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Abstract—In this work, we migrate the quantum error mit-
igation technique of Zero-Noise Extrapolation (ZNE) to fault-
tolerant quantum computing. We employ ZNE on logically
encoded qubits rather than physical qubits. This approach will
be useful in a regime where quantum error correction (QEC) is
implementable but the number of qubits available for QEC is
limited. Apart from illustrating the utility of a traditional ZNE
approach (circuit-level unitary folding) for the QEC regime, we
propose a novel noise scaling ZNE method specifically tailored
to QEC: distance scaled ZNE (DS-ZNE). DS-ZNE scales the
distance of the error correction code, and thereby the resulting
logical error rate, and utilizes this code distance as the scaling
‘knob’ for ZNE. Logical qubit error rates are scaled until
the maximum achievable code distance for a fixed number of
physical qubits, and lower error rates (i.e., effectively higher code
distances) are achieved via extrapolation techniques migrated
from traditional ZNE. Furthermore, to maximize physical qubit
utilization over the ZNE experiments, logical executions at code
distances lower than the maximum allowed by the physical qubits
on the quantum device are executed in parallel across the device,
thereby reducing overall circuit execution costs.

We validate our proposal with numerical simulation for the
surface code and confirm that ZNE lowers the logical error rates
and increases the effective code distance beyond the physical
capability of the quantum device. For instance, at a physical
code distance of 11, the DS-ZNE effective code distance is 17,
and at a physical code distance of 13, the DS-ZNE effective code
distance is 21. When the proposed technique is compared against
unitary folding ZNE under the constraint of a fixed number of
executions of the quantum device, DS-ZNE outperforms unitary
folding by up to 92% in terms of the post-ZNE logical error rate.

Index Terms—Quantum error correction, quantum error mit-
igation, zero noise extrapolation, Mitiq, code distance scaling,
distance-scaled zero noise extrapolation, unitary folding.

I. INTRODUCTION

Quantum computers, while holding promise for solving
otherwise intractable problems, are afflicted by noise, limiting
their usefulness in the near term. The approach of quantum
error correction (QEC) presents a means of addressing the ef-
fects of noise but requires larger numbers of qubits than those
available on current devices. Progress has been demonstrated
through improved quality of physical qubits and physical
gates, logical qubit lifetimes, fault-tolerant universal gates,
logical error rates, and scaling of the surface code [14], [29],
[32], [39], [44], but qubit quality and scaling challenges remain
as obstacles to implementing QEC for practical applications.

Recently, a focus has been drawn to quantum error mitiga-
tion (QEM) techniques [3], [9], which can partially counteract
the effect of noise in a quantum computation.

A breadth of QEM techniques have been experimen-
tally demonstrated on noisy quantum devices, such as for
zero noise extrapolation (ZNE) [13], [19], [37] and similar
post-processing methods [35], probabilistic error cancellation
(PEC) [1], [37], dynamical decoupling [14] and symmetry-
based techniques [5], [17], [26], [27]. Although QEM tech-
niques on physical qubits generally require no qubit overhead
(as in dynamical decoupling, ZNE and PEC) or a smaller qubit
overhead than required for QEC (as in symmetry-based QEM
techniques [17], [21]), sampling overhead remains a practical
limitation for some techniques, particularly for PEC.

One way of viewing the overheads of QEC and QEM in a
unified picture is as a trade between QEC’s qubit overhead and
QEM’s sampling overhead. On the one hand, different QEM
techniques have been hybridized to realize the benefit of QEM
at a lower circuit sampling overhead [10], [25], [28]. On the
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other hand, QEM techniques have been inserted in standard
QEC implementations, with the purpose of lowering the phys-
ical qubit requirement. Recently, PEC has been theoretically
applied on logical qubits to reduce the noise of logical gates
and effectively increase the code distance [31], [40].

In this work, we extend the use of QEM to reduce the
effective logical error rate at fixed qubit overheads to the case
of ZNE. In selecting this QEM technique for our hybridized
approach, we note that ZNE does not require knowledge of
the noise model beyond estimation of the physical error rate,
nor does it incur the sampling overhead associated with PEC.

