We achieve a polynomial computa-
tional complexity for the Cressie-Read divergence family.

2 Preliminaries and Problem Model
2.1 Notations

Let s be a sample in $§ and P, be the distribution on the
points {s;}2,, where N is the size of the support. De-
note by A" := {p € R"|>\" ,p; = 1,p; > 0} the n-
dimensional probability simplex. Denote by 2 € R the op-
timization variable. We denote by 1x(z) the indicator func-
tion, where 1x(x) = 0 if z € X, otherwise 1x(x) = oco. Let
¢:R? x $ — R be a non-convex loss function. Let || - || be
the Euclidean norm and (¢)4 := max{t,0} be the positive
part of £ € R. Denote V,, by the gradient to x. For a func-
tion f : R? — R, a point z € R is said to be an e-optimal
solution if | f(x) — f(z*)| < ¢, where f(z*) is the optimal
value of f. If the function f is differentiable, a point € R¢
is said to be first-order e-stationary if ||V f(z)]| < e.
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2.2 Assumptions

In this paper, we take the following standard assumptions
that are commonly used in the DRO literature (Duchi and
Namkoong 2018; Levy et al. 2020; Qi et al. 2021, 2022;
Wang, Gao, and Xie 2021; Soma and Yoshida 2020):

* The non-convex loss function is bounded: 0 < £(z; s) <
B for some B > 0, Vz € R, s € 8.

» The non-convex loss function is G-Lipschitz such that
[¢(x1;8) — £(x2;8)] < G|z — 22| and L-smooth such
that ||V 0(x1;8) — Vol(ze; s)|| < L||x1 — x2|| for any
z1,22 € R*and s € 8.

2.3 DRO Objective and Its Dual Form
In empirical risk minimization (ERM), the goal is to solve

inf Es~p, £(z;S),

where the objective function is the expectation of the loss
function with respect to the training distribution 7. To solve
the distributional mismatch between training data and test-
ing data, the formulation of Distributionally Robust Opti-
mization (DRO) (Goodfellow, Shlens, and Szegedy 2014;
Madry et al. 2017; Rahimian and Mehrotra 2019) was devel-
oped, where the goal is to minimize the expected loss with
respect to the worst distribution in an uncertainty set U/ (FPp):

inf sup Eg~g (z;5). “4)

T Q~U(Po)
DRO problems under different uncertainty sets are funda-
mentally different. Consider the uncertainty set defined by
p-divergence D, (Q||Fp), which is one of the most common
choices in the literature and can be written as D, (Q|| Py) :=

Je (;—go) dPy, where ¢ is a non-negative convex function

such that ¢(1) = 0 and ¢(t) = +oo for ant ¢ < 0. Then let
the uncertainty set U (FPy) := {Q : D,(Q||Po) < p} where
p > 0 is the radius of the uncertainty set.

In this paper, we study the general Cressie-Read family of
p-divergence (Cressie and Read 1984; Van Erven and Har-
remos 2014), where

th —kt+Ek—1
k(k—1)

k € (—o00,+00) \ {0,1}. Let k, = £;. This family in-
cludes as special cases y2-divergence (k = 2) and KL di-
vergence (k — 1). When k£ > 2, the conjugate function of
ok (t) (which will be introduced later) is not smooth, thus the
problem becomes hard to solve even in the penalized formu-
lation (Jin et al. 2021). In this paper, we focus on &k € (1, 2]
(k« € [2,00)). The objective is

wr(t) == 5)

(6)

inf sup

Es~q {(z;S).
T Q:Dyy, (QlIP)<p

Solving (6) directly is challenging due to the sup over Q.
In (Namkoong and Duchi 2016), a finite-dimensional vector
q was used to parameterize the distributions in the uncer-
tainty set since ) < Fp for y-divergence. Then the DRO
problem becomes a convex concave min-max problem. This
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method can be extended to the case with non-convex loss
function by applying the algorithms for non-convex concave
min-max problems (Rafique et al. 2022; Lin, Jin, and Jordan
2020; Xu et al. 2023). However, the dimension of distribu-
tion in the uncertainty set is equal to the number of training
samples. Thus, the computational complexity at each itera-
tion is linear in the sample size and is prohibitive in large-
scale applications.

