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G E O P H Y S I C S

Untangling the environmental and tectonic drivers of 
the Noto earthquake swarm in Japan
Qing-Yu Wang1*†, Xin Cui1, William B. Frank1, Yang Lu2, Takashi Hirose3, Kazushige Obara4

The underlying mechanism of the ongoing seismic swarm in the Noto Peninsula, Japan, which generates earth-
quakes at 10 times the average regional rate, remains elusive. We capture the evolution of the subsurface stress 
state by monitoring changes in seismic wave velocities over an 11-year period. A sustained long-term increase in 
seismic velocity that is seasonally modulated drops before the earthquake swarm. We use a three-dimensional 
hydromechanical model to quantify environmentally driven variations in excess pore pressure, revealing its cru-
cial role in governing the seasonal modulation with a stress sensitivity of 6 × 10−9 per pascal. The decrease in 
seismic velocity aligns with vertical surface uplift, suggesting potential fluid migration from a high–pore pressure 
zone at depth. Stress changes induced by abnormally intense snow falls contribute to initiating the swarm through 
subsequent perturbations to crustal pore pressure.

INTRODUCTION
Since late 2020, a swarm of crustal earthquakes in the northeastern 
region of the Noto Peninsula, Japan, far from the plate boundaries of 
the subducting Pacific and Philippine plates, has been responsible 
for hundreds of earthquakes per day. Unlike typical subduction 
zone interplate earthquakes, inland crustal earthquakes in Japan is-
lands predominantly take place at relatively shallow depths [≤10 km; 
Japan Meteorological Agency (JMA)]. Earthquake locations show 
that the Noto earthquake swarm started at a depth of about 15 km, 
deeper than typical crustal earthquakes, and has since slowly migrated 
northeast toward the surface (Fig. 1). This distinct spatiotemporal 
pattern suggests that, rather than inter-earthquake stress interac-
tions, there is an underlying forcing that is driving the earthquakes 
in the swarm to failure (1).

Regional GNSS (Global Navigation Satellite System) positioning 
suggests a volumetric increase of ∼1.4 × 107 m3 in the first 3 months 
of the swarm, suggesting that fluid migration may be the cause of 
the Noto earthquake swarms (2). Amezawa et  al. (3) assert that 
crustal earthquake swarms exhibit distinct spatiotemporal patterns 
of earthquake migration, characterized by clusters that originate at 
depth and migrate upward, suggesting the presence of fluids as the 
driving factor behind such swarms; in the case of Noto, the source of 
such crustal fluids is likely from a concealed magma system (4) or 
slab-derived fluids (5). A three-dimensional (3D) analysis of seismic 
velocity structure (6) reveals a low-velocity zone beneath the Noto 
Peninsula, indicative of a localized zone of high pore pressure 
caused by fluids dehydrated from the subducted Pacific plate to the 
source region of the overlying crustal earthquake swarm.

Seismic wave velocities are sensitive to subtle changes in physical 
properties of the medium (7), particularly in porous regions such as 
volcanic systems and fault zones (8). The monitoring of seismic 
wave velocities with continuous ambient seismic noise has thus 
proven effective in tracking variations caused by both stress 
perturbations resulting from earthquakes (9–14) as well as from 

environmental perturbations often associated with variations in 
pore fluid pressure (13, 15).

We measure continuous seismic velocity changes beneath the 
Noto Peninsula over more than a decade to capture the evolution 
of seismic velocity in the subsurface within the source region of 
the ongoing earthquake swarm. Tracking continuous seismic ve-
locity changes allows us to examine how the crustal medium 
evolves before (16) and during the earthquake swarm (17) and 
whether these changes are consistent with local geodetic observa-
tions (18). To disentangle the environmental contributions to the 
observed changes in seismic velocity, we develop a physical model 
that incorporates local environmental forcings to quantitatively 
capture the evolution of excess pore pressure in the subsurface. 
Our modeling results reproduce the observed seasonal variations 
in seismic velocities, indicating that seismic velocity changes are 
strongly influenced by changes in local snow and rain fall, air pres-
sure, and sea-level changes. The decrease in seismic velocity at 
depth starts coincidentally with the initiation of the earthquake 
swarm and continues until the daily number of earthquake tends 
to stabilize. We attribute this velocity decrease to the likely ascent 
of fluids at depth from the high–pore pressure zone to the overly-
ing earthquake source region, where the swarm is then triggered 
by changes in excess pore pressure caused by intense seasonal 
snow fall.