We abstract the level at which ZNE is applied, from the
physical circuit level to the logical circuit level. We show
that ZNE can mitigate errors in logical qubits through two
different noise scaling techniques. First we investigate the
effect of noise scaling by global (circuit-level) unitary folding
on logical qubits. We then propose and demonstrate a new
noise scaling technique for ZNE on logical qubits, which we
refer to as distance scaled ZNE (DS-ZNE) in which the circuit
is executed at higher noise levels by scaling down the code
distance. While our experiments and evaluation focus on the
surface code [11], our results are broadly applicable to other
QEC codes as well. Fig. 1 is a pictorial representation of the
DS-ZNE technique, illustrating the relationship between the
distance-scaled expectation values E(λdi,j ), the noise scale
factors λdi,j , and code distance d—a detailed description is
provided in Section III.

DZ-ZNE has multiple practical benefits. First, DS-ZNE is
particularly useful for the very realistic scenarios in which the
device has a limited number of qubits and the code distance
cannot be further increased. Second it is much simpler to
implement on devices compared to circuit-folding based ZNE,
since changing code distances is somewhat trivial, whereas
designing error corrected circuit folded circuits of different
depths is not. Third, for larger devices, the spared qubits at
lower code distances of DS-ZNE can be utilized by allowing
additional circuit executions in parallel and thereby improving
the results without incurring additional circuit execution costs,
not dissimilar to the approach in Ref. [6].

Here we propose, and confirm, that expectation values
obtained from circuit executions at lower code distances,
which are then used to extrapolate to the zero noise limit,
can effectively reduce the effect of errors in expectation values
obtained on logically encoded qubits. From an error-correction
metric perspective, DS-ZNE can be seen as increasing the
effective code distance as compared to the unmitigated base-
line scenario without DS-ZNE. For instance, at a physical
code distance of 11, the DS-ZNE effective code distance
is 17, and at a physical code distance of 13, the DS-ZNE
effective code distance is 21. When the proposed technique
is compared against unitary folding ZNE under the constraint
of a fixed number of executions of the quantum device, DS-
ZNE outperforms unitary folding by up to 92% in terms of
the post-ZNE logical error rate.

This work is organized as follows. In Section II we give
an overview of the key components of QEC and the QEM

Fig. 1: Illustration of noise scaling by code distance as pro-
posed in the DS-ZNE framework. Distance-scaled expectation
values E(λdi,j

) (vertical axis) are evaluated at different noise
scale factors λdi,j

(horizontal axis) which, in this example are
obtained at distances d = 9, d = 7, and d = 5. Note that
λdi,j increases with decreasing d. Eideal is the ideal noiseless
expectation value (dashed blue horizontal line), and EDS-ZNE
is the error-mitigated expectation value obtained by a curve fit
(solid black curve) and extrapolating to the zero noise limit.

technique of ZNE to be combined in the DS-ZNE framework.
In Section III we describe the DS-ZNE framework and the
setup of its demonstration on randomized benchmarking cir-
cuits, and in Section V we present the results obtained from
the demonstration. Finally we conclude and suggest future
extensions of the DS-ZNE framework.

II. THEORY

A. Distance of Quantum Error Correction Codes

QEC improves the fidelity of a quantum computation by
using additional qubits to detect and correct errors occurring
on the physical data qubits [30], [36], [42]. QEC codes encode
each logical qubit into an array of physical data qubits. Ancilla
qubits are also entangled with each data qubit, allowing the
extraction of information about errors without destruction of
the quantum state of the data qubits. The output of repeated
measurements of the ancilla forms a syndrome, which is a
classical error signature. The process of measuring the ancilla
maps the errors of the data qubits to discrete Pauli errors,
which are often expressed in terms of X (bit-flip) and Z
(phase-flip) errors. The syndrome is then passed to a decoder
which extracts information from the syndrome about the errors
in the data qubits. Correction operations are applied to the data
qubits based on the information obtained from the syndrome
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about the type and location of the errors. If the physical qubit
error rates are lower than some threshold (which depends on
the error code and the decoder), then increasing the size of
the physical data array that maps to each logical qubit, will
monotonically decrease the logical error rates. The size of the
physical data block per logical qubit is parameterized by the
error correction code distance, d. For a code distance of d,
error chains up to a length of (d − 1)/2 can be detected and
corrected in each error correction cycle, per logical qubit.

