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ABSTRACT
For potential quantum advantage, Variational Quantum Algorithms
(VQAs) need high accuracy beyond the capability of today’s NISQ
devices, and thus will benefit from error mitigation. In this work
we are interested in mitigating measurement errors which occur
during qubit measurements after circuit execution and tend to be
the most error-prone operations, especially detrimental to VQAs.
Prior work, JigSaw, has shown that measuring only small subsets of
circuit qubits at a time and collecting results across all such ‘subset’
circuits can reduce measurement errors. Then, running the entire
(‘global’) original circuit and extracting the qubit-qubit measure-
ment correlations can be used in conjunction with the subsets to
construct a high-fidelity output distribution of the original circuit.
Unfortunately, the execution cost of JigSaw scales polynomially in
the number of qubits in the circuit, and when compounded by the
number of circuits and iterations in VQAs, the resulting execution
cost quickly turns insurmountable.

To combat this, we propose VarSaw, which improves JigSaw
in an application-tailored manner, by identifying considerable re-
dundancy in the JigSaw approach for VQAs: spatial redundancy
across subsets from different VQA circuits and temporal redun-
dancy across globals from different VQA iterations. VarSaw then
eliminates these forms of redundancy by commuting the subset
circuits and selectively executing the global circuits, reducing com-
putational cost (in terms of the number of circuits executed) over
naive JigSaw for VQA by 25x on average and up to 1000x, for the
same VQA accuracy. Further, it can recover, on average, 45% of
the infidelity from measurement errors in the noisy VQA base-
line. Finally, it improves fidelity by 55%, on average, over JigSaw
for a fixed computational budget. VarSaw can be accessed here:
https://github.com/siddharthdangwal/VarSaw
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1 INTRODUCTION
Quantum computers leverage superposition, interference, and en-
tanglement to give them potentially significant computing advan-
tage in chemistry [28], optimization [38], machine learning [10]
and other domains of critical interest.

In near-term quantum computing, called Noisy Intermediate-
Scale Quantum (NISQ), we expect to work with machines that
comprise 100-1000s of imperfect qubits [43].

NISQ devices suffer from high error rates in the form of state
preparation and measurement (SPAM) errors, gate errors, qubit
decoherence, crosstalk, etc. One of the most promising quantum
tasks for near-term quantum advantage in the NISQ era are varia-
tional quantum algorithms (VQAs). They have wide application in
approximation [38], chemistry [41] etc, and are usually designed as
minimization problems. VQAs are hybrid quantum-classical algo-
rithms iteratively run a parameterized quantum circuit (called an
ansatz) on the quantum machine. The QC parameters are optimized
each iteration by a classical tuner/optimizer to try and approach the
global minimum of the variational objective function. The classical
optimizer attempts to adjust the QC to the noise characteristics of
the quantum device, and hence, in theory, gives VQAs the potential
for quantum advantage even on noisy machines. But in practice,
noise has prevented current quantum computers from surpassing
the capabilities of classical computers in almost all applications,
including VQAs. Considering the potential for VQAs on NISQ ma-
chines [20, 41], it is imperative to explore techniques to maximize
their quality of execution on today’s machines.
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Figure 1: Traditional VQA is significantly impacted by mea-
surement error. JigSaw combats measurement error but in-
troduces high execution cost which is particularly harmful
for VQA. VarSaw minimally achieves JigSaw’s measurement
error mitigation at an execution cost similar to traditional
VQA. When measurement error is very high, its benefits in
terms of both fidelity and computational cost is even greater.

Measurement errors are often the most dominant source of er-
ror on current superconducting quantum computers, with average
error rates ranging as high as 2-7% [58] Furthermore, measurement
operations suffer from measurement crosstalk [18], which means
performing several measurement operations concurrently can sub-
stantially increase the error rate of each measurement operation by
an order of magnitude [47]. Thus, larger programs are especially
susceptible to measurement errors (crosstalk and otherwise) due to
the higher number of measurement operations. This can be partic-
ularly detrimental to variational quantum algorithms which a) use
low depth circuits and are thus often dominated by measurement
errors, and b) can require very high accuracy for real-world appli-
cations such as molecular chemistry [44]. In this work, we improve
the fidelity of VQAs by specifically targeting measurement errors.

Recent work, JigSaw [18], proposed a measurement error mit-
igation scheme for general quantum circuits. The key insight in
this work is to divide the target circuit execution into two compo-
nents. The first component is the idea of measurement subsetting
(the ‘subset’ runs), wherein only a subset of the target circuit’s
qubits are measured, for all such subsets that span the entire circuit.
Measurement subsetting encounters fewer errors due to a) appro-
priately mapping the target logical qubits to be measured onto the
physical qubits with highest measurement fidelity, and b) reduced
measurement crosstalk, since fewer qubits are measured together.
But, subsets alone are insufficient to construct the output of the
target circuit, since they lack information about the global relations
across all the qubits. The second component involves running the
target circuit as is (the ‘global’ run), and then using its outcome to
construct a high fidelity, relatively measurement-error-free output
from the subset runs. To do so, a Bayesian Reconstruction algorithm

is employed, which enables a particular probability distribution (ob-
tained from the subsets) to be appropriately modified using other
information (obtained from the Global). Bayesian Reconstruction is
inspired by Bayesian updating in statistics, whereby a prior proba-
bility estimate is updated using additional information [26].

While this prior work achieves substantial benefits, these bene-
fits come at non-trivial computational cost. For example, VQE for
a relatively small 6-qubit CH4 molecule, when run with JigSaw
does not converge to an accurate solution in over 100 hours of
VQE simulation. This is because the additional subset runs scale
polynomially (linear to quadratic) in the number of qubits in the
circuit. While this cost might be tolerable for single-run circuits
(the primary focus of their work), the costs are too substantial
for variational algorithms, for three reasons: a VQA is an iterative
task, requiring 1000s of iterations to navigate the noisy quantum
device landscape to find the optimal solutions b for real world
applications like molecular chemistry, the Hamiltonian is made
up of 1000s of Pauli terms/strings, which result in a considerable
number of circuits to be executed per VQA iteration; and c target
applications (and thus the quantum circuits) can require 100s of
qubits for any potential quantum advantage. Without the additional
layer of measurement error mitigation, VQA is already computa-
tionally demanding. If used naively with the simplest subsetting,
the additional measurement error mitigation layer adds yet another
factor of computational requirements by running the same VQA
instances multiple times. These costs are illustratively quantified
and discussed further in Section 3 and Fig.8.

In this work, we seek to combat the effect of measurement er-
rors in variational algorithms at a reasonable cost. To do so, we
build application-aware optimizations to the JigSaw approach and
propose VarSaw: Application-tailored Measurement Error Mit-
igation for Variational Quantum Algorithms.

VarSaw’s primary goal is to reduce computational costs by iden-
tifying two forms of redundancy: a Spatial Redundancy in Subsets:
The generation of measurement Subsets for each Pauli string/circuit
of the problem Hamiltonian, leads to significant redundancy (i.e.,
Subsets can repeat or commute), and b Temporal Redundancy in
Globals: The incremental gradient based iterative approach used in
VQA optimization leads to significant redundancy among the proxi-
mate ‘Global’ runs that JigSaw uses for Bayesian reconstruction (i.e.,
nearby Globals create nearly the same distributions). Both these
forms of redundancy go unnoticed in the prior application-agnostic
circuit-focused methodology.

Primarily, VarSaw reduces the quantum resources required to
exploit measurement error mitigation by taking an end-to-end,
application tailored, holistic approach. In doing so, it is also able to
achieve VQA accuracy improvements. The same CH4 example from
earlier, when run with VarSaw, is able to converge to an accurate
solution in under 10 hours of VQE simulation. An overview of
VarSaw is provided in Fig.2 and its caption.

