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Abstract

Let G be a simple graph and x’(G) be the chromatic
index of G. We call G a A-critical graph if
X' (G—-—e)=x'(G)—1=A for every edge e of G,
where A is maximum degree of G. Let e = xy be an
edge of A-critical graph G and ¢ be an (proper) edge
A-coloring of G —e. An e-fan is a sequence
F¢=(x,e,y, e, 2z, -, €, Zp) of alternating vertices and
distinct edges such that edge e; is incident with x or y,
z; is another endvertex of e; and ¢(e;) is missing at a
vertex before z; for each i with 1 < i < p. In this paper,
we prove that if min{d (x), d(y)} < A — 1, where d(x)
and d(y) denote the degrees of vertices x and Y,
respectively, then colors missing at different vertices of
V (F*) are distinct. Clearly, a Vizing fan is an e-fan with
the restricting that all edges e; being incident with one
fixed endvertex of edge e. This result gives a common
generalization of several recently developed new
results on multifan, double fan, Kierstead path of four
vertices, and broom. By treating some colors of edges
incident with vertices of low degrees as missing colors,
Kostochka and Stiebitz introduced C-fan. In this paper,
we also generalize the C-fan from centered at one
vertex to one edge.
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1 | INTRODUCTION

Our results in this paper are on simple graphs, but we will mention some definitions and results
on (multi)-graphs (simple graphs or multigraphs). We generally follow the book [17] of Stiebitz
et al. for notation and terminologies. Denote by V (G) and E (G) the vertex set and the edge set
of a (multi)-graph G, respectively; and by [k] the set of first k consecutive positive integers
{1, ..., k}. The (proper) edge k-coloring of a (multi)-graph G is a mapping from E (G) to [k] such
that distinct adjacent edges have different values. Denote by CK(G) the set of all edge
k-colorings of G. The minimum number k, denoted by x’(G), such that C¥(G) # @ is called the
chromatic index of G. For e € E(G), let G — e be the graph obtained from G by deleting the edge
e but keeping its endvertices. An edge e is critical if '(G — e) = ¥'(G) — 1; and a (multi)-graph
G is critical if y'(G —e) = x'(G) — 1 for all edges e of G. Vizing [19, 20] and Gupta [11]
independently proved that A(G) < ¥'(G) £ A(G) + u(G), where A(G) and ¢ (G) are maximum
degree and maximum multiplicity of G, respectively. When G is a simple graph, we have
X' (G) = A(G) or A(G) + 1, and so simple graphs are divided into two families: class one and
class two accordingly. A critical class two graph with maximum degree A is called a (simple)
A-critical graph.

Let G be a critical (multi)-graph, e € E(G) and ¢ € C¥(G — e). For a vertex v € V (G), let
@ (v) denote the set of colors assigned to edges incident with v, and @ (v) = [k] \¢(v), that is, the
set of colors not assigned to any edge incident with v. We call ¢ (v) the set of colors present at v
and @ (v) the set of colors missing at v. Clearly, lp ()| + 1@ (v)| = k for each vertexv € V(G). A
vertex set X C V (G) is p-elementary, or simply elementary, if g (x) N ¢ (y) = @ for every pair of
two distinct vertices x,y € X. Recently, Chen et al. [8] proved the Goldberg-Seymour
Conjecture that if G is a critical multigraph with ¥'(G) = k + 1 > A(G) + 2, then for every
edge e there exists a coloring ¢ € C¥(G — e) such that V(G) is ¢-elementary. Consequently,
V(G) is elementary for every edge k-coloring of G — e. This result gives a complete
characterization for critical multigraphs G with chromatic index at least A(G) + 2. However,
characterizing elementary sets for critical (multi)-graphs with x’(G) = A(G) + 1, in particular,
(simple) A-critical graphs, is an interesting yet challenging problem in graph edge coloring.

Let G be a A-critical graph, e € E(G) and ¢ € CA(G — e). We in general do not know much
about the largest p-elementary sets except the following three outstanding conjectures. Hilton's
overfull conjecture [9, 10]: V(G) is ¢-elementary if A(G) > IV (G)I/3; Seymour's exact
conjecture [16]: V(G) is p-elementary if G is a planar graph; and Hilton and Zhao's core
conjecture [12]: V (G) is p-elementary if the core Gy has maximum degree at most 2, where Gy,
named the core of G, is the subgraph of G induced by all maximum degree vertices. Cao et al.
[5] recently confirmed Hilton and Zhao's core conjecture. The other two of these three
conjectures are remaining wild open. Vizing [19, 20] showed that the vertex set of every Vizing
fan is elementary. Almost all known techniques in studying edge chromatic problems are built
on the elementary properties of Vizing fans and its generalizations. In [17], Stiebitz et al. gave a
survey, up to that time, of the work in this direction. We will give a common generalization
of these results. For x,y € V (G), let Eg(x,y) denote the set of all edges of G joining vertices x
and y.

Definition 1.1 (Tashkinov Tree). Let G be a critical (multi)-graph with x’(G) =
k+1,e € Eg(x,y) and ¢ € C(G —e). A sequence T = (x,e,Y,ei, 2, ep, zZp) of
alternating distinct vertices and distinct edges is called a Tashkinov tree if for each
i € [p], e is incident with z; and satisfies the following two conditions:
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T1. The other endvertex of ¢; is in {x, y, z, ..., zi_1} fori € [p].
T2. p(e)) € a(x) U P(y) and ¢(e) € p(x) U@ (y) U @(zp) for some h € [i— 1] if
2<i<p.

Tashkinov trees are given by Tashkinov in [18], where he proved that if G is a critical multigraph
with ' (G) =k +1> A(G) + 2,e € E(G) and ¢ € CK(G — e), then the vertex set of every
Tashkinov tree is ¢-elementary. Clearly, each Tashkinov tree is indeed a tree. We in the following
notice that Vizing fans and some other well-studied subgraphs are special classes of Tashkinov trees.

1. If we restrict in T1, each e; is incident with x and in T2 h =i — 1, then T is a Vizing fan.

2. If we only impose the above restriction to T1, then T is a multifan introduced by Stiebitz et al. [17].

3. If we restrict in T1, e; is incident with y and e; is incident with z;_; for eachi > 2, then T is a
Kierstead path [13].

4. If we restrict in T1, p > 2 and each e; with i > 2 is incident with z;, then T is a broom defined in
[6, 7].

We notice that not every vertex set of Tashkinov tree is elementary. Let P* be obtained from
the Petersen graph by deleting a vertex. It is not difficult to verify that P* is a critical graph with
x'(P*) = 4, but there exist an edge e and a coloring ¢ € C3(P* — e), such that the vertex set of a
Kierstead path with four vertices is not elementary. For u € V (G), let d(u) denote the degree of
vertex u in G. By imposing degree condition min{d(y),d(z)} < A(G) — 1, Stiebitz and
Kostachka [14, 17] and Luo and Zhao [15] showed that the vertex set of each Kierstead path
(x,e,, e, 2, €, Z2) is elementary. The result has been extended to brooms [6, 7]. We generalize
these results to a much broader class of Tashkinov trees in this paper.

Definition 1.2 (e-fan). Let G be a A-critical graph, e = xy € E(G) and ¢ € CA(G — e). A
Tashkinov tree F¢ = (x, e, Y, e, 21, ..., €y, Zp) is a simple e-fan if in T1 we additionally
require each ¢; is only incident with x or y, that is, e; = xg; or e; = yz;. Furthermore, in the
above definition of simple e-fan if we relax the condition that each z; is distinct by
allowing it with possibility to be repeated one more time, say z; = z; = z with i # j, that
is, edges xz and yz can appear in F¢, then F* is called an e-fan.