Surface codes are a common choice of error correction code
in the immediate future of fault-tolerant quantum computing,
as they have high error thresholds (nearly 1% physical qubit
error) [11]. Further, they require only nearest neighbor physi-
cal connectivity, employing an alternating pattern of physical
data and parity (ancilla) qubits in a 2-dimensional lattice,
and are therefore amenable to practical quantum topologies
of today. Fig. 2 shows an illustration of a rotated distance-five
surface code. The rotated surface code is condensed version
of the surface code, with the benefit of smaller total physical
qubit and gate overheads [2], [11], [34], [43]. Data qubits
are indicated by white circles and ancilla qubits for stabilizer
measurements are indicated by the gray and blue circles. The
Z stabilizer measurements are represented by gray squares and
the X stabilizer measurements are represented by blue squares.
As can be seen in Fig. 2, the number of physical qubits
required to implement an error correction code of distance
d is proportional to d2.

Fig. 2: Diagram of the d = 5 rotated surface code. The white
circles marked ”D” represent data qubits and the gray and
blue circles represent the ancilla qubits used to measure the
stabilizers. Gray squares measure the Z stabilizers and blue
squares measure the X stabilizers.

We denote the error rate of the physical qubits as p and the
threshold as pth. As presented in Ref. [11], when operating

in the regime of p < pth, the logical error rate PL decreases
exponentially with increasing d, and PL can be approximated
by the empirical formula given by

PL
∼= 0.03(p/pth)

(d+1)/2. (1)

Since the logical error rate depends on the code distance, the
noise level of the computation can also be scaled by scaling
the code distance. This relationship between code distance and
noise scaling forms the basis for the DS-ZNE framework.

B. Zero Noise Extrapolation

In zero noise extrapolation [19], [24], [41], a quantum
circuit is executed at different noise scale factors λ above that
of the device to obtain noise-scaled expectation values E(λ)
of the same observable A = A†,

E(λ) = tr [AUλ(ρ0)] , (2)

where Uλ is a quantum channel corresponding to the noisy
implementation of the ideal unitary U at the noise scale factor
λ.

The expectation value E(λ) is typically measured at the
base hardware noise (λ = 1) and at multiple higher noise
levels (λ > 1). Eventually the ideal noiseless result, i.e.
E(0), is estimated by fitting a curve to the measured data and
extrapolating it to the zero noise limit (λ = 0). A common
model for the extrapolating curve is an exponential, given by

E(λ) = a0 + a1e
−λa2 , aj ∈ R, a2 ≥ 0, (3)

or a polynomial, given by

E(λ) = a0 + a1λ+ ...+ anλ
n, aj ∈ R. (4)

The polynomial model of (4) includes the special cases of
linear extrapolation (n = 1) and Richardson extrapolation (n+
1 = number of noise scale factors).

ZNE was formulated and tested on hardware at the pulse
level [19], [41] and it has been abstracted and demonstrated on
hardware at the gate level in a form known as digital ZNE [13],
[15], [22], [24], [37]. Due to its simplicity of employment,
ZNE has been applied on a variety of studies, including hard-
ware benchmarking tasks, variational algorithms, and quantum
simulation [16], [23], [33], [37], [38]. A key application
requirement for ZNE is the availability of an expectation value,
such as the probability of measuring a bitstring of interest as
the output of a benchmarking task.