To obtain a complexity independent of the sample size,
one alternative is to use its dual. By duality, we can show
that the DRO objective (6) can be equivalently written as
(Levy et al. 2020; Shapiro 2017)

>+Ap+ﬂ,

lx;S)—n
Es~p, {/\902 <(I )\) 1

where ¢} (') = sup,{t't — i (t)} is the conjugate func-
tion of ¢k (t'). In this way, the optimization problem un-
der an unknown distribution is rewritten into one under a
known distribution. The subsampling method can then be
used, which leads to a complexity independent of the sample
size (which will be introduced later). For the Cressie-Read
family in (5), the corresponding conjugate function family

m¢ynziﬁwf1ﬁ+nﬁfq
tive can be written as

. A
z,/\éno,fﬁERESNPO [k: ((k -1

1

inf inf
T A>0,7€R

. Therefore, the objec-

]

U(x;S) =7
by

Letn = 1 — 25 and the corresponding objective is
. (k-1 ke \1—k.
xA§£ERES~R>[ o U@ S) —myA
afpr -t +
P ek—1) "
Define
k— 1)k _
ﬂ%Nm@=L—?L4am$—nﬁulh
1
A —_ . 7
+ (’0+k(k1)>+n (N
Thus the goal is to solve
f f F(x: \:
gA;% (z; A1), ®)
where  F(xz;X\;n) is defined as F(x;)\;n) =
Es~p, [ Sz \sm; S)} . Therefore, we reformulate the

DRO problem as one to minimize an objective function
under a known distribution, where subsampling method
could be used to reduce the complexity.

3 Analysis of Constrained DRO

In this section, we analyze the constrained DRO problems
under Cressie-Read family divergence uncertainty sets with
general smooth non-convex loss function. We first discuss
the challenges appearing in constrained formulations, then
we present how to construct the corresponding approxi-
mated problem in order to overcome these challenges.
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3.1 Smooth and Lipschitz Approximation

For A € [0,+00),n € R, the objective function F'(x; \;n)
is neither smooth nor Lipschitz. Thus it is difficult to imple-
ment gradient-based algorithms. In the following, we will
construct an approximation of the original problem so that
the objective function F'(x; A; ) becomes smooth and Lip-
schitz by constraining both A and 7 in some bounded inter-
vals.

Denote by w = (k(k—1)p+1) %+ . Since the loss function
is bounded such that 0 < ¢ < B, we can show that Ehere ex-

()1
1(Dﬁ1>B
which only depends on k,p and B such that the opti-
mal value A* < . In this paper, we do not assume that
A* > Ao > 0 as in (Wang, Gao, and Xie 2021). Instead,
we consider an approximation with A € [, A], and show
that the difference between the orignial and the approxima-
tion can be bounded. We can show corresponding optimal

n* € [-7, B], where 7 = A (W)
can be found in Appendix A. The challenge lies in that the
value of 77 can be negative. Thus given this 7, the optimal
value of A\ can be quite large then it is hard to upper bound
A. In our proof, we change the objective to the function that
only depends on 7 and find the lower bound on 7. Based on
this lower bound, we solve this challenge and further get the
bound on A.

We show that the difference between the original and the
approximation can be bounded in the following lemma.

Lemma 1. Vz € R, 0 < )\ < )\,

F(x;Ain) —

ists an upper bound A\ = (k — 1)w™! (1 +

ks —

". The proof

inf mf

) LF@ )| < 2X0p.
A€[Xo,Aln€[-7,B]

The proof can be found in Appendlx B. Note in the proof
of this lemma, we provide the strong duality of

Es~g U(z58) — XDy, (Q|| Po),

sup
D, (QllPo)<p

where both the hard constraint and regulator are kept. This is
different from the approach in Section 3.2 of (Shapiro 2017).
Note this strong duality holds for any (-divergence DRO
problem.