(See Figure 1 for a depiction that shows an e-fan F¢ = (x,e,y, e, 7, .., €, Z), Where a
dashed line at a vertex represents a color missing at the vertex). Clearly, a multifan is an e-fan

FIGURE 1 Ane-fan F® = (x,e,y, €1, 21, ---» €65 Z6)
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in simple graphs. Moreover, if F, and F, are two multifans centered at x and y, respectively,
then F, U F,, named a double fan, is also an e-fan. The below Theorem 1.3 shows that the vertex
set of every e-fan provided min{d (x), d(y)} < A(G) — 1 is elementary, which is one of the two
main results of this paper. We will give its proof in Section 4, in which it is worth mentioning
that we first prove the vertex set of some special subsequence (will be called linear e-sequence)
is elementary, then generalize to any two special subsequences and finally to the entire e-fan.
Actually, a Vizing fan is such a special subsequence centered at one vertex in a multifan, so one
can also use our above method to prove the vertex set of every multifan is elementary.

Theorem 1.3. Let G be a A-critical graph, e =xy € E(G) and ¢ € CA(G —e). If
min{d (x), d(y)} < A(G) — 1, then V (F®) is p-elementary for every e-fan F¢. Furthermore,
if F¢ is maximal, that is, there is no e-fan containing F°¢ as a proper subsequence, then

d(x) +d(y) — 2A + > 2d@) + ppe(x,2) + upe(y,2) — 24) = 2,
zZ€V (FO)\{x,y}

where [ (x, 2) and (Y, 2) taking value 0 or 1 are the number of edges between x and z
and between y and 7z in F°¢, respectively.

We notice that Theorem 1.3 immediately gives that all vertex sets of Vizing fans, multifans,
and double fans provided min{d(x), d(y)} < A(G) — 1 are respectively elementary. We also
notice a few applications below.

Corollary 1.4 (Kostachka and Stiebitz [14, 17], and Luo and Zhao [15]). Let G be a A-critical
graph,e = xy € E(G) and ¢ € C*(G — e). For any Kierstead path K = (x, e, y, €1, 21, €2, Z2),
if min{d(y), d(z1)} < A(G) — 1, then V (K) is p-elementary.

Proof. Let ¢’ be obtained from ¢ € CA(G — e) by uncoloring e; and coloring e with color
@(ep). Since @(e;) € p(x), ¢’ is an edge A(G)-coloring of G — e;. Moreover, since
p'(e) € p(z) and ¢'(e2) €' (X)) UG '(¥), F¢ = (y,e1, 2, e, X, €2, %) is an e-fan with
respect to e; and ¢’. By Theorem 1.3, V(F¢) = V(K) is ¢’-elementary, and so
@-elementary. O

Using the same trick in the above proof, we get the following more general result.

Corollary 1.5 (Cao et al. [6]). Let G be a A-critical graph, e =xy € E(G) and
€ CMG—e). For any broom B=(x,ey, e, . e,%), if min{d(y),d(z)}
<A(G) — 1, then V (B) is @-elementary.

2 | ADDING COLORS OF EDGES INCIDENT WITH
VERTICES WITH SMALL DEGREES TO MISSING
COLOR SETS

In this section, we will consider some extensions of the missing color set at a vertex and some
more generally elementary properties and structures. Starting with Vizing's classic results
[19, 20], missing colors have played a crucial role in revealing properties of critical graphs. Let
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G be a A-critical graph, e = xy € E(G) and ¢ € CA(G — e). Woodall [21, 22] treated color ¢ (yz)
of the edge yz as a missing color in @ (y) if d(z) is “small.” This technique was used in [1-4] in
their work on Vizing's average degree conjecture and the hamiltonian property of A-critical
graphs. For a vertex v € V(G), let

#0)={pow) : w#x and d(w) < 2(A(G) - d()}and

Cox (M) =) U @i (V).

Similarly, we define goys (v) and Cyp, (v). Since d (x) + d(w) > A(G) + 2 for every neighbor
w of x [17], we have ¢ (x) = @, that is, Cy,,(x) = @ (x). Similarly, goys(y) = @, that is,
Coy(¥) = @ (¥). Incorporating this idea, Kostochka and Stiebitz [14, 17] extended multifan
as follows. A sequence F°¢ = (x,e,Y, e, - ep, zp) of alternating distinct vertices and
distinct edges is called a C-fan if for each ¢; with i € [p], ¢; € Eg(x, z;) and there exists a h
with 0 < h <i — 1 such that ¢(e;) € Cyx(zr), where zo = y. The vertex set V (F°¢) is called
p-elementary if Cy . (z;) N Cyx(zj) = @ for every two distinct vertices z;, z; in V (F¢), where
0<i<j<pand gz € {xy}

Theorem 2.1 (Kostochka and Stiebitz [14, 17]). Let G be A-critical graph, e € E(G) and
@ € CA(G — e). Then V (F°) is ¢°-elementary for every C-fan F¢.

Definition 2.2 (C-e-fan). Let G be a A-critical graph, e = xy € E(G) and ¢ € CA(G — e).
A C-e-fan at x and y is a sequence F* = (x, e, y, ey, 2, ..., €, Zp) Of alternating vertices
and edges satisfying the following two conditions:

Cl1. The edges e, ey, ..., ¢, are distinct with ¢; = xz; or ¢; = yz; fori € [p].
C2. p(e1) € Cpy(x) U Cpx(¥) and ¢(e) € Cpy(x) U Cpx(¥) U Cy ey (2n) for some
heli—1]if2 <i < p, where w(ey,) is the endvertex of e, in {x, y}.

(See Figure 2 for a depiction that shows a C-e-fan F® = (x,e,y,e1, 2, ..., €, Z6) With
d(u) < 5(A(G) — d(x)) and d(v) < 5(A(G) — d(y)) in a graph G, where a dashed line at a
vertex represents a color missing at the vertex). Since each edge e; with i € [p] is incident with x or

FIGURE 2 A C-e-fan F® = (x, e,y, €1, 21, --.» €6, Z6)
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¥, let w(e;) denote this vertex. Note that some vertices of z,..,Z, may appear twice, say
Zi=2z; =2z with i #j, that is, edges xz and yz appear in F®. In C-e-fan F*, we define
C(p(x) = C¢,y(x), Cg:(y) = C(p,x(y)’ C(p(zi) = Cq;,w(e,-)(Zi) for single z;, and qu(Z) = C¢:,w(e,»)(Zi)
UCyp,w(e (%) for repeated z; and g; with z; = z; = z. The vertex set V (F®) is called ¢p*-elementary
if C,(u) N Cyp(v) = @ for every two distinct vertices u, v in V (F°). The below Theorem 2.3 is the
other of the two main results of this paper, whose proof will be given in Section 5 and has the similar
main idea of Theorem 1.3 but much more complicated.

Theorem 2.3. Let G be a A-critical graph, e = xy € E(G) and ¢ € CA(G — e). For a
C-e-fan F® = (x, e, y, €1, 21, ..., €, Zp), if max{d(x),d(y)} < A(G) — 1 and the following
condition holds, then V (F) is ¢“-elementary.

C3. For any two distinct colors a,f with o € qoju(ei) (z)) and B e govf)(ej) (zj) for
1 <i<j<p, denote by u,v the two vertices, and e’ = z;u and e”" = z;v the two edges
such that p(e’) = o and @(e”) = B, then we have u # v.

