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Abstract

The mean subtree order of a given graph G, denoted

μ G( ), is the average number of vertices in a subtree of

G. Let G be a connected graph. Chin et al. conjectured

that if H is a proper spanning supergraph of G, then

μ H μ G( ) > ( ). Cameron and Mol disproved this

conjecture by showing that there are infinitely many

pairs of graphs H and G with H G⊃ , V H V G( ) = ( )

and E H E G| ( )| = | ( )| + 1 such that μ H μ G( ) < ( ).

They also conjectured that for every positive integer k,

there exists a pair of graphs G and H with H G⊃ ,

V H V G( ) = ( ), and E H E G k| ( )| = | ( )| + such that

μ H μ G( ) < ( ). Furthermore, they proposed that

μ K nK μ K( + ) < ( )m m n1 , providedn m≫ . In this note,

we confirm these two conjectures.
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1 | INTRODUCTION

Graphs in this paper are simple unless otherwise specified. Let G be a graph with vertex set
V G( ) and edge set E G( ). The order of G, denoted by G| |, is the number of vertices in G, that is,
G V G| | = | ( )|. The complement ofG, denoted byG , is the graph on the same vertex set asG such
that two distinct vertices ofG are adjacent if and only if they are not adjacent inG. For an edge
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subset F E G( )⊆ , denote by G F+ the graph obtained from G by adding the edges of F . For a
vertex subsetU V G( )⊆ , denote byG U− the graph obtained fromG by deleting the vertices of
U and all edges incident with them. For any two graphs G G,1 2 with V G V G( ) ( ) =1 2∩ ∅,
denote by G G+1 2 the graph obtained from G G,1 2 by adding an edge between any two vertices
v V G( )1 1∈ and v V G( )2 2∈ .

A tree is a graph in which every pair of distinct vertices is connected by exactly one path. A
subtree of a graph G is a subgraph of G that is a tree. By convention, the empty graph is not
regarded as a subtree of any graph. The mean subtree order of G, denoted μ G( ), is the average
order of a subtree ofG. Jamison [5, 6] initiated the study of the mean subtree order in the 1980s,
considering only the case that G is a tree. In [5], he proved that μ T( )

n + 2

3
≥ for any tree T of

order n, with this minimum achieved if and only if T is a path; and μ T( ) could be very close to
its order n. Jamison's work on the mean order of subtrees of a tree has received considerable
attention [4, 8–11]. At the 2019 Spring Section AMS meeting in Auburn, Jamison presented a
survey that provided an overview of the current state of open questions concerning the mean
subtree order of a tree, some of which have been resolved [1, 7].

Recently, Chin et al. [3] initiated the study of subtrees of graphs in general. They believed that
the parameter μ is monotonic with respect to the inclusion relationship of subgraphs. More
specifically, they [3, conjecture 7.4] conjectured that for any simple connected graphG, adding any
edge to G will increase the mean subtree order. Clearly, the truth of this conjecture implies that
μ K( )n is the maximum among all connected simple graphs of ordern, but it is unknown if μ K( )n is
the maximum. Cameron and Mol [2] constructed some counterexamples to this conjecture by a
computer search. Moreover, they found that the graph depicted in Figure 1 is the smallest
counterexample to this conjecture, and there are infinitely many graphs G with xy E G( )∈ such
that μ G xy μ G( + ) < ( ). In their paper, Cameron and Mol [2] initially focused on the case of
adding a single edge, but they also made the following conjecture regarding adding several edges.

Conjecture 1.1. For every positive integer k, there are two connected graphs G and H

with G H V G V H, ( ) = ( )⊂ and E H E G k| ( ) \ ( )| = such that μ H μ G( ) < ( ).

We will confirm Conjecture 1.1 by proving the following theorem, which will be presented
in Section 2.

Theorem 1.2. For every positive integer k, there exist infinitely many pairs of connected
graphsG andH withG H V G V H, ( ) = ( )⊂ and E H E G k| ( ) \ ( )| = such that μ H μ G( ) < ( ).