VarSaw key insights, contributions and results:

(1) VarSaw improves JigSaw [18], specifically in the context
of VQAs, by identifying Spatial Redundancy in JigSaw Sub-
sets (across VQA Pauli strings) and Temporal Redundancy in
JigSaw Globals (across VQA iterations).
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Figure 2: (a) Traditional VQA task run over multiple iterations. Each iteration executes multiple circuits corresponding to the
different Pauli Strings in the problem Hamiltonian. (b) For every circuit in the original task, JigSaw runs multiple circuits -
these are the Global circuits (same as original) and the Measurement Subsets (which scale linearly in the number of circuit
qubits). These are run every iteration. (c) VarSaw optimizes JigSaw in a VQA-cognizant manner. It exploits spatial redundancy
(repetitions and commutativity) to reduce the number of Subsets executed every iteration. Further, it exploits temporal
redundancy (similarity in adjacent iterations’ distributions) to reduce the number of iterations on which the Globals are
executed.

(2) To combat Spatial Redundancy, VarSaw proposes Commut-
ing of Pauli String Subsets: which takes a Hamitonian-aware
approach to commute and eliminate unnecessary subset cir-
cuits generated across all Pauli strings of the problem Hamil-
tonian.

(3) To combat Temporal Redundancy, VarSaw proposes Selec-
tive Global Executions: which takes a VQA tuning-aware
approach to only perform Global executions occasionally
and increase/decrease their execution via a feedback-based
approach.

(4) In all, VarSaw reduces computational cost over naive JigSaw
for VQA by 25x on average and up to 1000x (in terms of
number of circuits executed) for the same target accuracy.

(5) Further, it can recover, on average, 45% of the infidelity from
measurement errors in the noisy VQA baseline.

(6) Additionally, it improves fidelity by 55%, on average, over
JigSaw for a fixed computational budget.

(7) Importantly, this work showcases the overwhelming benefits
from tailoring state-of-the-art optimizations in a domain-
specific manner. Rejigging JigSaw from the ground up in a
VQA-cognizant manner significantly benefits measurement
error mitigation for VQAs, in terms of both computational
cost as well as fidelity.

2 BACKGROUND
2.1 Noisy Intermediate Scale Quantum

Computing
Today’s quantum devices are noisy [43]. The sensitivity to external
noise channels and imperfections in control and readout circuitry
limit qubits from retaining their state indefinitely and causes the
error rate of quantum operations to be very high. For example,
the average error rate of a two-qubit gate is about 1% on existing
hardware from IBM and Google, whereas that of measurement op-
erations is about 4% [8], limiting the fidelity of quantum programs
on NISQ devices. Consequently, software mitigation of hardware
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Figure 3: Overview of JigSaw (Adapted from [18]).

errors on NISQ devices is an active area of research. Multiple forms
of error mitigation strategies have been proposed to reduce the
impact of different forms of errors. These include, but are not lim-
ited to, noise aware compilation [39, 56]; correcting measurement
errors [14, 54]; crosstalk-aware scheduling [19, 40]; decoherence
mitigation [11, 17, 27, 30, 42, 51], spin-echo correction [23], efficient
gate scheduling [49]; etc. In addition, some of these can be used in
conjunction to achieve better fidelity [45].

2.2 Measurement Errors
During computation, the quantum system exists as a linear su-
perposition of many states. To obtain the final outcome, qubits
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are measured to obtain a classical bitstring. Unfortunately, these
operations cannot be implemented perfectly and are a dominant
source of error on most existing quantum systems [8]. Program
execution is unsuccessful and produces an incorrect outcome even
if one of the measurements fails. The problem worsens with the
program size because the probability of successfully measuring all
the qubits simultaneously diminishes rapidly with the number of
measurements. Thus, measurement errors constrain the size of the
largest program (in terms of number of qubits) that can be run on
NISQ devices.

Fast and accurate qubit measurements at scale remains an open
problem. Measurement operations are imperfect due to several rea-
sons. First, they require coordination between many sophisticated
analog and digital instruments that operate across thermal domains
(from 20milli-Kelvins to room temperatures) [31] increasing suscep-
tibility of these operations to thermal noise. Second, crosstalk arises
from the unwanted couplings between the measurement apparatus
when multiple qubits are simultaneously measured. For example,
simultaneous qubit measurements are 1.26x times more likely to
encounter errors on average compared to isolated measurements
on Google Sycamore [8]. Last, these operations incur long latencies
(about 800ns on Google devices and 4-5 microseconds on IBM’s
devices[7, 18]) during which qubits may lose their information due
to decoherence. It is non-trivial to completely eradicate measure-
ment errors at the device-level [31]. Measurement errors manifest as
bit-flips and several recent studies specifically focus on minimizing
their impact at the application-level [9, 13, 18, 25, 32, 55].

2.3 JigSaw for Measurement Error Mitigation
JigSaw [18] is a recent measurement error-mitigation technique
whose overview is shown in Figure 3 and is comprised of three key
steps. First, it takes a program as an input and prepares multiple
subset circuits or ‘Circuits with Partial Measurements’ (CPM). Each
CPM performs the exact same quantum operations as the input pro-
gram but measures only a unique subset of qubits. For example, the
two CPM in Figure 3 measures qubit subsets [𝑞0, 𝑞1] and [𝑞1, 𝑞2]
respectively, for a 3-qubit GHZ program. Second, JigSaw executes
the input program and the CPM on the NISQ device. The input pro-
gram produces a Global-PMF (here PMF stands for Probability Mass
Function) that captures the global correlation of the program over
all the qubits but has lower fidelity. On the other hand, each CPM
produces a partial or marginal Local-PMF over only the measured
subset of qubits with high fidelity owing to fewer measurement
operations. The third and final step of JigSaw leverages the partial
information from the Local-PMFs to adjust the probabilities of each
outcome in the Global-PMF using Bayesian reconstruction and
produces a high-fidelity Output-PMF for the program. By default,
JigSaw uses CPM that scales linear in the number of qubits so that
high-fidelity Local-PMFs are obtained for each program qubit. In
general, for a circuit with 𝑛 qubits and a subset of size𝑚, there exist(𝑛
𝑚

)
CPMs.

As an example, for a 3 qubit circuit, if one of the subset circuits
targeted the first two qubits, then the subset circuit produces a
Local PMF corresponding to ‘00’, ‘01’, ‘10’, ‘11’. The probability of
each of these bitstrings is used to create the 3-qubit Output-PMF.
For instance, the probability of ‘00’ from the Local PMF is used to

QC creation, 
execution &
measurement

Classical 
optimization 
& parameter 
generation

Figure 4: VQA: a hybrid algorithm that alternates between
classical optimization and quantum execution.

create the probability of ‘000’ and ‘001’ in the Output PMF. This is
done by weighing the probability of ‘00’ in the Local PMF with the
relative probabilities of ‘000’ and ‘001’ from the Global PMF. The
subset circuit suffers from lower measurement errors since it can be
mapped to the good qubits, plus it is more sparse and results in lower
measurement crosstalk. On the other hand, Bayesian reconstruction
is a statistical method and is hence imperfect and introduces some
approximation errors.

A detailed depiction of the reconstruction is illustrated in Fig.
6 of the Jigsaw paper [18]. Jigsaw performs evaluation up to 18
qubits and shows that even for larger circuits, the benefits from
avoiding measurement errors far outweigh errors from Bayesian
reconstruction. Our own results are in agreement.

2.4 Variational Quantum Algorithms
Variational algorithms expect to have innate error resilience due to
hybrid alternation with a noise-robust classical optimizer [36, 41].
An overview of this process is illustrated in Fig. 4. There aremultiple
applications in the VQA domain such as the Quantum Approximate
Optimization Algorithm (QAOA) [20] and the Variational Quantum
Eigensolver (VQE) [41]. Our applications in this work target VQE,
but VarSaw is applicable to all VQA problems - more on this in Sec-
tion 7.3. VQE in itself has wide applications in molecular chemistry,
condensed matter physics, quantum Ising optimization problems,
and a variety of quantum mechanics many-body problems, etc. An
important application of VQE is the ground state energy estimation
of a molecule, a task that is exponentially difficult in general for a
classical computer [22]. Estimating the molecular ground state has
important applications in chemistry, such as determining reaction
rates and molecular geometry. The quantum circuit used in each
iteration of VQE (and VQA in general) is termed an ansatz which
describes the range of valid physical systems that can be explored
and thus determines the optimization surface. Traditionally, the
ansatz is parameterized by 1-qubit rotation gates. A good ansatz
provides a balance between a simple representation, efficient use of
available native hardware gates, and sufficient sensitivity with the
input parameters. The classical tuner/optimizer [5, 34] variationally
updates (often via a gradient based approach) the parameterized
circuit until the measured objective converges to a minimum. An
example 3-qubit ansatz (i.e., the paramerized circuit which is tuned
in VQA) is shown in Fig.5 - measurements have to be performed
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Figure 5: Ansatz circuit measured on different Pauli bases
(left: ‘ZZZ’, right: ‘XZX’). Qubit commutativity allows for a
set of Pauli strings to be measured on a single basis.

