
quAPL: Modeling Quantum Computation in an
Array Programming Language

Santiago Núñez-Corrales
NCSA/IQUIST

UIUC
Urbana IL, United States
nunezco2@illinois.edu

Marcos Frenkel
NCSA
UIUC

Urbana IL, United States
marcosf2@illinois.edu

Bruno Abreu
NCSA
UIUC

Urbana IL, United States
babreu@illinois.edu

Abstract—Most contemporary quantum program-
ming languages describe computation as circuits, using
a host classical counterpart to drive the execution of
quantum programs. However, the circuit model adds
expensive complexity to quantum algorithmic develop-
ment and decreases the transparency of connections
between syntax and formal semantics in quantum pro-
grams. We argue that producing a high-level quantum
programming language without reference to circuits
is possible and necessary. We summarize desirable
features in future high-level quantum programming
languages and provide evidence supporting array pro-
gramming languages as a natural paradigm for quan-
tum algorithmic expression at the circuit level and
beyond. We highlight why APL is a profitable host
programming language to attain this goal progressively.
In particular, we demonstrate how features provided
by APL, such as native support of complex num-
bers and matrix operations, naturally capture quan-
tum operations while bringing a less cluttered syntax
that encodes and encapsulates the linear character of
quantum circuit execution. We discuss implementation
details of quAPL, an APL library for quantum circuit
specification, simulation, and execution intended to
provide a gradual ramp toward developing composable
procedural abstractions. Finally, we discuss the broader
implications of our work and the next steps in our
research program.

Index Terms—APL, array programming languages,
quAPL, quantum computing, quantum programming

I. Introduction
Programming languages are, primarily, notational tools

of thought [1]. As computing technologies evolve, program-
ming practices drive language evolution toward an equili-
brium between two competing forces: broadening general-
ity –the ability to express a wider range of problems- and
increasing complexity –the growth in diversity of vocabu-
lary and grammar available to software developers. Both
are modulated by the theoretical richness and availability
of abstraction and sophistication brought forth by hard-
ware advances. Research and practice, with time, separate
languages into those with greater affinity for algorithmic
expression and those where proximity to the hardware
facilitates program verification and optimization. As the
specification of a programming language stabilizes through
repeated use, exploring new problems often translates into

extending that language or developing new languages at
higher levels.

Mounting evidence [2]–[4] indicates that quantum pro-
gramming languages have not yet followed such an evolu-
tionary trend. Despite the rapid increase in the number
of quantum programming languages available today, most
utilize a host programming language to allow the specifi-
cation of quantum circuits. These specifications are then
transpiled into some intermediate form –e.g., OpenQASM
[5], QIR [6], MLIR [7]- that software stacks provided by
various hardware vendors can understand, optimize (pos-
sibly at the pulse level), and execute. The host language
then serves the function of a program driver, interfacing
between classical and quantum entities and operations.
Python [8], C++ [9] and Haskell [10] are notable examples.

Several elements differentiate the evolutionary trajec-
tories of quantum and classical programming languages
so far. First, quantum computers possess a vastly larger
set of exploitable physical resources than classical ones
[11]. The intuitiveness in the use of classical resources
seems not to be present in their quantum counterparts,
to a large extent due to very limited phenomenological
experience with quantum logic. While the complexity of
classical algorithms is measured in terms of space and
(discrete) time, quantum algorithms also must account for
their use of superposition, coherence, interference, and en-
tanglement. Second, the fundamental constructs provided
by classical Turing machines, random access machines,
and lambda calculus translate to abstract functions over
certain algebraic number fields; in contrast, their quantum
counterparts [12]–[16] make explicit references to states
and circuit elements, thereby still constraining program
expressiveness to gates and registers for the most part.
Third, the problem of building fault-tolerant quantum
hardware is yet to be solved, albeit several platforms have
demonstrated increased numbers of usable qubits [17]:
NISQ architectures force mixing low-level concerns such
as quantum error correction with algorithm design and
implementation, which are conceptually separate matters.
Recent work simulating fault-tolerant versions of varia-
tional quantum eigensolvers [18] also suggests that post-
NISQ algorithms will likely admit adaptive versions, or

1001

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3503-4323-6/23/$31.00 ©2023 IEEE
DOI 10.1109/QCE57702.2023.00114

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 Q

ua
nt

um
 C

om
pu

tin
g

an
d

En
gi

ne
er

in
g

(Q
CE

) |
 9

79
-8

-3
50

3-
43

23
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

Q
CE

57
70

2.
20

23
.0

01
14

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

even replacement by other fault-tolerant methods. Fourth,
as this number grows, the complexity of circuit building
will exceed human specification capabilities.

We report in this article preliminary work tackling
these four problems simultaneously through the princi-
pled development of a quantum programming language
library, quAPL. We seek to minimally capture the se-
mantics of quantum circuits to then abstract them away
into quantum motifs that make little to no reference to
circuit elements. Our guiding principle is that quantum
circuits distract from actual problem solving, since –as their
classical counterparts- their expressiveness scales poorly
with problem size and thus precludes an intellectually
profitable level of expression. In short, we hypothesize
that finding an appropriate host programming language
can significantly facilitate the transition from circuits
to composable abstractions, leading progressively to a
more abstract quantum programming language that makes
little to no reference to the underlying hardware. By
appropriate, we mean being capable of naturally revealing
the universality and executability of new and existing
constructs found across quantum programs, encapsulating
complexity, or exposing it as close to the mathematical
definitions as needed. To achieve this, we have found in
APL –a historical representative for array programming
languages- a choice that suits the aforementioned needs.

The structure of this article is as follows. We first
enumerate the requirements of a high-level quantum pro-
gramming language and how these should percolate across
a putative software development stack down to the level
of circuit specification. Next, we analyze the features of
APL [19] that make it an ideal host language to pro-
duce libraries starting at the circuit level leading to new
abstractions going upwards or producing code in some
intermediate representation executable on real quantum
hardware. We then describe the features of quAPL from
states, gates, measurements, and circuits up to three sim-
ple examples: quantum random number generation, and
the Deutsch-Jozsa and quantum teleportation algorithms.

II. Requirements for High-level Quantum
Programming Languages

The primary purpose of a high-level language for any
class of computations is to capture precisely and expres-
sively the intended meaning of programs [20]. Meaning,
in the context of programming languages, pertains to
the study of formal semantics in three main varieties:
denotational, operational, and axiomatic. Denotational
semantics maps syntactic program entities and their trans-
formations to a set of abstract mathematical entities.
Operational semantics describes how syntactic program
constructs are evaluated and executed in some abstract
machine. Axiomatic semantics formalizes logic constraints
used to locate (or rather fix) the intended meaning of a
program and verify its correctness; this type of semantics
has proven substantially harder to achieve. Pragmatically,

a programming language should facilitate solving problems
with computers. This section addresses both types of
requirements, recognizing from the start that quantum
computation models differ significantly from digital ones;
analogies between both must be performed carefully.

