Int. J. Quantum Inform. Downloaded from www.worldscientific.com
by DARTMOUTH COLLEGE on 05/09/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

International Journal of Quantum Information
(2024) 2450001 (17 pages)

(©) World Scientific Publishing Company

DOI: 10.1142/50219749924500011

World Scientific
www.warldscientific.com

Benchmarking a neutral-atom quantum computer

N. Wagner ©@*1, C. Poolef, T. M. Graham' and M. Saffman ©1:+:§
*West High School, 30 Ash St. Madison, WI, 53726, USA

tDepartment of Physics,
University of Wisconsin-Madison, Madison, WI, USA

tnflegtion, Inc., Madison, W1, 53703, USA
Smeaffman@wisc. edu

Received 18 December 2023
Accepted 15 January 2024
Published 17 February 2024

In this study, we simulated the algorithmic performance of a small neutral atom quantum
computer and compared its performance when operating with all-to-all versus nearest-
neighbor connectivity. This comparison was made using a suite of algorithmic bench-
marks developed by the Quantum Economic Development Consortium. Circuits were
simulated with a noise model consistent with experimental data from [Nature 604, 457
(2022)]. We find that all-to-all connectivity improves simulated circuit fidelity by 10%—
15%, compared to nearest-neighbor connectivity.
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1. Introduction

Many candidate platforms for the physical realization of quantum computing hard-
ware have emerged in recent years, including neutral atoms, trapped ions, supercon-
ductors, quantum dots and photonics.1:2 All architectures suffer from various types
of errors that functionally limit the number of qubits (circuit width) and gates
(circuit depth) that can be executed in a circuit while maintaining high fidelity
results.

Several different benchmarks have been proposed to compare the performance
of quantum computers.®>® We have chosen to use a benchmark developed by the
Quantum Economic Development Consortium (QED-C benchmark), which uses the
fidelities of several quantum circuits, such as the Quantum Fourier Transform and
Grover’s algorithm, to quantify the performance of a computer.”

In this work, we present a noise model developed for a neutral atom quan-
tum processor and benchmark simulated circuit execution. We constructed the
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noise model through a combination of diagnostic measurements and fitting sim-
ulated bitstring probabilities to measurements of circuits previously run on the
computer. The quantum processor uses neutral atom qubits on a 2D square grid
with gates implemented using lasers and microwave fields.® Because some circuits in
the QED-C benchmark require more qubits than were used in the quantum proces-
sor, we assumed the errors are uniform on each site and extended the simulator to
accommodate high-width circuits provided in the benchmark. We ran simulations
with both all-to-all and nearest-neighbor connectivity to accommodate the range
of potential future device connectivity capabilities. We found significant improve-
ment of circuit fidelities for the all-to-all connectivity compared to nearest-neighbor
connectivity.

This paper is organized as follows. In Sec. 2, we discuss the methods by which we
constructed the noise model for the simulation and give an overview of the QED-C
benchmark. In Sec. 3, we present the results of the simulated benchmark circuits.
We conclude in Sec. 4 with a discussion of the significance of the results.

2. Methods
2.1. Hardware

The neutral atom quantum processor we studied consists of a two-dimensional
array of cesium atoms where qubits are encoded in the hyperfine clock states |0) =
6512, f = 3,m = 0),|]1) = [6s1/2,f = 4,m = 0). Single qubit R, gates were
applied with a local Stark shift provided by focused 459-nm light that was blue-
detuned from the |65y /9, f = 4) — |Tpy /2, f = 4) transition. Controlled-Z (Cz) gates
were implemented using two-photon excitation of Rydberg states.? Global rotations
about an arbitrary axis in the £ — y plane of the Bloch sphere were performed with
resonant microwave fields. The global rotations are written as Rg(ﬂ), where ¢ is the
angle between the rotation axis and the z-axis and @ is the rotation angle.® These
three gates provide a universal gate set from which any quantum circuit can be
constructed. For example, local Ry4(#) rotations may be implemented by combining
global microwave rotations and local Stark shifts using the identity

Rs(6) = RS, 5 (%) R: ()RS, 5 (—g) (1)

This provides a rotation to the Stark shifted site, but the other atoms of the array
see no net rotation since