In digital ZNE [13], [15], [23], noise scaling is abstracted at
the circuit or gate level by unitary folding or identity insertion.
Unitary folding maps the operations in the circuit of interest
such that they are followed by their inverse and then repeated.
In the absence of noise the additional operations introduced
do not affect the final result, but in the presence of noise they
increase the noise level in the calculation. Unitary folding can
be performed on individual gates, layers of gates, or on the
entire circuit. In the case of entire circuit folding, also known
as global folding, the scaling takes the form of

U → Uλn
= U(U†U)(λn−1)/2 = U(U†U)n, (5)
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where λn = 1+ 2n and n = 0, 1, 2, . . . , corresponding to the
noise scale factor and the associated number of U†U insertions,
respectively.

To provide a fair comparison between mitigated and unmit-
igated values when analyzing the improvement obtained from
QEM, it is helpful to establish a fixed sampling budget, in
which the total number of circuit executions is kept constant
for the unmitigated and mitigated cases [13], [37]. In the case
of ZNE, a simple way of calculating the sampling budget
Nsamples is by multiplying the number of circuit instances Ncirc
by the number of executions of each circuit instance Nshots,
i.e.

Nsamples = NcircNshots. (6)

III. DISTANCE-SCALED ZNE FRAMEWORK

A. Noise scaling by code distance reduction

In the proposed framework, we combine QEC and QEM
by applying ZNE on logical qubits with two different noise
scaling methods, unitary folding and code distance scaling. To
preserve the structure of the circuit acting on logical qubits, we
perform global circuit folding instead of locally folding indi-
vidual gates. Although implementing unitary folding on error-
corrected qubits is not trivial, we assume that it is possible to
implement at the circuit level without additional physical qubit
overhead. The circuit-level implementation of fault tolerant
unitary folding is beyond the scope of this work—here we
primarily focus on the simple and very effective distance-
scaled DS-ZNE approach.

The DS-ZNE method consists of scaling the noise level of
the computation by executing the quantum circuit on the log-
ical qubits at successively lower code distances. Specifically,
we parameterize the code distance in terms of two positive
integers i and j as follows:

di,j = i− j, j ∈ {j1, . . . , jk}, (7)

where i = di,0 is the maximum distance and j quantifies the
distance reduction1. The corresponding noise scale factors are:

λdi,j
=

PL|di,j

PL|di,0

≥ 1, j ∈ {j1, . . . , jk}, (8)

where PL is the logical error rate defined in (1). It should
be noted that λdi,j increases with decreasing di,j . In this
case, to evaluate (2), instead of applying the unitary folding
formula (5) we use:

U → Uλdi,j
, (9)

where Uλdi,j
refers to the noisy implementation of the error

corrected unitary with reduced code distance di,j , assuming
a maximum available distance of di,0. In the remaining part
of the DS-ZNE framework, as in conventional ZNE, the
expectation values obtained at the noise scaled values are fit
to a curve and extrapolated to the zero noise limit, yielding an
error-mitigated expectation value EDS-ZNE. Fig. 1, a pictorial

1Note that di,j must be compatible with the underlying error correcting
code. For the surface code considered in this work, we choose di,j to be odd.

representation of the DS-ZNE technique, was presented earlier
in Section I.

B. Parallelization of logical circuits

We now consider how distance scaling enables paralleliza-
tion of circuit executions within a fixed sampling budget.
At smaller code distances, qubits that are not used in error
correction can be re-purposed to behave as multiple virtual
processor cores, which are parallel computing regions, similar
to those described in Ref. [18]. We refer to the number of
virtual cores as NVC. The diagram in Fig. 3 illustrates how
such groups of qubits can be run in parallel to collect samples
more efficiently, enhancing the performance of the distance
scaling technique. For example, given a budget of N circuit
executions at code distance d = 11, the effective number of
measurement shots can be increased from N up to 4N , when
reducing the code distance from d = 11 to d = 5. Thus, when
mitigating errors with ZNE, distance scaling can use physical
qubits more efficiently than other noise scaling techniques,
improving the overall performance of the full error mitigation
protocol.

Fig. 3: Reducing code distance to increase noise has the
added benefit of freeing up qubits that can be reused. In this
example, a single qubit in the distance 11 code can be replaced
with 4 distance 5 qubits. At scale, this allows the smaller
distances to act like virtual processor cores that can be run in
parallel for faster sample collection. Thus, distance scaling can
use physical qubits more efficiently than other noise scaling
techniques, improving performance.