In the same paper, Cameron and Mol [2] also proposed the following conjecture.

FIGURE 1 Adding the edge between a and b decreases the mean subtree order.
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Conjecture 1.3. Let m n, be two positive integers. If n m≫ , then we have
μ K nK μ K( + ) < ( )m m n1 , .

We can derive Conjecture 1.1 from Conjecture 1.3, the proof of which is presented in

Section 3, by observing that when m k= 2 , the binomial coefficient ( )m

2
is divisible by k. With

k2 − 1 steps, we add k edges in each step, and eventually the mean subtree order decreases, so
it must have decreased in some intermediate step.

2 | THEOREM 1.2

Let G be a graph of order n, and let G be the family of subtrees of G. By definition, we have
μ G T( ) = ( | |) | |T GG

∕∈  . The density of G is defined by σ G μ G n( ) = ( )∕ . More generally, for any

subfamily G⊆  , we define μ T( ) = ( | |) | |T ∕∈  and σ μ n( ) = ( )∕  . Clearly, μ G n1 ( )≤ ≤

and σ G0 < ( ) 1≤ .

2.1 | The construction

Fix a positive integer k. For some integer m, let s{ }n n m≥ be a sequence of nonnegative integers
satisfying: (1) s n k2 − − 1n ≤ for all n m≥ ; (2) s o n= ( )n , that is, s nlim = 0n n∕→∞ ; and
(3) n2s 2n ≥ for all n m≥ . Notice that many such sequences exist. Take, for instance, the
sequence  n{ 2 log ( ) }n m2 ≥ , as in [2], where m is the least positive integer such that

 m m k− 2 2 log ( ) + 12 ≥ .
In the remainder of this paper, we fix P for a path v v vn s1 2 −2 n

⋯ of order n s− 2 n. Clearly,
P k| | + 1≥ . Furthermore, let P P v v v v* − { , …, } =k k n s1 −1 −2 n

≔ ⋯ .
Let Gn be the graph obtained from the path P by joining sn leaves to each of the two

endpoints v1 and w vn s−2 n
≔ of P (see Figure 2). Let G G v w v w v w+ { , , …, }n k n k, 1 2≔ , that is,

Gn k, is the graph obtained from Gn by adding k new edges e v w e v w e v w, , …, k k1 1 2 2≔ ≔ ≔

(see Figure 3).
Let n k, be the family of subtrees of Gn k, containing the vertex set v v w{ , , }k1 but not

containing the path P v w* = k ⋯ . It is worth noting that n,1 is the family of subtrees of Gn,1

containing edge v w1 . Note that the graphs Gn and Gn,1 defined above are actually the graphs Tn

FIGURE 2 Gn.
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andGn constructed by Cameron and Mol in [2], respectively. From the proof of Theorem 3.1 in
[2], we obtain the following two results regarding the density of G G, ,n n n,1 ,1 .

Lemma 2.1. σ Glim ( ) = 1n n→∞ .

Lemma 2.2. σ G σlim ( ) = lim ( ) =n n n n,1 ,1
2

3→∞ →∞  .

The following two technical results concerning the density of n k, are crucial in the proof of
Theorem 1.2. The proofs of these results will be presented in Section 2.1.1 and Section 2.1.2,
respectively.

Lemma 2.3. For any fixed positive integer k σ σ, lim ( ) = lim ( )n n k n n k, − +1,1→∞ →∞  .

Lemma 2.4. For any fixed positive integer k σ σ G, lim ( ) = lim ( )n n k n n k, ,→∞ →∞ .

The combination of Lemmas 2.2, 2.3, and 2.4 immediately yields the following result.

Corollary 2.5. For any fixed positive integer k σ G, lim ( ) =n n k,
2

3→∞ .

