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Abstract—In the noisy intermediate scale quantum (NISQ)
era, the Variational Quantum Algorithm (VQA) has emerged as
one of the most promising approaches to harness the power of
quantum computers. In VQA, a classical optimizer iteratively
updates the parameters of a variational quantum circuit to
minimize a cost objective obtained by executing the quantum
circuit on real quantum hardware. However, the deployment
of VQA applications on NISQ devices encounters substantial
noise, which degrades training stability. Moreover, the drift of
noise is particularly intractable due to its dynamic nature in
duration and magnitude. Noise drift leads to significant deviations
in VQA iteration’s objective function estimation and shapes a
dynamic noisy landscape, which poses a considerable challenge
for stable VQA parameter training, thereby hampering the
accurate convergence of VQA optimizations.

This paper proposes DISQ to craft a stable landscape for
VQA training and tackle the noise drift challenge. DISQ adopts
a “drift detector” with a reference circuit to identify and skip iter-
ations that are severely affected by noise drift errors. Specifically,
the circuits from the previous training iteration are re-executed
as a reference circuit in the current iteration to estimate noise
drift impacts. The iteration is deemed compromised by noise
drift errors and thus skipped if noise drift flips the direction of
the ideal optimization gradient. To enhance noise drift detection
reliability, we further propose to leverage multiple reference
circuits from previous iterations to provide a well-founded judge
of current noise drift. Nevertheless, multiple reference circuits
also introduce considerable execution overhead. To mitigate extra
overhead, we propose Pauli-term subsetting (prime and minor
subsets) to execute only observable circuits with large coefficient
magnitudes (prime subset) during drift detection. Only this minor
subset is executed when the current iteration is drift-free.

Evaluations across various applications and QPUs demonstrate
that DISQ can mitigate a significant portion of the noise drift
impact on VQAs and achieve 1.51-2.24× fidelity improvement
over the traditional baseline. DISQ’s benefit is 1.1-1.9× over the
best alternative approach while boosting average noise detection
speed by 2.07×.

Index Terms—Variational Quantum Algorithm, Variational
Quantum Eigensolver, Quantum Computing, Noise Mitigation

I. INTRODUCTION

Quantum computing is a revolutionary computational model

that is poised to leverage substantial quantum mechanical phe-

nomena to provide computing advantages in resolving some

classically intractable problems in domains, such as chemistry

[1], [2], biology [3], fundamental software algorithms [4], [5],

and machine learning [6], [7].

One of the most promising noise intermediate scale quantum

(NISQ) [8] algorithms that can provide a quantum advantage
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Fig. 1. Computing resource-ef cient iteration skipping approach to  lter out
the noise drift impact. Previous iterations act as optimal reference circuits to
detect the noise drift on the current VQA iteration. Pauli-term subsetting is
utilized to proactively minimize computation during noise drift detection.

is the variational quantum algorithm (VQA) [9], [10], which

has been widely applied to critical applications in chemistry

[1], [10], approximation [11], and physics [12], among others.

VQA is a long-running iterative algorithm that deploys a

classical optimizer to train a parameterized quantum circuit

on a quantum machine. The quantum circuit parameters are

tuned in each iteration to approach the application’s targets,

which are usually minimization problems, such as estimating

the ground state energy of molecules.

In spite of quantum supremacy having been theorized in

the aforementioned domains [3]–[6], [10], quantum processing

units (QPU) in the contemporary NISQ era are still vulnerable

to various types of noise, such as decoherence errors, gate

errors, state preparation and measurement (SPAM) errors, and

crosstalk. These noise errors stem from a multitude of sources,

such as device defects [13], thermal fluctuations [14], [15],

magnetic flux [14], [16]–[18], qubit coupling destruction [19],

insulation problems [13], and other external stimuli [20]–

[22]. Due to the dynamic nature of quantum systems and

the current limitations of quantum devices fabrication [23],

these noise sources vary over time in intensity, thereby causing

unpredictable fluctuations that deteriorate the quantum system.

With awareness of qubit restrictions in deploying full-scale

quantum error correction (QEC) [24], [25] and the pernicious-

ness of noise, multiple works have investigated mitigation
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techniques for general quantum circuits [26]–[33]. To harvest

quantum computing power while maintaining robustness in the

face of different forms of noise errors. [34]–[36] have proposed

noise-aware training frameworks to boost VQA training speed

and accuracy of results. [37] have proposed noise-aware search

for robust quantum ansatz. Although these works provide the

potential to improve result  delity or enhance training robust-

ness, they primarily focus on static noise. Noise is assumed

to be static or to remain stable for suf cient periods, such

that these techniques can adequately capture and model the

characteristics of static noise to provide mitigation methods.

Unfortunately, focusing solely on static noise is insuf cient

for deploying VQA and harvesting its power on QPUs.

VQA iteratively tunes circuit parameters with the support of

gradients [38]. The objective of the optimizer is to  lter out

the optimal gradient among disparate gradients to generate

a corresponding set of parameters in each iteration, thereby

achieving convergence towards the desired objective function.

This convergence is expected to occur when the noise land-

scape of the quantum device is stable and consistent during

the gradient estimation process, which allows the optimizer to

accurately discern the most optimal circuit parameters. One

of the fundamental challenges hampering the deployment of

VQAs for practical utilization on QPUs is noise drift error

originating from dynamic sources. The term “noise drift”

refers to deviations in a quantum circuit’s output distribu-

tion caused by shifts in the device characteristics of one or

more qubits in the quantum circuit [13]–[16]. Noise drift,

characterized by the unpredictable and time-varying nature

of noise in quantum devices, poses a signi cant challenge

to quantum algorithms, particularly for long-running iterative

applications, such as VQA. Since noise drift alters the VQA

tuning landscape over iterations, it leads to inconsistent gra-

dient estimation each time and thus disrupts the convergence

of VQA. This dynamic nature results in noise drift being hard

to model and suppress with static noise mitigation techniques.