Lemma 1 demonstrates that the non-smooth objective
function can be approximated by a smooth objective func-
tion. A smaller Ao makes the gap smaller but the function
“less smooth”.

3.2 Convexity and Smoothness on Parameters

The advantage of our approximated problem is that the func-
tion is smooth in all z, A, and 7. Moreover, We find that the
objective function is convex in A and 7 though the loss func-
tion is non-convex in x.

Lemma 2. Define z = (\,n) € M, where M = {(\,n) :
A € Mo, A, € [, B]}. Then Vo € R%, 2z € M, the
objective function F(x;z) is convex and L,-smooth in z,

where L, = )\% + 2(B+") + (B+") ifk, =2and L, =
Wk*(k* ~1) ((B+n) I (B+n) ) ik > 2.

ksx+1 kyx—1
>‘U )‘U
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Algorithm 1: SFK-DRO

Input: Iteration number K, initial point (z1,21), sam-
ple numbers mn,,n,, step size «, and one constant
C

I: Lett =1

2: whilet < K do

3:  randomly select mn, samples and compute
Vi fo(we, 20) = Yopr, Yelliuzisd,

4 w1 =2 — oV fu(xe, 21)

5.  randomly select n, samples and compute

= Vof i2t385

Vefole, z) = Yoz, Telloemizs)

6:  ep=argmineen(e, Vo fa(Tr41521))

7: dt = €t — 2t

8: = (dt, =V fa@ts15 2t))

9: 'y = min { }

10: Zt4+1 = 2t + ’Ytdt

1 t=t+1

12: end while

t' = argming |V fo (245 2) |* + g7
Output: (.Z‘t/+1, Zt’)

Moreover, the objective Sfunction F(x; z) is Ly-smooth in
x, where L = (k=D 1) "k, )\1 o (B+a)*2((k. —1)G* +
(B +)L).

The proof can be found in Appendix C. Note the first-
order gradient of the objective function is non-differential
at some point when k, = 2. Therefore, we discuss in two
cases: k., > 2 and k, = 2. In the first case, we can get the
Hessian matrix of the objective. In the second case, we show
the smoothness and convexity.

4 Mini-Batch Algorithm

Existing constrained stochastic algorithm for general non-
convex functions (Ghadimi, Lan, and Zhang 2016) can be
used to solve the approximated problem directly. However,
their method optimizes y = (z;A;7) as a whole. It can
be seen that the objective function is non-convex in y and
the computation complexity to get the e-stationary point is
O( 6_3k*_5).

In the previous section, we show that F(x;z) is L,-
smooth in z and L,-smooth in x. Moreover, L.
Oy ks _1), which is much larger then L, when ) is small,

since L, ~ O(\; ). If we optimize all the parameters
together, we need to implement non-convex algorithms to
optimize a smooth function with a large smooth constant,
which is not computationally efficient. However, if we op-
timize x and z separately, though L, > L, which requires
more resources to optimize z, the convexity in z makes it
faster to converge to the optimal value of z.

This motivates us to consider a stronger convergence cri-
terion. Instead of finding the e- stationary point for F'(y), we
can find (x, \, ) such that

~

Vo F(z; X5m)| <,

) — )| <e
Plasdin) = i Flos Yool <

8221

We then provide our Stochastic gradient and Frank-Wolfe
DRO algorithm (SFK-DRO), which optimizes z and z sep-
arately (see Algorithm 1). Define D = max,, .,em |21 —
= *=D" g (B4 )R 1GAY R, A = Fa;21) —
infgweM F(:L z) and C is a constant such that C > DL,.
The convergence rate is then provided in the following the-
orem.