_ pG ™ pe m
=R (3) R8s (3) @
The three gate types have different corresponding noise channels, as listed in
Table 1. Independent experimental measurements determined 77 and T5.2 We esti-
mated the remaining noise parameters by fitting simulated bitstring populations

against experimental populations of three 4-qubit QAOA-MaxCut circuits pre-
sented in the paper. The quality of the fit is determined by the classical fidelity
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Table 1. List of the types of error used in the noise model, along with the probabilities of each
being applied. The noise channels and rates are organized by gate. Note that in some cases
multiple gates share the same noise channel at different rates. The errors for the Rf and R;
gates are for m pulses. The indicated Cz gate fidelity in the last column is the entanglement
fidelity obtained directly from the density matrix of a single application of the gate on a
random pure state (not Hellinger distance), and is SPAM-corrected. For phase-dependent
channels, the error/avg. gate fidelity is per 7 pulse. For additional details see Appendix A.

Gate/Process Noise Error Average
gate fidelity
Global Rg Depolarization 1.8 x 1078 0.9995
Local R, Phaseflip 32x 104 0.995
Loss to Dark State 1.9 x 1074
Loss to Bright State 2.7 x 1074
Decay 2.0 x 10°8
Cz Phaseflip 33 x 102 0.954
Loss to Dark State 1.8 x 10~ 2
Loss to Bright State 2.9 x 102
Decay 2.1 x 1073
Phaseshift —2.0 x 1072 rad.
SPAM Preparation 5.2 x 10—3 NA
Measurement 53 x 1073
Decoherence T7 = 10s
T3 =3.5ms NA NA

P|0) =042 att =00

between the two probability distributions, defined as
2

Fs(jjidea]; Pﬂut) = Z ‘\/-pideal(fE)Pnutr(i) 3 (3)

where = is summed over all possible bitstrings, P,gea1 is the ideal output and P
is the noisy output. This measure is then normalized to make the fidelity between
the output state and the maximally mixed distribution 0. The resulting normalized
fidelity is defined by

Fs(}:,ideal: Pou ) S Fs(-Pideala Puni)
1-— Fs{:ﬂdeal, Puni)

Fn(Hdea]-,- Pout) = 1 (4)

where the state Py,,; is the maximally mixed multi-qubit state which has each
diagonal element equal to 1/2", with n the number of qubits, and all off-diagonal
entries equal to zero. This normalized fidelity can be negative in certain cases, so

the final reported fidelity is defined as
F(P'ideal: Pﬂut} = max{Fn(-Pidealu Puut}-, O-G)- (5)
To quantify fidelities of the quantum gates Fiz, we use the definition
2
Folp,0) = [T (y/vaova)]’, (6)
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where p and o are density matrices of the ideal and simulated states. This measure
takes both phase and population errors into account. The average fidelity of a quan-
tum gate is calculated by averaging fidelity between ideal and simulated outputs
of a set of Haar-random input states. The gate fidelities are reduced by various
sources of error present in the physical implementation of the quantum gates. All
error channels are described further in Appendix A.

The two-qubit Cz gate uses Rydberg blockade to entangle qubits by apply-
ing a phase shift conditioned on the state of the qubits. During this gate, both
qubits are partially excited to a high-energy Rydberg state outside of the compu-
tational basis. An ideal Cz operation maps the Rydberg state populations back to
the computational basis at the end of the gate. In practice, the population transfer
is imperfect, and some qubits are either lost from the trap or to states outside of
the computational basis. For simplicity, we treat leakage and atom loss events as
either populating a dark lost state |l)g (for atoms lost from the array or leaked
into f = 3, m # 0 states that appear dark during the state-selective readout), or a
bright lost state |[); (for atoms leaked into f = 4, m # 0 states that appear bright
during the state-selective readout), which does not participate in subsequent gate
operations. To track the effects of these loss states in addition to the computational
basis states, we simulate the computer as a ququart system rather than a qubit
system. The Cz gate is the most error-prone operation, with a simulated average
gate fidelity of F ~ 0.95. The gate introduces a phaseflip channel, and a probability
of qubit loss to a bright state |l); or dark state |I}p from state |1). It also introduces
a qubit decay channel, which transfers qubits in the |1} state to qubits in the |0)
state.

The microwave and local R, gates had the highest simulated fidelities with
Fr, ~ 0.9995 and Fg, ~ 0.995. Microwave gate errors were modeled by following a
perfect rotation with a probabilistic depolarization error. Local R, gate errors were
modeled by following a perfect rotation by a phase-flip, decay and loss channels
to both dark and bright lost states. The T} decoherence time is 10° times longer
than the average gate execution time, making it negligible. Both the |0) and |1)
states can scatter into each other (primarily due to Raman scattering from the
trap light), with a measured equilibrium population of Pjyy = 0.42 in the |0) state.
T5 decoherence, which is ~ 100 times greater than gate execution times, is more
significant, and significantly degrades the performance of longer circuits.

