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1 | INTRODUCTION

Abstract

The mean subtree order of a given graph G, denoted
1 (G), is the average number of vertices in a subtree of
G. Let G be a connected graph. Chin et al. conjectured
that if H is a proper spanning supergraph of G, then
u(H) > u(G). Cameron and Mol disproved this
conjecture by showing that there are infinitely many
pairs of graphs H and G with H D G, V(H) = V (G)
and |[E(H)| = IE(G)l + 1 such that u(H) < u(G).
They also conjectured that for every positive integer k,
there exists a pair of graphs G and H with H O G,
V(H) =V (G), and |[E(H)| = IE(G)| + k such that
u(H) < u(G). Furthermore, they proposed that
U (K, + nkKy) < u(Ky,.,) provided n > m. In this note,
we confirm these two conjectures.

KEYWORDS
mean subtree order, subtree

Graphs in this paper are simple unless otherwise specified. Let G be a graph with vertex set
V (G) and edge set E (G). The order of G, denoted by IGl, is the number of vertices in G, that is,
|Gl = IV (G)I. The complement of G, denoted by G, is the graph on the same vertex set as G such
that two distinct vertices of G are adjacent if and only if they are not adjacent in G. For an edge
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subset F C E(G), denote by G + F the graph obtained from G by adding the edges of F. For a
vertex subset U C V (G), denote by G — U the graph obtained from G by deleting the vertices of
U and all edges incident with them. For any two graphs G;, G, with V(Gy) N V(G;) = @,
denote by G; + G, the graph obtained from G,, G, by adding an edge between any two vertices
v € V(Gy) and v, € V (G,).

A tree is a graph in which every pair of distinct vertices is connected by exactly one path. A
subtree of a graph G is a subgraph of G that is a tree. By convention, the empty graph is not
regarded as a subtree of any graph. The mean subtree order of G, denoted u(G), is the average
order of a subtree of G. Jamison [5, 6] initiated the study of the mean subtree order in the 1980s,
considering only the case that G is a tree. In [5], he proved that u(T) > "T” for any tree T of
order n, with this minimum achieved if and only if T is a path; and u(T) could be very close to
its order n. Jamison's work on the mean order of subtrees of a tree has received considerable
attention [4, 8-11]. At the 2019 Spring Section AMS meeting in Auburn, Jamison presented a
survey that provided an overview of the current state of open questions concerning the mean
subtree order of a tree, some of which have been resolved [1, 7].

Recently, Chin et al. [3] initiated the study of subtrees of graphs in general. They believed that
the parameter ¢ is monotonic with respect to the inclusion relationship of subgraphs. More
specifically, they [3, conjecture 7.4] conjectured that for any simple connected graph G, adding any
edge to G will increase the mean subtree order. Clearly, the truth of this conjecture implies that
1 (Ky,) is the maximum among all connected simple graphs of order n, but it is unknown if © (K,,) is
the maximum. Cameron and Mol [2] constructed some counterexamples to this conjecture by a
computer search. Moreover, they found that the graph depicted in Figure 1 is the smallest
counterexample to this conjecture, and there are infinitely many graphs G with xy € E(G) such
that u(G + xy) < u(G). In their paper, Cameron and Mol [2] initially focused on the case of
adding a single edge, but they also made the following conjecture regarding adding several edges.

Conjecture 1.1. For every positive integer k, there are two connected graphs G and H
with G C H,V(G) = V(H) and |[E(H)\E(G)| = k such that u(H) < u(G).

We will confirm Conjecture 1.1 by proving the following theorem, which will be presented
in Section 2.

Theorem 1.2. For every positive integer k, there exist infinitely many pairs of connected
graphs G and H withG C H,V (G) = V(H) and|E (H)\E (G)| = k such that u(H) < u(G).