Workload Ref. Energy Noisy VQE VQE+JigSaw
(subset size 2)

LiH 1.72 6.11 2.73
H2O -109.86 -97.77 -107.71
H2 10.46 17.00 12.51
CH4 -28.55 -21.22 -26.63

Table 1: For a given circuit, JigSaw is effective in mitigating
measurement errors, improving the circuit’s energy estimate.

on this ansatz every iteration, which is key to the motivation for
this work (more on this later).

Estimating the VQE global optimum with high accuracy has
proven challenging in the NISQ era even with sophisticated opti-
mizers, a well-chosen ansatz, and error mitigation [9, 12, 16, 45, 46,
53, 57, 59]. Considering the significant disparity between NISQ VQA
accuracy and real world requirements, it is imperative to further
aid VQA to the best extent possible.

2.5 JigSaw for a VQA circuit
As in the case of other circuits, JigSaw successfully mitigates

measurement errors at the circuit-level for VQAs. In Table 1, we
show 4 VQE instances from molecular chemistry. In these instances,
the VQE ansatz is parameterized with optimal parameters (known
from ideal simulation) and executed in noisy simulation. Clearly,
the noisy VQE instance performs considerably worse than the ideal
reference simulation. We employ JigSaw on top of this noisy VQE
instance and show that JigSaw successfully manages to mitigate
measurement errors well, recovering more than 70% of the opti-
mal energy. This clearly shows that measurement error plays a
significant role in VQA and JigSaw, at a circuit level, is able to
achieve considerable benefits. However, the circuit cost for per-
forming JigSaw is high and the circuit-level benefits can be lost at
the application-level, as is discussed next.
3 VARSAW: MOTIVATION AND PROPOSAL
3.1 Hamiltonian, Paulis, Measurement

Commutation
The VQA problem is represented as a Hamiltonian and is a linear
combination of multiple Pauli terms. The lowest eigenvalue of the
Hamiltonian corresponds to the system’s ground state energy [36].

(2) CComm =  ZZIZ + ZIZX + ZXXZ + XZIZ + 
IXZZ + XIZZ + XXIX  [7 circuits] 

(3) CJigSaw =  ZZ-- + -ZI- + --IZ + ZI-- + 
-IZ- + --ZX + ZX-- + -XX- + --XZ + XZ--
+ -ZI- + --IZ + IX-- + -XZ- + --ZZ + 
XI-- + -IZ- + --ZZ + XX-- + -XI- + --IX    
[21 circuits]

(1) HBase =  ZZIZ + ZIZX + ZZII + IIZX + 
ZXXZ + XZIZ +   ZXIZ + IXZZ + XIZZ + 
XXIX  [10 terms]

(4) CVarSaw = ZZ-- + --ZX + ZX-- + -XX- + -
-XZ + XZ-- + -XZ- + --ZZ + XX--
[9 circuits]

Figure 6: (1) 4-qubit VQAHamiltonianwith 10 Pauli terms. (2)
Qubit commutativity (red terms in 1) allows for all 10 terms
in the Hamiltonian to be measured with 7 circuits/terms. (3)
JigSaw uses a 2-qubit sliding window to create measurement
Subsets, thus resulting in (4-1)*7=21 circuits. (4) VarSaw iden-
tifies redundant / commuting terms in the Jigsaw Subsets
(red terms in 3), to reduce the required executions to only 9
circuits.

Every iteration, the VQA objective function calculates the expecta-
tion value of this Hamiltonian. This objective function is derived
from ansatz measurements over different bases.

An example VQE Hamiltonian with 10 terms is shown in Eq.1 in
Fig.6. This Hamiltonian represents a 4-qubit system, so each term
is 4-wide. While only 10 terms are shown for this trivial example,
this number grows quickly for larger Hamiltonians (targeting more
complex molecules, for instance). For example, the 𝐶𝑟2 molecule,
which is considered a benchmark for quantum advantage in molec-
ular chemistry minimally requires around 50 qubits and has nearly
50,000 Pauli terms [44]. In general, the number of Pauli strings
scales as 𝑂 (𝑁 4) [21]. Different Pauli strings are measured by mea-
suring the ansatz in different bases - this is shown in Fig.5 for a
3-qubit system. Different bases correspond to adding appropriate
gates at the end of the ansatz. Not all Pauli strings require different
circuits - this is discussed next.

Prior work has shown that the number of circuits executed can
be smaller than the total number of Hamiltonian Pauli strings, be-
cause strings which correspond to commuting observables can be
measured with a single circuit. The simplest form of this commuta-
tion based reduction is shown in Eq.2 in Fig.6 - here the number of
terms to be measured reduces from 10 to 7 in Eq.1 since the terms
in red trivially commute with one or more terms in black. A more
detailed example of commutation is shown in Fig.7. Here, different
Pauli strings (only those made up of ‘I’, ‘X’ and ‘Z’) for a 3-qubit
system are shown and the arrows indicate commuting relations.
‘III’ (blue) commutes with all of the other Paulis (blue arrows) and
therefore can use all other Paulis as its commuting parent. Simi-
larly, ‘IIZ’ has 8 other commuting Pauli parents (green), ‘IZZ’ has 2
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Figure 7: Qubit commutativity graph for 27 3-qubit Pauli
strings (‘X’/‘Z’/‘I’). Arrows are drawn from Paulis that can be
commutatively measured by others, to the Paulis that can
measure them. Arrows are shown for ‘III’ (26), ‘IIZ’ (8) and
‘IZZ’ (2) and ‘ZZZ’ (0).

(orange) and ‘ZZZ’ has none. If the Hamiltonian has the terms ‘IZZ’
and ‘ZZZ’, then a circuit measured in the all-Z basis is sufficient for
both of these terms. Extending from the above, in Fig.5 the circuit
to the left is used to measure commuting Paulis such as ‘ZZZ’, ‘IZI’,
‘IZZ’ etc. Other circuits or Paulis can be inferred similarly.

More sophisticated forms of commutation are possible, which
can further reduce the number of terms [21, 24, 48], but these forms
can: a) non-trivially increase circuit depth and b) can suffer expo-
nential cost to construct. While VarSaw benefits will potentially be
applicable on top of these as well, we limit our scope to the trivial
qubit commutations as shown in the examples.
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Figure 8: JigSaw incurs high circuit cost for VQA, with ex-
ecuted circuits every iteration roughly scaling as 𝑂 (𝑄5) in
the number of qubits, whereas the baseline scales as 𝑂 (𝑄4).
VarSaw scales as 𝑂 (𝑄2) to 𝑂 (𝑄4) while also mitigating errors
equal to or better than JigSaw.

3.2 Spatial Redundancy in JigSaw Subsets
Eq.2 in Fig.6 shows that there are 7 Pauli strings post-commutation
in 𝐶𝐶𝑜𝑚𝑚 . JigSaw generates Subsets for each of these strings. The
optimal version of JigSaw constructs 2-qubit measurement Subsets
using a sliding window, thus 3 subsets are created for each Pauli
string, resulting in a total of 21 terms. This is shown in Eq.3 as
𝐶 𝐽 𝑖𝑔𝑆𝑎𝑤 . Now note that there is substantial redundancy among
these terms due to repetitions and commutations - these are shown
in red. For example, ‘-ZI-’, which requires only the 2nd qubit from
the left to be measured, commutes with ‘ZZ–’. Other terms can
be similarly inferred. By taking a Hamiltonian-level approach to
parsing through the Subsets, VarSaw is able to identify these redun-
dancies, and prunes the number of terms required to only 9. This is
shown in Eq.4 as 𝐶𝑉𝑎𝑟𝑆𝑎𝑤 .