Furthermore, if F is maximal, that is, there is no C-e-fan containing F as a proper
subsequence, then the following equation holds:

IC, ()| + 1C, (W) = Z (pe (X, 2) + e (Y, 2) — 2IC,(2)D),
ZEV (F)\ {x,y}

where (X, 2) and ure(y, z) taking value 0 or 1 are the number of edges between x and z
and between y and z in F*, respectively.

3 | NOTATION AND LEMMAS

Let G be a A-critical graph, e = xy € E(G) and ¢ € C*(G — e). For a color a € [A], let E, 4(G)
denote the set of edges colored with a. Let a, § € [A] be two distinct colors and H be the
spanning subgraph induced by E, ., (G) and E, g(G). Clearly, every component of H is either a
path or an even cycle which are referred as («, 3)-chains of G. If we interchange the colors o
and g on («, 8)-chain C, then we obtain a new edge A-coloring of G, wrote by ¢/C, which is
also in CA(G — e). This operation is called a Kempe change. Furthermore, we say that a chain C
has endvertices u and v if C is a path joining vertices u and v. For a vertex v of G, we denote by
P,(a, B, ¢) the unique (a, )-chain containing the vertex v. For two vertices u, v € V (G), the
two chains B, (a, 8, ¢) and B, («, 8, ¢) are either identical or disjoint.

Lemma 3.1 (Stiebitz et al. [17]). Let G be a A-critical graph, e = xy € E(G) and
@ € CA(G —e). And let F = (x, e, Yo €1, Vis o> ep,yp) be a multifan at x, where y, = y.
Then the following statements hold:

(@) V(F) is p-elementary.
(b) Ifa € §(x) and B € &(y) for 0 <i < p, then P(a, B, ¢) = P, (a, B, ).

The following lemma is a simple corollary of Lemma 3.1.
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Lemma 3.2 (Stiebitz et al. [17]). Let G be a A-critical graph. Then for any edge
e=xy € E(G) and ¢ € CA(G — e), we have d(x) + d(y) > A + 2.

Lemma 3.3 (Kostochka and Stiebitz [14] and Stiebitz et al. [17]). Let G be a A-critical
graph, e =xy € E(G) and ¢ € CA(G — e). And let F¢ = (x, e,Y,, €1, )}, - €ps yp) be a
C-fan at x, where y, = y. Then the following statements hold:

(a) V(F¢) is ¢-elementary, that is, Cpox(x) N Cpx(y) =@ for i=0,1,..,p, and
C(p,x(yi) N C¢:,x()’}') =@ for0<i<j<p.
(b) Ifa € Cpx(x) and B € Cy () for 0 < i < p, then P(a, B, ¢) = P, (a, B, ).

In a A-critical graph G with e = xy € E(G), a vertex u is called a small vertex with respect to

(

x (with respect to y, respectively) if d(u) < A_Td(x) d) < A_Tdy), respectively). We list the

following simple facts [14, 17].

Lemma 3.4. In a A-critical graph G with e = xy € E (G), for any small vertices u, v with
respect to x (with respect to y, respectively), we have 1(x)Nngm)ng®) >1
(p(y) n @) n @)l > 1, respectively). In particular, provided d(x) < d(y), no matter
u and v are small vertices with respect to x or y, then we have lp(x) N p(u) N p(v)| > 1.
Furthermore, if d(x) <A(G)—1 and u is a small vertex with respect to x
d(y) < A(G) — 1 and u is a small vertex with respect to y, respectively), then we have

)N e =2 01p(y) N @)l > 2, respectively).

4 | PROOF OF THEOREM 1.3

In a simple e-fan F°=(x,e,y,e1, 2, --s ep, zp), a linear e-sequence is a subsequence
(x.e,y,ey, 2y, - €,2,) With 1 <L <bhb <:-<Il;<p such that p(e,) € p(x) Up(y) and
p(e;) € @(z;,_,) for 2 <i <. Specifically, a linear e-sequence is a x-generated e-sequence if
p(e,) € p(x), or a y-generated e-sequence if p(e,) € p(¥).

Proof. Inthee-fan F¢ = (x,e,y, ey, 21, ..., €p, Zp), if z; = z;with1 <'i < j < p, we delete the
edge ¢; and the vertex z; from F¢. By the definition of e-fan, one can easily check that the
remaining sequence is still an e-fan. Repeat the above operation. Finally, we get a simple e-fan
F'® with respect to the e-fan F¢. Obviously, V (F¢) = V (F’¢). Hence, we may assume that the
original e-fan F* is a simple e-fan. We show the following two claims.

Claim 1. The vertex set of any linear e-sequence is elementary.

Proof. Suppose that Claim 1 is false. Without loss of generality, we choose ¢ such that
there exists a y-generated e-sequence S, = (x, ey, Y, ey, 2y, ---» €1, Z1,) With e, = e, whose
vertex set is not elementary with s as small as possible. Note that e, = xg;. Let
ple,) =B, € p(y)and p(e) =B, € p(z;_,) for2 < i <s.

If s <1, then S, is a Vizing fan at x, which has elementary vertex set by Lemma 3.1.
We assume s > 2. By the minimality of s, V' (S,)\{z;} is elementary. Together with the
definition of y-generated e-sequence, we have that for any color 3 € @ (x), no edge in
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E (Sy) is colored with y;; for any color ,, ify, € @(y) ory, € @(z;) for1l <i <s — 1, then
only the edge e, or e;,, in E(S,) may be colored with y,. We will use above facts about S,
without explicit mention. The following observation will also be used very often.

L. For any two colors y;, € @(x) and y, € §(z;) with1 <i <s — 1, we have y, # y, and
B v ) = 1)Z1i 7 ¥ @)

Proof. Recall that V(S))\{z;} is elementary. We easily have p #y, Suppose
B.(71s ¥ ®) # By, (11> V5> ¢). For the path B, (34, 75, ¢), one endvertex is z;, and the other
endvertex is some vertex z’ # x. Note that 2’ & {y,zy, ..., Z;,_,} and none of e, ..., e, is
colored with y; or y,. Hence, the coloring ' = ¢/F, (13, 7, ¢) satisfies ¢’(e;) = p(ey)
for each j € [i, ') =@(x), ¢ "(y) =@ (), ¢ '"(z1) = §(zy) for each j € [i — 1] and
?'(z1) = (@ @)\{1n}) U {5}. Consequently, the coloring ¢’ results in a new y-generated
e-sequence S; = (X, e, ¥, €y, Zyy» - €1, 21) With % € @ '(z,) N @ '(x), contradicting the
minimality of s. This completes the proof of the observation I. O

Subclaim 1.1. 'We may assume that @ (z;,) N @ (x) # @.

Proof. Since V (S,) is not elementary, and by the minimality of s, there exists a color
ne o) nalx,y zy . 2_}) Ifn € pz,) N @(x), then we are done. Otherwise, we
have ¢ (z,) N ¢ (x) = @andn € §(z,) N ¢ ({y, 2, ---» 21,_,}), thatis, n € @ (z1,) N @(y) or
n € @) N @({Zy - 2,}). By the definition of S,, we have 7 # 8, € ¢(z;,_,). Let
a € @(x).Since p(z;) N @ (x) = @, we have o # 1 and a € ¢(z;,). Note thatifn € @ (),
then P, («, 1, ) = P,(a, 0, ¢) by Lemma 3.1 since Vizing fan (x, e;,, ). Also if n € @ (zy),
then P.(a, 7, ) = leI (a,m,9) for 1 <i<s—1 by the observation I. Therefore,
P.(a,n, ) and B, (a, 7, ¢) are disjoint. For the path P = B, («, 7, ¢), one endvertex is
z;, and the other endvertex z’ & V (S,), and we have E,,(P) N E(S,) = @. Note that if
n =B, € p(y), then e, is on P (a, n, ¢). To further discuss E,,(P) N E(S)), we consider
the following two cases.