A. Formal requirements
In the case of classical programming languages, all types

of semantics rest upon a solid understanding of computa-
tion as functions on a finite arithmetic model later mapped
onto Turing machines, random access machines, or ab-
stract λ-calculus machines. Materializing these abstract
computing devices into actual hardware –simplifying out
historical details- resulted from the tripartite match in-
volving how Boolean algebra satisfied the representational
requirements of finite arithmetic models and how bistable
electronic elements could be used to implement Boolean
circuits; Boolean algebra itself arose as a consequence of
intense meta-mathematical work.

Performing the same kind of work to create new quan-
tum programming languages as intended here departs from
much more austere, scant, and still unclear foundations.
One may be tempted to take the view that quantum
information is at the core of quantum mechanics [21] and,
therefore, that it provides a denotational semantics of
quantum computation. While quantum information spec-
ifies constraints for quantum resources present in devices
implementing computation, it shares the same limitations
with classical information theory preventing it from be-
coming an adequate foundation for algorithmic expression:
they do not naturally produce composable abstractions
readily interpretable as computation.

Clifford algebras [22] and spinor formulations [23] suffer
from a similar limitation when constrained to the descrip-
tion of states and gates. However, their direct connection
to the abstract spaces underlying quantum field theory
[24], the fact that abstract geometrical algebra machines
with substantial computational power can be specified
[25], and the existence of symmetries in connection to
quantum automata derived from discrete quantum walks
[26] that could lead to high-level combinators of the sort
found in functional languages [27] suggests they can play a
substantial role in the denotational semantics of quantum
programs if streamlined. Higher algebra formulations of
quantum field theory constitute much stronger candidates
in this direction [28]–[30] due to the connection between
computation and processes [31]. Determining an adequate
abstract formulation for the denotational semantics of
quantum programs remains an open problem. Linear logic
and categorical semantics have already led to uncovering
denotational semantics of quantum lambda calculus [32].

Regarding operational semantics, we remain limited
again by the circuit model of quantum computation and, in
consequence, by the lack of an abstract quantum machine
operating at a higher-level of abstraction [33]. From the
initial formulations of quantum Turing machines [12], [34]

1002

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

to the most recent QRAMs [14], [16] and quantum lambda
calculi [13], [15], gates pervade their formal description.
Classical RAM and functional abstract machines, on the
contrary, are specified in terms of instructions or functions
applied to entities belonging to a given finite field instead
of concerning themselves with the manipulation of bits
through gates. These programming constructs are compos-
able procedural abstractions in the sense that (a) compo-
sitionality ensures that all possible programs executable
on equivalent abstract machines can be written using a
finite number of these abstractions, (b) no reference to
specific hardware properties is needed to understand the
execution of instructions (although one may construct
and enact hardware models through them), and (c) these
abstractions provide actionable descriptions of how they
harness the resources available for computation. Except
for Silq [35], Cavy [36], and Proto-Quipper [37], existing
quantum programming languages and frameworks only
encapsulate and synthesize circuits depending on hardware
capabilities rather than departing from composable proce-
dural abstractions and later satisfying their execution at a
lower level through circuit synthesis as a separate process.
Thus, classical host languages must partially lend their
operational semantics, obscuring the process of discovering
abstract quantum expressions.

Finally, quantum logic models have quickly emerged
in connection to quantum mechanics and computation
[38], [39]. As expected, these have begun to provide an
axiomatic basis for quantum program correctness at the
circuit level [40] and even type safety through automated
theorem proving [41]. ZX calculus provides a substantial
logic basis with intuitive graphic semantics beyond a de-
vice for circuit simplification [42]. Despite these advances,
being constrained by the circuit model also hampers the
development of high-level logic models required once more
sophisticated abstractions lead the way to operational
semantics with purely abstract instructions.

Bluntly, the preponderance of the circuit model in the
initial formalization of quantum computing –explained by
fundamental unknowns in quantum science- has recently
become an obstacle to achieving true algorithmic expres-
sion as quantum hardware moves from lab experiments
to hardware platforms of increasing size and complexity.
Drawing general lessons from the evolution of classical
computing, it appears that existing quantum program-
ming approaches fail to produce composable procedural
abstractions of the sort described here. Hence, the first
requirement for quantum programming languages aspiring
to achieve high-level algorithmic expressiveness is to help
clarify quantum program semantics by (a) identifying suit-
able candidate abstract theories that fulfill denotational
semantic requirements, (b) producing composable proce-
dural abstractions as either instructions or functions for a
new class of abstract machine that makes no reference to
quantum circuits, thus separating computation in the ab-
stract domain identified prior from hardware that satisfies

the requirements of instructions, and (c) prompting the
development of new logics ensuring program correctness
and validity.

At the same time, and given the substantial investment
in the circuit model and the state of quantum hardware,
pursuing such a research program still necessitates mode-
ling quantum circuits without making them the center of
attention. Thus, a second overarching requirement is to
keep the intellectual effort devoted to circuit building at a
minimum by providing abstractions as early as possible by
means of language tools that quickly encapsulate recurrent
patterns, quantum motifs. When combined appropriately,
features of circuits blur and signatures of composable
procedural abstractions should emerge naturally from
them. This approach substantially constrains the space
of possible host programming languages to those whose
syntax has a small footprint, those including combinators,
and those where functions and operators are separate
entities. A bonus includes host programming languages
where the syntactic cost of expressing facts about states
and operators in Hilbert spaces is as low as possible (i.e.,
native support of complex vector and matrix arithmetic).

B. Pragmatic requirements
Quantum programming languages are expected to facil-

itate problem-solving in the presence of computing plat-
forms bearing quantum resources. The desirable features
for programming notation laid out by Kenneth Iverson in
his 1979 Turing Award Lecture [1] provide a surprisingly
illuminating list for the current state of affairs in quantum
computing. We reinterpret them here in the context of
quantum programming languages.

1) Ease of expressing constructs arising in problems: A
high-level quantum programming language will lend itself
to conveniently express patterns of computation found
across a wide variety of problems, whether these arise as a
consequence of analysis, generalization, or specialization.
We must exercise care in giving preference to combinators,
whether those provided by the host language or new
ones, due to the limited number of algorithms and thus
an equally limited number of known quantum motifs so
far; we remind ourselves of the significantly larger set of
resources present in quantum computers in contrast to
classical counterparts whose expressiveness we have just
started to explore. Ideally, the use of high-level expressions
for circuit descriptions must produce new motifs that,
when composed in clever ways, can become instructions
in a language at a higher level.

2) Suggestivity: A significant goal for quantum pro-
gramming is to suggest motif reuse across different pro-
grams that solve similar problems. Even more successfully,
language users should recognize a common motif after
using the abstraction capabilities present in the language.
This association is critical to connecting problems and
sub-problems, not just programs. A more challenging and
rewarding situation is when a problem cannot be (at least

1003

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

partially) covered by existing motifs, but its organization
suggests a quantum solution. In such cases, creating new
motifs is likely connected to fundamental properties of
quantum computation enabled by new uses of quantum
resources. We want to enable programmers to expand
the vocabulary of motifs, which we expect to produce
new instructions in a QRAM model with no reference to
circuits. Substantial gains can be reaped with these motifs
give rise to new combinators or operators.