RESULTS
Recent earthquake swarm beneath the Noto Peninsula
The Noto Peninsula (Fig. 1A) is located along the Japan Sea on the 
west coast of Honshu, the largest island of Japan. The ongoing earth-
quake swarm is occurring in the northeastern region of the Noto 
Peninsula, migrating from its initiation in the south to the northeast 
since late 2020. Earthquakes in this swarm locate to relatively shal-
low depths, typically ranging from the near subsurface to 15 km 
(Fig. 1, B and C) (6). The estimated focal mechanisms of relatively 
large earthquakes align with existing reverse faults (3).

We first focus on how the temporal distribution of earthquakes 
(Fig. 2A), indicative of what drives them to rupture, changes through-
out our observational period. During the swarm, we observe a multi-
year cluster-like pattern with shorter inter-event times. The seismic 
activity during this period is organized in time into distinct clusters 
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of events, suggesting that there is an underlying process driving the 
earthquakes to failure rather than the typical inter-source stress 
interaction, including both static and dynamic stress perturba-
tions (19), that governs aftershock sequences (20, 21). Before the 
swarm (Fig. 2A), the earthquake activity resembles a random se-
quence of uncorrelated events. We quantify this observed differ-
ence in the behavior of earthquake timing by comparing the 
temporal distribution of earthquakes before and during the swarm 
(Fig. 2B).

We do this by computing the power spectral density of the earth-
quake histogram through time during these periods, as shown in 
Fig. 2C. During the time period before the swarm, the flat power 
spectrum is representative of a random Poisson-like distribution of 
seismicity that exhibits no correlation in time (20). During the 
swarm, the amplitude of the power spectrum increases proportion-
ally with the period, indicating a clustering of seismic events over a 
broad range of timescales. The linear slope of the spectrum (in loga-
rithmic space and thus representative of a power law) is larger than 
1, suggesting a strong correlation of events in time (20). These re-
sults provide evidence supporting the hypothesis that swarm events 
differ from pre-swarm events and are triggered by an underlying 

process that connects the timing of spatially disparate earthquakes 
to produce a strong correlation in the event occurrence.

Monitoring seismic velocity changes in the crust
To capture the signature of the crustal processes driving the earth-
quake swarm, we monitor the temporal changes in seismic velocity 
among three station pairs located near the earthquake swarm through 
coda wave interferometry using data from the high-sensitivity seis-
mograph network (Hi-net) (22, 23). We analyze the seismic data 
within two distinct period ranges: 2 to 4 s and 4 to 10 s. We observe 
that changes in seismic velocity in both period ranges are primarily 
influenced by seasonal effects present at all the station pairs (fig. S2). 
These effects are characterized by a decrease in velocity during the 
winter months and an increase during the summer months. These 
observations remain consistent across multiple period ranges and 
align with previous research findings along the western coast of 
Japan (24).

In addition to the seasonal effects evident in both long- and 
short-period measurements, we observe a long-term increase in the 
seismic wave velocity followed by a decrease at depth, revealed by 
the longer-period 4- to 10-s measurement from the YGDH-SUZH 

Fig. 1. Earthquake swarms and the seismic network in Noto, Japan. (A) Spatial distribution of earthquakes (Mv ≥ 2, velocity magnitude estimated by the JMA) from 
2020 to 2023 (JMA catalog). (B) Depth distribution of earthquakes through time. (C) Distribution of earthquake depths.
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station pair, whose path crosses through the earthquake swarm 
(Fig. 1). This result is suggestive of long-term subsurface deforma-
tion in the source region of the swarm, perhaps along preexisting 
reverse faults in the northeastern region of the peninsula, as pro-
posed by (25). The seismic monitoring results obtained from the 
remaining station pairs do not exhibit a distinct long-term trend be-
fore the occurrence of the earthquake swarm, nor do they demon-
strate a change preceding the onset of the swarm. The interstation 
ray path between SUZH and UCUH traverses both land and ocean, 
introducing additional complexity to wave propagation and poten-
tially leading to higher measurement uncertainties. We also note 
that the local S-wave structure (6) beneath the SUZH-UCUH sta-
tion pair is not witness to the pronounced high–pore fluid pressure 
zone that is evident beneath the YGDH-SUZH station pair. The 
YGDH-UCUH station pair, whose path does not cross through the 
earthquake swarm, exhibits clear seasonal modulation with no dis-
cernible similar long-term trend.