If =4, and e,, is on P for n € p(z,) and 1 <i<s—2, then we have
E,,(P) N E(Sy) = {ey,,}. Hence, the coloring ¢, = ¢/P satisfies ¢,(e;) = p(e;) for
J#Lo(e,) =0 o () =9x),o ()=o), ? ) =&z, for each j € [s — 1] and
?,(z1) = (P (zi)\{n}) U {a}. Consequently, the coloring ¢, results in a smaller x-generated
e-sequence (X, ey, Y, €y,,,, 2y, - €l 1) With  a € @,(z;,) N @;(x), contradicting the
minimality of s.

Ifnep(y),orn# B, forn € P(zp)andl1 <i<s—1lory= B,,,, and e, is not on
P for n€ @(z;) and 1 <i<s—2, then we have E,,(P) N E(Sy) = @. Hence, the
coloring ¢, = /P satisfies @,(e;) = ¢(e;) for each je€ [s],5,(x) =P (x), 7, (y) =
(), p(z) =p(z,) for each je[s—1] and & (z1) = (@@ )\{N}) U {a}.
Consequently, S, is still a y-generated e-sequence with a € §,(z;) N @, (x), as desired.
This completes the proof of Subclaim 1.1. O

By the subclaim above, we assume that there exists a color 7 € @(z;) N @ (x). To reach
contradictions, we consider the following two cases.

Case 1. ¢, = xz;..
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Note that ¢ (e,) = B € $(z),_,) and none of ey, ..., e;,_, is colored with §; or 7. Recolor e,
with 7 to obtain a new coloring ¢;. Thus Sy’ = (X, e}, ¥, €y, 2> ---» €1,_p, Zi,_,) IS @ new y-generated
e-sequence under ¢, such that 8, € ¢,(z;,_,) N &, (x), contradicting the minimality of s.

Case 2. ¢, = yz;..

By the observation I, we have B.(n, 8, ¢) = B,_ (1, B;, ). For the path P = B, (9, B, ¢),
one endvertex is z;, and the other endvertex 2z’ & V (S,), and we have E(P) N E(S)) = {e,}.
Let ¢, = ¢/P. Hence (x, e}, Y, ey, 2y, -, €,_,,Z,_,) is still a y-generated e-sequence under
¢, whose vertex set is still elementary, and (y,e,, X, e, ,z;) is a Vizing fan at y
under ¢; since ¢,(e;,) =71 € §,(x). Since min{d(x), d(y)} < A — 1, there exists a missing
color § € §,(x) U @,(y) such that § # 7, ;. Suppose S € p,(x). We have B(6, B, ¢;) =
P, (8, B, ;) by Lemma 3.1, since otherwise, the coloring ¢’ = ¢, /E, (3, B, ;) results in
de€@’(z) N @'(x), which is a contradiction. But we have P, (6, B, ¢1) = B, (6, B, ®,) by
the observation I, giving a contradiction. Similarly, if § € @,(y), then B, (S, ,Bls, ®) =
B, (6, ﬁ,s, @) by Lemma 3.1. But P,(J, ,8,5, ) =FE, (S, ﬁls, ®,), also giving a contradiction.
This completes the proof of Claim 1. O

Claim 2. The union of vertex sets of any two linear e-sequences is elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose ¢ such
that there exist two linear e-sequences S;=(x,e,),e;, 2y, .., €1,2;) and S, =
(x, ey, e/, 2y s ey, z;)) whose vertex sets have common missing color with s + ¢ as
small as possible, where s, t > 1. Note that V' (S;) and V (S;) are elementary by Claim 1. By
the minimality of s + ¢, we have z;, # z;’ and there exists a color 7 € @ (z;,) N @ (z;/). Since
min{d (x), d(y)} < A — 1, there exists a missing color § € @ (x) U @(y) such that § is
different from the colors ¢ (e;) and ¢ (e;/) which are also in @ (x) U @ (y). (¢(e;) and ¢ (ey)
could be the same color). Assume 6 € ¢ (zo), where z, € {x,y}. Then B, (6,7, ) =
P, (8,7, ¢), since otherwise, for the coloring ¢’ = ¢/P, (3, n, ¢), we have S, is still a linear
e-sequence under ¢’, but§ € @ '(zo) N @ '(z;,), giving a contradiction to Claim 1. Similarly,
we have P, (6,7, ¢) = B, (8,1, ). Hence 2o, z;, and z;; are endvertices of one (8, n)-chain,
which is a contradiction. This completes the proof of Claim 2. O

Now we are ready to show that V (F¢) is elementary. Suppose not. Note that {x, y} is
elementary and each linear e-sequence in F¢ contains vertices x and y. There exist one
color 7 and two distinct vertices z; and z; in V (F¢) such that n € @(z;) N ¢ (g;), where
0<i<j<p and zo € {x,y}. By the definition of simple e-fan, there exist two linear
e-sequences (may not be disjoint) with z; and z; respectively as the last vertex, which is a
contradiction to Claim 1 for i = 0 or a contradiction to Claim 2 for 1 <i < p — 1. This
proves that V (F¢) is elementary.

Now we show the “furthermore” part. We assume that F¢ is maximal. Let the edge set
I' = {e}, ..., ey} and the color set I'' = (Uzev )@ (z). Note that ¢ (x), »(y) and @ (z;) for each
i € [p]are disjoint since V' (F¢) is elementary. Let I'* = {p(ey), ..., ¢ (e,)} be a multiset. We have

p=Il= > (upe(x,2) + upe(y,2)) = IT*. o
z€V (F9)\{x,y}
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Now we calculate IT*| in another way. By the definition of e-fan, ¢ (e;) € I” for eachi € [p].
By the maximality of F¢, for any color a € I, o appears exactly once in'* ifa € §(x) U @ ().
Otherwise, a appears exactly twice in I'*. Thus we have

T* = 1 () + 12 (¥) + > 2 @)
ZEV (FO)\{x,y}

(2
Combining Equations (1) and (2), we prove that

dx) +d(y) —2A + > (2d@) + ppe(x,2) + pUpe(y,2) — 28) = 2
zZ€V (FO)\{x,y}

since (x)=A—-dx)+1,(y) =A—d(y)+1 and &(z) = A — d(z). The proof is now
finished. O

5 | PROOF OF THEOREM 2.3

Note that when d(x) # d(y) the values of 1Cy () (i) and 1Cy () (2;)| may not be equal for
repeated vertices z; = z; with i # j in C-e-fan F*. We define simple C-e-fan if we further require
that vertices x, y, z, ..., Zp are distinct except the repeated vertices z; = z; with 1 <i<j<p
such that Cyu()(2i) C Copuwey(z) in the definition of C-e-fan. In a simple C-e-fan
F*=(x,e,y,e12,..€pZp), a linear ce-sequence is a subsequence (x,e,y, ey, 2y, ..., €1, 21,)
with1 <L <L < - <l < p such that p(e,) € Cp,(x) U Cpx(y) and p(er) € Copw(e,_)(Z1_,)
for2 < i <'s. Specifically, a linear ce-sequence is a x-generated ce-sequence if p (e;) € C ,(x), or
a y-generated ce-sequence if p(e,) € Cy ().