3) Subordination of detail: The syntax of a quantum
programming language should translate the separation of
responsibilities into procedural clarity, emphasizing the
effects of the computation over the details of how they
are achieved; this goes beyond existing work on quan-
tum program modules [43]. For instance, phase kickback
connects higher-order interference to reversible, controlled
phase transformations [44]. Accessing higher-order phases
depends, in turn, on properties such as causality, purifica-
tion, and strong symmetry; these details are subordinate
and should not be directly exposed in order to make
use of a generalized phase kickback. A similar detail
occurs with the motif of controlled rotation Rn matrices
in the Quantum Fourier Transform: we are interested
in the periodicities they introduce across a given state,
but the details involved are not directly interesting to
program builders once a verified implementation exists.
Subordination of detail does not translate to obscuring
underlying mechanisms: they must remain accessible, only
at a different level of visibility.

4) Economy: The utility of a quantum programming
language is directly proportional to the number of prob-
lems that can be tackled and inversely proportional to the
number of syntactic constructs required to write programs
for them. With a more extensive set of computational
resources, the number of constructs required to express
quantum computation is poised to grow. Hence, deliberate
choices should be made to ensure a lean syntax from
circuits to composable procedural abstractions toward a
quantum language with sufficiently new and distinguish-
able denotational semantics. In classical computing, func-
tional languages possess substantially simpler syntactic
constructions. Array programming languages go a step
further by providing entire algorithms that operate on a
small number of classes of data structures.

5) Amenability to Formal Proofs: Finally, correctness
and verification guarantees are necessary to ensure pro-
grammer productivity and maximize useful computing
time. While quantum algorithm verifiers at the circuit
level exist, the types of errors these can identify in current
quantum programs is limited. Having composable proce-
dural abstractions will bring new syntactic and semantic
expressiveness, with the caveat that greater expressive
power often comes with limits about what can be proved
correct.

III. Array Programming Languages for
Quantum Computing

We wish to suggest that array programming languages
constitute the most appropriate hosts for quantum compu-
tation, particularly those which support combinators and
have a strong functional orientation. Several facts support
our hypothesis. First, vector and matrix arithmetic rest
at the core of their denotational semantics. Second, many
of these languages –or language libraries- provide native
support for complex numbers, enabling a transparent
manipulation of Hilbert spaces. Third, our search for
syntactic economy narrows the selection to Iversonian
programming languages in which characters –i.e., glyphs-
encode entire algorithms of frequent use directly connected
to mathematical entities. Of these, APL [19], J1 and BQN2

provide the most succinct syntax, yet the communities
around J and BQN are substantially less developed than
that of APL. Fourth, the need for combinators further
constrains the search within APL dialects to Dyalog APL3,
despite not being a fully functional language as BQN.
Figure 1 conveniently depicts the relations between the
programming languages mentioned above.

Figure 1. Array programming language Venn diagram. See https:
//twitter.com/code_report/status/1569808096654163969/photo/1.

APL programming practice bears a rich and informative
history in our search for an expressive and economic
host language for quantum computation. APL started
as an attempt by Kenneth Iverson to regularize existing
mathematical notation and rapidly found a place in the
description of finite sequential processes [45]. Iverson’s
work rapidly evolved into a programming language [46]
with defining the impact of formal systems design [47]
–at the time microarchitecture driven-, manifesting in its
application to the design of the IBM SYSTEM/360 [48].
At the same time, APL informed programming language
design theory early on [49], bringing to the forefront
the role of dualities and identities in program execution,
becoming a programming language for applications as well

1See: https://www.jsoftware.com/#/README.
2See: https://mlochbaum.github.io/BQN/.
3See: https://dyalog.com/.

1004

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

[50]. Part of the evolution of the language resulted in the
distinction between functions and operators, paving the
way for higher-order constructs of substantial sophistica-
tion [51] interpretable as spanning a calculus of operators
[52] whose operational semantics leads to tacit expressions
with right-to-left execution [53]. Despite decreased use and
interest spanning two decades, recent advances in compiler
techniques and GPU availability [54] have made it an
attractive language for various tasks, including implement-
ing neural network models [55], [56]. A comprehensive
contemporary review of APL can be found in [19].

It has not escaped our notice that the account we have
provided of the evolution of APL directly suggests a strong
parallel to the evolution of hardware and software observed
in quantum computing.

IV. quAPL: a Quantum Language Library
We present the features of quAPL, the first stage

in our journey to clarify open questions about quantum
computation and simultaneously bring greater intellectual
productivity to quantum programming. The language at
the current stage is implemented as a library aiming to
fully capture the semantics of quantum circuits with a
code basis as minimal as possible, maximizing the use of
constructs already present in Dyalog APL. In the exposi-
tion below, we have removed the namespace structure to
improve readability. A preliminary, experimental version
of the code is available on GitHub4.

Prior to delving into elements of the library itself, a
few preliminary observations are necessary to understand
the design choices behind quAPL. In particular, we must
explain why it remains conspicuously close to quantum
circuits despite our prior discussion, with the apparent
disadvantage of being symbolically heavy for new users.

Most quantum software stacks, when compared to clas-
sical ones, appear to have some misplaced elements. For
instance, the role OpenQASM, QIR and MLIR play is
properly that of hardware specification language instead
of specifying how instructions execute in a machine whose
architectural components are implementable satisfiable by
many possible circuits, none of which should be exposed
to end users. Quantum compilation [57], the process of
translating quantum logic elements to actual hardware,
is substantially closer to a mixture between signal-level
hardware control, digital design synthesis in FPGAs and
nanoprogramming [58] than to compilation in classical
systems, in which a high-level language is translated into
a machine language agnostic to physical details. Since
we have no quantum abstract machine with instructions,
there is no analogue to microprogramming yet.

It is tempting to argue that thinking about higher
architectural details is premature, or that there is no
a priori reason why a similar hierarchy should emerge
in quantum computing and that the current abstraction

4See: https://github.com/nunezco2/quAPL.

frameworks provide will suffice. Our view is as follows.
Classical and quantum Turing machines are equivalent
in their Turing-computability, thus making it possible to
think in terms of quantum automata of various kinds [59]
and, by extension, their corresponding formal languages.
Different formal languages have different expressive power.
Programming languages are formal languages, and dif-
ferent ones which specify virtual machines arranged in a
hierarchy of simulatability resulting from their differences
in expressive power [60]. As an example, multiple assembly
languages can be implemented at the microprogramming
level, and multiple high-level languages compile to the
same assembly code. Some of these virtual machines will
be implemented closer to the hardware, others to the
software, and others will mediate between both.

Even when quantum mechanics introduces new aspects
to formal languages, the rise of a hierarchy of quantum
virtual machines according to their expressive power shar-
ing properties an a structure similar to that in classical
computing should be expected, and even more, welcomed.
Substantial separation of responsibilities for hardware and
software implementation constitutes the first byproduct of
delineating the boundaries between virtual machines and
their languages. The second one, most relevant for the pur-
pose behind our research, is the discovery and implemen-
tation of composable procedural abstractions described
above. Figure 2 places quAPL in the larger context of
this goal. In consequence, a detailed retrospective look at
the evolution of classical computing architectures should
help us bypass known mistakes: quantum ontogeny should
not have to recapitulate all stages of classical phylogeny,
especially the failed ones. Following theoretically-informed
prescriptions from the start will, in all likelihood, produce
quantum architectures with higher standardization, lower
implementation friction, and in a different class of algo-
rithmic expressiveness.