State preparation and measurement (SPAM) errors were simulated to occur
with about 0.5% probability in both preparation and measurement. Preparation
error acts as a global bit-flip channel proceeding the circuit, while measurement
error randomly flips the bits of the output states before they are measured.

The average classical fidelity (see Eq. (5)) between experimental and simulated
populations for the three circuits was 98.6%, with a minimum of 97.5% in the p = 3
MAXCUT circuit. The average Bell state fidelity with these parameters is 91.3%,
which agrees with experimental results in Ref. 8. Note that in the circuit producing
a Bell state in Ref. 8 a Cz operation is performed on a state particularly sensitive to
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noise introduced by the Cz gate. On average, simulated GHZ circuits overestimated
the fidelity of the GHZ state by 8.0%.

These discrepancies are likely due to the fact that noise parameters vary between
sites and change over time in experiment, while we assume them to be constant in
the model. Additionally, some noisy channels, particularly channels with relatively
low error, were simplified to improve the simulator’s overall complexity. In partic-
ular, the choice of depolarization for microwave rotations does not fully describe
the behavior of the gate. Despite these simplifications, we see close correspondence
between the simulated and measured circuit results.

2.2. Benchmark

We used the QED-C benchmark because it includes a variety of circuits and is
thus an effective measure of the computer’s practicality. Unlike quantum volume,
which only uses square circuits,? the QED-C benchmark uses both circuits of high
depth and low width and circuits with low depth and high width. As such, we
can independently test the limits of the processor with respect to depth and width.
Other benchmarks, such as the benchmark utilizing mirror circuits described in Ref.
10, also sample more circuits at lower circuit widths. However, such benchmarks
use impractical circuits that are randomly generated. It has been shown that the
predictions given by randomized benchmarks, such as these, are not a good predictor
of the fidelity of practical circuits.”

The QED-C benchmark uses the fidelity results of common quantum computing
circuits to establish a means to compare quantum computers. The circuits used for
benchmarking are divided into three broad categories: shallow oracle-based algo-
rithms, quantum subroutines and circuits applicable to real-world problems. Each
circuit is run one or more times at different widths and with random inputs. The
fidelities from multiple runs are averaged and plotted based on the circuit width
and the average transpiled circuit depth. Note that the QED-C benchmark uses two
methods to benchmark the performance of the quantum Fourier Transform (QFT),
which we will refer to as Method 1 and Method 2. Method 1 encodes a qubit into
the Fourier basis using a QFT, modifies it, and decodes it with an inverse QFT.
Method 2 prepares a qubit in the Fourier basis using a global Hadamard gate and
R., then decodes it with an inverse QFT. In effect, Method 1 runs two consecutive
QFTs, while Method 2 only runs one.

Since the computer did not have the capability to run some of the high-width
circuits in Ref. 7, we sacrificed the accuracy of site-specific error parameters in
the noise model for averages uniformly applied to all qubits. As shown in Fig. 1,
the simulation still accurately described experimental results, with the additional
benefit that it was able to simulate a larger quantum computer.

We simulated the computer’s performance in two cases; a best case, where con-
nectivity is all-to-all, and a worst case, where connectivity is limited to nearest
neighbors on a two-dimensional square grid. The long range nature of the Rydberg
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Fig. 1. (a) Simulation of 4-qubit MAXCUT algorithms from Ref. 8 withp=1,p= 2 and p = 3.
The unfilled bars represent experimental data and the blue fill represents simulated data. The lines
represent error in the simulated data, and the dashed boxes represent error in the experimental
data. (b) Parity oscillation curves of 2-6 qubit GHZ states. The data points represent experimental
data and the solid-colored curves represent simulated data.

interaction makes it possible to consider beyond nearest-neighbor connectivity for
moderate circuit widths. In this simulation, gate errors were assumed to be the
same for both cases and independent of the distance between the two qubits. We
simulated circuits with a width of up to 11 qubits.