The state-of-the-art method targeting dynamic noise, QISMET

[39], predominantly addresses spike-like transient noise but

performs inadequately in the presence of complex noise, such

as noise drift, potentially misdirecting the VQA training.

In this paper, we propose DISQ, Dynamic Iteration

Skipping for Variational Quantum Algorithms, a novel com-

puting resource-ef cient iteration skipping approach that crafts

a reliable landscape for VQA applications by  ltering out noise

drift errors as in Fig.1. Drawing inspiration from QISMET

in handling dynamic noise, (i) DISQ employs a previous

iteration as an optimal reference to detect the noise drift for

the current iteration by estimating the discrepancy between the

reference output from the prior iteration and its result in the

current iteration. Subsequently, DISQ adopts traditional per-

iteration gradient calculation and combines it with noise drift

error detection to estimate machine-obtained and drift-free

gradients. A VQA iteration is accepted only if the direction of

the machine-observed gradient loosely matches the direction

of the drift-free gradient; Advancing beyond QISMET, (ii)

DISQ augments multiple previous iterations as references

to further enhance noise drift detection reliability in facing

intractable noise drift. Although multi-reference circuits aid in

shaping the VQA training landscape, they also introduce extra

execution costs; (iii) To minimize the extra execution cost,

DISQ groups the Pauli terms of the target Hamiltonian by

Pauli-term subsetting (prime and minor subsets) and partitions

the execution. Prime subsets (Pauli terms with dominating

coef cients) of references and prime subsets corresponding to

the current iteration are executed during noise drift detection.

The minor subset for the current iteration is executed only if

noise drift is not detected. Subsetting conserves computation

in noise drift detection, and execution partitioning eliminates

unnecessary computation in skipping iterations. Evaluation

demonstrates that DISQ achieves 1.1-1.9�  delity improve-

ments over the best alternative approach while boosting aver-

age noise detection speed by 2.07� . This paper thus makes
the following contributions:

• DISQ Framework: We propose DISQ, a computing

resource-ef cient method to actively discover noise drift

instances that severely impact VQA accurate conver-

gence. DISQ controls VQA iterations to actively skip

noise drift errors and maintain VQA optimization under

reliable scenarios.

• Noise Drift Detection with Multi-References: We lever-

age multiple previous iterations as references to faithfully

detect noise drift errors in VQA iterations, enabling

precise estimation of noise drift impacts with DISQ.

• Concept and Design of Pauli-term Subsetting: We in-

troduce a novel perspective on quantum circuits for

noise detection: instead of employing all the observable

circuits in a brute-force manner, Pauli-term subsetting

groups the dominant observable circuits (prime subset)

as effective substitutes for noise detection. Subsetting

proactively enables execution acceleration in DISQ even

with numerous references.

• Robust Landscape with Reasonable Overhead:

Through the aforementioned steps, DISQ effectively

 lters a substantial portion of noise drift’s impact

on VQAs, attaining 1.51-2.24�  delity increase over

traditional baseline. DISQ surpasses the best alternative

approach with a 1.1-1.9� bene t while enhancing

average noise detection speed by 2.07� .

II. BACKGROUND

A. Noise in NISQ QPUs

In the era of NISQ, two primary technologies in quan-

tum architectures: superconducting transmon qubits [40] and

trapped-ions [17], [41] are being pursued for universal quan-

tum computing. Despite the fact that no de nitive verdict

has been reached in their performance comparison [42], both

require precise control due to their sensitivity to various

types of noise. The scalability of QPUs built using these two

technologies is limited by noise errors, such as (i) Decoherence

error: natural decay caused by the energy exchange between

a qubit and its environment, which makes the qubit lose
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Fig. 2. Noise drift errors on circuits. Circuit data are collected by 100
continuous runs of a circuit batch from an experiment on IBMQ Belem. Each
data point is the average expectation value of the circuit batch (25 identical
circuits). The mean value is -0.62, but the range value is concerning 0.22.

its quantum properties (state) over time; (ii) State prepara-

tion and measurement (SPAM) errors: caused by imprecise

state initialization and measurement [43]; (iii) Gate error:

imperfect gate operations, such as depolarization, which are

approximately 0.1% and 4% for 1-qubit gates and 2-qubit

gates, respectively, for IBMQ [44]; (iv) Device-specific error:

QPU-specific noise profiles that vary in spatial and temporal

noise, arising from factors like topology cross-talk [23], [45],

inhomogeneous qubits during manufacture [19], [46], [47],

imperfections in gate implementation and control, or specific

external interference [20], [21], where the latter is a significant

source of error such as magnetic fields affecting Zeeman

trapped-ion qubits [17], [18] and unstable near-resonant two-

level systems affecting transmon qubits [15].

The presence of those stochastic errors and environmental

variations renders the noise drift to be dynamic in nature

[14], [16], [19], [48]. Further, the impacts of different noise

drift errors compound with each other and accumulate over

time, thereby increasing the overall probability of obtaining

erroneous outcomes, particularly in long-running applications

such as VQAs. Gradient evaluation discrepancies can mislead

the tuning process in unfavorable directions, thereby impeding

the convergence and accuracy of VQA results. Fig.2 demon-

strates a severe case of noise drift affecting circuit fidelity,

obtained from IBMQ Belem. Each data point represents the

average expectation value obtained over a circuit batch (25

identical circuits). Although the mean of expectation values

over 100 executions of this batch is -0.62, its range is large

at 0.22. This proves that the statistical robustness offered by

executing multiple circuit shots (for capturing probabilistic

output distributions) cannot compensate for noise drift errors.