While the VarSaw term reduction is around 2.3x and the number
is equal to 𝐶𝐶𝑜𝑚𝑚 in this example, more terms or qubits in the
Hamiltonian will lead to even greater redundancy, and thus even
greater reduction benefits with VarSaw. This is intuitive from Fig.7.
Terms with more ‘I’s have a larger commuting family (i.e., more
arrows), thus they are more likely to be combined with other terms.
More generally, the number of terms 𝐻𝐵𝑎𝑠𝑒 scale as 𝑂 (𝑄4) [21]
where Q is the number of qubits (since each qubit can be ‘I’ / ‘Z’
/ ‘X’ / ‘Y’), whereas the number of terms in 𝐶𝑉𝑎𝑟𝑆𝑎𝑤 scales as
𝑂 (𝑄1−2) (Sliding window or

(𝑄
2
)
).

This scaling benefit is illustrated in Fig.8. The graph shows
increasing number of circuits executed (on a log scale) against
the number of qubits in the problem Hamiltonian per iteration of
VQA. The number of circuits for traditional VQA scales roughly as
𝑂 (𝑃), with roughly 𝑃 = 0.01 ∗𝑄4, whereas for JigSaw it scales as
𝑂 (𝑃 +𝑃 ∗𝑄1−2), where the first term is the number of global execu-
tions and the second is the subsets, with 𝑃 as the number of Pauli
terms in the Hamiltonian. On the other hand, the number of terms
for VarSaw scales as 𝑂 (𝑘 ∗ 𝑃 +𝑄1−2), where the first term is the
number of global executions and the second is the subsets. While ‘k’
(0 to 1) and the number of global executions is discussed next, it is
evident that VarSaw’s scaling is at worst similar to traditional VQA
(the line with k=1 overlaps Traditional VQA). Importantly, VarSaw
is at least 𝑂 (𝑄) lower quantum computational cost than JigSaw,
with at least the same measurement error mitigation benefit.

3.3 Temporal Redundancy in JigSaw Globals
Next, we discuss temporal redundancy in JigSaw Globals. Global
executions are performed so as to generate correlations among
the different qubits of the target circuit, and these correlations are
then used, along with the measurement subsets, to construct the
measurement error mitigated probability distribution (via Bayesian
Reconstruction). There are three characteristics of interest associ-
ated with the Globals. First, they suffer from measurement error,
since the entire circuit is being executed. Second, the Bayesian re-
construction itself is associated with some statistical errors. Third,
the Globals are a function of the ansatz parameters of the particular
iteration.

Our hypothesis for temporal redundancy stems from the fol-
lowing: On the one hand, generating new Globals every iteration
will cause lower error due to: a) faithfully following the ansatz pa-
rameters, and b) no propagation of Bayesian Reconstruction error
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Figure 9: In the absence of noise, increasing VarSaw tempo-
ral sparsity in Globals is detrimental to VQA. But in practi-
cal settings with considerable noise, temporal sparsity can
achieve fidelity similar or better than the alternative, while
also achieving considerable reduction in execution cost.

across iterations. On the other hand, generating new Globals every
iteration will cause higher error due to even more measurement
errors influencing the correlation and reconstruction. Thus, as long
as the effect of ansatz parameter variation (among proximate iter-
ations) and Bayesian Reconstruction error is minimal compared
to the additional measurement errors, it is redundant to perform
Global executions every iteration (and potentially beneficial to not
do so). Instead, they can be performed in a more sparse manner,
thus further saving computational cost and, in fact, also improving
VQA fidelity.

To analyze the above hypothesis, we construct experiments to
compare two extreme scenarios of VarSaw - one performing Globals
every iteration (‘No-Sparsity’), and the other performing Globals
only once, right at the beginning of VQA (‘Max-Sparsity’). Both are
run for a fixed wall-clock tuning time. These experiments are per-
formed on a 6-qubit 𝐶𝐻4 molecule Hamiltonian with two versions
studied in simulation, and are shown in Fig.9. The first version is
a noise-free experiment with no measurement errors (top). The
second version employs noise mimicking IBM’s quantum machine
IBMQ Mumbai (bottom). More details of the experimental method-
ology is discussed later in Section 5.

In the noise-free experiment, Varsaw with Max-Sparsity per-
forms very poorly compared to the No-Sparsity. In the absence
of measurement error and any form of significant perturbation,
the overwhelming influence of the fixed one-time global execu-
tion causes the Max-Sparsity scenario to quickly get stuck at a
local minima, whereas the No-Sparsity scenario is faithful to the
true distribution and can reach the ideal value. In the noisy experi-
ment, though, it can be observed that the Max-Sparsity scenario
is, in fact, able to marginally outperform the No-Sparsity scenario.
As discussed above, the lower impact of parameter variation and
Reconstruction error compared to measurement error, is clearly
evident. Interestingly, the presence of random perturbation, allows

the No-Sparsity scenario to jump out of any early local-minima
despite the heavy influence of the fixed single Global execution.
Note that it is not always the case that the Max-Sparsity scenario
will outperform (fidelity-wise) the No-Sparsity scenario, but clearly
this is sufficient empirical evidence for the potential similarity in
their behaviors. Also, it is observable in both experiments that the
Max-Sparsity scenario is able to perform more iterations than No-
Sparsity scenario (for the same time / computational budget). This
is intuitive, since Max-Sparsity saves on computational resource
/ time, since it does not run Globals every iteration. The iteration
ratio difference between the top and bottom experiments occurs
due to the non-determinism of the tuner, apart from other external
variations.

Perhaps non-intuitively, high sparsity can enable computational
cost reduction even over the baseline. This is because the number of
circuits in each global execution or traditional VQA iteration scales
as𝑂 (𝑄4), whereas the number of subset circuits scales as𝑂 (𝑄1−2).
The reduced computational cost for different sparsity ratios, as a
function of number of qubits, is shown in Fig.8. Clearly the number
of circuits executed is lowered even compared to Traditional VQA
as the sparsity of Global executions increases.

It is clear that exploiting temporal redundancy is highly benefi-
cial. In terms of computational cost, VarSaw clearly benefits over
prior work and also potentially over the baseline. Further, in terms
of fidelity, it can potentially achieve even higher fidelity (lower
VQA expectation) in comparison to the non-sparse scenarios and
over the baseline.

4 VARSAW DESIGN
In this Section, we discuss the two design components of VarSaw to
exploit and eliminate the spatial and temporal redundancy produced
by JigSaw when targeting VQAs.

Generate Hamiltonian Pauli Strings

Commutativity-based Reduction

Generate Measurement Subsets

Generate Hamiltonian Pauli Strings

Generate Measurement Subsets

Commutativity-based Reduction

VQA + Commute + JigSaw: VarSaw:

Agnostic to application-level

Figure 10: VarSaw performs subsetting across all Paulis and
aggregates them before commutativity based reduction.
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4.1 Commuting of Pauli String Subsets
The high spatial redundancy in JigSaw’s Pauli subsets that repeat
and/or commute with each other was motivated in Section 3.2. The
reason for this is that JigSaw is agnostic to the application and is fo-
cused on measurement-subsetting only at the circuit level. VarSaw
eliminates this redundancy by integrating measurement-subsetting
into the end-end VQA framework. It performs measurement subset-
ting immediately after the generation of Hamiltonian Pauli strings
and before commutativity-based reduction. Once the subsets are
generated, commuting terms can then be identified and eliminated,
with higher redundancy and thus higher benefits, as was described
in Section 3.2. This is shown to the right of Fig.10.

The commutativity based reduction is performed similar to prior
work. For example, [28, 50] reduce commuting terms on an ad hoc
basis, via inspection of the Hamiltonian terms. More systematic
methods are used in OpenFermion [37] and Rigetti PyQuil [15]
libraries.