A. APL Crash Course
We provide here the rudiments of APL used in the

construction of quAPL. The APL syntax is described
in detail in [19]. Succinctly, elements in APL belong to
two distinct categories: those corresponding to values,
and meta-elements. Assignment is represented by ←, and
parentheses group expressions as in other languages.

1) Arrays: Multi-dimensional arrays (i.e., tensors) are
first-class citizens in APL. They can be specified by ex-
tension, using generator functions on integer sequences
created using the iota operator (⍳), by creating arrays
based on a pre-defined shape (⍴), or by re-shaping an
existing array. Complex values are supported by default
as array entries, which can be accessed via square bracket
notation ([]) or positional access functions.
⍝ Arrays by extension

1 2 3 4 5

1 2 3 4 5

1005

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Location of quAPL in relation to quantum stack compo-
nents inferred from the relations between abstract (virtual) machines
and the expressive power of languages they enable. Presently, no
analogues to classical nano- and microprogramming exist, critical for
the emergence of instructions with no reference to logic or hardware
elements; we ultimately seek the development of quantum high-level
languages. Languages are the bottom specify virtual machines imple-
mented closer to the hardware, while those at the top preferentially
build upon composable procedural abstractions.

⍝ Arrays through iotas

⍳5

1 2 3 4 5

⍝ Arrays through shaping

3 3 ⍴ 0

0 0 0

0 0 0

0 0 0

⍝ Arrays through shaping an existing vector

3 3 ⍴ ⍳9

1 2 3

4 5 6

7 8 9

2) Functions: Functions operate on arrays. In this ex-
position, we center our attention on direct (dynamic)
functions (i.e., dfns). A function can be monadic (i.e.,
taking a right argument ⍵), dyadic (i.e., taking both a
left argument ⍺ and a right argument ⍵) or niladic (i.e.,
returns a constant value). Pre-defined functions include
the usual arithmetic functions (e.g., +, ÷), structural
manipulation of arrays (e.g., shape – ⍴, enclose and pick
– ⊂, ⊃), manipulation of array contents (e.g., grade up
and down – ⍋, ⍒), enclose and pick – ⊂, ⊃), and other
system functions. New functions are defined using curly
braces ({, }), where multiple statements are separated
by ⋄. Functions are right-associative to values without
establishing individual precedence rules.

⍝ f(⍺,⍵) = (⍵×5) + ⍺

2 {⍺ + ⍵×5} 3

17

⍝ Compute and reverse 2^i, i=0..⍵

{⌽2*(0,⍳6)} 6

64 32 16 8 4 2 1

⍝ A named function for e^(i⍵)

phase ← {*0J1×⍵}

phase 1

0.54J0.841

3) Operators: Operators in APL implement higher-
order functions in the sense usually found in functional
languages such as Haskell and OCaml. These implement
structure- or syntactic-dependent computation patterns.
Reduction-based patterns (e.g., replicate – /), and combi-
nators (e.g., map and commute – ¨, ⍨) exemplify some of
these. Custom operators, both monadic and dyadic can be
specified similar to functions by means of ⍺⍺ and ⍵⍵ as left
and right parameters, correspondingly. Composition (i.e.,
.) and outer product (∘) are frequently used in matrix
algorithms. Operators are left associative to functions.

⍝ Inner product between two 1D vectors

2 4 6 +.× 1 3 5

44

⍝ Solve the matrix equation A(⍺)×x = ⍵

solve ← {(⌹⍺) +.× ⍵} ⍝ ⌹: matrix inverse

A ← 2 2 ⍴ 2 1 1 2

b ← 2 1 ⍴ 1 0 ⍝ Column vector

A solve b

0.667

¯0.333

⍝ Sum from of 1/2^i, i=0..6

inv_pow_2 ← {÷2*⍵}

+/inv_pow_2¨ 0,⍳6

1.98

We refer the reader to several concise introductions to
APL available online5.

B. States
Single-qubit basis states |0〉 (ground) and |1〉 (excited)

can be correspondingly specified quAPL by means of the
q0 and q1 functions
q0 ← 2 1 ⍴ 1 0

q1 ← 2 1 ⍴ 0 1

which produce column vectors. An arbitrary qubit state
can be specified in one of two ways. The first one operates
by specifying the complex amplitudes directly and com-
puting the resulting normalized linear superposition
qx ← {normalize ⊃+/(q0 q1) ×.+ ⍵}

where normalize corresponds to
normalize ← {⍵÷0.5*⍨(dagger+.×⊢)⍵}

5See: https://mastering.dyalog.com/README.html

1006

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

In the preceding code, converting a ket |ϕ〉 to a bra 〈ϕ|
is performed through the dagger function
dagger ← { ⍉+⍵ }

which applies to a quantum vector state of arbitrary length
and compactly encodes the well-known mathematical def-
inition. Another way to specify a qubit state is by means
of the azimuthal and polar angles θ (⍵) and φ (⍺):
bloch ← {(2○(⍵÷2)),(*(0J1×⍺))×(1○(⍵÷2))}

These definitions become easily extensible to multiqubit
states. To do so, we define the Kronecker product function
using tacit programming.
kpr ← ⊃ (,/ (⍪⌿ (⊂[3 4] ∘.×)))

This definition showcases APL’s advantages for quan-
tum computation in two major ways. First, it unveils
the Kronercker product as a reorganization of a higher
dimensional object, in this case, a 4-dimensional tensor. In
effect, its definition through the outer product ∘ reveals
underlying connections to geometrical algebra. Second,
it is extremely compact, notationally speaking. Defining
a 5-qubit register initialized in the ground state can be
expressed thus as
reg_5 ← q0 kpr q0 kpr q0 kpr q0 kpr q0

Fortunately, we can make use of APL’s replicate (/)
alongside enclose (⊂) and pick (⊃) to avoid unnecessary
repetition. The same can be written as
reg_5 ← ⊃ kpr/ 5⍴⊂q0

With this in mind, one can readily define an addressable
quantum register by means of the function
reg ← {(⍵ 1⍴(⍳⍵)-1),(⍵ 1⍴⊂q0)}

and, conveniently, translate into a state vector by means
of threading the second column of the register containing
a given number of individually initialized qubits on the
ground state.
thread_reg ← {⊃ kpr/⍵[;2]}

Finally, we also provide two functions that facilitate
translating between indices and state vectors. This is par-
ticularly necessary when applying circuit stages to vector
states upon conversion from register notation. The first
of such functions is subregister, which given a state
register and a set of indices obtains only that part of the
state. The condition ensures all indices are present in the
register, or returns empty (⍬) otherwise.
subregister ← { ∧/(⍺ ∊ ⍵[;1])=0: ⍬

(⍺+1)⌷⍨∘⊂⍨⍵

}

To observe its effect, consider the following 4-qubit
register

r4

0 1

0

1 0

1

2 1

0

3 0

1

corresponding to the quantum state |ϕ〉 = |0101〉 =
|ϕ0ϕ1ϕ2ϕ3〉. To select only excited states (3 1) –in that
order- it suffices to compute