Proof. 1In the C-e-fan F* = (x,e,y, ey, 2, ..., €p, Zp), if 2y =2 with 1 <i<j<p and
Cow(e)(@i) 2 Cpuwi(e)(z)), we delete the edge e; and the vertex z; from F*. By the definition
of C-e-fan, one can easily check that the remaining sequence is still a C-e-fan. Repeat the
above operation. Finally, we get a simple C-e-fan F'® with respect to the C-e-fan F¢,
Obviously, V (F®) = V (F'*) and the C, (1) in F* is the same as the C,(u) in F'* for each
vertex u. Hence, we may assume that the original C-e-fan F is a simple C-e-fan. We
show the following two claims.

Claim 1. The vertex set of any linear ce-sequence is p“-elementary.

Proof. Suppose that Claim 1 is false. Without loss of generality, we choose ¢ such that
there exists a y-generated ce-sequence S, = (x, e;,, ¥, ey, 2, -, €1, <) With e;, = e, whose
vertex set is not ¢“-elementary with s as small as possible. Note that e, = xz;. Let
pley) = B, € Cpx(y) and g(e) = B, € Copu(e, )(21_,) for 2 <i <s. We consider the
following two cases of s.

First we consider the case s < 1. It is easy to see that S, is a C-fan at x. By the
statement (a) of Lemma 3.3, we have C, ,(x) N Cyx(y) = @, Cpx(x) N Cp(z4) = @ and
Cox(¥) N Cyx(z1) = @. Recall that Cy,(x) = @(x). Since we suppose that Claim 1 is
false, there are four subcases left to consider.
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If there exists 7 € <pys (x) N @ (), then it contradicts Lemma 3.3 since C-fan (y, ¢;,, x) at y.
If there exists 7 € goys (x) N @;(y), then there is an edge e’ = xu such that u # y, p(e’) =7
and d(u) < A%d(y), and there is an edge e¢” =yv such that v # x,¢(e”) =7n and
diw) < A%d(x). Obviously, u # v. Recall that max{d(x),d(y)} < A — 1. It follows from
Lemma 3.4 that there are two colors ; € @ (x) N @ (v) and 6, € ¢ (y) N ¢ (u) with &, # ;.
We have &; # &, and P, (81, 62, ¢) = P,(81, 62, ¢) by Lemma 3.1 since Vizing fan (x, ¢;,, ).
Apply Kempe changes on B, (81, 6, ¢) and B, (61, 6, ¢) to get a new coloring ¢, such that
51 € @,(x) N @;(u) and 8, € @;(¥) N @, (v). Recolor the edge e’ with §; and the edge e” with
d, to get a new coloring ¢, such that 7 € &,(x) N @,(y). Now by coloring the edge e with 7,
we color the entire graph G with A colors, which contradicts the fact that y'(G) = A + 1.

If there exists € cp; (x) N @ (zy), then there is an edge e’ = xu such thatu # y, p(e’) = 7
andd(u) < A%d(y). Since max{d (x), d(y)} < A — 1, it follows from Lemma 3.4 that there is
acoloré € (y) N @ (u) with § # §,. We have x € B,(n, 6, ¢) = B,(n, 6, ) by Lemma 3.3
since C-fan (y, e;,, x) at y. Recall that S, = (x, ey, y, €, Z;,) is a C-fan at x. The coloring
¢, = ¢/B, (1,8, ) results in § € §,(z;,) N @, (y), which contradicts Lemma 3.3 because S,

is still a C-fan at x under ¢;.

If there exists 7 € goys (x) N ¢:(z;), then there is an edge e’ = xu such that u #y, ¢
(Y=nandd(u) < A_Td(y), and there is an edge e” = z; v such that v # x, p(e”) = 7 and
d@) < A_Td(x). Obviously, u # v, and we have v # y by Lemma 3.2. By Lemma 3.4, there
are two colors & € p(x)N@ () and 5 € p(y)Np(u) with &, # B,. We have
P.(61, 62, ¢) = B,(61, 62, ¢) by Lemma 3.1 since Vizing fan (x,e;,y). Apply Kempe
changes on B,(8;, 8, ¢) and P(8,8;,¢) to get a new coloring ¢, such that
61 € ¢,(x) N @;(u) and 5, € @,(¥) N &, (v). Note that S, = (x, ey, ¥, ey, zy,) is still a C-fan
at x under ¢,. Recolor the edge e’ with &; to get a new coloring ¢,. Thus
7 € §,(x) N Cy,x(z1,), which contradicts Lemma 3.3 because S, is still a C-fan at x under
®,. This completes the proof of Claim 1 for s < 1.

Now we consider the case s> 2. By the minimality of s, V(Sy\{e;,z;}) is
p“-elementary. Together with the definition of y-generated ce-sequence, we have that
for any color y € Cy,(x), no edge in E(S,) is colored with y; for any color ,, if
% € Cox(¥) Or ¥, € Cpu(e(z1) With 1 < i <s— 1, where z;, is not a repeated vertex,
then only the edge e, or e;,, in E(S,) may be colored with y,; for any color 3, € C,(2),
where z is a repeated vertex with z = z;, = z;;and1 < i <j < s — 1, only the edge ¢;,,, or

€l

in E(Sy) may be colored with y,. We will use above facts about S, without explicit
mention. The following observation will also be used very often.

II. For any color y with y€@(x)U@(y) and y # B, if color y, € §(z;)
with 1<i<s-—1, then we have y#y, and B, % ¢) = B,(0, % ¢) or
B 12 #) = B, (00 7 9); i 1, € @, (1) with 1 <i<s—1, denote by u the
vertex and e’ = z;u the edge such that ¢(e’) = y,, and further provide y, € @ (u),
then we have z;, € B, 15, @) = B, 2, @) o1 2, € B, (%, 12, @) = B, 12 @)

Proof. We first assume y, € @ (x). Recall that V (S, \{e;, z;.}) is p“-elementary. We easily
have y; # y, and y, € @(x). Suppose P (¥, 15, ®) # By, (> V2o ) (Be (71> Yo @) # B(11> V20 9,
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respectively). For the path B, s v @) (B.(7y» 75 @), respectively), one endvertex is z;, (i,
respectively) and the other endvertex is some vertex z’ # x. Note that 2’ & {y, 2y, .... 2;,_,}
and none of ey, ..., ¢, is colored with y,. Since z; may be a repeated vertex in S, we
consider the following two cases. If z;, is not a repeated vertex or z;, is a repeated vertex
with z;, =z, and 1 <i <k <5 — 1, then none of e, ..., e, is colored with y,. Hence,
the coloring ¢, = /B, (1, 72, #) (1 = ®/B.(71, ¥ #), respectively) results in a new
y-generated ce-sequence S, = (x, ey, Y, €y, 2y, - €1,2)  With 1 € @(z1) N @) (x)
7 € Cywie(@1) N @, (x), respectively), contradicting the minimality of s.