Theorem 1. With a mini-batch size n, =
2 3

Sae ~ O n. ~ O(e7%) such that

3B 1+k(k_1)0\/@ S if ke = 2 or

1
3B(1+k(k —1)p)* (% + 72,6*_1(2*_2)%) Yo< e f
ke > 2 and o = é,)\o = 8—;,f0r any small € > 0 such
that PL= ~ O(e72) > 2 and & ~ O(e) < 1, at most

= 16CA6*2 ~ O\ 7Ye2) iterations are needed to
guarantee a stationary point (J}t/+1; zt/) in expectation:

E[|VoF (zy 115 20)|| <€,

inf F($t’+1§)\§77)H <e

E HF(WH; ) = A>0;m€R

The detailed proof can be found in Appendix D and a
proof sketch will be provided later. Before that, we intro-
duce a lemma for our subsampling method. Via this lemma,
we can show the complexity is independent of the sample
size and thus is suitable for our large-scale setting. When

f(w;2585)
j=1 n.

build to estimate F'(z;z) = Eg.p, [f(x;z;S)] Though
the estimator is unbiased, in our Frank-Wolfe update pro-
cess (Jaggi 2013; Frank, Wolfe et al. 1956; Lacoste-Julien
2016) we need to estimate min F'(x; z) via Emin f,(x; 2).
Obviously, the expectation of minimum is not equal to the
minimum of expectation, thus it is a biased estimator. In the
following lemma, we show that this gap can be bounded by
a decreasing function of the sample batch n .

n,

we optimize z, an estimator f,(z,z) = > " is

Lemma 3. For any bounded loss function {, if k, = 2,

LIGHL fz(It+1§ Z)

1n/€t [F(zt41;2)] — E

ze
441 2
<3B\/1+4k(k—1)p —|—07g(n);
4n,
and if ky > 2,

Zlenf [F(wt41;2)] —

Lien/f/t fo(Tes1; 2)} ‘

L 1 e
n, 261k, —2)n, '

The detailed proof can be found in Appendix E. Note that
(Levy et al. 2020) only shows this lemma when k, = 2, and
we extend the results to k, > 2. This lemma shows that the
gap is in the order of O(nz_ﬁ) and is independent of the
total number of samples.

<3B(1+k(k —1)p)*
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4.1 Proof Sketch of Theorem 1

We use a stochastic gradient descent method (Moulines and
Bach 2011; Gower et al. 2019; Robbins and Monro 1951) to
update x. Since the objective function is L,-smooth in z, if
a< i we have that:

(&%

SE [IVaFu(ze )] < E[F(wi2)] -
+ OéZL-TE[”vzfz(xt;Zt)

25

%k* (B + T_I)k*flG)\(l) k- and we can show that

E[F(zt41;2t)]

- VTFT(-%IHZI‘)HQL (9)
f(:L‘;z;s]-). _

where f.(z,z) = Define o =

02

- vxe(zt;Zt)||2] S -
xr

instead of the stochastic gradi-

ent descent method, we employ the Frank-Wolfe

method (Frank, Wolfe et al. 1956) to update =z.

Define ¢ argminecapm{e, V, fo (2415 2¢))  and

gt = {er — zt, =V, f.(xt41; 2¢)). In addition, we have

Gt > fo(@egr; 2e) — ZHEH/\I/I! (@15 2)

IE‘[Hvxfx(It: zt)

Since z € M,

(10)

since f(z; 2) is convex in z (Jaggi 2013). We can show that
% ~ O(Ao) thus for small A\g we have % < 1. Then due to
the fact that the objective is L ,-smooth in z ((9) of (Lacoste-
Julien 2016)), we have that
2
B |22 < BlF (i) - BF Gz )). (D