Combining Lemma 2.1 and Corollary 2.5, we have that σ Glim ( ) = < 1 =n n k,
2

3→∞

σ Glim ( )n n→∞ for any fixed positive integer k. By definition, we gain that
σ G μ G G( ) = ( ) | |n k n k n k, , ,∕ and σ G μ G G( ) = ( ) | |n n n∕ . Since G G| | = | |n k n, , it follows that
μ G μ G( ) < ( )n k n, for n sufficiently large, which in turn gives Theorem 1.2.

The following result presented in [2, p. 408, line 2] will be used in our proof.

Lemma 2.6. ( )| | = 2n
s n s

,1
2 − 2

2
n n⋅ .

2.1.1 | Proof of lemma 2.3

Let H be the subgraph of Gn k, induced by vertex set v v w{ , …, , }k1 (see Figure 4). Furthermore,
set n n k= − + 11 , and let Gn

+
1
be the graph obtained from Gn k, by contracting vertex set

FIGURE 3 Gn k, .
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v v{ , …, }k1 into vertex v1 and removing any resulting loops and multiple edges (see Figure 5).
Clearly, Gn

+
1
is isomorphic to Gn ,11

.

Let T n k,∈  , that is, T is a subtree of Gn k, containing the vertex set v v w{ , , }k1 but not
containing the path P v w* = ⋯ . LetT1 be the subgraph of H induced by E H E T( ) ( )∩ . SinceT
does not contain the path P*, we have that T1 is connected, and so it is a subtree of H . Let T2 be
the graph obtained from T by contracting vertex set v v{ , …, }k1 into the vertex v1 and removing
any resulting loops and multiple edges. Since T1 is connected and contains vertex set v v w{ , , }k1 ,
it follows that T2 is a subtree of Gn

+
1
containing edge v w1 . So, each T n k,∈  corresponds to a

unique pair T T( , )1 2 of trees, where T1 is a subtree of H containing vertex set v v w{ , , }k1 , and
T n2 ,11
∈  . We also notice that T T T| | = | | + | | − 21 2 , where the −2 arises due to the fact that T1

and T2 share exactly two vertices v1 and w.
Let ′H H⊆  be the family of subtrees of H containing vertex set v v w{ , , }k1 . By the

corresponding relationship above, we have | | = | ′ | | |n k H n, ,11
⋅   . Hence, we obtain that

  

 

( )( )

μ
T T T

T T

μ μ

( ) =
| |

| |
=

(| | + | | − 2)

| ′ | | |

=
| ′ | | | + | | | | − 2| | | ′ |

| ′ | | |

= + ′ − 2.

n k
T

n k

T T

H n

H T n T n H

H n

n H

,
,

′ 1 2

,1

2 ,1 ′ 1 ,1

,1

,1

n k H n

n H

, 1 2 1,1

1

2 1,1
1

1
1

1

1

⋅

⋅ ⋅ ⋅

⋅

∈ ∈ ∈

∈ ∈


  

   

 

 

  

 

Dividing through by n, we further gain that

FIGURE 4 H .

FIGURE 5 Gn
+

1
.

CAMBIE ET AL. | 361

 10970118, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23043 by U

niversity O
f W

isconsin - M
adison, W

iley O
nline Library on [09/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



( )( )σ
n

n
σ T

k

n
σ

n
( ) = +

+ 1
′ −

2
.n k n H,

1
,11

⋅ ⋅ 

Since σ ( ′ )H is always bounded by 1, it follows that σlim ( ′ ) = 0n
k

n H
+ 1
⋅→∞  . Combining

this with lim = 1n
n

n
1

→∞ and lim = 0n n

2
→∞ , we get ( )σ σlim ( ) = lim =n n k n n, ,1

2

31→∞ →∞  (by

Lemma 2.2), which completes the proof of Lemma 2.3.