Θ11, Θ21, … , Θn1                             MS1 MR1 G1  

Θ12, Θ22, … , Θn2                             MS2 MR2 ---

Θ13, Θ23, … , Θn3                             MS3 MR3 G3 

Θ14, Θ24, … , Θn4                             MS4 MR4 ---

Θ15, Θ25, … , Θn5                             MS5 MR5 ---

Θ16, Θ26, … , Θn6                             MS6 MR6 G5 

…..

Θ1t , Θ2t , … , Θnt MSt MRt Gt 

Ite
ra
tio
ns

Ansatz Params Meas. Subset Mitigated Result Global

<= ?

++

Figure 11: Design to exploit temporal redundancy by selec-
tively executing the Globals. Measurement subsets are gen-
erated every iteration for every new instance of ansatz pa-
rameters, whereas the Globals are done only every k itera-
tionswhere k is dynamically optimized through comparisons
against the mitigated results which are derived explicitly
from the current iteration’s Subsets and implicitly from the
most recent Global.

4.2 Selective Execution of Globals
Next, we discuss the VarSaw design to tackle temporal redundancy
among the Global executions which, by default, are performed every
iteration in JigSaw. The redundancy exists because, in the presence
of non-insignificant noise, the Global execution’s influence on the
Bayesian reconstruction is less effected by fine granularity ansatz
parameter changes and any propagated Bayesian error. As an addi-
tional benefit, by not executing new Globals, there are no new mea-
surement errors introduced. The benefits of reduced measurement
errors often overrides the potential loss incurred from eliminating
certain Global executions. Thus, it is sufficient to perform Global
Executions sparsely, but how sparse would be dependent on the
VQA gradients and the machine noise.

VarSaw designs a simple dynamic optimization scheme to in-
crease or decrease the sparsity of Global Executions depending on

Molecule Qubits Pauli terms Temporal?
𝐻2 4 15 Y
𝐿𝑖𝐻 6 118 Y
𝐿𝑖𝐻 8 193 Y
𝐻2𝑂 6 62 Y
𝐻2𝑂 8 193 Y
𝐻2𝑂 12 670 N
𝐶𝐻4 6 94 Y
𝐶𝐻4 8 241 Y
𝐻6 10 919 N
𝐵𝑒𝐻2 12 670 N
𝑁2 12 660 N
𝐶2𝐻4 20 10510 N
𝐶𝑟2 34 32699 N

Table 2: Molecules for VQE, for VarSaw evaluation, with
Qubits and Pauli terms in the Hamiltonian. ‘Temporal?’ in-
dicates if evaluation of Temporal Redundancy is performed.

its actual impact. At the beginning, the Globals are set to execute on
every 𝑘𝑡ℎ VQA iteration i.e., these are actual full executions and not
just the measurement subsets. On every non 𝑘𝑡ℎ iteration, the Glob-
als are not executed, only the Subsets are run. The Mitigated Result
of this iteration is then generated from the previous iteration’s Mit-
igated Result and the current iteration’s Subsets. The measurement
Mitigated Result for the 𝑘𝑡ℎ iteration is then computed/verified
with the Global and the Subsets — i.e., we compute the result in
both possible ways (a) Executing both Globals and Subsets (b) Exe-
cuting only the Subsets and using the previous iteration’s Mitigated
Result. If the value of the result in case (a) is less than that in case
(b), then the value of 𝑘 is decreased. If not, it is increased. This is a
simple hill-climbing method, in which the granularity of Globals is
increased/decreased by verifying the quality of the mitigated result.

This is illustrated in Fig.11. In the figure, each row represents a
VQA iteration, with specific ansatz parameters chosen by the tuner.
The measurement subsets are designed and executed, as discussed
in Section 4.1. On iteration 1, a Global execution is performed, and
the initial sparsity window is 2 cycles (i.e., the Global execution is
set to perform every alternate cycle). The mitigated result𝑀𝑅1 is
then generated from𝑀𝑆1 and𝐺1. On iteration 2, there is no𝐺2, only
𝑀𝑆2. Instead𝑀𝑅2 is generated from𝑀𝑆2 and𝑀𝑅1. On iteration 3,
𝑀𝑅3 is still generated from 𝑀𝑅2 and 𝑀𝑆3. But 𝐺3 is also run and
the result obtained from 𝐺3 and𝑀𝑆3 is compared against𝑀𝑅3. If
𝑀𝑅3 has similar or lower energy than the result computed using
𝐺3 and𝑀𝑆3, that means that the error from fine-granularity ansatz
parameter change and propagated Bayesian error is no worse than
additional measurement errors. Thus,𝑀𝑅3 is kept as is, and Global
executions are made more sparse. In the figure, the next Global
execution is set to the iteration 5 - doubling the sparsity. If 𝑀𝑅𝑖
is greater than the result obtained using 𝐺𝑖 and𝑀𝑆𝑖 , then𝑀𝑅𝑖 is
instead regenerated with 𝐺𝑖 and the sparsity is lowered.
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Figure 12: Pauli term reduction in Measurement Subsets
achieved by VarSaw compared to JigSaw. Orange columns
/ left axis: VarSaw and JigSaw subsets expressed relative to
the number of Pauli terms in the baseline. Green line / right
secondary axis: reduction in subsets for VarSaw rel. to JigSaw.

5 METHODOLOGY
5.1 Applications
We limit ourselves to one VQA domain, the VQE, which was in-
troduced in Section 2.4. Our evaluations encompass 9 different
molecules, the details for which are provided in Table 2. Some
molecules are run with more than a single molecular configuration.
Systems with more molecular orbitals frozen require less qubits.
The ideal noiseless ground state energy of a molecule is the same
across different specifications.

Note that only a subset of the applications are used for full
VarSaw evaluation of temporal+spatial redundancy elimination.
This is because the larger molecules/configurations have too many
terms/qubits to effectively simulate VQA (especially since we need
to run 100s of VQA iterations). For these, we only show the spa-
tial benefits of VarSaw. Applications where we demonstrate spa-
tial+temporal redundancy elimination are restricted to systems of
up to 8 qubits.

We use the hardware efficient SU2 [3] ansatz which are of low
depth and therefore suited to NISQ devices. The ansatz is con-
structed for the ‘full’ entanglement, which means that entangle-
ment (i.e. 𝐶𝑋 gates) is allowed between all qubit pairs. 2 blocks of
repetition are used in the ansatz, where each block is an additional
layer of 𝐶𝑋 gates and tunable 1-qubit gate parameters. We use the
SPSA [5] and ImFil [34] classical tuners across all our evaluations.
We find a subset size of two qubits to be optimal to our work, fairly
in agreement with JigSaw (evaluation in Appendix.A)

5.2 Infrastructure and Optimization Process
We integrate VarSaw as part of the Qiskit [6] framework. The
tackling of spatial redundancy is implemented as a pre-processing
step before actual VQA execution - this was illustrated in Fig.10.
Qiskit interfaces with the PySCF library [52] in the process of
constructing Hamiltonians from molecular specifications. JigSaw
is then performed after Hamiltonian generation. This is followed
by the commutativity step to reduce the number of terms.

Varsaw’s tackling of temporal redundancy of Jigsaw Globals is
an on-the-fly optimization that can be integrated with any VQA
classical optimizer. We implement it in Python and use it with the

Qiskit VQA framework, through which it interacts with quantum
execution.

Due to the large number of VQA Hamiltonian Pauli terms, as
well as the number of VQA iterations, we primarily evaluate VarSaw
on noisy simulation modeled on IBM Quantum Devices (except in
Section 6.5 which shows real machine analysis). We use the noise
model of IBMQ Mumbai (27 qubits) — machine details can be found
on the IBM Quantum Systems page [4]. While Qiskit Runtime [2]
offers support to run iterative applications on the actual quantum
hardware, it is very limited in its support for on-the-fly optimiza-
tions, hence unsuited to evaluate VarSaw. Running one iteration
at a time on the quantum hardware without Runtime (i.e., using
our own classical computer between every quantum execution) is
possible, but impractical for most long running applications since
machine availability is very sparse and wait-times between itera-
tions are enormous (hours to days). Where applicable, results are
averaged over up to 10 different trials which run the VQA optimizer
with different random seeds.