In the same paper, Cameron and Mol [2] also proposed the following conjecture.

a

b

FIGURE 1 Adding the edge between a and b decreases the mean subtree order.
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Conjecture 1.3. Let m,n be two positive integers. If n> m, then we have
U (K + nKy) < u(Kipn)-

We can derive Conjecture 1.1 from Conjecture 1.3, the proof of which is presented in
Section 3, by observing that when m = 2k, the binomial coefficient (Z’) is divisible by k. With
2k — 1 steps, we add k edges in each step, and eventually the mean subtree order decreases, so

it must have decreased in some intermediate step.

2 | THEOREM 1.2

Let G be a graph of order n, and let 7 be the family of subtrees of G. By definition, we have
u(G) = (Xrer,)TD /176l The density of G is defined by o (G) = u(G)/n. More generally, for any

subfamily 7 C 7, we define 4 (7) = (Xre7 T /IT1and 0 (7) = u(7)/n. Clearly,1 < u(G) < n
and0 < o(G) < 1.

2.1 | The construction

Fix a positive integer k. For some integer m, let {s,},>» be a sequence of nonnegative integers
satisfying: (1) 2s, <n —k —1 for all n > m; (2) s, = o(n), that is, lim,_s,/n = 0; and
(3) 2% > n? for all n > m. Notice that many such sequences exist. Take, for instance, the
sequence {[2log,(n)1}s>m, as in [2], where m is the least positive integer such that
m — 2[2log,(m)1 > k + 1.

In the remainder of this paper, we fix P for a path v,v; --- v,_5, of order n — 2s,. Clearly,
[Pl > k + 1. Furthermore, let P* := P — {vy, ..., Vk_1} = Vg =+ Vg,

Let G, be the graph obtained from the path P by joining s, leaves to each of the two
endpoints v; and w := v,_,, of P (see Figure 2). Let G,k := G, + {vyw, VW, ..., Vgw}, that is,
Gy is the graph obtained from G, by adding k new edges e; :== viw, e; == VW, ..., e = VW
(see Figure 3).

Let 7, be the family of subtrees of G,; containing the vertex set {v;, v, w} but not
containing the path P* = vy --- w. It is worth noting that 7,,; is the family of subtrees of G, ;
containing edge v;w. Note that the graphs G, and G, ; defined above are actually the graphs T,

syleaves 4 i —& -— ® i s, leaves

"U-A

FIGURE 2 G,.
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s, leaves — s,leaves

FIGURE 3 Gyy.

and G, constructed by Cameron and Mol in [2], respectively. From the proof of Theorem 3.1 in
[2], we obtain the following two results regarding the density of G,, G, 1, 75, 1-

Lemma 2.1. lim,_,0(G,) = 1.

Lemma 2.2. lim,_,,0(G,1) = lim,0(7y1) = %

The following two technical results concerning the density of 7, x are crucial in the proof of
Theorem 1.2. The proofs of these results will be presented in Section 2.1.1 and Section 2.1.2,
respectively.

Lemma 2.3. For any fixed positive integer k, lim, _, o0 (7}, 1) = limy— 0 0 (Ty—+1,1)-

Lemma 2.4. For any fixed positive integer k, lim,_, .0 (7, 1) = limy,— o 0 (G x)-

The combination of Lemmas 2.2, 2.3, and 2.4 immediately yields the following result.

Corollary 2.5. For any fixed positive integer k,lim,_, ,0 (G, ) = %

Combining Lemma 2.1 and Corollary 2.5, we have that lim,_0(G,x) = % <1l=
lim,.,0(G,) for any fixed positive integer k. By definition, we gain that
0(Guk) = u(Gui) /1Go k! and o (G,) = u(G,)/1G,l. Since |G,k =1G,l, it follows that

1 (Gpi) < u(Gy) for n sufficiently large, which in turn gives Theorem 1.2.
The following result presented in [2, p. 408, line 2] will be used in our proof.