3. Benchmark Results

As shown in Fig. 2, the computer simulation performed best with the shallower,
oracle-based algorithms present in the QED-C benchmark (e.g. the Bernstein-
Vazirani and Deutsch—Jozsa algorithms). With only nearest-neighbor connectivity,
it ran the Bernstein—Vazirani and Deutsch—Jozsa circuits with up to 5 qubits with
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Fig. 2. Simulated results for the Deutsch—Jozsa, Bernstein—Vazirani, and Hidden Shift bench-
marks for all-to-all and nearest-neighbor connectivity. For hidden shift there was negligible differ-
ence between all-to-all and nearest-neighbor circuits. The color bar shows the average fidelity of
the result.

> T0% fidelity and the Hidden Shift circuit with up to 4 qubits with > 60% fidelity.
Some accuracy was retained even with larger circuit widths, with a simulated 11-
qubit implementation of the Bernstein—Vazirani and Deustch—Jozsa algorithms giv-
ing > 50% fidelity. Since the hidden-shift algorithm presented in the benchmark
entangles only 2 qubits at a time, there is no difference between the performance
of all-to-all versus nearest-neighbor connectivities in this circuit. However, all-to-all
connectivity significantly increased the fidelity of wider circuits in the Deutsch—
Jozsa and Bernstein—Vazirani algorithms. The most significant increases in fidelity
occurred within the 7-11 qubit range, where the circuit fidelity increases on average
by 2.6% (4.3% max) on the Deutsch-Jozsa circuits and 3.1% (3.7% max) on the
Bernstein—Vazirani circuits.

The results of quantum subroutines are shown in Fig. 3. With only nearest-
neighbor connectivity, Method 2 of the quantum Fourier transform benchmark
reached a maximum of 85% fidelity with 2 qubits falling to 67% fidelity with
3 qubits. The simulation achieved an 89% fidelity with a 3-qubit phase estima-
tion circuit. Method 1 of the QFT benchmark reached a maximum fidelity of 77%
with 2 qubits falling to a 48% fidelity with 3 qubits. All amplitude estimation cir-
cuits produced results with fidelity < 20%. All-to-all connectivity also significantly
improved the performance of quantum subroutines. The most significant increases
in fidelity were found for Method 2 of the quantum Fourier transform benchmark
and phase estimation. On average, the fidelity of the inverse quantum Fourier trans-
form (Method 2) increased by 13% in the 3-5 qubit range, peaking at an increase
of 17% at the 5-qubit implementation. The average increase in fidelity of phase
estimation circuits on the same range was 22%, and peaks at a 26% increase at the
4 qubit implementation.

The results for several applications are shown in Fig. 4. Both the Grover’s
search and Hamiltonian estimation had high-fidelity results for 2 qubits, with both
Grover’s search and the Hamiltonian simulation giving 78% fidelity on average.
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Fig. 3. Simulation results for the phase estimation, amplitude estimation, and both Quantum
Fourier Transform benchmarks.
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Fig. 4. Simulation results for Hamiltonian simulation, Grover's search, and Monte Carlo estima-
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Implementations of the Hamiltonian simulation with 3—4 qubits are lower than
that of the 2-qubit implementation, with the maximum fidelity being 36% in the
3-qubit implementation. All Hamiltonian circuits with 5 or more qubits, along with
all other circuits with 3 or more qubits, returned an average fidelity of < 15% for
both nearest-neighbor and all-to-all connectivity simulations. The nearest neighbor
circuits were identical for all Hamiltonian circuits and the n = 2 Grover’s search
circuit, and all other results had too low a fidelity to be meaningfully compared
between all-to-all and nearest neighbor implementations.

4. Conclusion

We have presented an error model which is consistent with experimental data and
which can be used to simulate circuits with arbitrary widths and depths. When sim-
ulating the processor under different connectivity constraints, we found significant
improvement in circuit fidelities as the connectivity of the computer increases. This
improvement 1s consistent throughout several types of quantum circuits included
in the QED-C benchmark, particularly with quantum subroutines and oracle-based
algorithms.

Our inclusion of a proposed noise model provides an additional multifaceted,
quantitative assessment of our computer’s performance. It allows for us to determine
specific sources of noise which are more prevalent than others, easily simulate how
changes in one parameter may affect many different types of circuits, and instantly
project the results of proposed experiments. In this way, using this noise model as
a preliminary check in experimental work helps expedite the process of designing
and improving our quantum processor.

Additionally, the benefits of a different proposed qubit topology than a square
grid can be assessed without having to fundamentally change the computer. This
could include studying and quantifying the benefits of a larger projected radius
over which Rydberg blockage would occur or different layouts such as a triangular
optical lattice. As developing a scalable quantum processor becomes more pertinent,
the benefits and drawbacks of the qubit topology become more significant, making
studies such as these more important to carry out.