For the particular case of the rotated surface code [2], [7],
[11], the number of parallel virtual cores that we can run
simultaneously, NVC, when reducing the distance from d to
d′, with d′ < d is given by

NVC =

[
d2

d′2

]
, (10)

where [·] represents the integer part.
This number will vary depending on the error correction

code of choice. It is worth noting that the above estimation
only focuses on a single logical qubit. The number of pos-
sible parallel virtual cores will also depend on how resource
overheads such as the physical routing space between logical
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qubits to perform multi-qubit operations, the physical qubits
reserved for magic-state distillation (for T-gates), etc., scale
with target error rates. Incorporating these resource overheads
in the above analysis deserves further exploration but is beyond
our current scope.

In the plot of Fig. 4 we provide an illustration of the gain in
virtual cores, NVC, as a function of d and d′, for the specific
case of a rotated surface code, as given by (10). We choose a
parameter regime that is believed to remain relevant for near-
term quantum devices [40]. For a fixed number of qubits, the
maximum code distance is fixed for a single virtual core, while
NVC increases monotonically as d′ decreases. However, one
should not just optimize for the maximum number of virtual
cores, since for a fixed physical error rate, the reduced code
distance d′ may provide a too noisy expectation value. For this
reason, we report our numerical study of DS-ZNE in the next
section.
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Fig. 4: Scaling the distance of a rotated surface code from
the original code distance d to a reduced code distance d′

corresponds to a gain in virtual cores NVC, given by (10).

IV. NUMERICAL EXAMPLE BASED ON RANDOMIZED
BENCHMARKING CIRCUITS

We showcase an example of ZNE on error-corrected two-
qubit randomized benchmarking circuits. Since the task of
randomized benchmarking is characterizing quantum devices
and estimating gate errors, it is well-suited to our purpose of
demonstrating the DS-ZNE framework. Randomized bench-
marking circuits are comprised of random sequences of m
elements of the n-qubit Clifford group followed by a final
inverse element such that, in the absence of noise, the final
state is equal to the input state [4], [8], [20]. A randomized
benchmarking circuit is pictorially represented in Fig. 5 for
the case of n = 2 and m = 3, with the colored rectangles
representing the Clifford sequences, the white tiles represent-

ing circuit operations, and the gray rectangle representing the
inverse. In this example the final state is |00⟩.

Although initially proposed and implemented for character-
izing gates applied to physical qubits [4], [8], [20], randomized
benchmarking can also be applied at the logical level [6].
Therefore, it is possible to simulate the action of random-
ized benchmarking circuits on the logical qubits, instead of
simulating the physical qubits directly. In a logical circuit
with error correction, the errors remaining after correction
are Pauli errors. We model these errors via single-qubit Pauli
operations inserted with probability PL after every correction
cycle, where we assume each cycle corresponds to a layer of
gates in the circuit. The simulation of code distance scaling is
achieved simply by adjusting d in the formula of the logical
error rate given in (1).

Fig. 5: An n-qubit, randomized benchmarking circuit of Clif-
ford depth m consists of a random sequence of m elements
(represented by the colored rectangles) of the n-qubit Clifford
group (with operations represented by the white tiles) followed
by an inverse (represented by the gray rectangle) to obtain the
final state, |00⟩ in the example shown above.

The first set of numerical simulations consisted of exact
density matrix simulations of two-qubit randomized bench-
marking circuits, whose depth was parameterized by the
Clifford depth (the number of Clifford group elements in the
circuit), denoted here as m. Simulations were performed on
100 circuits with a Clifford depth m = 20 and 100 circuits
with m = 30. We also demonstrated the technique on a limited
set of deeper circuits, in which we used Stim [12] to perform a
set of stabilizer simulations on 10 circuits with Clifford depth
m = 100, 10 circuits with m = 1000, and 10 circuits with
m = 10, 000.