Lemma 2.6. |7, = 2% - (n—22sn)'

2.1.1 | Proof of lemma 2.3

Let H be the subgraph of G, ; induced by vertex set {vy, ..., Vg, w} (see Figure 4). Furthermore,
set y =n —k+ 1, and let G:l be the graph obtained from G, by contracting vertex set
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FIGURE 4 H.

vy Verl Vee2

s, leaves — s, leaves

— -

FIGURE 5 Gj.

{v1, ..., v} into vertex v; and removing any resulting loops and multiple edges (see Figure 5).
Clearly, G:{l is isomorphic to Gy, ;.

Let T € T,, that is, T is a subtree of G, containing the vertex set {v;, vy, w} but not
containing the path P* = v --- w. Let Ty be the subgraph of H induced by E(H) n E(T). Since T
does not contain the path P*, we have that T; is connected, and so it is a subtree of H. Let T, be
the graph obtained from T by contracting vertex set {vy, ..., V¢} into the vertex v; and removing
any resulting loops and multiple edges. Since T; is connected and contains vertex set {v;, v, w},
it follows that T, is a subtree of GZ} containing edge v;w. So, each T € 7, corresponds to a
unique pair (T, T5) of trees, where T; is a subtree of H containing vertex set {vi, vy, w}, and
T; € 7,,1. We also notice that IT| = IT| + IT;| — 2, where the —2 arises due to the fact that T
and T, share exactly two vertices v; and w.

Let T C Ty be the family of subtrees of H containing vertex set {v;, vg, w}. By the
corresponding relationship above, we have |7, | = |74l - 175, 1. Hence, we obtain that

ZTeTn,lel _ ZTleT’H ZTzeTnLl(lTll + I — 2)

T = -
#Iwd == T - 1T,
(Til - Sy VB4 Tl - Y 1T = 20T, 00 - 1T
_ ng,1 1 H
Tl 1T,

=M (Tnl,l) + ,U(T’H) -2

Dividing through by n, we further gain that

1Y) SUONIPUOD) Ut SuA A1 995 “[$Z07/S0/60] U0 AIeIqT SUIUQ Aol A\ “UOSIPE]N - UISUOISIAN JO ANSIATUN AQ £40€Z13(/2001°01/10p W00 Ko A1eaquiounTuoy/:sdiy woiy papeo[usod ° *b70Z ‘8110L601

Ropum

25ud2T suoWWIO)) aAEa1) [qeandde oy Aq PawIaA0S aIe SA[OIIE VO (25N JO AN 10] AIBIQIT SUHUQ A[IAY UO (



362 CAMBIE ET AL.
—I—Wl LEY

2

c(Tp)=— -o(T, + co(TYy) - =.

( n, k) ( 1,1 ) ( H) n
Since o (7 %) is always bounded by 1, it follows that hmn—>oo -o(Thy) =0. Comblnlng
this with hmn_mo; =1 and hmn_,oo =0, we get lim,_, 0 (7, k) = limy— 00 (Tn1) = < by

Lemma 2.2), which completes the proof of Lemma 2.3.

2.1.2 | Proof of Lemma 2.4

Let T, :=1g N If limy, . ool il /I Tnil = 0, then llmn_)ooﬁék| =0 Dbecause
, i, , , [Tog |+ | Tl
T4 1Tl _
m < |7—n k|/|Z/, kl and so llmn_wom = 1. Hence,
. . 12 (Gn,k) . 1 ZTETn,k ITI ZTGTn,Ic ITI
lim 0 (G, ) = lim ——— = lim — - — —
n— 00 n— o0 n n—oo N [Tkl + |7—n,k| Tkl + |7—n,k|
) [Tkl — 1T .
= lim [0 (Tp)) - ———— + 0(Top) - ——* | = lim o(T;,).
n—oo |'Tn,k| + |Tn,k| |Tn,k| + |,Tn,k| n—co

Thus, to complete the proof, it suffices to show that lim,_, |7, 1| /17l = 0. We now define
the following two subfamilies of 7, ,.

e« Bi={T€Tg, : vigV(Torw & V(T)}; and
« B, ={T € 15, : T n P*isapath,andT containsw}.