We plan on continuing to study quantum subroutines on the computer, since
they showed the most significant improvements. For example, the Supermar(Q)
benchmark® provides a set of mid-width circuits not used in the QED-C bench-
mark that would be interesting to run under our noise model.
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Appendix A. Noise Model

One can simulate a n-ququart lossy channel using a set of at most 16" Kraus
operators {A;}. The channel transforms the density matrix of the system as

p— > AipAl, (A1)

where ) . AI A; = |. The model uses 6 distinct channels in total, with both SPAM
channels using the bit-flip error.

Throughout the appendix, we will generalize Pauli operators in the extended
basis with a loss state {|0), |1}, |l)o, |I})1} as

0100 0 —i 0 0 1 00 0
1000 i 00 0 0 -1 0 0

X = e Z= . (A2)
0 0 1 0 0O 0 1 0 0O 0 1 0
000 1 0 0 0 1 0 00 1

In general, the error probability p of a gate with an error rate r per m pulse, such
as the Ry and Rz gates, is

Ptz (A.3)

Parameters for error probabilities, and for T;,T; times, are listed in Table 1.

A.1. Depolarization error
A depolarization channel with error probability p acts upon a density matrix as
p— (1—p)p+ g)(px-f-gYpY-!-gZpZ. (A.4)

This is the only type of error present on the microwave gates, and since the error
rate is low, this type of error does not contribute significantly to the benchmark
results.

A.2. Phase-flip error

A phase-flip channel with error probability p acts upon a density matrix as
p— (1—p)p+plpl. (A-5)
This noise channel is present on both the local R, gate and the Rydberg gate.

A.3. Qubit loss error

The action of a qubit loss channel with error probability p on a density matrix can
be represented as

p— AopAo + AgpAl, (A.6)
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where
1 0 0 0
Ap—]: V¢ @ 88 (A7)
0 0 1 0
0 0 0 1
and
[0 0 0 0]
0 0 0O
=10 oo (A8)
(0 0 0 0]
for a loss to dark state channel and
[0 0 0 0]
i 0 0 00 (A.9)
0 0 0 0
0 p 0 0]

for a loss to bright state channel.

A.4. Qubit decay

Qubit decay decoheres qubits in the |1) basis to the |0) basis. A qubit decay channel
with error rate p acts upon the density matrix as

p—rAUpAu-f-A]pAl (AlD)
with
10 0 0 5 0 O
0 1-— 0 0 0 0 0 0
B— R iy . (A.11)
0 0 0 0O 0 0 0
0 0 0 1 0O 0 0 0
A.5. Bit-flip

A bit-flip error operation is used to simulate qubit preparation error. The channel’s
action on the qubit can be given by

p— (1 —p)p+ pXpX. (A.12)

Qubit measurement error is performed after the bitstring populations are collected
from the density matrix, reducing computation time. The error channel simply flips
a bit in the measured bitstring with probability p for each bit.

2450001-11
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A.6. Decoherence

Given a lossy density matrix

_ |Poo P 7 (A.13)
f1o0 P11
one can describe the action of the Ti,75 decoherence channels directly on the
matrix as
) d1poo + (1 — d1)pop: dapot (A14)
dapio dip11 + (1 —d1)p1p:
with
dy=¢ ™, (A.15)
il — T B (A.16)
p1=1—po (A.1T)
and
Pt = poo + P11, (A.18)

being the total population in the |0) and |1) states, where py is the equilibrium
population of |0) for the T} channel. To simplify the complexity of this channel for
numerical computation, we describe it as a composition of two Kraus channels:

p — ApAT + BpB' 4 CpCT

— (1—-9)p+ oZpL (A.19)
with
[Vpo(1—di) + d 0 0 0
0 1—di)+d; 0 0
A— Vil 1) +di , (A.20)
0 0 10
| 0 0 0 1
[0 /po(l—d;) 0 0O
0 0 00
B= . (A.21)
0 0 0 0
0 0 0 0
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0 0 0
/P l—d1 0 0 0 (A22)
0 0 of '
0 0 0
1 ds
. A
Y Wi =g T - By L

Note that, since the only mechanism for a qubit to enter the |l}y or |I); state is
the loss operator, all qubits in the |I)g or |l); states will be incoherent with states
where this qubit is in the |0) or |1) state. Therefore, instead of 16™ nonzero entries
in the density matrix, there are only 6" for each density matrix. This means that
the circuits can be simulated much quicker than usual ququart implementations,
since some channels require fewer Kraus operators.