2.1.2 | Proof of Lemma 2.4

Let \n k G n k, ,n k,
≔   . If lim | | | | = 0n n k n k, ,∕→∞   , then lim = 0n

| |

| | + | |

n k

n k n k

,

, ,
→∞



 
because

| | | |n k n k
| |

| | + | | , ,
n k

n k n k

,

, ,
≤ ∕ 



 
, and so lim = 1n

| |

| | + | |

n k

n k n k

,

, ,
→∞



 
. Hence,

 

















σ G
μ G

n n

T T

σ σ σ

lim ( ) = lim
( )

= lim
1 | |

| | + | |
+

| |

| | + | |

= lim ( )
| |

| | + | |
+ ( )

| |

| | + | |
= lim ( ).

n
n k

n

n k

n

T

n k n k

T

n k n k

n
n k

n k

n k n k
n k

n k

n k n k n
n k

,
,

, , , ,

,
,

, ,
,

,

, ,
,

n k n k, ,
⋅

⋅ ⋅

→∞ →∞ →∞

∈ ∈

→∞ →∞

   




 




 


 

Thus, to complete the proof, it suffices to show that lim | | | | = 0n n k n k, ,∕→∞   . We now define
the following two subfamilies of Gn k,

 .

• T v V T w V T= { : ( )or ( )}G1 1n k,
∈ ∉ ∉  ; and

• T T P T w= { : * is a path, and contains }G2 n k,
∈ ∩  .

Recall that n k, is the family of subtrees of Gn k, containing vertex set v v w{ , , }k1 and not
containing the path P v w* = k ⋯ . For any T n k,∈  , by definition, we have the following
scenarios: v V T( )1 ∉ , and so T 1∈  in this case; w V T( )∉ , and so T 1∈  in this case;
v V T( )k ∉ and w V T( )∈ , then T P*∩ is a path, and so T 2∈  in this case; P T* ⊆ , and so
T 2∈  in this case. Consequently, n k, 1 2⊆ ∪   , which in turn gives that

| | | | + | |.n k, 1 2≤   (1)

Let Sv1
denote the star centered at v1 with the sn leaves attached to it and Sw denote the star

centered at w with the sn leaves attached to it. Then Gn k, is the union of four subgraphs
S S H, ,v w1

, and P*.

• Considering the subtrees of Sv1
with at least two vertices and the subtrees of Sv1

with a single
vertex, we get s s o| | = (2 − 1) + ( + 1) = 2 + = 2 + (2 )S

s
n

s
n

s s
v

n n n n
1

 .
• Considering the subtrees of Sw with at least two vertices and the subtrees of Sw with a single
vertex, we get s s o| | = (2 − 1) + ( + 1) = 2 + = 2 + (2 )S

s
n

s
n

s s
w

n n n n .
• Considering the subpaths of P* with at least two vertices and the subpaths of P* with a single

vertex, we get ( ) ( ) ( )P| | = + | *| = =P
P P n s k n

*
| *|

2

| * | +1

2

− 2 − + 2

2 2
n

2

≤ .
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• The number of subpaths of P* containing w is bounded above by P n s k n| *| = − 2 − + 1n ≤ .

Since s o n= ( )n , we have the following two inequalities









( )

( )

s s

s o
n

n o n

P n o n

| | ( + | | | | | |) + + | | | | | |

2 + | | (2 + (2 ))
2

= | | (2 + (2 ))

| | | | | | | *| | | = (2 + 2 ) | |.

n H P S n H P S

n H
s s

H
s s

S S H
s s

H

1 * *

2
2 2

2
2 2

w v

n n n n

v w
n n

1

1

≤ ⋅ ⋅ ⋅ ⋅

≤ ⋅ ⋅ ⋅ ⋅ ⋅

≤ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

      

 

    

Recall that n n k= − + 11 . Applying Lemma 2.6, we have



 












n s n
o n| | = | ′ | | | = | ′ | 2

− 2

2
= | ′ | 2

2
− ( ) .n k H n H

s n
H

s
, ,1

2 1 2
2

2n n
1

⋅ ⋅ ⋅ ⋅    

Recall that n2s 2n ≥ . Since | |H is bounded by a function of k because H k| | = + 1, we have
the following two inequalities.