By recursively adding (9) and (11), we have that

o 2
“E g
2 E [V Fe (x5 2) %] + E [26}

’ﬂ\'—‘

=1
(wl; z1) — E[F (21415 2741))] n a2er

T Ny
Since L, ~ O(A\g"™ 1) and L, ~ O(\g™ 1), for small

(12)

Ao we have C > DL, > 2L,. Then we set o« = i < 2L ,
T =16CAc2 ~ O\ te2),n, = SLC“;‘Q’Z , and denote
A = F(x1;21) — ming e m F(z; 2), for some ¢ € [1,T)
we have
€
B[V, Fo(ei 20l < 5, ()
. €
E [F(37t+1; Zt) - 21€an fz(95t+1§ Z)} < E[Qt] 9 (14)
We  choose  (%¢41,2:) as our output and
we need to bound E[|V.F,(zi41;2)|]] and
E[F(211;2¢) —infoepm Fo(w441;2)]. Since  F(x;2)

is L,-smooth in x, we have that E[||V, Fy (z141; 2¢)||]] < e
By Lemma 3, we pick n, ~ O(e~*) such that

€
. f F . _ f . ; _
inf [Pl =B | nf FGoenia)|| <
By Lemma 1, when Ay = Sp, we have
€
inf F(x;\;n) — inf  F(x; A < -
A€[Ao,A],n€[—17,B] ( " A>0,n€ER ( 77)‘ 4
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Thus we have

F(ziy1;2t) — )\>ion7t;ERF(a:; ) <e (15)

which completes the proof.

5 Smoothed CVaR

Our algorithm can also solve other DRO problems effi-
ciently, for example, the Smoothed CVaR proposed in (Jin
et al. 2021). The CVaR DRO is an important ¢-divergence
DRO problem, where ¢(t) = ]1[07%) if0 <t < %u and
0 < p < 11is some constant. The dual expression of CVaR
can be written as

Levar(w; Py) = inf lIES~PO [(€(z;.8) = m)+ + ).

neRr %)

The dual of CVaR is non-differentiable, which is undesir-
able from an optimization viewpoint. To solve this problem,
(Jin et al. 2021) proposed a new divergence function, which
can be seen as a smoothed version of the CVaR. Their ex-
periment results show the optimization of smoothed CVaR is
much easier. However, (Jin et al. 2021)’s method only works
for the penalized formulation of DRO. We will show that our
method can solve the constrained smoothed CVaR.

Here, the divergence function is

tlog(t) + = “tlo 1= f“f, telo,L);
m):{ g(t) + 5 log(520), 1€ 0.5) o
400, otherwise.
The corresponding conjugate function is
N 1
e, (t) = ﬁlog(l — p+ pexp(t)). (17)
The objective function is then written as
H;f /\>10nf Fs(z; M5 m)
LA S) —
:IE'SNP() /\sps((f)n) + )‘p + n- (18)

We can show that there exist upper bounds for the optimal
values A* and n*. There exists a A > 0 only depends on j1, B
and p such that A* € [0, A] and n* € [0, B]. The proof can
be found in Appendix F.

This objective function is non-smooth when A — 0.
Therefore, we take a similar approach as the one in Sec-
tion 3.1 to approximate the original problem with A €
[Ao, A]. We bound the difference in the following lemma.

Lemma 4. Yz € R% )\ > 0,

inf
A>0,meR

inf
AE[Ao,A],n€[0,B]
The proof is similar to Lemma 1 thus is omitted here. In
addition, we can show that Fs(z; z) is L’ -smooth and con-
vex in z, where L ~ O(\y?) if A € [Ag, A]. Also it is easy
to get F,(x; 2) is L’ -smooth in z, where L, ~ O(\;?).
Similar to eq. (42) and Remark 1 in (Levy et al
2020), we can prove that |minen [Fi(wes152)] —
E [min.eam fs(zi41;2)] | ~ O(n;0®). We then use Algo-
rithm 1 directly and the complexity to get the e-stationary
point is O(e~"). The detailed proof can be found in Ap-
pendix F.