Hydromechanical model of pore fluid pressure
With apparent seasonal and tectonic contributions to subsurface 
seismic velocities, it is necessary to disentangle the two contributors 
to seismic velocity changes observe here. Past work has highlighted 
that hydrologic loading due to meteorological and oceanographic 
effects can induce seasonal variations in crustal seismic velocities in 
Japan (24). We use a 3D fully coupled hydromechanical model to 
simulate the evolution of excess pore pressure (Pp) due to these en-
vironmental variations (26) and quantify the seasonal variations in 
seismic wave velocity.

Our model assumes a homogeneous sandstone scenario for the 
peninsula, based on the findings of the Geological Survey of Japan 

(27). We assume the initial hydrostatic equilibrium condition to be 
in a state of saturation. Each step in the physical model corresponds 
to a time increment of 30 days. A permeability value of 2500 mD 
(millidarcy) is used, corresponding to sandstone. The model incor-
porates multiple data types including atmospheric pressure, the 
inflow from precipitation and snow melt, estimated from local 
meteorological station observations, as well as the recorded sea-
level fluctuations from the regional Wajima tidal gauge station 
(Fig. 3B). The average annual variation in sea level exceeds half a 
meter, and these changes also exert pressure on the coast, resulting 
in variations in excess pore fluid pressure (28). In regions with sub-
stantial snowfall, it is important to consider both the effects of snow 
loading and melted snow runoff. Figure 3A illustrates the simulated 
excess pore pressure across the Noto Peninsula in December 2023, 
with a mesh resolution of 1000 and 500 m in the horizontal and 
vertical directions, respectively.

The depth of changes in seismic velocity locates approximately to 
the upper crust based on the theoretical depth sensitivity kernel of 
coda waves (fig. S3) (9, 29). Seasonal effects are governed by changes 
in the medium within shallow strata, given that seasonal seismic ve-
locity changes from both measurement periods exhibit a similar 
change. We therefore plot the simulated excess pore pressure at a 
depth of 1 km and the seismic velocity time series, averaged over the 
time series after removing the linear trend from the SUZH-YGDH 
and YGDH-UCUH station pairs within the 4- to 10-s period range 
(Fig. 3C).

The correlation between seasonal changes in seismic velocity and 
excess pore pressure in Fig. 3C is strongly negative, with a coefficient 
of −0.7 and a stress sensitivity of 6 × 10−9 Pa−1, defined as the ratio 
between the observed changes in seismic velocity and the modeled 

Fig. 2. Clustered timing of earthquakes during the Noto swarm. (A) Earthquake inter-event times that are evaluated during a pre-swarm (blue rectangle) and swarm 
periods (pink rectangle). (B) Zoom on the time period of the Noto swarm [pink rectangle in (A)]. (C) Power spectral density of earthquake timing during the pre-swarm 
(blue) and swarm periods (pink).
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excess pore pressure. As the excess pore pressure increases, the ef-
fective stress, estimated as σe = σn − Pp, decreases (30), resulting in 
a decrease in seismic wave velocity (31). Conversely, when the ex-
cess pore pressure decreases, it leads to a rebound in seismic wave 
velocity.

We simulate changes in excess pore pressure both with and with-
out the consideration of snow effects due to loading and snow melt 
runoff for comparison (fig. S6). Both sets of simulated excess pore 
pressure values exhibit a similar negative correlation with changes 
in seismic velocity, but including snow loading and runoff improves 
the negative correlation by 10%. We see the impact of snow specifi-
cally in the years 2013, 2018, and 2021, suggesting that including 
snow effects is necessary to properly model the subsurface pore 
pressure.