5.3 Evaluation Comparisons and Metrics
Comparisons:
Baseline: Traditional VQA without measurement error mitigation,
but using Pauli string commutation.
JigSaw: JigSaw applied on top of the Baseline, with each VQA
iteration employing 2-qubit measurement Subsets using a sliding
window, along with Global executions.
VarSaw: The proposed approach which optimizes JigSaw (for VQA)
for spatial and temporal redundancy.
Metrics:
Cost: Quantum computational cost, in terms of the number of quan-
tum circuits that have to be executed on the quantum device (Lower
is better).
Energy: Molecular VQE ground state energy estimates using the
standard Hartree Energy metric (Lower is better). This is the equiv-
alent of fidelity for VQA.

6 EVALUATION
6.1 Computational cost reduction in Subsets
Fig.12 shows the Pauli term reduction in Measurement Subsets
achieved by VarSaw in comparison to JigSaw. Both VarSaw and
JigSaw subsets are expressed relative to the number of Pauli terms
in the baseline in the orange columns / left axis. The number of
Pauli terms/circuits in JigSaw increases loosely in proportion to the
number of qubits. Theworst case increase would be (𝑄−1)∗𝑃 where
Q is the number of qubits and P is the number of baseline Pauli
strings. The number is often lower than this because measurement
subsets which have are all ‘I’s are already weeded out i.e, those
terms will require no measurements. But clearly, the large increase
in the number of terms is evident. Our largest molecule, a 34-qubit
𝐶𝑟2 molecule, sees a 12x increase in the number of terms, while an
average increase of 5.5x is observed for molecular systems ranging
from 4-qubits to 34-qubits.

On the other hand, the Pauli term Measurement Subsets in Var-
Saw is substantially lower due to the elimination of redundant repe-
titions and commuting terms. On average, the number of subsets is
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Figure 13: VQE accuracy improvements by VarSaw compared
to the noisy baseline and noise-free ideal for CH4

only 0.2x of the total Pauli terms. Thus, the maximum per-iteration
computational cost increase for VarSaw is, on average, only 20%
greater than the baseline, while achieving the benefits of measure-
ment error mitigation. Note that the cost-per-iteration incurred
by VarSaw is usually much less than the baseline since for most
iterations, the Globals are not executed at all. This is discussed later
in Section 6.3.

Also notable is that the number of Subsets, relative to the base-
line Pauli terms, decreases for larger molecules. This is because,
as the number of baseline Pauli terms increases, there is a con-
siderably larger fraction of the Subsets which repeat or commute.
This is especially promising for the scalability of VarSaw’s benefits.
For example, 𝐶𝑟2 only requires a 1% increase in the worst-case
computational cost.

On the green line graph / right secondary axis, we show the
reduction in measurement subsets for VarSaw compared to Jig-
Saw. Note that the axis is on a log scale. Term reduction is greater
than 1000x for the largest molecule, while the average reduction
is around 25x. This clearly highlights the benefits of VarSaw term
reduction compared to JigSaw, and in general is indicative of the
potential of application-aware improvements to state-of-the-art
quantum optimizations.

Overall, VarSaw achieves a 25x lower runtime on average com-
pared to JigSaw, and as much as 1000x lower runtime for our largest
problems. Further, VarSaw has a 10x lower runtime on average com-
pared to the baseline.

6.2 Single-application 𝐶𝐻4 analysis
Fig.13 shows the VQE energy plot for VarSaw, compared to JigSaw,
the noisy baseline, and the noise-free ideal, for the CH4 molecule.
These results are shown for a fixed circuit budget, i.e., all 4 scenarios
run the same number of circuits. VarSaw is able to achieve the
highest accuracy of VQE energy estimates, comparable to the Ideal.
The baseline is affected by measurement errors which is expected. It
also runs fewer iterations than VarSaw. This is because VarSaw has
a lower cost per iteration due tominimal number of global iterations.
This is discussed further in Section 6.3. On the other hand, while
JigSaw also performs measurement error mitigation, it is only able
to run a fraction of the iterations due to its high circuit cost per
iteration. Thus, it achieves a lower accuracy than the baseline in
this fixed budget scenario. VarSaw to JigSaw accuracy comparison,
under a fixed circuit budget, is discussed further in Section 6.4.
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Figure 14: VQE accuracy improvements by VarSaw compared
to the baseline over 2000 iterations. Secondary axis shows the
optimal fraction of global executions required for VarSaw.

While other forms of error continue to persist (and is orthogonal
to this work), it is evident that the subsetting technique is able to
eliminate a considerable fraction of the measurement error, leading
to significant accuracy improvements. Further, VarSaw is able to
do so at low computational cost, meaning that it is able to optimize
further, to better accuracy, under a fixed computational budget.

6.3 VQE Accuracy Improvements through Error
Mitigation and Global execution fraction

Next, we show the improvements in VQE accuracy achieved by
VarSaw compared to the baseline over 2000 iterations of VQA tun-
ing in Fig.14 (orange columns / left axis). The improvements are
achieved thanks to the measurement error mitigation adopted from
the JigSaw approach. VQE accuracy improvement ranges from 13%
to 86% with a mean improvement of 45%. Note that the results
shown here are only for the smaller benchmarks (up to 8 qubits)
since the larger ones are not amenable to noisy simulation. Clearly,
VarSaw achieves considerable improvement to VQE accuracy while
only resulting in minimal increase to the worst case per-iteration
computational cost.

The blue line / right axis shows the optimal fraction of global
executions required for VarSaw. Clearly the fraction is very low,
meaning that performing only a few Globals is most beneficial. This
is so for two reasons. First, performing fewer Globals means that
new measurement errors are not being introduced into the tuning
process. Second, fewer Global executions means that the compu-
tational resources (i.e., quantum circuits) can be utilized towards
running more subset iterations - allowing for further VQA optimiza-
tions, albeit with imperfect correlation. VarSaw performs optimally
at a Global granularity of around 1 in 100 iterations, which means
that the total number of circuits executed, in comparison to the
baseline, is also more than 10x lower. This can, of course, change
with different noise characteristics, problem complexity etc, but Var-
Saw will always be computationally competitive with the baseline
while achieving significant measurement error mitigation benefits.
We evaluate VarSaw’s benefits over a noise sweep in Appendix.B.

6.4 VQE Benefits over JigSaw for fixed circuit
budget

While VarSaw employs the same error mitigation as JigSaw, it is
much more computationally efficient. Thus, under a fixed circuit
execution budget, the VQE accuracy improvements achieved by
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Figure 15: VQE Accuracy Improvements over JigSaw for fixed
circuit budget

VarSaw is considerably greater than that of JigSaw. This is because
VarSaw can execute orders of magnitude greater number of VQA it-
erations for the same circuit budget. This is important both in terms
of quantum device availability in the cloud as well as monetary cost
which scales proportionally to the circuits executed. Fig.15 shows
the improvements in VQE accuracy achieved by VarSaw compared
to JigSaw for a fixed circuit budget that allows VarSaw to complete
nearly 2000 iterations, but JigSaw can only complete a few 100s.
Thus, VQE accuracy improvement for VarSaw over JigSaw ranges
from 21% to 92% with a mean improvement of 55%. These benefits
will increase as we scale to larger molecules since the computa-
tional cost difference between JigSaw and VarSaw increases with
system size as discussed earlier.

Varsaw w/o global sparsity
Varsaw w/ global sparsity

Varsaw w/o global sparsity
Varsaw w/ global sparsity

Figure 16: Varsaw on real IBM Q devices - Lagos and Jakarta

6.5 Real device experiments
The experiments so far have focused on noisy simulated quantum
devices. In this section, we discuss smaller VQA experiments run
on real quantum devices (IBM’s Lagos and Jakarta) to highlight the
benefits of VarSaw’s temporal optimization by selectively executing
the Globals. This is shown in Fig.16. To keep circuit overheads to
a minimum (for the runs to be amenable to real device execution),
we run VQE on a Transverse Field Ising Model (TFIM) Hamiltonian
with 5 qubits and only 3 Pauli terms.