Recall that 7, is the family of subtrees of G, containing vertex set {v;, vy, w} and not
containing the path P* = v ---w. For any T € 7,,, by definition, we have the following
scenarios: v; & V(T), and so T € B; in this case; w & V(T), and so T € B; in this case;
v &€ V(T) and w € V(T), then T n P* is a path, and so T € B, in this case; P* C T, and so
T € B, in this case. Consequently, 7, nk © B1 U B, which in turn gives that

1Tkl < 1Byl + 1Byl @

Let S,, denote the star centered at v; with the s, leaves attached to it and S,, denote the star
centered at w with the s, leaves attached to it. Then G, is the union of four subgraphs
Sv» Sw, H, and P*.

« Considering the subtrees of S,, with at least two vertices and the subtrees of S,, with a single
vertex, we get |7g, | = (2% — 1) + (s, + 1) = 2% + 5, = 2% + 0(2%).

+ Considering the subtrees of S,, with at least two vertices and the subtrees of S,, with a single
vertex, we get |75 | = (2% — 1) + (s, + 1) = 2% + 5, = 25 + 0(2%).

« Considering the subpaths of P* with at least two vertices and the subpaths of P* with a single

A — (1P * P*I+1Y _ (n—2s,—k+2 n
Vertex,wegetlTpl—( )+|P|—( ) )—( 5 )52'
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« The number of subpaths of P* containing w is bounded above by IP*| = n — 25, —k + 1 < n.
Since s, = o(n), we have the following two inequalities

B < (sn + 1Tal - 1 Tprl - 1T5,)) + (s + 1Tl - 1Tpl - 1T5,))

2

<2|sp + 1Thl - (2% + 0(2%)) - ”7 =Tyl - 2% - 12 + 0(2% - n?))

Bl <ITs,| - 1Ts, - IP* - Tl = 2% -+ 0 (2% - n)) - 1Tyl.
Recall that n; = n — k + 1. Applying Lemma 2.6, we have

— 25 n?
1Tkl = 1T - 1Tyl = 1Tl -228n(”1 ) ") =Tl - 2% (? - o(n2)].

Recall that 2% > n2. Since |7yl is bounded by a function of k because |H| = k + 1, we have
the following two inequalities.

. . Tyl - 2% . n? . 217,
lim B = lim —l il nz = lim —/l il =
n— o0 lTn,kl n—oo |T’H| . D25 . n n— oo |TH| . 25
2

and

. 1Bl . 2% | Tyl .2 |Tgl
lim —* = lim =—— % = llmliH:
n— oo |Tn,k| n—co |T’H| . 228 . ”7 n—co lTHl -n

Hence, we conclude that

lim Bl + 1B, _
n—co |7—nk|

Combining this with (1), we have that lim,,_, o,|7,,.|/17,.xl = 0, which completes the proof of
Lemma 2.4.

2.2 | An alternative construction

The graphs we constructed to prove Theorem 1.2, and the sets of k edges that were added to
them, are certainly not the only examples that could be used to prove Theorem 1.2. For
example, the k-edge set {vyw,vw,..,vyw} can be replaced by the k-edge set
{vlvn—Zs,,s V2Vp—25,—15 -+ Vkvn—Zs,,—k+l}-

Fix a positive integer k and let n be an integer much larger than k. We follow the notation
given in Section 2. Recall that G, is obtained from a path P := vyv; -+ v,_y, by attaching two
stars centered at v; and v,_,, and lim, ., 0 (G,) = 1. Let Ey := {v; v, v;,Vj,, ..., ; V; } be a set of
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k edges in G, such that1 <i <j, <i <j, <-<i) <j, <n—2s, Let Hyy = G, + Ey. For
convenience, we assume that j, — i, have the same value, say p, for ¢ € {1, .., k}.