While such severe noise drift might not always occur, milder

noise drifts that continuously steer circuit results away from

the correct objective ground state are frequently encountered

and still perturb the accuracy of results.

B. Variational Quantum Algorithms

VQA, a hybrid quantum-classical algorithm, is widely used

in chemistry and approximations such as Variational Quantum

Eigensolver (VQE) [10] and Quantum Approximate Opti-

mization Algorithm (QAOA) [11]. The VQA problem can be

generalized to a Hamiltonian, Ĥ, a linear combination of Pauli

terms P̂i, and their numerical coefficients ci, to describe the

total energy of the system, as shown in Equation 1.

Ĥ =
∑

i

ciP̂i (1)

The objective function is to find the ground state energy

of the system, which corresponds to the lowest eigenvalue,

λmin, of Ĥ [10]. To approximate the expectation value for P̂i,

the parameterized quantum circuit (ansatz) with parameters
−→
θ , θ ⊆ R, are iteratively executed on QPUs and tuned by

a classical optimizer. The expectation value is derived from

ansatz measurements over different observables (bases). The

objective function is represented by

minλ(
−→
θ ) = min 〈ψ(

−→
θ )|Ĥ|ψ(

−→
θ )〉 = min

∑

i

ci〈ψ(
−→
θ )|P̂i|ψ(

−→
θ )〉 (2)

|ψ(
−→
θ )〉 is the eigenvector corresponding to λ(

−→
θ ). Ideally,

the application monotonically converges to the minimum.

However, machine noise, such as various noise drifts, can taint

the gradient computation and thus bias the VQA optimization

process. Therefore, VQA relies on noise-robust optimizers to

become noise resilience [9], [49].

III. MOTIVATION

A. Dynamic Noise Landscape Navigation

Classical gradient-based optimizers in VQA are imple-

mented in multiple ways to calculate the gradient based on the

prior gradients and then tune the parameters of the ansatz to

drive the objective function into a ground state. The underlying

assumption of the optimizer is the evaluation of the gradient

under the same noise environment.

To better understand the impact of noise drift in VQA, Fig.3

visualizes the VQA landscape for a minimization problem

under different scenarios. Each contour level represents a value

of the objective function, with a darker blue color indicating a

smaller value in the objective function estimation. The orange

dot represents the objective function value for each parameter

a) b)

c)

)

d)

Fig. 3. VQA landscape navigation. Contour levels correspond to different
objective function values, with darker colors indicating smaller values. The
orange dot marks the objective function value for each parameter configuration
chosen by the optimizer. The tuning process is represented by an arrow trace.
a) represents the drift-free (ideal) scenario; b) and d) depict scenarios with out-
of-range noise drift; c) illustrates a scenario where noise drift is acceptable.
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Fig. 4. Overview of DISQ: a VQA iteration execution is partitioned into two stages (S 1 , S 2 ); Prime subset corresponding to the current iteration i (blue
circuit in S 1 ) and its references (gray circuits) are executed in S 1 to detect the noise drift; If noise drift is present, DISQ skips the results of the current job
and reschedules all the circuits in S 1 via the next job (orange line). Otherwise, minor subset corresponding to the current iteration i (blue circuits in S 2 ) are
executed to proceed with VQA (green line).

con guration selected by the optimizer. Ideally, the VQA opti-

mizer steadily tunes the parameters towards a minimum value

of the objective function, which is represented by moving

the orange point from the contour level in light blue to the

deeper blue contour level, as shown in Fig.3-a. However, in

reality, the presence of noise drift alters contour levels’ shape

and position, leading to discrepancies between the machine-

obtained and ideal values. Such discrepancies even vary with

each iteration of the optimization process. In comparison with

Fig.3-a (drift-free), Fig.3-b illustrates how optimizer tuning is

disturbed by severe noise drift. Optimizers are incapable of

 nding the minimum value in such a landscape with substan-

tial fluctuations in objective function estimation. Therefore, it

becomes crucial to estimate noise drift errors and craft a stable

environment for the gradient calculation of the optimizer.

Speci cally, optimizers only process VQA iterations under

scenarios such as Fig.3-c, where the machine-obtained contour

levels are loosely aligned with the ideal (drift-free) contour

levels in Fig.3-a.

B. Limitations in Dynamic Noise Estimation

Traditional VQA optimizers calculate the tuning gradient G i

for iteration (i) from the discrepancy between the machine-

obtained objective function estimations (or energy) of iter-

ations (i) and (i � 1) to select the next iteration (i + 1)
parameter:

G i = E i � E i−1 (3)

where E i denotes the energy obtained by the quantum machine

corresponding to iteration (i).
Regarding the cutting-edge transient mitigation technique

QISMET [39], it selects the adjacent previous iteration (i� 1)
as the reference circuit and re-executes it in the current itera-

tion (i) to estimate noise errors for iteration (i). Noise impact
is estimated by comparing the energy of the reference circuit

repetition in the current iteration E ri 1 with its previous

execution E i 1 :
N i = E ri−1 � E i−1 (4)

The noise-free energy E fi is predicted by removing the noise
error component from the energy estimation using Equation

5. The ideal gradient G fi is then calculated with Equation 6.

E fi = E i � N i (5)

G fi = E fi � E i−1 (6)

QISMET then employs gradients G fi and G i to govern VQA

progress. While this approach can address transient noise with

short duration and spike-like magnitude, it proves insuf cient

for tackling prolonged and non-deterministic noise drift, as

shown in Fig.2, leading to deceptive and detrimental iterations

during tuning. Furthermore, the noise estimation process re-

quires retrial, re-executing the reference circuit with current

circuit con gurations, which doubles the computational re-

sources compared to traditional VQA iterations. Further details

are discussed in Section IV.