If z;, is a repeated vertex with 7, = z;,and1 < k < i <'s — 1, then only the edge ¢ ,, of
ey, -, €, may be colored with y,. We claim that e;,,, is not on B, (71, v, #) (B33, ¥ 9)s
respectively). If p(e;,,,) # ¥, then we are done. If p(e;,,,) = y, and e, = xz;,,,, then e,
is on P.(3;, %, ¢), and we are also done. If p(e,,,) = ¥, €,,, = ¥Z,,, and e, is on
B, 0n 70 @) (B(n.7»9). respectively), then the coloring ¢’ = ¢/P, (.7 9)
(@ = @/B.(1y, v5» ), respectively) results in a smaller x-generated ce-sequence
(X, €1 Y5 €1y y1> Zpyyps -» €1 21,) SINCE @' (e, ) =% € P '(x) such that €@ '(z)) N &' (x)
"1 € Cprw(ep@) N @ '(x), respectively), contradicting the minimality of s. Now
we have that e;,, is not on B, (1, %5, ) (B.(11, 7 ), respectively). Let the coloring
¢ =@/B,(n v ) (91 = ¢/B (71, 15, ), respectively), which results in a new
y-generated ce-sequence S, = (x, ey, Y, €y, 2y, - €1,21,)  With 1 € @(z1) N @) (x)
" € Copwiep(@1) N @, (x), respectively), also contradicting the minimality of s. This
completes the proof of P (1, ¥, @) = B, (1 V2, @) (B (13, 12, ®) = B0, 1, @), respectively).
Similarly, we have P, (33, v, ®) = B, (%1, 2o #) (B, (%1 2o $) = B(11, 12> $), respectively) for
nE€P(y)and y # B;. O

By the minimality of s, we have that either z;, is not a repeated vertex or z;, is a repeated
vertex with z;, = z;, and Cyw(e,)(@1) C Cpw(e,)(21,), where 1 <k <'s. By the minimality of
s again, there exists a color 7 € Cpu,)(@,) N (Coy(x) U Cor(¥) U Cpuey(@1)) with
1<i<s-—1 And if g, is a repeated vertex with z;, =z; and 1 <k <s, then we have
1 € Coune @\Comwie) @) = By @I\P e, ) (@1)- Let & € §(x).

Subclaim 1.1. We may assume that Cy, y(,)(21,) N @ (x) # &.
Proof. To prove the above subclaim, we consider the following three cases.
Case 1. 1) € Cyu(e,) (1) N Cpy ().

Ifn € Cyuwiey(z1,) N @ (x), then we are done. Otherwise, first suppose 7 € @ (z;,) N qoys x),

then there is an edge e’ = xu such that u #y, p(e’) =7 and d(u) < A%d(y). It follows
from Lemma 34 that there is a color § € @(y)N@(u) with 6 #p,. We have
x € P,(n,6,9) =B (1, 5,p) by Lemma 3.3 since C-fan (y, ey, x) at y. The coloring
¢, = ¢/B, (0,6, p) results in § € §,(z;,) and Sy, is still a y-generated ce-sequence under ;.
We have P, («, 6, ¢;) = B(«, 6, ¢;) by Lemma 3.1 since Vizing fan (x, e;,, y) under ¢,. Then
the coloring ¢, = ¢, /P, («, d, ¢,) results in x € §,(z;,) N P, (x), which is as desired because
Sy is still a y-generated ce-sequence under @, and Cy v (e,)(21,) N @, (X) # B.
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Now suppose 7 € ¢Vi(el,) (z1) N qoys(x). Thus there is an edge e’ = xu such that
u#y,e)=n and d(u)sA_Td(y), and there is an edge e” =z, v such that
v#Ewe).pe) =7 and d) < =T
following two subcases. If d(x) < d(y), then by Lemma 3.4, there is a color

depx)np(u) N @(v). Recolor the edge e’ with § to get a new coloring ¢; such
that 7 € (¢, iv(els)(zlx) N @,(x). Then we are done because S, is still a y-generated

Obviously, u #v. We consider the

ce-sequence under ¢; and Cy, w(e,)(21,) N @, (x) # @. If d(x) > d(y), then by Lemma 3.4,
there is a color € @(y)NPm)Np(). We have P(«,6,9)=PF(ad, p) by
Lemma 3.1 since Vizing fan (x, e;,, ). Note that e, is on P(«,d, ¢) if § = ,811. Apply
Kempe changes on B,(«,9d,¢) and R(«,d,9) to get a new coloring ¢, such that
a € @,(x) N ,(u) N @,(v). Since Sy, is still a y-generated ce-sequence under ¢,, we are
in the previous subcase in this paragraph with « in place of 8.

Case 2.1 € Cyuw(e)(@1,) N Cox(¥).

If ne€@(z)Nn@(y), then we have P.(a,n,p) = P(a,n,¢) by Lemma 3.1 since
Vizing fan (x,e;,y). Note that e, is on P.(a,7,¢) if n= 511- Then the coloring
¢, = @/B, (a,n,¢) results in a € §,(z;) N P;(x), as desired because S, is still a
y-generated ce-sequence under ¢, and Cyp (,)(21,) N &, (X) # @.

If n € (z;) N @;(y), then there is an edge ¢’ = yu such that u # x, p(e’) =7 and
d(u) < A%d(x). By Lemma 3.4, there is a color § € (x) N (u). We have y € B,
(1,38, 9) = R(n, 5, ) by Lemma 3.3 since C-fan (x, e;,, y, e, 7;,) at x. Note that e; is on
P.(, 6, ¢) if n = f,. Then the coloring ¢, = ¢/P,, (1, 5, ) results in & € @, (z1,) N P, (x), as
desired.

If ne qo‘;(els) (z),) N @(y), then there is an edge e’ =z, u such that u # w(ey),

(€)=7 and d(u) < =22
d e pwley)) N @(u) with § # n. We consider the following two subcases. If w(e;) = x,
then we have P.(3, 6, ) = B,(n, 6, ¢) by Lemma 3.1 since Vizing fan (x, e;,, y). Note that
e, is on P(n,8,9) if n=p,. Then the coloring ¢, = ¢/E (1,6, ¢) results in
0 € (p)x(z1,) N @, (x), as desired. If w(e,) =y, then we have P(a, 34, ¢) = P,(a, J, ¢)
by Lemma 3.1. Note that e, is on P(a,6,¢) if 6=p,. Then the coloring
®, = ¢/P(a,6,p) results in o€ p,(u). We have P(a,n,9,) =P(x,n,¢,) by
Lemma 3.1 since Vizing fan (x, e;,, ¥) under ¢,. Then the coloring ¢, = ¢, /R.(a, 1, ¢,)
results in a € (¢;)(z1,) N @;(x), as desired.

Ifn e cpjv(e[s) (z1,) N ¢;(y), then there is an edge e’ = yu such thatu # x, p(e’) = n and

. It follows from Lemma 3.4 that there is a color

du) < A_Zd(x), and there is an edge e” =z, v such that v # w(e,), p(e”") =7 and

dwv) < w. Obviously, u #v. We consider the following two subcases. If
d(x) < d(y), then by Lemma 3.4, there is a color § € &(x) N @(u) N @ (v). We have
Yy € P.(n,6,9) = B(n, 5, ) by Lemma 3.3 since C-fan (x, ¢;,, , ey, z;,) at x. Note that e;,
is on P(n6,¢) if n=p,. Then the coloring ¢, =¢/R(1,6,¢) results in
e (%)fw(elx) (z1) N @,(x), as desired. If d(x) > d(y), then by Lemma 3.4, there is a
color 6 € p(y) N @(u) N (v). We have P(a,d, ) = P,(a, §, ) by Lemma 3.1. Note
that e;, is on P («a, 8, ) if § = [311. Apply Kempe changes on E,(«, 8, ¢) and R,(«a, §, ¢) to
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get a new coloring ¢, such that a € ,(x) N @,(u) N @,(v). Thus we are in the previous
subcase in this paragraph with « in place of 6.