We calculate the sampling budget as given by (6), with
the assumption of 10,000 system executions for each of the
4 noise-scaled circuits used for ZNE. All instances of the
randomized benchmarking circuits produce an expectation
value of 1 in the absence of noise, as the circuits compile
to identity and the observable of interest is the probability of
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obtaining the input state.
First, distance-scaled expectation values E(λdi,j

) were eval-
uated for the set of distances and associated scale factors as
defined in (7) and (8), for 11 ≤ i ≤ 27 and j ∈ {0, 2, 4, 6},
corresponding to 4 distance scalings. The distances di,j were
selected to be in a range considered achievable in the near-
term [40] and restricted to odd numbers to represent an
efficiently constructed lattice [11]. The di,j in this example
were selected with a linear spacing, to prevent excessively
wide spacing of noise scale factors (since the noise scale
factors have an exponential dependence on d) and therefore to
produce an accurate curve fit and extrapolation. For simplicity
the same code distance was used on both qubits and throughout
the circuit. The threshold pth was set at 0.009. Also, assuming
operation in the fault-tolerant regime, p was chosen such that
p < pth, p = 0.006 and p = 0.004 in the first and second
parts of this example, respectively. The threshold pth and
physical error rate p were used to calculate the logical error
rate at each distance di,j . For the choice of distance scalings,
physical error rate, and randomized benchmarking circuits in
this example, the distance-scaled expectation values are well-
approximated by a third-order polynomial curve, i.e., by (4)
with n = 3. Therefore, a third-order polynomial extrapolation
technique (as described in Sec. II-B) was applied to each set of
distance-scaled expectation values to obtain the corresponding
zero noise expectation values.

Second, the unitary folding based ZNE results were obtained
from a third-order polynomial extrapolation on expectation
values evaluated at distance di,0 for folding noise scale fac-
tors λn ∈ {1, 3, 5, 7}. The unitary folding and extrapolation
functions were applied using the ZNE module of the software
package Mitiq [22]. Results without mitigation were also
obtained at each code distance with the same total circuit
execution budget as the results with mitigation, i.e., we used
40,000 unmitigated executions.

V. RESULTS AND DISCUSSION

A. Error-mitigated expectation values

The mean expectation value E averaged over 100 trials
together with its standard deviation (the error bar) is plotted for
each maximum code distance di,0, at Clifford depths m = 20
and m = 30, in Fig. 6. The horizontal axis di,0 is the
highest available distance at which the expectation values are
evaluated. The dashed blue line represents the error mitigated
results based on DS-ZNE with j ∈ {0, 2, 4, 6}, the dot-dashed
orange line represents the error mitigated results based on
unitary folding with λn ∈ {1, 3, 5, 7}, and the solid green
line represents the values obtained without error mitigation2.

From the plots of the mean expectation values in Fig. 6 we
can see that for every distance di,0, the unmitigated expec-
tation value has a larger bias than that of the error-mitigated
expectation values. The bias decreases with increasing code
distance for both DS-ZNE and unitary folding as well as for

2Code and data for the numerical example are available at https://github.
com/unitaryfund/research

the unmitigated results, which we expect since the logical
error rate decreases with increasing code distance. Defining
the (mean) effective logical error rate as ϵ = |1− Ē|, we find
that unitary folding reduces ϵ by 96.4% and 93.1% at Clifford
depths m = 20 and m = 30 respectively. Moreover, DS-ZNE
reduces ϵ by up to 98.7% and 98.9% at m = 20 and m = 30
respectively. The simulation results indicate that either DS-
ZNE or ZNE with unitary folding is effective in mitigating
errors in expectation values obtained from logical circuits.

In terms of the effective logical error rates obtained with
DS-ZNE and with unitary folding ZNE, we find that DS-ZNE
outperforms unitary folding ZNE by up to 92%. The benefits
from DS-ZNE compared to folding are more pronounced at
lower di,0 because there is greater room for improvement,
which is representative of challenging applications for QEC
with limited numbers of physical qubits. At higher di,0 there is
less benefit since a nearly perfect expectation value has already
been achieved prior to extrapolation, which is not realistic for
critical applications in which the DS-ZNE framework would
be employed.