IV. DISQ DESIGN

DISQ framework overview is depicted in Fig.4. It appends

the observable circuits of prime subsets from multiple previous

iterations, which serve as references to diligently detect the

noise drift in VQA iterations. Noise drift errors are assessed

by comparing the energy of the references in previous jobs

with their repetitions in the current job. This process enables

DISQ to decide whether to reschedule or accept a particular

iteration, thus controlling VQA progression. The orange arrow

indicates the action in case of the existence of noise drift:

rescheduling of current circuits via the next job. The green

line indicates the accepted scenario, proceeding to stage S 2

for total energy estimation. The design details of DISQ are

discussed in the following sections, with a focus on three key

insights: multi-reference enhancement, computing overhead

minimization, and enhanced noise drift detection.

A. Multi-Reference Enhancement

The potential for detrimental impacts of noise drift errors

is presented in Fig.2, which is seen beyond the statistical

robustness offered by executing multiple circuit shots. In such

cases, relying solely on a single adjacent iteration for dynamic

noise detection, as with [39], can be deceptive to the optimizer

and introduce fallacious iterations with inaccurate objective

function (energy) estimations during the tuning process. Uti-

lizing such fallacious references to estimated noise errors in

subsequent iterations fails to establish a reliable environment

for tuners. Instead, the bias accumulates, potentially causing

VQA to be far from its target, as shown in Fig.3-d.

Additionally, deviations in objective function estimation

also hinder accurate noise drift detection, particularly when

relying on a single reference. Fig.5 presents the circuit expec-

tation values collected over roughly a 24-hour period, featuring
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iterations

Fig. 5. The benefits of averaging in reducing deviations. Expectation value
data over 50 executions of two circuit batches (blue line: three different
circuits; gray line: one circuit) is compared in two different circuit features
on IBMQ Lagos.

two qubit/gate-level characteristics and two circuit batch sizes.

The gray line in each plot corresponds to a batch consisting

of only one circuit configuration. In the bottom plot, the gray

line has an average of about -0.59 and a range value of 0.08.

Significant outliers (negative and positive, circled in green and

orange, respectively) are observed in the top plot. The gray line

in the top plot exhibits an average of around -0.14 and a large

range value of 0.13, highlighting the challenges arising from

fluctuating results in objective function estimations within

noisy landscapes. Such deviations impede accurate detection

of the noise drift and result in the termination of the VQA

tuning process far from a minimum, such as Fig.3-d.

In contrast to the single-circuit configuration shown in

Fig.5, the blue line in the same figure represents a batch

consisting of three different circuits. This approach attenuates

a significant portion of the fluctuations in both sub-figures,

decreasing the variance by 65.4% and 62.3%, respectively.

These results indicate that incorporating multiple references

improves the reliability of noise detection, thereby mitigating

the negative impacts of the aforementioned adverse factors,

including fallacious iterations in the reference set and devi-

ations in executing the references. Consequently, the use of

multi-references is beneficial for VQA since reliable noise

drift detection facilitates maintaining the gradient calculation

of VQA in drift-free scenarios.

B. Computing Overhead Minimization

Dynamic noise estimation, discussed in Section III-B re-

quires bundling the circuit configurations corresponding to the

current iteration and reference circuit in each VQA iteration.

This process doubles the required computing resources com-

pared to a traditional VQA iteration. Section IV-A highlights

the benefits of using multiple references, which further in-

creases the computing overhead linearly with the number of

reference circuits involved. Additionally, to align the machine-

obtained gradient with the ideal gradient, several iterations

are skipped when detrimental noise drift occurs. In extreme

cases, it may even be necessary to execute the circuit bundle

several times to accept a single iteration. Although it is
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Fig. 6. Variational quantum algorithm (VQA), a hybrid quantum-classical
algorithm

somewhat efficient in mitigating noise drifts, this level of

computing overhead is unacceptable for a simple task and is

even more severe for long-running applications such as VQA.

To eliminate the aforementioned computing overhead, Pauli-

term subsetting is proposed.

Equation 7 defines a Hamiltonian Ĥ, which describes the

total energy of a system and serves as the objective function

of a problem.

Ĥ = 1.4 · XX + 0.05 · ZI + 0.02 · ZX (7)

To estimate the total energy (or objective function) for Ĥ

with a parameterized quantum circuit (ansatz) via VQA,

each Pauli term is converted into its corresponding basis to

generate observable circuits (OC) for their energy estimation.

Subsequently, all terms are aggregated for the total energy of

Ĥ. Fig.6 depicts a VQA iteration of Ĥ, where the circuits with

blue backgrounds are the OCs that are bundled into a “job”

to be executed for energy estimation [50]. In other words,

even a simple Hamiltonian like Ĥ necessitates QPU to execute

multiple OCs for a single iteration.

In Equation 7, the Pauli term “XX” holds the largest

absolute coefficient value, which accounts for over 95% of

all the coefficients of Pauli terms. This indicates that the OC

corresponding to the Pauli term “XX” (the circuit in Fig.6,

with each qubit followed by a Hadamard gate) significantly

impacts the energy estimation of Ĥ, as shown in Fig.7. Hence,

we introduce a new term “prime subset” to refer to such

OCs that are deemed to dominate the energy estimation of a

Hamiltonian. Specifically, the OC with an absolute coefficient

exceeding a specified threshold value THp relative to the sum

of absolute coefficients for all Pauli terms. The setting of

threshold value THp is discussed further in Section V-C1.