A simple calculation shows that for each path Q of order g, we have u(Q) = (g + 2)/3 (see
Jamison [5]), and so limg.0(Q) =1/3. For any nonempty subset F C E;, we define
Tp={T € Ty, : E(T)NE,=F}. For any edge v,v,€F, let e =v,v;, and
B, = v;,Vj,41 - vj. Note that every tree T€7r is a union of a subtree of
Hp i — Ue,er (V (B)\{v,, vj,}) containing F and Ue,er(E (F;) — E(P})) for some path P} C P,
containing at least one edge. Since |IE(P,)| = p, the line graph of F, is a path of order p.
Consequently, the mean of |E(P})| over subpaths of P, is (p + 2)/3. Hence, the mean of
|E(B) — E(P})| over all subpaths P} of P, is p — (p + 2)/3 = 2(p — 1)/3 for each ¢, € F. Let
s =IFl. Since every subtree T € 7r has at most n —s(p—1) vertices outside
Ue,er (B, — vi, — v),), we get the following inequality.

- -1
u(TF)Sn—s(p_l)H.ySn_s(p3 )
By taking p as a linear value of n, say p=an (a< %), we get

0(Tp) <1 —sa/3 + s/3n < 0(G,) since we assume that n is much larger than k. Since
Th,, = Urcg, Tr, we have o (Hy i) < 0(Gy), and so u(Hy i) < u(Gy).

Remark 1. The above construction gives an example where we can delete k edges in
order in such a way that the mean subtree order increases in every step.

3 | PROOF OF CONJECTURE 1.3

To simplify notation, we let G := K,,, + nkK;, where V (G) = V (K, ). Denote by A and B the
two color classes of K, , with [Al = m and IBl = n, respectively. For each tree T C G, we have
E(T)YNE(K,) =@ or E(T)n E(K,;) # @. This implies that the family of subtrees of G
consists of the subtrees of K,,, , and the subtrees sharing at least one edge with K,,. For each tree
TCG,let A(T)=V(T)NnA and B(T) = V(T) n B. Then, IT| = |A(T)| + IB(T)|. Further-
more, let B,(T) and Bs,(T) be the sets of vertices v € B(T) such thatdr(v) = 2 and dr (v) > 2,
respectively. Clearly, B,(T) C B>,(T) C B(T). We define a subtree T € 7 to be a b-stem if
B>,(T) = B(T), which means that dy(v) > 2 for any v € B(T).

Let T be a b-stem and assume that T contains f edges in K,. Counting the number
of edges in T, we obtain |[E(T)|=f+ ZVEB(T) dr(v). Since T is a tree, we have
IE(T)I = 1Tl — 1 =1A(T)| + IB(T)| — 1. Therefore, we gain

IB(T)I = 1A(T)] — 1 — (f+ > (dr() — 2)]. )

veB(T)

Since T is a bstem, we have 3 pr) (dr(v) —2) >0, which implies that
IB(T)I < 1A(T)| =1 <m —1. Thus, ITI = 2IA(T)| — (A + f+ ZveB(T)(dT(v) —2)) < 21A(T)!
—1. It follows that a b-stem T € 7 is the max b-stem, that is, the b-stem with the maximum order
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among all b-stems in 7g, if and only if A(T) = A, E(T) N E(K,,,) = @, and B,(T) = B5,(T). This
is equivalent to saying that T is a max b-stem if and only if IA(T)| = m and IB(T)| = m — 1.