Seismic velocity drop at the initiation of the Noto 
earthquake swarm sequences
We observe in the time series of seismic velocity changes from sta-
tion pair YGDH-SUZH (4 to 10 s), shown in Fig. 4, strong seasonal 
effects with a long-term increase in seismic velocity before 2020, fol-
lowed by a rapid decline in late 2020. Similar to the seismic mea-
surements, the GPS time series of vertical displacement from station 
J253 (part of the Japanese GPS Earth Observation Network) (32, 33) 
also exhibits strong seasonal effects (34) and a long-term change 
with subsidence and uplift before and during the swarm, respec-
tively. In the pre-swarm period, the long-term subsidence from 
∼2014 in the geodetic data coincides with the long-term increase in 
seismic velocity as observed in Fig.  4. Subsidence in vertical dis-
placement is usually associated with water removal, such as the 

compaction of aquifer systems caused by groundwater withdrawals 
(35) and drainage processes (36), implying that groundwater deple-
tion also results in an increase in seismic velocity. In addition, it may 
result from sediment consolidation or even slow fault movement 
(36). Determining the primary cause for this change remains chal-
lenging. However, we conclude the presence of linear increase in 
seismic velocity across the observational region, as evidenced by 
a consistent linear trend (fig. S7) observed in all seismic velocity 
change time series.

In the immediate period preceding the intense burst of the earth-
quake swarms, there is a decrease in seismic wave velocity, indicated 
by the vertical arrow in Fig. 4A, which is accompanied by a distinct 
vertical uplift. A systematic analysis using all available GPS stations 
(2) suggests an uplift of ~70 mm around the source of the earth-
quake swarm. The abnormal decrease in seismic wave velocity is 
observable solely in the 4- to 10-s period monitoring results, but not 
in the 2- to 4-s period. This finding allows us to infer that the de-
crease in seismic velocity can be attributed to the subsurface defor-
mation at depths likely greater than 8 km, the depth extent of the 
short-period frequency band (fig. S3). Our observations thus sug-
gest that both seismic and geodetic time series are under the com-
bined influence of tectonic forces (8), environmental forces 
generated by environmental effects (11, 18, 37).

We isolate the long-term seismic velocity changes first using 
model regression by assuming a linear relationship between the 
excess pore pressure and the seasonal effects. While the model 
effectively simulates the averaged annual patterns of seismic ve-
locity changes (Fig. 3C) between station pairs, residual seismic 
velocity changes from a single pair, after removing the modeled 
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time series (fig.  S9), still exhibit seasonal interference. This is 
possibly due to variations in local-scale environmental parame-
ters and crustal diffusion rates. The model correction results 
may lead to improper interpretation. We therefore apply the Ro-
bust Seasonal and Trend decomposition using Loess (robust-
STL) (38) to empirically decompose the seasonal modulation 
from the seismic velocity time series. The RobustSTL approach 
offers the additional advantage of capturing a nonuniform an-
nual pattern, enabling us to reproduce time-variable amplitudes 
of the seasonal modulation. Both the residuals from the physical 
and empirical approaches (fig. S9) show comparable results, with 
a change in seismic velocity for the period before and after swarm 
periods. We also check the time series of seismic velocity changes 
using autocorrelation from stations SUZH and YGDH, separately 
(fig. S10B) to confirm the observed changes in this area. The long-
term trends show identical seismic velocity changes (fig. S10C). 
There is a long-term increase (Fig.  4B and fig.  S9) in seismic 
velocity observed before late 2020, followed by a relatively rapid 
decrease over ~6 months, as highlighted by the shaded bar in 
Fig. 4B. This decrease coincides with the period from the onset 
of the earthquake swarm until the daily number of earthquakes 
tends to stabilize.

DISCUSSION
Seismic monitoring results show that seasonal effects are present in 
both short- and long-period seismic velocity changes, explaining a 
significant amount of their variance. We model the environmental 
forcings (Fig. 3) by integrating local environmental factors of atmo-
spheric pressure, sea level, snow, and rainfall. The high negative cor-
relation between changes in modeled excess pore pressure and the 
averaged seasonal effects (Fig. 3C) demonstrate the environmental 
impacts on the elastic properties of subsurface medium, directly af-
fecting seismic wave velocities and dominating the shallow seismic 
velocity changes.