Note: The prime subset is not limited to a single circuit but

rather is a collection of circuits. Additionally, we define a

“minor subset”, which are the remaining OCs.

Fig. 7. Traditional VQA convergences. The light blue line represents the

training trace of the Hamiltonian Ĥ, while the dark blue line illustrates the
convergence of the prime subset with a setting of THp = 80%. Prime subset

dominates the energy estimation of Ĥ.
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Based on the Pauli-subsetting design, DISQ actively takes

the following steps in each iteration to alleviate computing

overhead without sacrificing the reliability of noise drift detec-

tion: (i) rearranging the execution order of OCs corresponding

to the current iteration by partitioning them into two stages

(prime subset in S1, minor subset in S2); (ii) executing the

prime subset of reference circuits for noise drift detection

in S1, instead of all the references’ observable circuits; (iii)

proceeding to S2 only if the current iteration passes the noise

drift detection.

C. DISQ Noise Drift Detection

As discussed in Section IV-A and Section IV-B, DISQ

incorporates multi-references and deploys Pauli-term subset-

ting to improve the reliability of noise drift detection with

less execution time in S1 stage (Note: The adjacent previous

iterations are usually suitable choices for reference since they

typically have similar objective function estimations to the

circuit configuration in the current iteration, and the adjacent

iterations generally have closer noise landscapes compared to

other iterations). The noise drift error estimation in Equation 4

is enhanced to incorporate K reference circuits from iteration

{(i− n) | n ∈ [1..K]}:

Di =

K∑

n=1

ci−n[Eri−n(P )− Ei−n(P )] s.t.

K∑

n=1

cn = 1 (8)

where (P ) denotes the prime subset, K represents the incor-

porated reference number, which is discussed next in Section

V-C2, and ci−n is the proportion factor corresponding to the

reference circuits from the previous iteration (i − n). ci−n

is fixed at 1

K
to ensure the sum of all factors equals 1

(Note: dynamic factors could potentially enhance benefits even

further, but this is beyond the scope of our current study).

With the design of K reference circuits, DISQ provides

a more faithful estimation of the drift-free energy Efi(P )
and the corresponding drift-free gradient Gfi. The calculation

process is enhanced using the updated Equations 9 and 10,

respectively:
Efi(P ) = Ei(P )−Di (9)

Gfi = Efi(P )−

K∑

n=1

ci−n · Ei−n(P ) (10)

The multi-references based machine-obtained Gi in Equation

3 is described below:

Gi = Ei(P )−

K∑

n=1

ci−n · Ei−n(P ) (11)

To handle various intractable noise drift, DISQ employs an

intelligent control policy to diligently guide VQA, ensuring

its training remains in a mild landscape. The aforementioned

gradients Gfi and Gi are utilized to make informed decisions,

which control VQA progress by accepting or rescheduling

particular iterations. The underlying principle is to accept

VQA iterations only if the direction of Gfi (gradient obtained

from DISQ noise drift detection) coincides with the direction

of Gi (gradient observed by the VQA tuner based on ma-

chine energy estimations). Fig.8-a, c describe the acceptance

Gi

Gfi

Di

b)

Gi

Gfi

Di

a) c)

Gi

Gfi

Di

Fig. 8. DISQ control policy. a) and c): Machine-obtained and drift-free

gradients have the same direction, thus acceptable; b): Noise drift flips the

machine-obtained direction, thus iteration is rescheduled.

scenarios. This precautionary approach ensures that the entire

VQA tuning process takes place under the same or similar

landscapes, enabling the tuner to steadily and reliably approach

its objective without deviating from the target due to the

negative impact of noise drift.

For the scenario in Fig.8-b, in response, DISQ skips the

result in the current iteration due to noise drift errors and

reschedules the job. As a result, identical circuit configurations

are repeated in the next iteration. Note that noise drift effects

can persist for extended periods of time. Therefore, the skip-

ping and repetition may span multiple jobs but are limited by

a max-out σ. Once max-out is reached, DISQ deems that the

landscape has completely changed, rendering the references’

energy in previous jobs inapplicable to the current landscape.

In this situation, DISQ updates the reference energy (used

only for detection) and detects the noise drift based on the

updated reference energy. Algorithm 1 outlines the process.

D. Functionality Across Iterations

DISQ workflow with three references over several con-

tinuous VQA iterations is illustrated in Fig.9. In S1 stage

of job α, QPU executes the circuits consisting of the prime

subset corresponding to iteration (i), depicted as the inner box

with blue background, and the configuration of prime subsets

corresponding to iteration {(i − n) | n ∈ [1..3]}, depicted

with light gray background. Then, the input of the noise

Algorithm 1 DISQ Workflow

Require: execute N iterations

i = 0, ir = 0
while i �= N do

{Ei(P ), Eri−n(P )} ← QPU(Pi, Pi−n) | n ∈ [1..K]
for n ∈ [1..K] do

Ei−n(P ) ← Database

end for

Di ←
∑

K

n=1
ci−n[Eri−n(P )− Ei−n(P )]

Efi ← Ei(P )−Di

Gfi ← Efi(P )−
∑

K

n=1
ci−n · Ei−n(P )