n
lim

| |

| |
= lim

| | 2

| ′ | 2
= lim

2| |

| ′ | 2
= 0

n n k n

H
s

H
s n n

H

H
s

1

,

2

2
2

n

n n
2

⋅ ⋅

⋅ ⋅ ⋅→∞ →∞ →∞













and

n

n
lim

| |

| |
= lim

2 | |

| ′ | 2
= lim

2 | |

| ′ |
= 0.

n n k n

s
H

H
s n n

H

H

2

,

2

2
2

n

n
2

⋅ ⋅

⋅ ⋅

⋅

⋅→∞ →∞ →∞













Hence, we conclude that

lim
| | + | |

| |
= 0

n n k

1 2

,→∞

 



Combining this with (1), we have that lim | | | | = 0n n k n k, ,∕→∞   , which completes the proof of
Lemma 2.4.

2.2 | An alternative construction

The graphs we constructed to prove Theorem 1.2, and the sets of k edges that were added to
them, are certainly not the only examples that could be used to prove Theorem 1.2. For
example, the k‐edge set v w v w v w{ , , …, }k1 2 can be replaced by the k‐edge set
{ }v v v v v v, , …,n s n s k n s k1 −2 2 −2 −1 −2 − +1n n n

.
Fix a positive integer k and let n be an integer much larger than k. We follow the notation

given in Section 2. Recall that Gn is obtained from a path P v v vn s1 2 −2 n
≔ ⋯ by attaching two

stars centered at v1 and vn s−2 n
, and σ Glim ( ) = 1n n→∞ . Let E v v v v v v{ , , …, }k i j i j i jk k1 1 2 2

≔ be a set of
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k edges in Gn such that i j i j i j n s1 < < < − 2k k n1 1 2 2≤ ≤ ≤ ⋯≤ ≤ . Let H G E= +n k n k, . For
convenience, we assume that j i−ℓ ℓ have the same value, say p, for kℓ {1, …, }∈ .

A simple calculation shows that for each pathQ of order q, we have μ Q q( ) = ( + 2) 3∕ (see
Jamison [5]), and so σ Qlim ( ) = 1 3q ∕→∞ . For any nonempty subset F Ek⊆ , we define

T E T E F= { : ( ) = }F H kn k,
∈ ∩  . For any edge v v Fi jℓ ℓ

∈ , let e v v= i jℓ ℓ ℓ
and

P v v v= i i jℓ +1ℓ ℓ ℓ
⋯ . Note that every tree T F∈  is a union of a subtree of

H V P v v− ( ( ) \ { , })n k e F i j, ℓℓ ℓ ℓ
∪ ∈ containing F and E P E P( ( ) − ( *))e F ℓ ℓℓ∪ ∈ for some path P P*ℓ ℓ⊆

containing at least one edge. Since E P p| ( )| =ℓ , the line graph of Pℓ is a path of order p.
Consequently, the mean of E P| ( *)|ℓ over subpaths of Pℓ is p( + 2) 3∕ . Hence, the mean of

E P E P| ( ) − ( *)|ℓ ℓ over all subpaths P*ℓ of Pℓ is p p p− ( + 2) 3 = 2( − 1) 3∕ ∕ for each e Fℓ ∈ . Let

s F= | |. Since every subtree T F∈  has at most n s p− ( − 1) vertices outside
P v v( − − )e F i jℓℓ ℓ ℓ

∪ ∈ , we get the following inequality.

μ n s p s
p

n
s p

( ) − ( − 1) +
2( − 1)

3
−

( − 1)

3
.F ≤ ⋅ ≤

By taking p as a linear value of n, say p αn= (α <
k

1 ), we get

σ sα s n σ G( ) 1 − 3 + 3 < ( )F n≤ ∕ ∕ since we assume that n is much larger than k. Since
=H F E Fn k k, ⊆  , we have σ H σ G( ) < ( )n k n, , and so μ H μ G( ) < ( )n k n, .