The standard deviation of the error-mitigated expectation
values, is up to 6x larger than that of the unmitigated, which
may be partly due to all unmitigated samples being taken
without noise scaling, i.e. λ = 1. Also, the standard deviation
of the distance-scaled expectation values is up to 5x larger
than the standard deviation of expectation values obtained with
unitary folding. This may be due to the larger and nonlinear
spacing between noise scale factors for distance scaling as
compared to unitary folding, which arises from the exponential
scaling of the logical error rate with code distance.

B. Effective code distance

The effective logical error rates can be further analyzed in
terms of the effective code distance, as in [40]. For an error-
mitigated code with distance d the effective code distance is
the code distance for which an (approximately) equivalent
expectation value can be obtained without mitigation. The
effective code distance obtained with distance scaling is de-
noted as dDS, and the effective code distance obtained with
folding is denoted as dF. For example, the effective logical
error rate obtained at m = 30 with distance scaling at code
distance 11 is approximately equal to the unmitigated effective
logical error rate at code distance 17, resulting in a dDS of 17.
Similarly, the effective logical error rate obtained at m = 30
with distance scaling at code distance 13 is approximately
equal to the unmitigated effective logical error rate at code
distance 21, resulting in a dDS of 21. From these results, we
see that DS-ZNE increases the effective code distance, and
the effect strengthens as code distance increases. This means,
as shown in Table I, that ZNE reduces the total number of
physical qubits required to reach an equivalent effective logical
error rate. With unitary folding the reduction ∆nF is up to 240
physical qubits and with distance scaling the reduction ∆nDS
is up to 272 qubits. We expect that the benefits of DS-ZNE will
only improve further for more complex applications (as they
will need greater sampling budgets) and for greater maximum

893

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:20:35 UTC from IEEE Xplore.  Restrictions apply. 



11 13 15 17 19 21
Maximum code distance, di,0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
xp
ec
ta
tio

n
va
lu
e,
E

Clifford depth: m= 20

(a)

DS-ZNE
Folding
Unmitigated

1

11 13 15 17 19 21
Maximum code distance, di,0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
xp
ec
ta
tio

n
va
lu
e,
E

Clifford depth: m= 30

(b)

DS-ZNE
Folding
Unmitigated

1

Fig. 6: Expectation value (vertical axis) of A = |00⟩⟨00|
obtained from randomized benchmarking circuits acting on
logical qubits and error-mitigated with DS-ZNE (dashed blue
curve), with unitary folding ZNE (dot-dashed orange curve),
and also without mitigation (solid green curve). The ideal,
noiseless expectation value is 1. The horizontal axis di,0 is
the highest distance that we assume to be available in a given
quantum processor. For DS-ZNE, we used j ∈ {0, 2, 4, 6}. For
unitary folding ZNE, we used λn ∈ {1, 3, 5, 7}. The two plots
show the results for Clifford depth m = 20 (a) and m = 30
(b).

code distances, which, in addition to a lower starting logical
error rate, allow for finer tuning of the noise scale factors.

We can see that with reuse of unused qubits, distance
scaling can increase the effective code distance within a fixed
(serial) execution budget. In addition, distance scaling has the
advantage that it does not incur additional overhead from
increasing the circuit depth, as in unitary folding, and the

m d dF dDS ∆nF ∆nDS

20 11 15 19 104 240

20 13 19 21 240 272

30 11 13 17 48 168

30 13 17 21 120 272

TABLE I: At a Clifford depth m, ZNE increases the effective
code distance from d = di,0, to dDS in the case of distance
scaling or dF in the case of unitary folding. The effective code
distance dF, corresponds to a reduction in the required number
of physical qubits by ∆nF and the effective code distance dDS,
corresponds to a reduction in the required number of physical
qubits by ∆nDS.

runtime benefit of DS-ZNE over unitary folding becomes more
significant at larger circuit depths. For example, unitary folding
with scale factors λn ∈ {1, 3, 5, 7} will result in circuits with
1, 3, 5, and 7 times the original circuit depth.