Gi ← Ei(P )−
∑

K

n=1
ci−n · Ei−n(P )

if Gi ·Gfi > 0 then

Ei(M) ← QPU(Mi)
i ← i+ 1
Database ← Ei(P ) + Ei(M)

else

ir ← ir + 1
if ir == σ then

Database ← {Eri−n(P )} | n ∈ [1..K]
Database ← Ei(P ) + Ei(M)
ir ← 0

end if

end if

end while

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:03:13 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 9. Multiple VQA “jobs” (gray box) run on a QPU. Each job has two execution stages. S1 consists of the prime subset corresponding to the current VQA
iteration (circuits with blue background) and the prime subset of reference circuits appended by DISQ (circuits with gray background). S2 is determined
by DISQ (as check mark � or X) and executes the minor subset corresponding to the current VQA iteration. VQA progresses when both S1 and S2 have
completed.

drift detection includes the above executed results Ei(P ) and

{Eri−n(P ) | n ∈ [1..3]} along with reference prime subset

energy from previous jobs {Ei−n(P ) | n ∈ [1..3]} (not shown

in the figure). In job α, DISQ indicates the impact of noise

drift on iteration (i) is acceptable (check mark). Therefore, job

α proceeds to S2 stage and the minor subset corresponding

to iteration (i) is scheduled to execute for the total energy

estimation of iteration (i). VQA thus progresses to iteration

(i+ 1).
Job β is the adjacent job right after job α to compute the

circuits of iteration (i + 1). The prime subset of iteration (i)
replaces the prime subset of iteration (i − 3) as one of the

reference circuits for this job. Other executed circuits in stage

S1 are shown in the figure. Once stage S1 of β is executed,

the following information is utilized for noise drift detection:

a) prime subset energy corresponding to iteration (i+ 1);
b) {Ei−n(P ) | n ∈ [0..2]}, prime subset energy of reference

circuits from the previous jobs;

c) {Eri−n(P ) | n ∈ [0..2]}, the repetitions of reference

circuits in the current job β.

In this example, DISQ detects that the noise drift error is

out of range and derails VQA convergence (indicated by an X

in the figure). Therefore, iteration (i+ 1) is rescheduled, and

the outcomes of job β are discarded. The figure shows the

termination of job β (S2 is not executed) and a subsequent

repetition of circuits via job γ.

Once stage S1 of job γ is completed, DISQ checks again and

determines whether the noise drift present in job β that still

exists in job γ. In this job, DISQ observes that the noise drift

has passed or deems its impact to be within an acceptable

range. The S2 stage of job γ is processed and contributes

further to the progression of VQA. By taking above steps in

each VQA iteration, DISQ provides a stable landscape for the

gradient computation of the tuning process.

V. EVALUATION

A. Evaluation Methodology

1) General Infrastructure: DISQ is a software optimiza-

tion approach implemented using the Qiskit Runtime Python

package [50], which allows for running quantum programs en-

tirely on the IBM Cloud and executing workloads on quantum

systems at scale. DISQ is broadly applicable across all VQA

applications and can be integrated into any VQA classical

optimizer to enhance noise drift resilience. In this work, we

restrict the evaluation to eight qubits considering the machine

limitations on circuit metrics (depth, width). The evaluation

deploys SPSA as the main classical optimizer and primarily

focuses on VQE, one of the VQA applications (introduced in

Section II-B). The evaluations encompass four Hamiltonians,

four different ansatzes, and six QPUs from IBM.

2) Benchmarks: The primary Hamiltonian evaluated is the

potential energy of the helium hydrogen ion over bond lengths

of 1.7 Ȧ, with additional evaluations for the potential energy of

the hydrogen fluoride molecule, the lithium hydride molecule,

and the hydrogen molecule. The molecules are labeled with

a superscript “c”, indicating that the number of terms in their

Hamiltonians has been reduced using the reduction method

from [51]. This method is capable of compressing large

fermionic Hamiltonians into several qubits, enabling more

efficient calculations and analysis. The hardware-efficient SU2

[52] and RA [53] ansatz are used in the experiments, varying

the block repetitions between 2, 6, and 10 to change the

number of parameters in the ansatz. The selected QPUs are

Kolkata (27 qubits), Toronto (27 qubits), Montreal (27 qubits),

Perth (7 qubits), Jakarta (7 qubits), and Lagos (7 qubits). All

the machine details can be found at IBMQ’s website [54].

Despite the convenience of accessing IBM’s quantum ma-

chines through the cloud and facilitating the workload with

Qiskit Runtime, the limited access to quantum machines still

prevents a holistic evaluation of our proposal. To enable fine-

granularity noise drift evaluation, we combine the noise trace

generated by the IBM machine Toronto with the enhanced

noise traces upon the model from [39]. This enhanced model

captures the noise drift effects in each iteration and normalizes

these effects to the magnitude of VQA estimations, allowing

the simulations to exactly mimic observed noise drift errors.

3) Baselines: The following schemes are assessed in sev-

eral comparative evaluations:

• DISQ: Setting the number of optimal reference circuits

to three (two for HeH+ ion) and the prime threshold THp
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to 80%.

• Baseline: Traditional variational quantum eigensolver

with deploying SPSA for optimization.

• QISMET: Transient noise mitigation approach [39] with

tuning the threshold to 10% to provide optimal perfor-

mance.

B. Evaluation Results

1) Evaluation on QPUs: The evaluation of DISQ, QIS-

MET, and Baseline for VQA energy estimation is conducted

on IBMQ machines to solve the VQA energy estimation

problem for a four qubits HeH+ ion, with a fixed number of

350 iterations. The experiments are conducted synchronously

to ensure temporal adjacency between the iterations of DISQ

and other schemes.