Case 3.7 € Cpuw(e)(@1) N Cpw(ey@y) for1 <i<s—1.

By the minimality of s, we have z,#2z,. If ne€@,) Ny, then
B.(a,n, @) = Pz,l_(oc, n,¢) by the observation II. For the path P =P, (a,7,¢), one
endvertex is z;, the other endvertex is z’ & V(S,) and E,,(P) N E(Sy) = @. To apply
Kempe change on P, we should discuss the following E, ,,(P) N E(S,). Let z;, = z;, with

1 <i#j<s—1if g, is a repeated vertex in S,. Note that only one of ¢, , ¢;,, may be

i+1°
colored with 7. We consider the following two subcases. If » = 8, and ey,
7N = ﬁlw and e;,, is on P by symmetry), then E,,(P) N E(S,) = {ey,,} and the coloring

ison P (or

@, = ¢/P results in a smaller x-generated ce-sequence (x, ey, Y, €j,,,, Zi,,,» - €1, Z1,) Since
@, (ey,,) = a € @ (x) such that a € §,(z;) N @, (x), contradicting the minimality of s. If
n# By, By, 0rn =p, andey, isnoton P, then E, ,(P) N E(Sy) = @ and the coloring
@, = ¢/P results in a € @,(z;,) N §,(x), as desired because S, is still a y-generated
ce-sequence under ;.

If ne qovsu(elx) (zi) N @(z;), then there is an edge e =z ,u such that

u#we,), p(e)) =7 and d(u) < 2=
color§ € p(w(e)) N @ (u) and & # B,. We claim that we may assume @ (x) N @ (1) # @.
If w(e,) =x, then we are done. Otherwise, consider the case w(e,) =y. We have
P.(a, 6, ¢) = P,(a, 5, ¢) by Lemma 3.1. Then the coloring ¢’ = ¢/F,(«, 6, ) results in
a€e p’'(x)np’(u),as desired. Now let y € @ (x) N @ (u). By the observation II, we have
B.(y,n, ) = B, (¥, 7, ). By the similar proof of the first subcase of Case 3 (i.e., the case
n € @(z;,) N @ (z;)) with B,(y,n, ¢) in place of P and y in place of «, we can obtain the
coloring ¢, = ¢/R,(¥, 1, ¢) such that y € (qol)fﬂ,(els) (z1,) N @, (x), as desired.

If nep)ng) @) (z1), then there is an edge e =z,u such that

u#wle), @(e) =7 and d(u) < =52
color € @w(e))Ngu) with §#p,. We claim that we may assume

. It follows from Lemma 3.4 that there is a

. It follows from Lemma 3.4 that there is a

PxX)NPw) #@. If w(e,)=x, then we are done. Otherwise, consider the case
w(e,) =y. We have P(a,d,¢) =P, (x,5,9) by Lemma 3.1. Then the coloring
@ =¢@/B(a, 8, p) results in a € §'(x) N p ’'(u), as desired. Now let y € o (x) N @ (u).
By the observation II, we have P.(y,n, ) = B,(¥,n, ¢). By the similar proof of the first
subcase of Case 3 with y in place of «, we can obtain the coloring ¢, = /P, (v, 7, ¢)
such that y € ¢ (z;,) N @;(x), as desired.

If ne go‘j](elx) (z1) N govsv(eli) (z;), then there is an edge e =z,u such that

u#w(e). p(¢) =7 and d(u) < 2=

v#Ewl(ey), pe”) =7 and d(v) < . Obviously, u # v. We claim that we may
assume p(x) N p(w) N g (v) # @. If d(x) < d(y), then it follows from Lemma 3.4 that
there is a color § € g(x) N @ (u) N @ (v), and so we are done. If d(x) > d(y), then it
follows from Lemma 3.4 that there is a color § € @(y) N @(u) N @ (v). We have
P.(a,6,¢9) = P)(a,6,p) by Lemma 3.1. Apply Kempe changes on E,(«,d,¢) and
P)(a, 6, ¢), and get a new coloring ¢’ such thata € ' (x) N ¢ '(u) N @ ’(v), as desired.

, and there is an edge e” = z;,v such that
A—d(w(ey))
2

WILEY-—*
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Now lety € p(x) n @ (u) N @ (v). By the observation II, we have P.(y, n, ¢) = B,(¥, n, ).
By the similar proof of the first subcase of Case 3 with B,(y,n,¢) in place of P
and y in place of a, we can obtain the coloring ¢, = ¢/B,(y,n,¢) such that
y € (qol)ﬁu(elx) (z1,) N @, (x), as desired.

Combining the above Cases 1, 2, and 3, we complete the proof of Subclaim 1.1. []

Thus we assume that there exists a color 7 € Cyp () (21,) N @ (x). We consider the following
two cases.

Case 1.7 € @(z;) N @ (x).

Suppose w(e,) = x. Recolor the edge e, with n to get a new coloring ¢,. Thus
By, € @,(x) N Cy w(e,_,)(@1,_,), Which contradicts the minimality of s. So we assume w(e;,) =Y.
Since d(y) < A — 1, there exists a missing color y with y # §,. We have P (1, ¥, ) =B,(n, 7, ¢) by
Lemma 3.1. Let 9, = /P, (1,7, ¢), and we have y € ®,(y) N @,(z;,). Recolor the edge e;, with y
to get a new coloring ;. Thus B, € §3(¥) N Cp, w(e, )(Z1,_,), also contradicting the minimality of s.

Case 2.1 € @, (21) N § ().

Suppose S € @ (z;,_,). Since 7€ @, (), there is an edge e’ =z,u such that

u#wle),p)=mnand d(u) < %W(e’s)). It follows from Lemma 3.4 that there is a color
sepwle))Nng) with §#n,8,. By the observation II, we have By,)(S, B, ¢)
=B, (6, B,, ¢). Note that e, is on Ry(,)(S, B, ). Let ¢; = ¢/R. (6, B, ). Hence Sy is still a
y-generated sequence under ¢, with 8, € @, (u). We claim that we may assume 7 € &, (w(ey,)). If
w(e;) = x, we are done. Otherwise, w(e;) = y. We have P.(», 6, ¢,) = P,(n, 5, ¢;) by Lemma 3.1.
Recall § # f3,. The coloring ¢" = ¢, /P (1, 8, ¢) results in n € @ '(y), as desired. Now we assume
n € @ (wley)). We have Byey®,B,,¢)=R®, B, ¢)=wle)z,u Then the coloring
®; = ¢1/Boe)(0, B> ¢y) results in B € @,(w(ey,)) N ,(zy,_,), contradicting the minimality of s.
Now we suppose B, € ¢, € (z,_,). In this case, there is an edge e’ = z;u such that
u#we,), p(e) =7 and d(u) < =)
(), p(e”) = B, and d(v) < w. By the condition C3 in Section 2, we have u # v. It
follows from Lemma 3.4 that there is a color 6 € (p(w(e;)) U p(w(e,_))) N & u) N o (v). We
first claim that we may assume that § € @ (w(e;,)) and § # ;. Suppose 5 € @ (w(ey,)) but s = ;.
Thus w(e;,) = y. Recall that max{d(x), d(y)} < A — 1. Hence there exist y; € ¢ (x) with 3, # 7
and y, € p(y) with y,#6=p,. By Lemma 3.1, we have B (y,6,¢) =P {#,d,¢) and
P.(7> ¥ ) = B,(;, 5> ®). Apply Kempe changes on B,(y;, 6, ¢) and B (3,6, ¢) to get a new
coloring ¢’. And then apply Kempe changes on B, .0, and By, 5., to get a new coloring ¢”.
Consequently, we have y, € @ "(u) N @ " (v), as desired because ¥, is the desired color instead of §.
Now suppose 8 & @(w(e;)). Thus we have w(e,) #w(e,_) and § € p(w(e,_)). Since
max{d(x),d(y)} < A — 1, there exists a missing color y € @(w(ey,)) such that y # 6, §,. We
have P, (y, 8, ¢) = B, (¥, 6, ¢) by Lemma 3.1. Apply Kempe changes on B, (y, 8, ¢) and B,(y, &, ¢) to
get a new coloring ¢”. Thus y € @ "(w(e,)) N @ () N @ " (v), as desired because y is
the desired color instead of 6. Now we assume that § € p(w(e,)) and & # ;. Then
By (8, B #) = B(6, B, ¢) by the observation II. Note that e; is on By,)(S, B, ). Let the
coloring ¢, = ¢/E, (6, B, ). Hence S), is still a y-generated ce-sequence under ¢, with §; € &, (u).