Finer adjustment of the noise scale factors in distance
scaling could yield further improvements, both in increasing
the effective code distance and reducing the standard deviation
in the distance-scaled results. Instead of using a uniform code
distance on both qubits and on each layer of the circuit, the
technique could be extended by varying the code distance
on different qubits, or in different circuit layers or groups
of layers. We anticipate that using different code distances
at different places in the circuit would result in an overall
noise level that is in between those of the uniformly applied
higher code distance and the uniformly applied lower code
distance. In that case, the spacing of the intervening noise
scale factors obtained from non-uniform code distance scaling
could be tuned to improve the accuracy of the extrapolation
on every set of noise-scaled expectation values.

C. DS-ZNE on Longer Circuits

The DS-ZNE and unitary folding methods were also demon-
strated on a limited set of deeper circuits, indicating the
extensibility of the technique to circuits of depths more com-
mensurate with the fault-tolerant regime. In Fig. 7, the mean
expectation value E averaged over 10 trials, at Clifford depths
m = 100, m = 1000 and m = 10, 000, is plotted together with
its standard deviation (the error bar) for each maximum code
distance di,0. The horizontal axis di,0 is the highest available
distance at which the expectation values are evaluated. The
dashed lines represent the error mitigated results based on
DS-ZNE with j ∈ {0, 2, 4, 6}, the solid lines represent the
values obtained without error mitigation, and the dotted lines
represent the error mitigated results based on unitary folding
with λn ∈ {1, 3, 5, 7}.

We can see from the plots of the mean expectation values
of the higher Clifford depth circuits in Fig. 7 that for every
distance di,0 evaluated at a constant m, the unmitigated
expectation value has a larger bias than that of the error-
mitigated expectation values. Here also the bias decreases with
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Fig. 7: Expectation value (vertical axis) of A = |00⟩⟨00|
obtained from randomized benchmarking circuits acting on
logical qubits and error-mitigated with DS-ZNE of Clifford
depths m = 100 (red curves with point markers), m = 1000
(purple curves with star markers), and m = 10, 000 (cyan
curves), acting on logical qubits and error-mitigated with DS-
ZNE (dashed curves), without mitigation (solid curves in (a)),
and mitigated with unitary folding (dotted curves in (b)). The
ideal, noiseless expectation value is 1. The horizontal axis di,0
is the highest distance that we assume to be available in a given
quantum processor.

increasing code distance for both DS-ZNE and unitary folding
as well as for the unmitigated results, as expected. We find that
unitary folding reduces ϵ by 99.39%, 99.74%, and 99.87%,
at Clifford depths m = 100, m = 1000 and m = 10, 000
respectively, and DS-ZNE reduces ϵ by up to 99.98%, 99.96%,
and 99.85% at m = 100, m = 1000 and m = 10, 000
respectively. The results indicate that even at larger Clifford

depths, both techniques are effective in mitigating errors in
expectation values obtained from logical circuits.

VI. CONCLUSION

We have demonstrated the use of ZNE applied to logical
qubits with two different noise scaling methods: with unitary
folding and with novel distance scaling. Furthermore, we have
shown that ZNE with distance scaling or with circuit-level
unitary folding can effectively mitigate errors in expectation
values obtained with logically encoded qubits. Equivalently,
we can see that ZNE increases the effective code distance for
a fixed number of serial circuit executions. At lower distances,
distance scaling outperforms unitary folding, both in terms of
the effective logical error rate and in terms of the effective
code distance. We anticipate the improvements obtained with
ZNE to be even more pronounced for critical applications
requiring greater sampling budgets and greater maximum code
distances.

Another benefit of distance scaling over unitary folding
is that it does not incur additional overhead in the number
of gates in the circuit. Since distance scaling can be applied
independently from the type of circuit acting on the encoded
qubit, it opens the possibility to use ZNE in applications
where unitary folding cannot be applied and a limited
amount of qubits are available for error correction. The
improvements obtained with ZNE on logical qubits indicate
that this combination of QEC and QEM techniques presents a
promising method to reduce the effect of errors on the results
of the computation, while avoiding prohibitive resource
overheads.
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