Remark 1. The above construction gives an example where we can delete k edges in
order in such a way that the mean subtree order increases in every step.

3 | PROOF OF CONJECTURE 1.3

To simplify notation, we let G K nK+m 1≔ , where V G V K( ) = ( )m n, . Denote by A and B the
two color classes of Km n, with A m| | = and B n| | = , respectively. For each tree T G⊆ , we have
E T E K( ) ( ) =m∩ ∅ or E T E K( ) ( )m∩ ≠ ∅. This implies that the family of subtrees of G
consists of the subtrees of Km n, and the subtrees sharing at least one edge with Km. For each tree
T G⊆ , let A T V T A( ) = ( ) ∩ and B T V T B( ) = ( ) ∩ . Then, T A T B T| | = | ( )| + | ( )|. Further-
more, let B T( )2 and B T( )2≥ be the sets of vertices v B T( )∈ such that d v( ) = 2T and d v( ) 2T ≥ ,
respectively. Clearly, B T B T B T( ) ( ) ( )2 2⊆ ⊆≥ . We define a subtree T G∈  to be a b‐stem if
B T B T( ) = ( )2≥ , which means that d v( ) 2T ≥ for any v B T( )∈ .

Let T be a b‐stem and assume that T contains f edges in Km. Counting the number
of edges in T , we obtain E T f d v( ) = + ( )v B T T( )∈ . Since T is a tree, we have

E T T A T B T| ( )| = | | − 1 = | ( )| + | ( )| − 1. Therefore, we gain







B T A T f d v| ( )| = | ( )| − 1 − + ( ( ) − 2) .

v B T

T

( )∈

(2)

Since T is a b‐stem, we have  d v( ( ) − 2) 0v B T T( ) ≥∈ , which implies that
B T A T m| ( )| | ( )| − 1 − 1≤ ≤ . Thus, T A T f d v A T| | = 2| ( )| − (1 + + ( ( ) − 2)) 2| ( )|v B T T( ) ≤∈

−1. It follows that a b‐stemT G∈  is the max b‐stem, that is, the b‐stem with the maximum order

364 | CAMBIE ET AL.

 10970118, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23043 by U

niversity O
f W

isconsin - M
adison, W

iley O
nline Library on [09/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



among all b‐stems in G , if and only if A T A E T E K( ) = , ( ) ( ) =m∩ ∅, and B T B T( ) = ( )2 2≥ . This
is equivalent to saying that T is a max b‐stem if and only if A T m| ( )| = and B T m| ( )| = − 1.

The b‐stem of a treeT G⊂ is the subgraph induced by A T B T( ) ( )2∪ ≥ , and it is a subtree in

G . It is worth noting that the b‐stem of every subtree T G⊂ exists, except for the case when T
is a tree with only one vertex belonging to B. Conversely, given a b‐stem T0, a tree T G⊂

contains T0 as its b‐stem if and only ifT T A T A T, ( ) = ( )0 0⊆ , and B T B T( ) \ ( )0 is a set of vertices
with degree 1 inT . Equivalently,T can be obtained fromT0 by adding vertices in B T B T( ) \ ( )0 as
leaves. So, there are exactly A T(| ( )| + 1)n B T

0
−| ( )|0 trees containing T0 as their b‐stem.

For two nonnegative integers a b, , where a b + 1 1≥ ≥ , let a b( , )G (resp. a b( , )Km n,
 ) be

the family of subtrees in G (resp. Km n,
 ) whose b‐stems T0 satisfy A T a| ( )| =0 and B T b| ( )| =0 .