(3 1) subregister r4

3 0

1

1 0

1

More generally, subregister also provides a simple
interface to perform qubit permutations to match gate
inputs as needed (e.g., controlled gates). A complete state
permutation (3 1 0 2) is readily realized by

(3 1 0 2) subregister r4

3 0

1

1 0

1

0 1

0

2 1

0

Another common task, particularly when working be-
tween the circuit and vector state representations, is to
perform a similar permutation on individual qubit indices
and have it reflected as a permutation. To achieve this, we
note that mapping a permutation from circuits to vector
states is equivalent to computing the table of indices for a
given number of qubits, reordering the columns resulting
from their binary encoding, and finally reinterpreting the
values back as integer indices. Take the function
tnsidx ← {⍉(⍵ ⍴ 2) ⊤ ((2*⍵) ⍴ (⍳(2*⍵)) - 1)}

and apply it, for instance, to the state |ϕ0ϕ1ϕ2〉. The
corresponding 23 indices for vector state entries in a 3-
qubit system (in binary) are

tnsidx 3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Reordering the state into, say, |ϕ2ϕ0ϕ1〉 changes the
table above as

1007

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

0 0 0

1 0 0

0 0 1

1 0 1

0 1 0

1 1 0

0 1 1

1 1 1

which can then be interpreted into integer values by means
of decode (⊥) with the function specified below.
qrdtotrd←{ 1 + 2⊥⍉⍵⌷[2]⍨∘⊂⍨tnsidx ⍺}

We observe that, despite the small number of primitives,
quAPL conveniently captures vector states in Hilbert
spaces of arbitrary finite dimension.

C. Gates
Quantum gates are naturally specified in quAPL as

complex matrices of size 2n for n qubits. We classify
gates in two main dimensions: depending on whether
these are parametric or not, and depending on whether
they are atomic or composite. Non-parametric gates are
implemented through numerical matrices directly, such as
the Fredkin gate,

FRK

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

while parametric gates correspond to functions that re-
ceive parameters that modulate the definition of the phys-
ical operator being implemented. For instance, the XX(φ)
interaction gate with φ = π/3 becomes

XX ○÷3

0.866 0 0 0.000J¯0.5

0 0.866 0.000J¯0.5 0

0 0.000J¯0.5 0.866 0

0.000J¯0.5 0 0 0.866

Atomic gates can be transparently combined into larger
(multiquibit) gates using the Kronecker product directly.
Creating a 2-qubit Hadamard gate can be achieved by

⊃ kpr/ 2⍴⊂H

0.5 0.5 0.5 0.5

0.5 ¯0.5 0.5 ¯0.5

0.5 0.5 ¯0.5 ¯0.5

0.5 ¯0.5 ¯0.5 0.5

which then can be encoded as a gate-dependent idiom or
motif templated by the dimensionality of a vector state,
thus generalizing it to an arbitrary number of qubits to
store it for repeated use in a quantum algorithm. Then,
defining

template ← {⊃ kpr/ (1⌷2⍟(⍴⍺)) ⍴⊂⍵}

leads to a generalized superposition instruction with initial
state vector iv
superpose ← {

stage ← ⍵ template H

stage ⍵

}

that makes abstract, not concrete reference to state vectors
regardless of their dimension. This generalization applies,
for instance, to creating controlled gates with an arbitrary
number of control qubits. Consider the controlled phase
gates Rn that appear in the Quantum Fourier Transform,
which can be implemented by the function
Rn ← {1∘gCTR P (2×○÷2*⍵)}

It now becomes possible to easily generate the sequence
R2, · · ·Rn gates required for the QFT algorithm by con-
structing a function that uses the dimension of the vector
state in combination with the map function (¨). The
resulting function for a vector state vs becomes
qft_cphase_set ← Rn¨ (1 ↓ ⍳ 2 ⍟ 1⌷⍴ vs)

Note, once more, that producing the corresponding set
of controlled phase gates becomes a motif itself. The func-
tion makes use of the traditional (idiomatic) ID function
to then embed the unitary gate into an adequate control
structure spanned by ⍺ qubits,
gCTR ← {

(n _) ← ⍴ ⍵

ID ← {⍵ ⍵ ⍴ 1, ⍵⍴0}

gate ← ID 2*(⍺ + 2⍟n)

((-⍴⍵)↑gate) ← ⍵

gate

}

a function that can be used to generate arbitrary control
structures, essential to patterns of uncomputation. We
preserve standard controlled gates to avoid unnecessary
computation, but can readily verify the correctness of
implementation by testing that

CNOT ≡ 1 gCTR X

1

and
FRK ≡ 1 gCTR SWAP

1

for instance.

D. Circuits
Circuits are implemented in quAPL by means of stages

that are evaluated right-to-left, in contraposition to circuit
diagrams that follow left-to-right conventions. A stage
constitutes a function that takes a collection of indices
idx, a collection of gates gtx and applies them to a vector
state vs to obtain a new vector state nvs.

1008

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

nvs ← (idx gtx) stage vs

The number and sequence of indices must match the
number of inputs for gates in gtx. For instance, in

st_1 ← ((0 1 2)) (H H H))∘stage

st_2 ← ((2 0) (CNOT))∘stage

st_3 ← ((3) (Rx (○÷16)∘stage

the stage st_1 defines a stage in which three Hadamard
gates are applied to a vector state. We have used jot (∘)
to bind the data structure and curry the function and
ensure it is monadic and right-associative. We note in
st_2 that only two-qubit indices have been specified for
CNOT: qubit 2 controls the outcome of qubit 0. To ensure
greater generality, each stage uses its vector state input
to calculate the dimension of the corresponding Hilbert
space and add identity gates (I) to unspecified qubits.
This is an essential step to remove unnecessary hardware
details from the description of quantum programs and
achieve generality. In st_3, we implement Rx(π/16) on
qubit 3. Using the power operator in APL, we can define
a new rotation in x with k π/16 increments and compute
Rx(5π/16)

Rx16_unit ← ((3) (Rx ○÷16))∘stage

Rx16_k ← {(Rx16⍣⍺) ⍵}

nvs ← 5 Rx16k vs

Thanks to right-to-left associativity of function applica-
tion in APL and tacit (i.e. fixed-point) expressions, a full
circuit with all three stages becomes

circuit ← st_3 st_2 st_1

nvs ← circuit nv

Finally, we provide a single measurement function
measure that collapses the state of a qubit (or group of
qubits) upon usage. Measurements are treated as special
circuit stages, yet information is not directly converted
to classical bits. We make use of qrdtotrd to imple-
ment the addressable qubit measurement effects in qubit
measurements. When used in monadic, right-associative
form, measure collapses all qubits in the register. When
a list of qubit indices is supplied to the left argument,
the corresponding partial measurement is performed. We
assume non-demolition measurements are available.

E. Examples

We present below three paradigmatic cases that ex-
emplify the use of the facilities developed above. While
small, these cases contain measurement, superposition,
and entanglement, essential across quantum algorithms. In
the first two cases, we explore the current capabilities and
limitations of APL and suggest extensions. For the third
case, we show directly the possibilities with both existing
primitives and with the proposed extensions to quAPL.