Beyond the seasonal effects, we have isolated long-term seismic 
velocity changes measured at long period that are coincident with 
vertical surface displacement (Fig. 4). The gradual decrease in seis-
mic velocity lasting ~6 months is simultaneous with the early stage 
of the swarm, from the initiation of seismicity to the intense, sus-
tained sequence of seismic events. The local seismic structure (6) 
shown in Fig.  5 features a high Vp/Vs zone ~25 km beneath the 
swarm zone that suggests a high–pore fluid pressure environment 
(39). We suggest that, once faults within and above this zone are 
destabilized (Fig. 5A), the high pore fluid pressure will ascend and 
perturb the stress state of preexisting faults or fractures. Increasing 
pore fluid pressure throughout the swarm source region will de-
crease fault strength and initiate seismic events in the critically 
stressed crust above (40, 41). We therefore interpret the observed 
decrease in seismic wave velocity (Fig. 4B) to reveal this diffusion 
process (42, 43), driven from the high–pore fluid pressure zone up-
ward to the seismogenic zone (44) where preexisting reverse faults 
are present. If we consider that high fluid pressure diffuses from 
~25-km depth and migrates 10 km upward into the earthquake 
swarm source region over ~6 months (Fig. 4B), then the estimated 
diffusion rate is ~0.51 m2/s, based on the isotropic pore fluid pres-
sure diffusion model R =

√

4πDt (45). This rate of diffusion closely 
matches other recent estimates ranging from 0.5 to 1 m2/s that were 
derived from the migration of the earthquake catalog itself (4). The 
swarm then continued (Fig. 5, red dots) as the high pore pressure 
migrates within a network (46) of preexisting reverse faults.

As shown in Fig. 5A, our model highlights a notable increase in 
excess pore pressure of more than 20 kPa at a depth of 9 km dur-
ing 2018 and 2021. This increase was subsequently accompanied 
by clusters of earthquakes, both short-lived and sustained, in the 
swarm source region. The relative high excess pore pressure result-
ing from intense periods of snow fall and subsequent hydrological 
loading will persist, even with alterations in permeability and poros-
ity for modeling. We suggest that this environmental forcing affect-
ed pore fluid pressures at depth and acted to destabilize preexisting 
fractures within a fluid-saturated fault zone (4). Thus, the high ex-
cess pore pressure resulting from the substantial snow depth as ob-
served during the winters of 2018 and 2021 likely triggered the 
diffusive fluid ascent by activating fractures. This diffusive process 
controls the timescale between the peak of excess pore pressure, 
which is dominated by the accumulation of snow on the surface, 
and the burst of earthquake clusters. Intense snow fall can poten-
tially act as a trigger factor in an analogous fashion to the seasonal 
modulation of seismicity in the Himalaya by monsoon rains (47), 
climate-driven surface uplift (48, 49), rainfall-triggered earthquake 
activity (50), and fault reactivation triggered by the climate-induced 
melting of large ice sheets in central Europe (51).

Fig. 4. Time series of seismic velocity changes, vertical displacement, and seismic-
ity. (A) Evolution of seismic velocity changes (with inversion error scatters) between 
station pairs YGDH and SUZH (4 to 10 s) and demeaned GNSS vertical displacement 
(station J253). The y axis of vertical displacement is reversed for comparison. The hori-
zontal dotted lines represent averages over 3 years with 1-year overlap. (B) Purple scat-
ter points represent logged daily earthquake numbers. The pink line indicates the 
long-term trend extracted from the raw δv/v time series with robustSTL. Abnormal 
seismic velocity decreases are observed during the shaded time period.
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Besides the 2018 earthquake cluster and the initiation of the late 
2020 earthquake swarm, we highlight further earthquake clusters in 
2022 and 2023 that follow peaks of high excess pore pressure, as in-
dicated by the question marks in Fig.  5A. In addition, the recent 
earthquake with moment magnitude (Mw) of 7.5 on New Year’s Day 
of 2024 (yellow star in Fig. 5B), followed by a rapid extension of 
aftershocks in a similar direction along the YGDH-SUZH pair in 
this nontypical subduction zone, occurred within the swarm source 
zone. Whether these events result from a similar fluid diffusion pro-
cess triggered by snow remains uncertain. This hypothesis requires 
further investigation with a more comprehensive earthquake cata-
log that includes improved earthquake detection and location for a 
statistical analysis.