It is clearly evident that the VarSaw temporal optimization that
employs the Global selective execution / sparsity, considerably re-
duces the circuit overhead per VQA iteration while still being faith-
ful to the overall Hamiltonian objective. Therefore, sparse VarSaw
is able to complete a significantly greater number of meaningful
VQA iterations (nearly 4x) compared to Varsaw with full Global
execution, and achieves 1.5x-3x VQA objective improvements on
real devices. These benefits are expected to be greater for more

Workload Full Linear Circular Asymmetric
𝐶𝐻4 44.42 65.87 23.26 31.24
𝐻2𝑂 32.09 96.49 63.86 54.51
𝐿𝑖𝐻 26.90 85.09 37.86 65.64

Table 3: % VQE Inaccuracy Mitigated by VarSaw with Global
Selective Execution, over VarSaw without Global Selective
Execution, for Different Ansatz Types

Workload p = 1 p = 2 p = 4 p = 8
𝐶𝐻4 29.98 26.73 21.17 5.29
𝐻2𝑂 -1.46 31.83 27.88 7.97
𝐿𝑖𝐻 58.67 53.59 26.04 7.79

Table 4: % VQE Inaccuracy Mitigated by VarSaw with Global
Selective Execution, over VarSaw without Global Selective
Execution, for Different Ansatz Depths
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Figure 17: VarSaw w/ and w/o global sparsity for p = 4

complex VQA problems which will have even greater impact of
measurement fidelity and will thus gain from the VarSaw method.

Finally, note that for the VarSaw spatial optimization, the benefit
is orthogonal to running on a real device since the primary benefit
is circuit overhead reduction which is the same for the real device
or simulation.

6.6 VarSaw benefits on different ansatz
structures

Next, we investigate the behavior of VarSaw with Global Selective
Execution (i.e., sparsity) against VarSaw without Global Selective
Execution for a variety of ansatz types and ansatz depths. We per-
form our simulation based analysis on 6-qubit 𝐶𝐻4, 6-qubit 𝐻2𝑂 ,
and 6-qubit 𝐿𝑖𝐻 . The results of our experiments are summarized in
Tables 3 and 4. Table 3 shows that VarSaw with Selective Execution
outperforms VarSaw without Selective Execution for all molecules
and ansatz types. For varying depths (Table 4), we see that Global
sparsity helps in all cases but one, where it performs marginally
worse compared to the no-sparsity case.

We also observe some interesting instances where the rate of
convergence of VarSaw with selective execution is poorer than
the rate of convergence of VarSaw without selective execution.
However, selective execution reduces the per-iteration overhead
to such a great extent that the program ends up performing many
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more meaningful iterations compared to VarSaw with no sparsity,
and converges to a lower energy value. A typical plot is shown in
Fig. 17. This is expected since a deeper circuit has a greater number
of parameters, and the effect of computing the global distribution
using stale parameters is more pronounced - the VarSaw temporal
optimization benefit is still seen to have considerable benefit.

6.7 Isolated effect of each VarSaw optimization
VarSaw spatial optimization vs Baseline, for circuit overhead reduc-
tion: Varsaw’s spatial optimization as a circuit reduction scheme
does not have any direct impact on the baseline since these subset
circuits are not a part of the baseline.

VarSaw spatial optimization vs Jigsaw, for circuit overhead reduc-
tion: Fig.12 showed the impact of Varsaw’s spatial optimization in
terms of subset circuit reduction over JigSaw. If we add the constant
global component to both (assuming no temporal optimization),
then VarSaw is 5x better on average and 12x better for the largest
systems.

VarSaw temporal optimization vs Baseline, for circuit reduction:
Fig.14 (secondary axis) shows the benefit of temporal optimization
in terms of reduced circuits compared to the baseline. VarSaw only
has to execute the Globals around once every 100 iterations. Of
course, VarSaw executes the local circuits instead. If we do not use
the spatial optimization, then VarSaw would still be much worse
than the baseline because the number of local circuits is roughly
6x the baseline circuits. But if we did use temporal optimization as
well, then VarSaw is 10x lower circuits than the baseline.

Varsaw temporal optimization vs JigSaw, for circuit reduction:
Similar to above, referring to Fig.14, VarSaw would execute global
circuits only roughly 1% of the time that JigSaw does. But if spatial
optimization is not performed, this benefit is less useful. If spatial
optimization is also performed, then VarSaw is 25x lower circuits
than JigSaw on average and more than 1000x lower in the largest
systems.

VarSaw vs JigSaw, for VQA accuracy: If there was no runtime
or circuit budget, the VarSaw optimizations do not have a direct
impact on accuracy over Jigsaw because VarSaw is focused on
reducing circuit overhead compared to Jigsaw while employing the
same measurement error mitigation. If there was a fixed budget,
then VarSaw’s spatial optimization would achieve better accuracy
than JigSaw. With both spatial and temporal optimization, this
accuracy improvement is 55% relative to JigSaw’s improvements. If
we only had temporal optimization, the benefit would be negligible
(as explained earlier, temporal optimization is only beneficial post
spatial optimization). The accuracy benefit for spatial optimization
alone is around 35%.

VarSaw vs baseline, for VQA accuracy: Overall we see a 45% ab-
solute improvement over the baseline. Without a circuit/runtime
budget, this accuracy improvement is independent of the spatial
optimization and is unaffected by the temporal optimization, which
are primarily circuit overhead reduction techniques.

6.8 Integration with other mitigation
techniques

VarSaw can be combined with IBM’s matrix-based complete mea-
surement error mitigation (MBM) [1] for higher fidelity than either
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Figure 18: Training VQE with VarSaw and VarSaw+IBM’s
Measurement Error Mitigation for 𝐿𝑖𝐻 and 𝐻2𝑂

scheme as standalone [18]. VQE results are shown in Fig.18 for
two molecules. From our evaluations we see that VarSaw+MBM
improved the VQE estimate by around 10% for 𝐻2𝑂 and negligibly,
but with less noise, for 𝐿𝑖𝐻 . A tailored approach to deploying mul-
tiple measurement error mitigation techniques is worth pursuing
in future work.

7 DISCUSSION
7.1 Why VarSaw works
The benefit from VarSaw’s spatial optimization is fairly straight-
forward. Eliminating the spatial redundancy in JigSaw subsets is
a significant win with no trade-offs. The benefit from VarSaw’s
temporal optimization is more interesting to consider. Clearly this
is a trade-off. On the one hand, reducing global executions means
that the ‘weights’ used to combine the VarSaw subsets together are
stale. On the other hand, the global executions themselves have
inaccuracy due to measurement errors (among other errors), so
fresh global weights does not necessarily imply better overall VQE
results.

Therefore, in the presence of non-trivial measurement noise,
reducing the impact of the error-prone global runs is advantageous
for VQA. It should also be noted that the VQA ansatz is inherently
flexible. The rotational gates of the ansatz are tuned by the opti-
mizer to produce a global state that minimizes the overall objective
function. With VarSaw, it is intuitive the optimizer could converge
towards the optimal state that minimizes the problem objective
along an optimization path which is somewhat less dependent on
global weights. This flexibility is offered by VQA and is one of the
reasons why there are so many ansatz choices to solve a target
VQA problem. Also important is that the reduced global executions
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allows VQE to run many more iterations in the VarSaw scenario, so
the VQA algorithm is able to search the problem space much faster
even if the weighting mechanism is imperfect.

If measurement noise is negligible, then VarSaw’s temporal op-
timization will not be beneficial. In such a scenario, we cannot
expect VarSaw’s temporal optimization to outperform the baseline
approach. Any additional accuracy in VQA objective estimation
that is enabled by the perfect global weights will be lost with Var-
Saw’s stale weights - so this is VarSaw’s worst case scenario (which
is shown in the top of Fig.9). However, measurement errors are
very significant, so we do not expect this to happen in practice.
Additionally, it is possible that device calibration information could
be used to influence the use of VarSaw’s temporal optimization (or
VarSaw as a whole). If some qubits have near-zero measurement
errors, then VarSaw, or measurement error mitigation in general,
is not required for these qubits.