, and there is an edge ¢” = z;_,v such that v #w
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Next, we show that we may assume 7 € &, (w(e;)). If w(e,) = x, we are done. Otherwise,
w(e,) = y. We have (1, 3, ¢,) = B,(n, 6, ¢,) by Lemma 3.1. The coloring ¢, = ¢, /P (9, J, ¢)
results in 7 € (), as desired. Now note that Boe M, B 1) = Bi(, B, 1) = w(e)zi, u.
Then the coloring @, = @, /Ry, B, ®;) results in B, € &, (w(ey)) N (9"2);(%,1) (z1,_)»
contradicting the minimality of s. This completes the proof of Case 2.

Combining the above Cases 1 and 2, we complete the proof of Claim 1 for s > 2. Together
with the proof of Claim 1 for s < 1, we prove Claim 1. O

Claim 2. The union of vertex sets of any two linear ce-sequences is g“-elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose ¢
such that there exist two linear ce-sequences S; = (x,e,y, ey, 2y, ..., €, 2],) and
S, = (x,e,y, ey, 2y, €/, 2;) whose union of vertex sets is not p“-elementary with
s + t as small as possible, where s, t > 1. Note that V' (S;) and V (S,) are p*-elementary
by Claim 1. By the minimality of s+ ¢,z #z; and there exists a color
N € Cow(e) (@) N Copwiey(zy)). We consider the following three cases. If n € ¢ (zy)
N® (z;)), then z;, and z;’ are respectively not repeated vertices in S; and S, since the
minimality of s + ¢. By the same proof of Claim 2 in Theorem 1.3, we can obtain three
endvertices on one Kempe chain, which gives a contradiction.

If 1 € @y @) N @) (orn € Plzi) N ‘vau(e,t/) (z;/) by symmetry), then there is an

A—dw(ey)
2

edge e’ =z, u such that u # w(ey), p(e’) =7 and d(u) < . It follows from

Lemma 3.4 that there is a color § € p(w(e;)) N @ (u). By the definition of linear
ce-sequence in C-e-fan and the minimality of s + £, z;,, may be a repeated vertex in S,
while z;’ is not a repeated vertex in S,. Note that ¢ (e;,) and ¢ (e) are in Cy , (x) U Cp ().
(¢(ey) and @(ey) could be the same color). We consider the following two subcases. If
0 & {p(ey), p(ey)}, then we have By (,)(5, 1, ¢) = B.(, 1, ¢) by the observation II since S
is p*-elementary. Similarly, we have By,)(8, 1, ¢) = F,(8, 7, ¢) by observation II since
S, is p*-elementary. Thus w(ey,), z;/ and u are three endvertices of By (,)(6, 7, ¢), which
gives a contradiction. Now we consider the remaining case & € {p(ey), p(e;)}. Let
w’'(e;,) € {x, y}\{w(e;)}. Recall that max{d(x),d(y)} < A — 1. Hence we can choose a
color y € g(w'(e,)) with ¥ & {p(ey), p(e;)}. We have P.(8,7,9) =PB(6,7,9) by
Lemma 3.1. Apply Kempe change on E,(,y,¢) to get a new coloring ¢,. Thus
Y € Py N ®1 (w). Similarly as the subcase above (when & & {p(e;), p(e;)}), we have
B> m, ¢1) = B, (v, m, ¢)) and Ry, (e) (¥, 1, 1) = B.(¥, 1, ¢;). Thus w'(ey),z;; and u
are three endvertices of By, ,)(3, 7, ¢;), which also gives a contradiction.

If ne cpvf)(els) () N qo‘f)(eh,) (z;)), then there is an edge e’ =z u such that u #w

(e1). p(¢) =7 and d(u) < 2=

w(e), p(e") =nandd(v) <
vertices respectively in S; and S,. Without loss of generality, we suppose that
d(x) < d(y). It follows from Lemma 3.4 that there is a color § € p(x) N @ (u) N (V).
We consider the following two subcases. If § & {p(e;), p(e;)}, then we have

, and there is an edge e” = z;;v such that v#

A—d(w(ey) .
—— - Obviously, u # v, and z;, and z;’ may be repeated

P.(8,n,9) = B,(6,n,9) by the observation II. Similarly, we have PB.(5,n,¢) =
B(8,1,¢). Thus x,u and v are three endvertices on one (&, n)-chain, which is a
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contradiction. Now we consider the remaining case & € {p(e;), ¢(e;)}. Recall that
max{d(x),d(y)} < A — 1. Hence we can choose a color y € & (y) with y & {p(ey), ¢
(e;)}. We have P.(3,7,9) = B(S,7,9) by Lemma 3.1. Apply Kempe changes on
B,,7,9) and R(,y,¢) to get a new coloring ¢,. Thus we have y € §,(y)
N@, (u) N @, (v). Thus we are back to the previous subcase with y in place of x and y
in place of §. This completes the proof of Claim 2. O

Now we are ready to show that V (F®) is p“-elementary. Suppose not. Note that {x, y} is
p*“-elementary and each linear ce-sequence in F contains vertices x and y. There exist one
color n and two distinct vertices z; and z; such that 7 € Cy ) (z) N C¢,W(ej)(zj), where
0<i<j<p and zo €f{x,y}. By the definition of simple C-e-fan, there exist two linear
ce-sequences with z; and z; respectively as the last vertex, which is a contradiction to Claim 1
for i =0 or a contradiction to Claim 2 for 1 <i<p — 1. This proves that V(F%) is
p“-elementary.

Now we show the “furthermore” part. We assume that F¢ is maximal. Let the edge set
I' = {e}, ..., ep} and the color set I'" = ey (7 Cy (). Note that C,(x), C(y) and C,(z), where
z € V(F®)\{x, y}, are disjoint since V (F) is p“-elementary. We have

P = Tl = Z (/,the(x, Z) + ,Lche(y, Z)) = IT*. (3)
ZEV (F*)\{x.y}

Now we calculate IT* in another way. By the definition of C-e-fan, ¢(e;) €I’ for each

i e[p]. By the maximality of F®, for any a €I',a appears exactly once in I* if
a € C,(x) U Cy(y). Otherwise, a appears exactly twice in I'*. Thus we have

IT* = 1C, (x)! + 1C,(p)! + D 21C, (). @
Z€V (F)\{x.}

Combining Equations (3) and (4), we prove that

ICo () + 1C, ()1 = D (U pee (x, 2) + ppee (¥, 2) — 21C4(2)1).
zZeV (F)\{x,y}
The proof is now finished. O
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