1) Quantum random deviates: Generating quantum de-
viates requires generating a uniform superposition across
a quantum register of size n initialized at ground level and
then performing a full state measurement. Given that this
case is composed of a uniform superposition and a uniform
measurement, no specialized circuit stage is required. To
convert to a (classical) integer value, we make use of
decode (⊥). In this example, we generate an 8-bit random
integer.
vs ← thread_reg reg 8

rand8 ← 2 ⊥ measure superpose vs

2) 2-qubit Deutsch-Jozsa: We implement the Deutsch-
Jozsa algorithm [61] for the 2-qubit XOR function
f(x0, x1) = x0⊕x1. We first construct the oracle function
using two different stages. Start by defining a 3-qubit
register that includes the ancilla,
n ← 3

vs ← thread_reg reg n

First, note that the resulting circuit contains two CNOT
gates where the index of control qubits decreases while
using the same ancilla for controlled outcome. That is,
qubits 0 to n become controls for qubit n+1. Such a pat-
tern is easy to capture (in reverse order to facilitate stage
application). Since circuit stages can use the corresponding
vector to infer which qubits require identity gates, we can
therefore write the qubit mappings for resulting substages
as the function
stage_ctrls ← {⍵ {(⍵ ⍺) CNOT}¨ ¯1↓((⍳⍵)-1)}

which we make use to create the oracle implementing f

ctrls ← stage_ctrls 2⍟1⌷⍴ vs

oracle_a ← (1 ⌷ ctrls)∘stage

oracle_b ← (2 ⌷ ctrls)∘stage

oracle ← oracle_b oracle_a

We now produce a superposition over all except the
ancilla qubits by setting
Hna ← (n - 1) template H

sup_na_st ← ((¯1↓(⍳n) - 1) Hna)∘stage

and finally, we produce two stages corresponding to the
sequences XH and HX which are ancilla rotations,
an_rot_st ← ((n-1) H)∘stage ((n-1) X)∘stage

an_rot_i_st ← ((n-1) X)∘stage ((n-1) H)∘stage

The last intermediate step requires assembling matching
‘superpose and rotate’ blocks
an_rot_st ← ((n-1) H)∘stage ((n-1) X)∘stage

an_rot_i_st ← ((n-1) X)∘stage ((n-1) H)∘stage

Finally, we can assembly the preparation-unpreparation
blocks and perform the final measurement on all but the
ancilla qubit
prep ← an_rot_st sup_na_st

unprep ← sup_na_st an_rot_i_st

1009

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

vs ← (¯1↓(⍳n)-1) measure unprepare

oracle prepare vs

The code above is lacking in terms of expressive econ-
omy and readability. While the code contains a substantial
number of instances where symmetry is mapped resulting
in lists of curried functions and sequential right-to-left
function applications, these facts are not exploited fully.
This use case suggests the need for left and right maps (¨)
to admit beside and bind (∘) for algorithmically producing
partial functions, an extension to most contemporary APL
implementation. Additionally, having a new compositional
application operator
apply ← { ⍺⍺ ⍵⍵ ⍵}

for two functions f and g as well as a second-order
operator interpretation of reductions (represented here by
//) using it. Supposing for a moment that such features
are available, the code could then be stated in terms of lists
of partial functions. We can even become more succinct by
explicitly leaving stage separation to the end.
n ← 3

vs ← thread_reg reg n

stage_ctrls ← {⍵ {(⍵ ⍺) CNOT}¨ ¯1↓((⍳⍵)-1)}

oracle ← stage_ctrls 2⍟1⌷⍴ vs

Hna ← (n - 1) template H

prep ← (

((n-1) H)

((n-1) X)

((¯1↓(⍳n)-1) Hna)

)

DJ ← apply // ⊃,/((⌽prep) oracle prep)∘¨stage

measure_but ← {(¯1↓(⍳⍺)-1)∘measure ⍵}

nvs ← (¯1↓(⍳n)-1) measure_but DJ vs

Note that (a) we have separated measurement from the
core of the Deutsch-Jozsa algorithm which now acquires
the form of a kernel, (b) that the symmetries in the circuit
become clear through the application of reverse (⌽), and
(c) that we now have lists of curried functions combined
into a single function by means of fixed point notation.

3) Quantum teleportation: Now, using all the above,
we will produce code for Bennett’s quantum teleportation
algorithm [62]. Note that the first two stages of the circuit
(Hadamard gate followed by a CNOT gate) are reversed
and translated one qubit upwards in the circuit. This
suggests the function
translate ← {

s ← ⍵

(1⌷s) ← ⍺ + (1⌷s)

s

}

which then leads to the full solution below.
n ← 3

vs ← thread_reg reg n

EPR ← (

((1 2) CNOT)

((1) H)

)

cROT ← (

((1 2) (1 gCTR Z))

((0 2) (1 gCTR X))

)

QTel ← cROT∘stage measure_but

apply // ⊃,/(

(⌽ ¯1 translate EPR)

EPR

)∘¨stage

nvs ← QTel vs

V. Conclusions
The ability to productively construct programs at an ad-

equate level of abstraction is an unavoidable precondition
for the continued success of any computing technology.
One of the consequences of higher-level languages, as put
by Alan J. Perlis in his Foreword to the Structure and
Interpretation of Computer Programs [63], is to create
a semantic context where “a programmer should acquire
good algorithms and idioms.” In its current form, the
circuit model for quantum programmers makes existing al-
gorithms poorly accessible, new ones hard to envision, and
idioms somewhat of an impossibility. We believe that the
success of quantum computing is intricately tied to how
programming language design will facilitate algorithmic
expression, and how the formal properties of resulting lan-
guages provide guarantees that prevent unproductive or
incorrect software development paths. Also, contributing
to the context in which new standards for quantum hard-
ware and software arise constitutes a major motivation
in quantum hardware-software co-design; current quantum
programming trends are still driven by the diverse offer-
ings of quantum platform vendors, limiting scalability of
adoption. The prevailing mismatch between the increasing
sophistication of quantum hardware platforms, our formal
understanding of what quantum computation means at
a level above circuits, and the persistence of the circuit
model underscores the relevance of our work.

In this manuscript, we presented compelling evidence
in favor of array programming languages with APL as
the alternative satisfying theoretical and pragmatic needs
arising in quantum programming. We described two dif-
ferent kinds of demands on future high-level programming
languages: (a) formal demands that, when satisfied, reveal
deeper theoretical semantics beyond qubits and gates, and
(b) pragmatic demands to ensure broader accessibility
and productivity of quantum programming. The intent
of our work resonates with Marvin Minsky’s assertion
that “programming is a good medium for expressing poorly
understood and sloppily formulated ideas” [64]: building
programming languages more prescriptively may prove

1010

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

useful to unveil the extent of what doing quantum com-
putation means in more abstract terms in the first place,
and then how to harness it to solve practical and ex-
citing problems. For the pragmatic demands, Iverson’s
Turing Award Lecture seems prescient of our needs and
expectations for better means of algorithmic expression in
quantum computing. Our preliminary work on quAPL
demonstrates a promising exploratory path in this sense.