7.2 Generalizing VarSaw
As a quantum application, variational algorithms clearly have the
potential for a meaningful shot at a near-term quantum advantage.
Thus, we need to enable them towards this goal by building solu-
tions that are as tailored to them as possible. In this work, we are
showing that general-purpose error mitigation techniques, when
implemented in a domain-specific manner for VQAs, can provide
significant gains beyond the capability of the original technique.
Even more significant is the fact that the original technique (i.e.,
Jigsaw), when targeting this domain of VQA, is often detrimental at
the application level due to its high computational cost (see Fig.13
for example), even though it has clear benefits at the circuit level
(see Table.1). We show how its application-level benefits can be
transformed by taking a domain-specific approach to provide sub-
stantial gains. While this work has focused on the intersection of
VQA and measurement error mitigation, other optimization tech-
niques, such as circuit synthesis and pulse-level control, can be
tailored specifically to VQA. Similarly, measurement error mitiga-
tion can be tailored to other quantum applications like QFT and
stabilizers.

7.3 VarSaw-specific extensions
While we have focused on VQE, VarSaw is useful for all VQA
problems. The temporal optimization will produce benefits for all
VQAs, but more benefits will be observed for problems that have
Pauli terms spread across different measurement bases because
this would increase the ‘Global’ cost. The spatial optimization is
beneficial to those VQAs which have Pauli terms spread across
different measurement bases (as this would present an opportunity
for redundant ‘Subsets’ across the different Pauli terms) but not
detrimental otherwise. These applications include, apart from VQE,
time-evolving Hamiltonian simulations that encompass a broad
range of algorithms such as the Ising model, Heisenberg model, XY
model etc [33]. Quantitatively evaluating VarSaw on such appli-
cations would be useful future work. There is potential to employ
measurement error mitigation only in specific phases of VQA and
to only specific terms in the Hamiltonian - i.e., only employ mit-
igation where it matters most. This trade-off of cost vs accuracy
is a suitable immediate extension to VarSaw. Next, in this work,

we have focused on VQA with a hardware-efficient ansatz [28]. A
hardware-efficient ansatz can be limited in its capabilities because
it is application-agnostic. In future work, we will look to explore
these biases, as well as evaluate the benefits of VarSaw for other
ansatz.

7.4 Related Work
Prior work VAQEM [45], dynamically tailors existing error mitiga-
tion techniques to the actual, dynamic noisy execution characteris-
tics of VQAs on a target quantum machine. While similar in spirit,
VAQEM incorporates parameters of different error mitigation tech-
niques into the variational tuning harness - this is specifically suited
to mitigation techniques that have tunable parameters and are in-
herently quantum optimizations (like dynamical decoupling [42].)
On the other hand, our work specifically focuses on measurement
error mitigation, and optimizes it in ways that is orthogonal to the
VAQEM approach. Software error mitigation techniques, especially
focused on measurement error mitigation have also been proposed
in [14, 32, 54]. Measurement error mitigation techniques tailored
to VQAs have been proposed in [9]. Measurement error can also
be mitigated by circuit level advancements. For example. [35] has
proposed a variety of techniques for machine-learning assisted
qubit readout. Previous work has been done to improve the per-
formance of VQAs using error mitigation techniques. Ref.[29] uses
Zero Noise Extrapolation (ZNE) to increase the accuracy of VQAs
on real quantum hardware. Ref.[60] shows that error mitigation
can improve the trainability of VQAs and overcome the effects of
noise-induced barren plateaus.

8 CONCLUSION
In this work, we seek to combat the effect of measurement errors
in variational algorithms at reasonable cost. To do so, we build
application-aware optimizations to the general-purpose JigSaw
approach for measurement-error mitigation. VarSaw improves Jig-
Saw [18], specifically in the context of VQAs, by identifying Spatial
Redundancy in JigSaw Subsets (across VQA Pauli strings) and Tem-
poral Redundancy in JigSaw Globals (across VQA iterations) and
combating these in novel ways. In all, VarSaw reduces computa-
tional cost over naive JigSaw for VQA substantially while achieving
significant improvements in VQA fidelity over both the unmiti-
gated baseline as well as over JigSaw under budget constraints.
Importantly, this work showcases the overwhelming benefits from
tailoring state-of-the-art optimizations in a domain-specific manner.
Designing JigSaw from the ground up in a VQA-cognizant manner,
enables significant benefits.
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A EVALUATING DIFFERENT SUBSET SIZES
In the JigSaw framework, (i.e., when targeting a single a single
circuit), fixing the subset size naively to 2 may not be optimal.
The optimal size would have to be chosen as a trade-off between
measurement errors, circuit overheads, reconstruction errors etc. In
general for JigSaw, smaller subsets means lower measurement error
(until some point of saturation) but suffers from higher overheads.

On the other hand, with VarSaw, the smaller subsets are always
beneficial—both in terms of accuracy as well as in terms of number
of circuits. There are two aspects here—the first (similar to JigSaw)
is that smaller subsets have potentially greater potential for mea-
surement error mitigation (discussed prior). The second aspect, and
unique to Varsaw, is that smaller subsets actually produce the least
number of total circuits for execution. This is because smaller sub-
sets enable considerably larger amounts of commutativity based
circuit reduction. Thus, Varsaw with 2-qubit subsets is attractive
both in terms of maximum error mitigation as well as in terms of
lowest number of circuits. Thus, it is the clear choice for our chosen
applications. We expect this trend to broadly hold, except for some
variation depending on application and machine characteristics.

In Fig.19, we run a single instance of the VQE circuit with ideal
parameters in noisy simulation and perform VarSaw’s measure-
ment error mitigation on top of this. We plot VarSaw’s fidelity
improvement over the noisy baseline for 6 qubit LiH, H2O, and
CH4. We show results for 4 different subset sizes, all of which pro-
duce substantial benefits over the baseline. For all 3 benchmarks,
the accuracy benefits did not vary significantly with subset size -
in LiH, the smallest subset performs around 10% better than other
choices. In others, the different subset sizes are all attractive in
terms of accuracy improvement. But the important aspect to note
is the window size of 2 achieves a considerably smaller number of
total circuits (this number increases with subset size). Thus, smaller
subsets are more attractive for VarSaw.
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Figure 19: For one iteration of VQE at optimal parameters,
VarSaw is applied on the noisy baseline. While accuracy im-
provements from subsetting are high, the accuracy variance
among small subset sizes is low. But the circuit overhead is
substantially lower for smallest circuit subsets.

B PERFORMANCE OF SPARSIFICATION AT
VARIED NOISE

Finally, we evaluate the VQE accuracy benefits from VarSaw’s tem-
poral optimization (i.e., adding sparsity) at different noise levels,
to showcase that this optimization is beneficial over a wide noise

range. To do so, we scale the device noise model and use it to run
the VQE baseline, VarSaw with No Sparsity and VarSaw with Max
Sparsity. Table 5 shows the results for H2O-6 molecule. We see
that as the noise scales, VarSaw at Max Sparsity always achieves
benefits over the baseline and the benefits are always similar (and
sometimes better) compared to the No Sparsity scenario. Thus, not
only is the VQE result highly attractive when temporal optimiza-
tion is employed, it also significantly reduces computational cost.
And this trend holds across a variety of noise. Note that when there
is no noise at all, then Max Sparsity can perform poorly - this is
expected and was discussed in Fig.9 and Section 3.3.

Noise Scale Baseline VarSaw VarSaw
(No Sparsity) (Max Sparsity)

5 -89.33 -91.29 -91.36
3 -90.86 -94.51 -93.32
1 -98.28 -101.73 -102.73
0.8 -99.45 -102.95 -101.08
0.5 -101.62 -104.30 -103.23
0.1 -104.15 -104.46 -104.69
0.05 -104.57 -104.75 -104.77

Table 5: VarSaw withMax Sparsity and No Sparsity compared
to the baseline for different noise levels.
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