We demonstrate here how seismic interferometry serves as a ro-
bust tool for tracking and assessing subsurface deformation. When 
exploring what factors can alter the stress state of the seismogenic 
subsurface, it is indispensable to consider external forces originating 
from environmental perturbations, internal tectonic forcings, and 
the variations in fluid pressure that link them together. The seasonal 
subsurface deformation can be effectively explained by the com-
bined influences of environmental factors using our hydromechani-
cal model. Snow, in particular, plays multiple roles in altering the 
subsurface excess pore pressure and, consequently, the effective 
stress. In addition, rising or extreme temperatures can lead to sea-level 

changes, which may generate long-term ocean loading changes (52) 
and can also contribute to the stress changes in the coastal region. 
By taking into account these factors, we can physically model and 
interpret the observed complex seasonal effects, which evolve with 
time, to gain valuable insights into how these external forces may 
alter crustal stresses and potentially trigger seismic rupture.

MATERIALS AND METHODS
Earthquake catalog
The earthquake catalog (Fig.  1A) used in this study is sourced 
from the JMA’s automatic detection system, which provides provi-
sional information regarding seismic events in the region. We 
analyze this catalog following the work by (20, 21). We calculate 
time histogram of seismic activity, counting the number of earth-
quakes in regularly spaced time bins of 1 min. We then compute 
the power spectral density of this earthquake count time series 
(fig. S1) for two distinct time periods: before (2012 to 2018) and 
during earthquake swarm periods (after 2021). The swarm period 
exhibits an increase of power with increasing period, indicating 
that the earthquake timing is correlated and statistically clustered 
in time, while the power spectrum of earthquake occurrence dur-
ing the pre-swarm period is flat, suggesting that the events are 
uncorrelated.
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Fig. 5. Schematic evolution of the subsurface before and during the Noto earthquake swarm. (A) Modeled evolution of pore pressure (megapascals) at 9-km depth. 
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Preparation of meteorological data and other observations
For environmental recordings, we use sea-level data recorded by the 
regional Wajima tidal gauge station (Fig. 1A). The annual difference 
in sea-level between winter and summer is more than 0.5 m per 
year. With this information, we are able to examine how sea-level 
changes may affect the coastal region through our modeling effort. 
In addition, we gather climate data from a nearby meteorological 
station (Fig.  1A), which records daily measurements of precipita-
tion, snow depth, and snowfall. This meteorological data enabled us 
to investigate the influence of environmental conditions on changes 
in seismic velocity, thereby aiding our understanding of subsurface 
deformation processes.

We calculate snowmelt from two observations: One is the snow 
depth difference Δd(i)1 between the current day d(i) and the previ-
ous day d(i − 1) for temperatures equal to or below 0°C, and the 
other is the difference Δd(i)2 between the current snowfall and the 
increase in snow depth d(i) compared to day i − 1. The total snow-
melt is equal to α ⋅ [Δd(i)1 + Δd(i)2], where α is the snow-water-
equivalent coefficient. We assume α to be a constant with an average 
value of 0.3 (53).

In addition, we incorporate vertical surface displacement data 
from a nearby GNSS station, which provides complementary in-
formation to the seismic observations and captures long-term 
deformation processes associated with the ongoing earthquake 
swarm. To study both long-term and transient changes, all of 
these continuous datasets span an 11-year period, covering the 
initiation of the earthquake swarm up to the present. This ex-
tended timeframe has enabled us to detect and analyze long-term 
variations in subsurface deformation, facilitating a comprehen-
sive examination of the underlying factors driving the Noto earth-
quake swarm.

Measurement of time series of seismic velocity changes
We gather continuous seismic data from the vertical component of 
three seismic stations located in close proximity to the earthquake 
swarm. To improve the stability of the noise records before correla-
tion, we first remove the earthquake events by time-domain clipping 
to remove the main high-frequency spikes and glitches (54) and 
then apply 1-bit normalization and spectral whiteningin the band 
from 0.08 to 2.0 Hz. We calculate continuous cross-correlation 
functions for 20-min seismic signal segments and then stack the 
cross-correlation functions for each 3-day period and monitor the 
time series of seismic velocity changes by through coda wave inter-
ferometry (8).