The noise model we use always applies the gate itself first, and the T7,T5 chan-
nels last. For the microwave and local R, gates, only one error is applied between
the two operations. These errors are depolarization error and a phase-flip error,
respectively. The Cz gate applies the qubit loss channel directly after the gate, fol-
lowed by the bit decay channel, the phase-flip channel, and finally the correlated
phase-flip channel.

Appendix B. Methodology

Results were obtained by simulating the density matrix evolution of each circuit,
with the Kraus operators described in Appendix A. Noise parameters were deter-
mined by maximizing the value of the average classical fidelities between the simu-
lated and experimental results of the three QAOA circuits in Ref. 8, and are listed
in Table 1. We chose the classical fidelity as our performance metric as it is directly
connected to the metric used by the QED-C benchmark to test circuit accuracy.
The structure of the circuits provided in the benchmark depend on a variable
parameter, meaning that two circuits of the same type and width can have different
fidelities. Specific examples of this parameter include the phase to be measured in
the phase estimation circuits, and the bitstring used in the Deutsch—Jozsa and
Bernstein—Vazirani circuits. Because of this, for circuits that allowed 3 or more
values for the parameter, we sampled 3 circuits per data point, corresponding to 3
distinct values chosen at random. We then took the resultant fidelity as listed in
Figs. 2-4 as the average of the fidelities of the three runs. For circuits that admitted
less than 3 values, we instead ran one circuit for each value. Circuits were sampled
using the source code provided in Ref. 7. Exceptions to this triple sampling are the
amplitude estimation circuits, where only two circuits per data point were chosen
and Monte Carlo circuits, where only one circuit per data point was chosen to
reduce processing time. These circuits had low fidelity in our simulations so further
sampling was not required. Sample circuits are given in Figs. B.1 and B.2.
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All-to-All

1
q2 ':l.

00.

Fig. B.1. Sample circuit of a 3-qubit inverse quantum Fourier transform. Both the all-to-all and
nearest-neighbor circuits are shown, with the nearest-neighbor topology shown below the circuit.
The operations covering three qubits in one time slice are global microwave rotation gates Rg"{ﬂ).

As the T and T5 times were measured precisely, both the T and 75 times were
fixed, while the rest of the noise model parameters could vary. The goodness of fit
between the two models was quantified by the classical fidelity between both distri-
butions, which is closely related to the metric used in the benchmark. We optimized
the parameters using the Nelder-Mead algorithm. As the simulator determines the
exact resultant density matrix of the circuit, the populations of simulated states
could be read directly after one evaluation of the circuit.

On average, the classical fidelity between the simulated and measured results of
the three MAXCUT circuits is 98.7%, with the lowest being 97.5% on the p = 3
circuit. The fidelities of the simulated GHZ states overestimated the experimental
fidelities by 8.0% and differed on average from the fidelities of the measured GHZ
states by about 5.5%.

Appendix C. Treating Qubit Loss

The result of multiple runs of a benchmark circuit is a set of probabilities Py, () for
the observation of bit string =, with Y, Pout(z) = 1. Note that the fidelity used as a
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Sample circuit of a 4-qubit phase estimation circuit. Both the all-to-all and nearest-

neighbor circuits are shown, with the nearest-neighbor topology shown below the circuit.
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figure of merit in the QED-C benchmark only examines the probability distribution
of reported bitstrings for a given circuit, not the final quantum state of the system.
This is beneficial as it enables real hardware to be evaluated using the benchmark
solely by repeatedly running circuits to acquire the probability distribution rather
than using tomography or other similarly expensive means to reconstruct the final
quantum state, but does introduce an insensitivity to certain types of errors. For
example, any error in the relative phase of the computational basis states is masked
completely.

Atoms that are lost from their traps during circuit execution will be interpreted
by the atom readout procedure used in Ref. 8 as being in the |1) state. This is the
fate of the majority of atoms captured by our catch-all bright lost state |l); and dark
lost state |I)p. Thus, for both calibrating the error model and when calculating the
fidelity of circuits in the benchmark, we reduce the ququart probability distribution
to a qubit probability distribution by replacing the |l); state with the |1) state and
the |l)g state with the |0) state to mimic what we would receive as output from real
hardware.
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