Our future work will concentrate on four main tasks:
(a) complete and ensure the robustness of quAPL for
the generalized description of quantum circuits, (b) imple-
ment known quantum algorithms directly, (c) aggressively
abstract common computation patterns across these algo-
rithms to construct a new library of quantum motifs, (d)
systematically search for arrangements of quantum motifs
capable of giving rise to composable procedural abstrac-
tions in the form of instructions for an abstract quantum
machine that makes no reference to the circuit model,
and (e) possibly build a new programming language on
top of it. In parallel, we plan to implement additional
functionality to connect our research with existing quan-
tum hardware platforms. One of them is transpiling from
quAPL to OpenQASM and QIR intermediate representa-
tion. Another project is exploring the construction of real-
istic hardware simulators with various noise models where
quAPL can run natively. By implementing increasingly
large quantum algorithms and comparing the resulting
code with other programming frameworks, we will be able
to draw relevant comparisons beyond the simple examples
explored here. Our goal is two-fold regarding software
implementations: pushing the expressive range of APL to
test its adequacy across the quantum computing stack,
and at all points maintaining a code base as small as
possible. Due to the inherent complexity of the research
problems found in quantum computing, care must be
exercised to avoid it on the software front at all costs.

As with any application of existing technologies to new
kinds of problems, we believe the code and resulting ex-
amples shown here illustrate some of the tensions and res-
olutions quantum computing will induce on programming
languages in general, and array programming languages
specifically as they serve as host mediating the interplay
between classical and quantum computing resources. For
APL in particular, we foresee the strategic introduction
of broader functional programming semantics, extending
the applicability of existing operators to fulfill higher-order
specifications, and conservatively introducing new glyphs
that encode purely quantum composable procedural ab-
stractions. Substantially more research and practice are
needed in this direction.

Acknowledgment
This work was partially funded by the Illinois Quan-

tum Applications Program, supported by NSF #2016136,
the IBM-Illinois Discovery Accelerator Institute, and the
National Center for Supercomputing Applications via

the Health Care Innovation Team, University of Illinois
Urbana-Champaign. We wish to thank Patrick Snyder
and Brian de Marco at the Illinois Quantum Science and
Technology Center for their support, and Ulises Agüero-
Arroyo at Universidad Cenfotec (Costa Rica) for offering
his expert views on the potential impact of nano and micro
programming on future quantum architectures. We also
thank Richard Park, Aaron Hsu, and Morten Kromberg
from Dyalog Ltd for their valuable interactions regarding
Dyalog APL, and particularly to Adám Brudzewsky for
his expert suggestions via the APL Orchard, yet any code
errors and inaccuracies remain our own. We declare no
competing interest. Finally, we thank our reviewers for
sharp, probing questions that raised the quality of our
manuscript substantially.

References
[1] K. E. Iverson, “Notation as a tool of thought,” in ACM Turing

Award Lectures, 2007, p. 1979.
[2] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler,

A. Geller, M. Troyer, and K. Svore, “Quantum programming
languages,” Nature Reviews Physics, vol. 2, no. 12, pp. 709–722,
2020.

[3] S. Garhwal, M. Ghorani, and A. Ahmad, “Quantum program-
ming language: A systematic review of research topic and top
cited languages,” Archives of Computational Methods in Engi-
neering, vol. 28, pp. 289–310, 2021.

[4] S. S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur, M. Usman,
and R. Buyya, “Quantum computing: A taxonomy, systematic
review and future directions,” Software: Practice and Experi-
ence, vol. 52, no. 1, pp. 66–114, 2022.

[5] A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap,
L. S. Bishop, S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin,
J. M. Gambetta et al., “OpenQASM 3: A broader and deeper
quantum assembly language,” ACM Transactions on Quantum
Computing, vol. 3, no. 3, pp. 1–50, 2022.

[6] J. Luo and J. Zhao, “Formalization of quantum inter-
mediate representations for code safety,” arXiv preprint
arXiv:2303.14500, 2023.

[7] A. McCaskey and T. Nguyen, “A MLIR dialect for quantum
assembly languages,” in 2021 IEEE International Conference
on Quantum Computing and Engineering (QCE). IEEE, 2021,
pp. 255–264.

[8] A. Cross, “The IBM Q experience and QISKit open-source
quantum computing software,” in APS March meeting abstracts,
vol. 2018, 2018, pp. L58–003.

[9] S. Stanwyck, H. Bayraktar, and T. Costa, “cuquantum: Accel-
erating quantum circuit simulation on GPUs,” in APS March
Meeting Abstracts, vol. 2022, 2022, pp. Q36–002.

[10] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and
B. Valiron, “Quipper: a scalable quantum programming lan-
guage,” in Proceedings of the 34th ACM SIGPLAN conference
on Programming language design and implementation, 2013, pp.
333–342.

[11] E. Chitambar and G. Gour, “Quantum resource theories,” Re-
views of modern physics, vol. 91, no. 2, p. 025001, 2019.

[12] D. Deutsch, “Quantum theory, the church–turing principle and
the universal quantum computer,” Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences, vol.
400, no. 1818, pp. 97–117, 1985.

[13] P. Selinger, B. Valiron et al., “Quantum lambda calculus,”
Semantic techniques in quantum computation, pp. 135–172,
2009.

[14] S. Guerrini, S. Martini, and A. Masini, “Quantum turing ma-
chines: computations and measurements,” Applied Sciences,
vol. 10, no. 16, p. 5551, 2020.

[15] N. Botö and F. Forslund, “The zeta calculus,” arXiv preprint
arXiv:2303.17399, 2023.

1011

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

[16] Q. Wang and M. Ying, “Quantum random access stored-
program machines,” Journal of Computer and System Sciences,
vol. 131, pp. 13–63, 2023.

[17] C. Q. Choi, “Ibm’s quantum leap: The company will take quan-
tum tech past the 1,000-qubit mark in 2023,” IEEE Spectrum,
vol. 60, no. 1, pp. 46–47, 2023.

[18] H. Sayginel, F. Jamet, A. Agarwal, D. E. Browne, and I. Rung-
ger, “A fault-tolerant variational quantum algorithm with lim-
ited t-depth,” arXiv preprint arXiv:2303.04491, 2023.

[19] R. K. Hui and M. J. Kromberg, “APL since 1978,” Proceedings
of the ACM on Programming Languages, vol. 4, no. HOPL, pp.
1–108, 2020.

[20] G. Winskel, The formal semantics of programming languages:
an introduction. MIT press, 1993.

[21] J. Bub, “Quantum mechanics is about quantum information,”
Foundations of Physics, vol. 35, no. 4, pp. 541–560, 2005.

[22] J. Hrdina, A. Návrat, and P. Vašík, “Quantum computing based
on complex clifford algebras,” Quantum Information Process-
ing, vol. 21, no. 9, p. 310, 2022.

[23] M. A. Trindade, S. Floquet, and J. D. M. Vianna, “A general
formulation based on algebraic spinors for the quantum compu-
tation,” International Journal of Geometric Methods in Modern
Physics, vol. 17, no. 14, p. 2050206, 2020.