For the phase-shift measurements, we use the doublet method 
(55) and measure the travel-time differences between any two 
correlation functions and then invert the phase differences to a 
time series of seismic velocity changes. The measurement consid-
ers two period ranges: 2 to 4 s and 4 to 10 s to investigate different 
depths of seismic velocity changes. The time series of seismic ve-
locity changes from the three station pairs exhibit seasonal pat-
terns that are in phase with a decrease during winter and an 
increase during summer, for both the 2- to 4-s and 4- to 10-s pe-
riod ranges.

Physical model building
A 3D fully coupled thermal-hydromechanical simulator HENGYI 
(26) is used in this study to simulate the pore pressure evolution 
underneath the Noto Peninsula from 2012 until 2023. We define the 

3D geometry of the model by tracing the outline of the Noto Penin-
sula in map view and then sweeping the outline in the vertical direc-
tion by 10 km. The model is cutoff along 37°07′N, which is enough 
far away from the seismic record stations to avoid the influence of 
boundary conditions. Unstructured hexahedron elements are used 
to mesh the model with a resolution of ~1000 m in the horizontal 
directions and 500 m in the vertical direction.

In terms of boundary conditions, rainfall and snow melt are im-
posed as fluid influx over the entire top surface of the model. The 
upper 5 km of the lateral boundaries is subject to hydrostatic pres-
sure fluctuating with sea level. No change in hydrostaticpressure is 
considered for the rest of the boundaries. For the mechanical 
boundary conditions, the remainder of the snow is applied to the 
top surface as pressure loading due to self-weight. Atmospheric 
pressure is also exerted to the top surface according to the local me-
teorological records. The bottom surface is fixed in all directions 
(i.e., zero displacement). The horizontal movement of the cutoff 
plane is prohibited, while its vertical displacement is allowed to sim-
ulate ground uplift or subsidence. The rest of the boundaries are free 
to deform. For the initial conditions, the rock mass is considered to 
be saturated with hydrostatic pore pressure. The temperature vari-
able is not included in the present simulation; thus, only the hydro-
mechanical partof the thermal-hydromechanical is active.

For the material parameters, according to the geological condi-
tion of Japan (27), the Noto Peninsula is mainly constituted by sedi-
mentary rocks. Here, we use the mechanical and hydraulic parameters 
of typical sandstone to perform the simulation. The elastic modulus, 
Poisson’s ratio, and permeability of the rock mass are 20 GPa, 0.3, 
and 2500 mD, respectively. The simulated duration is 11 years with 
aconstant time step of 30 days. After simulation, the excess pore 
pressure (pore pressure minus hydrostatic pressure) history in the 
middle part of the Noto Peninsula is extracted and plotted in Fig. 3C 
against the seismic wave velocity.

The comparison of model results at different locations, using dif-
ferent permeability, and the comparison between the model with and 
without snow are shown in the Supplementary Materials in figs. S4 to 
S6. The amplitude of excess pore pressure may vary at different loca-
tions, while the phase does not differ significantly, as we consider a 
uniform model. The model without snow shows less correlation 
compared to the model with snow, highlighting the importance of 
considering snow for studying the subsurface deformation.

Time-series decomposition
We apply RobustSTL (38), functional fitting, and physical model 
correction to decompose the velocity change time series for com-
paring seasonal signals and isolating long-term changes. Robust-
STL uses the least absolute deviation loss with sparse regularization 
to address regression problems. We consider an annual seasonal 
effect, sampling one past season and two neighboring seasons for 
seasonality extraction. This approach enables us to mathematically 
extract the underlying seasonal signals and trends from the time-
series data. It has actively showcased its efficiency in decomposing 
irregular seasonal components and adeptly addressing abrupt and 
level changes in trend signals, precisely the areas that we aimed 
to target.

We also assume a linear relationship between seismic velocity 
changes and modeled excess pore pressure changes, which are based 
on environmental factors. First, we remove the linear trend from the 
raw time series of seismic velocity changes. Then, we obtain the 
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model time series of seismic velocity changes through linear regres-
sion. The long-term trend is calculated as the difference between the 
raw and the modeled time series of seismic velocity changes.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Equations S1 and S2
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