For any A A0 ⊆ and B B0 ⊆ , let f A B( , )G 0 0 (resp. f A B( , )K 0 0m n,
) denote the number of b‐stemsT0

spanned by A B0 0∪ ; that is, A T A( ) =0 0 and B T B( ) =2 0 0≥ . Clearly, f A B( , )G 0 0 and f A B( , )K 0 0m n,

depend only on A| |0 and B| |0 , so we can denote them by f A B(| |, | |)G 0 0 and f A B(| |, | |)K 0 0m n,
,

respectively. By counting, we have ( )a b f a b a| ( , )| = ( ) ( , ) ( + 1)G
m

a

n

b G
n b−⋅ ⋅ ⋅ and

( ) ( )a b f a b a| ( , )| = ( , ) ( + 1)K
m

a

n

b K
n b−

m n m n, ,
⋅ ⋅ ⋅ , due to the fact that there are ( )m

a
ways to

pick an a‐set in A and ( )nb ways to pick a b‐set in B. Since a m≤ and b m − 1≤ , there exist

positive numbers c1 and c2 that depend only on m, such that

c n a a b c n a( + 1) | ( , )| ( + 1)b n b
G

b n b
1

−
2

−≤ ≤ (3)

Note that if a b m m( , ) ( , − 1)≠ , then we have b m − 2≤ . Applying inequality (3),
we get a b c m m n| ( , )| | ( , − 1)|a b m m G G( , ) ( , −1) 3∪ ≤ ∕≠   for some constant c > 03 depending
only on m.

Given a b‐stem T0 with A T a| ( )| =0 and B T b| ( )| =0 , let T be a tree chosen uniformly at
random from G (resp. Km n,

 ) that contains T0 as its b‐stem. Then, the probability of a vertex
v B B T\ ( )0∈ inT is a

a + 1
. This shows that the mean order of trees containingT0 as their b‐stem is

n b a b( − ) + +
a

a + 1
, denoted by μ a b( , ). Note that  T μ a b a b= ( , ) ( , )|T a b G( , )G

⋅∈  and

 T μ a b a b| | = ( , ) | ( , )|T a b K( , )Km n m n, ,
⋅∈  . Assume that T0 has f edges in Km, and set

c d v= ( ( ) − 2)v B T T( )0 0∈ . Using (2), we have b a f c= − (1 + + ). Hence, μ a b( , ) =

−
n a a

a

f c

a

( + 2 + )

+ 1

1 + +

+ 1

⋅ , which reaches its maximum value when a m= and f c= = 0, that is,

when T0 is a max b‐stem. We then have







μ G
μ m m m m μ a b a b n

m m a b n

μ K
μ m m m m μ a b a b n

m m a b n

( ) =
( , − 1)| ( , − 1)| + ( , )| ( , )| +

| ( , − 1)| + | ( , )| +
,

( ) =
( , − 1)| ( , − 1)| + ( , )| ( , )| +

| ( , − 1)| + | ( , )| +
,

G a b m m G

G a b m m G

m n

K a b m m K

K a b m m K

( , ) ( , −1)

( , ) ( , −1)

,
( , ) ( , −1)

( , ) ( , −1)

m n m n

m n m n

, ,

, ,

≠

≠

≠

≠

 

 

 

 

where n denotes the number of subtrees with a single vertex in B.
Note that a b a b| ( , )| | ( , )|G Km n,

≥  , with equality holding if and only if a b= − 1, and so in
particular when a b m m( , ) = ( , − 1). We have derived before that μ a b μ m m0 < ( , ) < ( , − 1)
when a b m m( , ) ( , − 1)≠ . Using the inequality a b c m m n| ( , )| | ( , − 1)|a b m m G G( , ) ( , −1) 3∪ ≤ ∕≠   ,
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we conclude that μ G μ m m μ a b( ) > ( , − 1) > max ( , )
n

n c a b m m+ ( , ) ( , −1)
3

≠ for n sufficiently large

(for fixed m).
Since μ K( )m n, is the average of the same terms, as well as some additional terms of the form

μ a b( , ), which are smaller than μ G( ), we conclude that μ G μ K( ) < ( )m n, . This completes the
proof.
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