The results in Fig.10 compare DISQ against other schemes

on IBMQ Montreal device. Two periods of significant fluctu-

ations, which heavily derail both QISMET and Baseline, are

highlighted. QISMET only eliminates the noise instance in the

second period and fails to avoid the first serious turbulence due

to the variation in perceived gradient estimates. In contrast,

benefiting from multi-reference circuits, DISQ predominantly

bypasses both turbulent periods ensuring steady progress,

ultimately achieving improvements of 59.8% and 44.9% over

Baseline and QISMET, respectively.

Fig.11 shows a comparison of DISQ against Baseline and

QISMET on IBMQ Toronto. The noise drift errors persist for

an extended period (from 100 to 170 iterations), resulting in

multiple instances of noise drift errors with moderate or tiny

magnitudes. The tuning of QISMET and Baseline stagnates

during this period. Although DISQ is also impacted for several

early iterations, it quickly recovers and continues its navigation

to the target, improving fidelity over Baseline and QISMET

by 29.0% and 37.4%, respectively.

In the evaluation on IBMQ Jakarta shown in Fig.12, the

machine behavior is mostly smooth except for one instance of

an inconspicuous noise drift error, which is highlighted. While

this period does not seem to cause any severely detrimental

impact, QISMET is deceived by a mediocre estimation and

languishes at a local optimum. DISQ heuristically identifies

this camouflaged noise drift period and is able to further

progress toward the global optimum target with benefits of

51.6% and 36.3% over Baseline and QISMET, respectively.

Fig. 10. DISQ benefits for a HeH+ VQA application on IBMQ Montreal
with several high fluctuating noise regions (circled). Sharp noise drift errors
are avoided by DISQ.

Fig. 11. A HeH+ VQA application on IBMQ Toronto with an instance of
noise drift error spanning multiple iterations (circled). This phase of noise is
bypassed by DISQ, thus improving convergence of application.

Fig. 12. A HeH+ VQA application on IBMQ Jakarta with an inconspicuous
instance of noise drift error (circled). The convergence of application benefits
from DISQ by skipping this malicious instance of noise.

The benefits of DISQ over Baseline and QISMET on

six different IBMQ machines are shown in Fig.13. The

primary vertical axis shows the improvements in measured

VQA expectations over Baseline, while the secondary vertical

axis shows the improvement over QISMET. Across all the

machines, DISQ consistently improves the expectation values

over Baseline by 1.29-2.057×, with a mean improvement of

1.67×. Furthermore, DISQ boosts the fidelity by an average

of 45% (up to 62.1% and by at least 35.5%) over QISMET.

The above improvements are achieved over 350 iterations due

to access constraints. It is expected that benefits increase with

more iterations since this would provide higher potential for

more noise drift errors.

2) Evaluation with Multiple Benchmarks: A thorough

comparison is conducted with QISMET and Baseline to com-

prehensively evaluate the performance of DISQ across the

six different applications listed in Table I. The evaluation

is conducted over 1000 simulation iterations using different

molecules and ansatzes to explore the adaptability of DISQ.

The total number of OC for each molecule is listed under

Fig. 13. DISQ’s benefits for a HeH+ VQA application on six IBMQ
machines
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TABLE I
APPLICATION INFORMATION SUMMARY

Application Molecule Qubits Ansatz Layer Reps # Observable

HF HF 8 RA 6 76 (8)

HF-SU2 HF 8 SU2 6 76 (8)

HF-RA-2 HF 8 RA 2 76 (8)

HF-RA-10 HF 8 RA 10 76 (8)

LiH LiH 6 RA 6 13 (4)

HeH HeH+ 4 RA 6 4 (1)

the “# Observable” column and the values in the parentheses

are the number of OC in its prime subset. Expectation value

comparisons are presented on the left side of Fig.14. DISQ

consistently outperforms Baseline, achieving improvements

ranging from 1.51� to 2.24� . Moreover, DISQ improves

the  delity by up to 1.89� over QISMET. Multi-reference

circuit scheduling employed in DISQ showcases its superior

performance under convoluted, noisy traces across various

molecules and ansatzes, which is consistent with the discussion

presented in section IV-A.

The number of circuit executions in each scheme enables

an intuitive comparison of computation overhead, depicted on

the right side of Fig.14. The leverage of Pauli-term subsetting

not only allows DISQ to schedule more reference circuits in

noise detection, but also boosts its computing speed. DISQ

actively reduces executed circuit cost by up to 39.2% with a

mean of 23.5% across the application, and boosts noise drift

detection speed by an average of 2.07� over QISMET.

3) Molecule Estimation Evaluation: VQE is extensively

used in molecule chemistry to estimate the energy value of

a molecule in a speci c geometry, where energy variation

indicates the chemical reaction rates for the molecule. The

geometry of a molecule typically varies with different bond

lengths, resulting in a multitude of Hamiltonians [10]. The

energy of molecules is calculated from the expectation value

of their Hamiltonians. However, noise drift errors affect the

expectation values differently for different bond lengths, lead-

ing to skewed energy differences. Fig.15 depicts the potential

expectation for the H 2 molecule over 10 different H-H bond

lengths, each corresponding to a unique Hamiltonian and VQE

experiment. The gray line represents the noise-free scenario,

while DISQ closely models the noise-free trace by accurately

estimating the expectation for each bond length. However,

QISMET and Baseline deviate from the ideal scenario as the

bond length descends, especially at lower bond lengths where

the noise drift errors have a substantial impact. At a bond

HF
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Fig. 14. DISQ provides consistent bene ts outperforming the baseline in six
different applications.
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Fig. 15. DISQ bene ts in energy estimation for H2 over different bond
lengths.

length of 0.8 _A , the step-wise estimation difference relative

to the previous length of 0.6 _A has opposite gradients when

comparing Baseline and Ideal, which results in misleading

indications in the chemical reaction rates for Baseline.