[24] J. Baugh, D. R. Finkelstein, A. Galiautdinov, and H. Saller,
“Clifford algebra as quantum language,” Journal of Mathemat-
ical Physics, vol. 42, no. 4, pp. 1489–1500, 2001.

[25] R. Schott and G. Stacey Staples, “Reductions in computational
complexity using Clifford algebras,” Advances in applied Clifford
algebras, vol. 20, pp. 121–140, 2010.

[26] P. Arnault, “Clifford algebra from quantum automata and uni-
tary wilson fermions,” Physical Review A, vol. 106, no. 1, p.
012201, 2022.

[27] C. Hoekstra, “Combinatory logic and combinators in array lan-
guages,” in Proceedings of the 8th ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array
Programming, 2022, pp. 46–57.

[28] H. Halvorson and M. Müger, “Algebraic quantum field theory,”
arXiv preprint math-ph/0602036, 2006.

[29] G. Basti, A. Capolupo, and G. Vitiello, “Quantum field theory
and coalgebraic logic in theoretical computer science,” Progress
in Biophysics and Molecular Biology, vol. 130, pp. 39–52, 2017.

[30] M. Benini, A. Schenkel, and L. Woike, “Homotopy theory
of algebraic quantum field theories,” Letters in Mathematical
Physics, vol. 109, no. 7, pp. 1487–1532, 2019.

[31] J. Baez and M. Stay, Physics, topology, logic and computation:
a Rosetta Stone. Springer, 2011.

[32] A. van Tonder and M. Dorca, “Quantum computation, cat-
egorical semantics and linear logic,” arXiv preprint quant-
ph/0312174, 2003.

[33] S. Núñez-Corrales, “Quantum abstract machines without cir-
cuits: the need for higher algorithmic expressiveness,” 2023.

[34] R. P. Feynman, “Quantum mechanical computers.” Found.
Phys., vol. 16, no. 6, pp. 507–532, 1986.

[35] B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq: A high-
level quantum language with safe uncomputation and intuitive
semantics,” in Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
2020, pp. 286–300.

[36] C. M. McNally, “Practical modern quantum programming,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2021.

[37] D. Lee, “Formal methods for quantum programming languages,”
Ph.D. dissertation, Université Paris-Saclay, 2022.

[38] J. M. Dunn, L. S. Moss, and Z. Wang, “Editors’ introduction:
the third life of quantum logic: quantum logic inspired by
quantum computing,” Journal of Philosophical Logic, vol. 42,
pp. 443–459, 2013.

[39] E. Rowell and Z. Wang, “Mathematics of topological quantum
computing,” Bulletin of the American Mathematical Society,
vol. 55, no. 2, pp. 183–238, 2018.

[40] J. Bergfeld, Quantum logics for expressing and proving the
correctness of quantum programs. University of Amsterdam,
2019.

[41] L.-J. Dandy, E. Jeandel, and V. Zamdzhiev, “Type-safe quan-
tum programming in idris,” in Programming Languages and

Systems: 32nd European Symposium on Programming, ESOP
2023, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2023, Paris, France, April
22–27, 2023, Proceedings. Springer, 2023, pp. 507–534.

[42] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De Wetering,
“Graph-theoretic simplification of quantum circuits with the zx-
calculus,” Quantum, vol. 4, p. 279, 2020.

[43] P. Sánchez and D. Alonso, “On the definition of quantum
programming modules,” Applied Sciences, vol. 11, no. 13, p.
5843, 2021.

[44] C. M. Lee and J. H. Selby, “Generalised phase kick-back: the
structure of computational algorithms from physical principles,”
New Journal of Physics, vol. 18, no. 3, p. 033023, 2016.

[45] K. E. Iverson, “The Description of Finite Sequential Processes,”
in Proceedings of the Fourth London Symposium on Information
Theory, C. Cherry, Ed., 1960, pp. 447–457.

[46] ——, A Programming Language. John Wiley & Sons, Incorpo-
rated, 1962.

[47] ——, “Programming notation in systems design,” IBM Systems
Journal, vol. 2, no. 2, pp. 117–128, 1963.

[48] A. D. Falkoff, K. E. Iverson, and E. H. Sussenguth, “A formal
description of SYSTEM/360,” IBM Systems Journal, vol. 3,
no. 2, pp. 198–261, 1964.

[49] K. E. Iverson, “Formalism in programming languages,” Com-
munications of the ACM, vol. 7, no. 2, pp. 80–88, 1964.

[50] A. D. Falkoff and K. E. Iverson, APL/360: User’s manual.
International Business Machines Corporation, 1968.

[51] K. E. Iverson, “Operators,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 1, no. 2, pp. 161–176,
1979.

[52] K. E. Iverson, R. Pesch, and J. H. Schueler, “An operator
calculus,” ACM SIGAPL APL Quote Quad, vol. 14, no. 4, pp.
213–218, 1984.

[53] R. K. Hui, K. E. Iverson, and E. E. McDonnell, “Tacit defi-
nition,” ACM SIGAPL APL Quote Quad, vol. 21, no. 4, pp.
202–211, 1991.

[54] A. W. Hsu, “Co-dfns: Ancient language, modern compiler,”
in Proceedings of ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming,
2014, pp. 62–67.

[55] A. Šinkarovs, R. Bernecky, and S.-B. Scholz, “Convolutional
neural networks in apl,” in Proceedings of the 6th ACM SIG-
PLAN International Workshop on Libraries, Languages and
Compilers for Array Programming, 2019, pp. 69–79.

[56] A. Hsu and R. Girão-Serrão, “U-net CNN in APL,” Interna-
tional Workshop on Libraries, Languages and Compilers for
Array Programming – ARRAY 23. Orlando FL, USA., 2023
(accepted).

[57] M. Maronese, L. Moro, L. Rocutto, and E. Prati, “Quantum
compiling,” in Quantum Computing Environments. Springer,
2022, pp. 39–74.

[58] G. F. Casaglia, “Special feature: Nanoprogramming vs. micro-
programming,” Computer, vol. 9, no. 1, pp. 54–58, 1976.

[59] C. Moore and J. P. Crutchfield, “Quantum automata and quan-
tum grammars,” Theoretical Computer Science, vol. 237, no.
1-2, pp. 275–306, 2000.

[60] M. Felleisen, “On the expressive power of programming lan-
guages,” Science of computer programming, vol. 17, no. 1-3, pp.
35–75, 1991.

[61] R. Jozsa, “Entanglement and quantum computation,” arXiv
preprint quant-ph/9707034, 1997.

[62] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, “Teleporting an unknown quantum state via
dual classical and einstein-podolsky-rosen channels,” Physical
review letters, vol. 70, no. 13, p. 1895, 1993.

[63] H. Abelson and G. J. Sussman, Structure and Interpretation of
Computer Programs. The MIT Press, 1996.

[64] M. Minsky, “Why programming is a good medium for express-
ing poorly understood and sloppily formulated ideas,” Design
and planning II-computers in design and communication, pp.
120–125, 1967.

1012

Authorized licensed use limited to: University of Illinois. Downloaded on May 09,2024 at 20:26:11 UTC from IEEE Xplore. Restrictions apply.