The b-stem of a tree T C G is the subgraph induced by A(T) U Bs,(T), and it is a subtree in
7T¢. It is worth noting that the b-stem of every subtree T C G exists, except for the case when T
is a tree with only one vertex belonging to B. Conversely, given a b-stem Tj, a tree T C G
contains Ty as its b-stem if and only if Ty C T, A(T) = A(Ty), and B(T)\B(Tp) is a set of vertices
with degree 1 in T. Equivalently, T can be obtained from T, by adding vertices in B(T)\B(Tp) as
leaves. So, there are exactly (IA(Ty)| + 1)"~'B(™)! trees containing Ty as their b-stem.

For two nonnegative integers a, b, where a > b + 1 > 1, let 7g(a, b) (resp. T, .(a, b)) be
the family of subtrees in 7 (resp. 7k, ,) whose b-stems Ty satisfy |A(Ty)| = a and IB(T)! = b.
For any Ay C A and By C B, let f; (Ao, Bo) (resp. me'n (Ao, By)) denote the number of b-stems Ty
spanned by Ag U By; thatis, A(Ty) = Ap and By, (Ty) = By. Clearly, f; (Ao, By) and meY” (Ap, By)
depend only on |Ayl and IByl, so we can denote them by f;(lAol, IBol) and fi (IAol, IBol),

respectively. By counting, we have [75(a,b)l = ('2) . (Z) - fz(a,b) - (a+ 1" and
7k, .(a, b)| = ('2) . (;‘) fg,, (@, b) - (a + 1)"%, due to the fact that there are (’:) ways to

pick an a-set in A and (Z) ways to pick a b-set in B. Since a < m and b < m — 1, there exist

positive numbers c; and ¢, that depend only on m, such that

cinb(a + 1)t < 175(a, b)| < c;nb(a + 1)7b 3)

Note that if (a,b) # (m,m — 1), then we have b < m — 2. Applying inequality (3),
we get | Ugp)zmm—1) Ze(a, b)l < cs3l7g(m, m — 1)I/n for some constant c; > 0 depending
only on m.

Given a b-stem Ty with |A(Ty)| = a and IB(Ty)l = b, let T be a tree chosen uniformly at
random from 7 (resp. 7k,,,) that contains T as its b-stem. Then, the probability of a vertex

v € B\B(Ty)inT is ai - This shows that the mean order of trees containing 7 as their b-stem is

(n - b)aL-l—l +a + b, denoted by u(a,b). Note that Y;.; Tl = p(a,b) - |75(a, b)| and
ZTeTKmn(a,b)ITI =u(a,b) - 17k, (a,b)l. Assume that T, has f edges in K,, and set
c= ZveB(To)(dTo(") —2). Using (2), we have b=a—-(1+f+c). Hence, u(a,b)=
(n+2+a)-a 1+f+c

a+1 a+1’
when Tj is a max b-stem. We then have

which reaches its maximum value when a = m and f = c = 0, that is,

um,m— DI Tg(m,m — 1)| + Z(a,b#(m,m_l),u(a, b)I7g(a, b)l + n
[ Tg(m, m — 1| + Z(a’b#(m,m_l)ITG(a, bl +n

u(m, m — DT, (m,m— 1) + Z(a,b)#m’m_l),u(a, b)I Tk, (a, D)l + n
T (mam = DU+ 2y Tkna(@ D)+ 1

u(G) =

>

:u(Km,n) =

5

where n denotes the number of subtrees with a single vertex in B.

Note that|75(a, b)| > |7k, (a, b)l, with equality holding if and only ifa = b — 1, and so in
particular when (a, b) = (m, m — 1). We have derived before that 0 < u(a, b) < u(m, m — 1)
when (a, b) # (m, m — 1). Using the inequality | Ui, py(m,m-1) Zc(a, b)| < cslTg(m, m — 1)1 /n,
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n
n+cs

we conclude that u(G) >
(for fixed m).

Since u (K, ) is the average of the same terms, as well as some additional terms of the form
u(a, b), which are smaller than 1 (G), we conclude that u(G) < u(Ky, ). This completes the
proof.

u(m, m — 1) > max py#mm-1u(a, b) for n sufficiently large
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