C. Analysis

1) Sweeping over DISQ Prime Threshold: In section IV-B,

we discuss the use of a prime threshold THp to delineate the

criteria for Pauli-term subsetting. To identify an appropriate

threshold for the prime subset, we conduct a statistical analysis

of the observable circuit (OC) number in different molecules

with different THp . Our  ndings reveal that the energy of

most molecules heavily relies on a few OCs, aligning with our

prime subset design and highlighting the substantial potential

of DISQ to conserve computational resources.

The statistical results from our analysis are summarized

in Fig.16, which depicts evaluated molecule con gurations in

terms of their OC numbers in the prime subset and total-to-

prime ratio (the ratio of the total number of OCs to the number

of OCs in the prime subset). Each point is color-coded by OC

number and shaped by the applied THp . The y-axis represents

the total-to-prime ratio, with higher points indicating greater

potential for DISQ to reduce computing overhead. The x-axis

(log scale) represents the OC number in the prime subset. The

molecules, denoted by the superscript c, represent compressed
molecules, as introduced in Section V-A.

To further investigate the optimal THp for molecules, four

different thresholds (50, 70, 80, and 90) are analyzed along

with Baseline in Fig.17. The evaluation is conducted on simu-

lation across three molecules: HeH+ , LiH, and HF (Note: 60

has the same number of OC as 70 in HeH+ and LiH molecules,

while HeH+ maintains a consistent OC count across these
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Fig. 16. Statistics of prime subset and the ratio of total-to-prime across
different molecules with different THp values.
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HF

LiH

HeH
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Mean

2.14

1.56

1.87

1.84

2.36

1.68

1.87

1.95

2.42

1.72

1.87

1.98

2.42

1.70

1.87

1.97

VQE Expectation Value
over Traditional Baseline

1.23

1.55

1.98
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2.19
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1.86

2.46
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VQE Number of Circuit Execution
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THp (70%)
THp (80%)
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Fig. 17. Simulation evaluation with varying DISQ prime threshold values
THp . HeH

+ and LiH molecules exhibit the same number of OC at THp = 60
and THp = 70, while HeH+ maintains a consistent OC count across these
thresholds.

thresholds). The 50 and 70 percent thresholds skip fewer

impactful noise drift instances, resulting in relatively poor

results. Although the 90 threshold yields similar improvements

as 80, it requires more circuits to be executed. Consequently,

the optimal threshold for selected molecules is found to be 80,

which achieves strong bene ts over Baseline while minimizing

computing resources. Note that intelligent dynamic threshold-

ing for different molecules may further improve bene ts, but

that is beyond the scope of this study.

2) Sweeping over DISQ References Number: Section

IV-A discusses using multi-references to improve the relia-

bility of noise detection. Four different K values (number of

incorporated references) are analyzed alongside Baseline in

Fig.18 for three molecules HeH+ , LiH, and HF.

For all the selected molecules, K = 1 is a conservative

scheme, which accepts some detrimental noise drift instances,

and thus performs negative impacts on the VQA trace. For

HeH+ ion, incorporating three or four references for noise

drift detection pushes DISQ to be worse than two references,

since some iterations with tiny noise drift errors are avoided

unnecessarily. Incorporating three references for molecules HF

and LiH provides a good trade-off, achieving a 2.47� and

1.71� improvement over Baseline, respectively.

VI. RELATED WORK

To contribute to the success of quantum computing during

the NISQ era, it is critical to comprehend and control sources

of noise, which typically include thermal fluctuations [14]

and magnetic flux [16]–[18]. Other sources, such as cosmic

rays [55], device defects [13], quantum drift [48] and external

stimuli [20]–[22] also cause the pernicious effects on qubits.

By understanding noise, multiple works from different hier-

archies have investigated both error correction [56]–[59] and

error mitigation techniques to ef ciently drive the computing
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1.89
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VQE Expectation Value
over Traditional Baseline

1.17

1.39

1.32

1.29

1.43

1.84

1.90

1.71

1.52

2.16

2.30

1.96

1.67

2.51

2.71

2.25
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K = 1
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Fig. 18. Simulation evaluation of DISQ using K reference circuits.

power of quantum [28]–[33]. Some works target speci c

noise sources and propose corresponding solutions, such as

crosstalk-oriented compilation methods [27] and experiment-

based techniques for measurement error [26]. Beyond these

works, mapping virtual to physical qubits is also a primary

technique used to alleviate noise effects [37], [60]. The works

in [61], [62] even ensemble diverse qubit mappings or multi-

device mappings. Other proposed mitigation techniques in-

clude learning-based methods [63]–[65], co-design of training,

and noise robustness [24], [35] and circuit structure analysis-

based one [66] and pulse-level optimizations [67]. However,

the preceding works all primarily focus on static noise.

Regarding dynamic noise, [39] pro les spike-like noise

impacts and proposes a method with reference circuits. Com-

paratively, our overhead-aware scheduling method can provide

signi cantly more accurate detection in facing various types of

noise drift (not limited to transient spikes) while heuristically

minimizing required computing resources.

VII. CONCLUSION

DISQ, as proposed in this paper, takes proactive steps to

address the detrimental impact of noise drifts and to neutral-

ize the required execution overhead. To achieve this, DISQ

incorporates multi-reference circuits to faithfully detect noise

drift errors in VQA iterations in order to maintain the  delity

of the iterations in drift-free scenarios. Furthermore, DISQ

deploys Pauli-term subsetting to replace reference circuits with

their prime subset circuits and partition the circuit execution to

ef ciently reduce the corresponding circuit execution overhead

by detecting noise drift.
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