Fy(z; \5m) — Fy(x;Mm)| < 2X0p.
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H Class 0 1 2 3 4 5 6 7 8 9 H
EMR 77.64 86.19 69.33 54.03 5153 47.05 87.66 8535 87.12 83.15
SFK-DRO 76.11 84.71 66.18 5495 58.65 4936 89.06 84.03 8841 83.09
PAN-DRO 7492 85.62 65.72 52.69 5583 49.50 88.85 84.06 88.68 81.29
Table 1: Test Accuracy of each class for imbalanced CIFAR 10.
6 Numerical Results
In this section, we verify our theoretical results in solving 2.25 ERM training

an imbalanced classification problem. In the experiment, we
consider a non-convex loss function and k is set to be 2
for the Cressie-Read family. We will show that 1) to opti-
mize the same dual objective function, our proposed algo-
rithm converges faster than the general Proximal Gradient
Descent(PGD) algorithm (Ghadimi, Lan, and Zhang 2016);
2) The performance proposed algorithm for the constrained
DRO problem outperforms or is close to the performance of
the penalized DRO with respect to the worst classes. Both of
them outperform the baseline.

Tasks. We conduct experiments on the imbalanced CIFAR-
10 dataset, following the experimental setting in (Jin et al.
2021; Chou et al. 2020). The original CIFAR-10 test dataset
consists of 10 classes, where each of the classes has 5000
images. We randomly select training samples from the orig-
inal set for each class with the following sampling ratio:
{0.804,0.543,0.997,0.593, 0.390, 0.285, 0.959, 0.806,
0.967,0.660}. We keep the test dataset unchanged.
Models. We learn the standard Alexnet model in
(Krizhevsky, Sutskever, and Hinton 2012) with the standard
cross-entropy (CE) loss. For the comparison of convergence
rate, we optimize the same dual objective with the PGD al-
gorithm in (Ghadimi, Lan, and Zhang 2016). To compare
robustness, we optimize the ERM via vanilla SGD. In addi-
tion, we propose an algorithm PAN-DRO, which fixes A and
only optimizes 7 and the neural network. Thus it gets the so-
lution for the penalized DRO problem.

Training Details. We set \; = 1,11 =0, A\g = 0.1, -7 =
—10, and the upper bounds A = 10, B = 10. To achieve a
faster optimization rate, we set the learning rate a = 0.01
before the first 40 epochs and o« = 0.001 after. The mini-
batch size is chosen to be 128. All of the results are moving
averaged by a window with size 5. The simulations are re-
peated by 4 times.

Results. In Figure 1, we plot the value of the CE loss using
different algorithms through the training process. It can be
seen that to optimize the same dual objective function with
the same learning rate, the PGD algorithm converges slower
than our proposed DRO algorithms, which matches our the-
oretical results. Moreover, compared with ERM, the DRO
algorithms have higher training losses but lower test losses,
which demonstrates they are robust.

We also provide the test accuracy of trained models in Ta-
ble 1. It can be shown that for class 3, 4, 5, the accuracies are
the lowest due to the limited samples. For these classes, the
performance of our SFK-DRO algorithm for the constrained
DRO is better or close to the performance of PAN-DRO for
the penalized DRO. Both DRO algorithms outperform the
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Figure 1: Training curve of classification task.

vanilla ERM algorithm.

7 Conclusion

In this paper, we developed the first stochastic algorithm for
large-scale non-convex stochastic constrained DRO prob-
lems in the literature with theoretical convergence and com-
plexity guarantee. We developed a smooth and Lipschitz ap-
proximation with bounded approximation error to the orig-
inal problem. Compared with existing algorithms, the pro-
posed algorithm has an improved convergence rate. The
computational complexity at each iteration is independent
of the size of the training dataset, and thus our algorithm is
applicable to large scale applications. Our results hold for a
general family of Cressie-Read divergences.
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