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Abstract

Let G be a simple graph and χ G′( ) be the chromatic

index of G. We call G a Δ‐critical graph if

χ G e χ G′( − ) = ′( ) − 1 = Δ for every edge e of G,

where Δ is maximum degree of G. Let e xy= be an

edge of Δ‐critical graph G and φ be an (proper) edge

Δ‐coloring of G e− . An e‐fan is a sequence

F x e y e z e z= ( , , , , , …, , )e
p p1 1 of alternating vertices and

distinct edges such that edge ei is incident with x or y,

zi is another endvertex of ei and φ e( )i is missing at a

vertex before zi for each i with ≤ ≤i p1 . In this paper,

we prove that if ≤d x d ymin{ ( ), ( )} Δ − 1, where d x( )

and d y( ) denote the degrees of vertices x and y,

respectively, then colors missing at different vertices of

V F( )e are distinct. Clearly, a Vizing fan is an e‐fan with

the restricting that all edges ei being incident with one

fixed endvertex of edge e. This result gives a common

generalization of several recently developed new

results on multifan, double fan, Kierstead path of four

vertices, and broom. By treating some colors of edges

incident with vertices of low degrees as missing colors,

Kostochka and Stiebitz introduced C‐fan. In this paper,

we also generalize the C‐fan from centered at one

vertex to one edge.
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1 | INTRODUCTION

Our results in this paper are on simple graphs, but we will mention some definitions and results
on (multi)‐graphs (simple graphs or multigraphs). We generally follow the book [17] of Stiebitz
et al. for notation and terminologies. Denote by V G( ) and E G( ) the vertex set and the edge set
of a (multi)‐graph G, respectively; and by k[ ] the set of first k consecutive positive integers

k{1, …, }. The (proper) edge k‐coloring of a (multi)‐graph G is a mapping from E G( ) to k[ ] such
that distinct adjacent edges have different values. Denote by  G( )k the set of all edge
k‐colorings ofG. The minimum number k, denoted by χ G′( ), such that  ≠ ∅G( )k is called the
chromatic index ofG. For ∈e E G( ), letG e− be the graph obtained fromG by deleting the edge
e but keeping its endvertices. An edge e is critical if χ G e χ G′( − ) = ′( ) − 1; and a (multi)‐graph
G is critical if χ G e χ G′( − ) = ′( ) − 1 for all edges e of G. Vizing [19, 20] and Gupta [11]
independently proved that ≤ ≤G χ G G μ GΔ( ) ′( ) Δ( ) + ( ), where GΔ( ) and μ G( ) are maximum
degree and maximum multiplicity of G, respectively. When G is a simple graph, we have
χ G G′( ) = Δ( ) or GΔ( ) + 1, and so simple graphs are divided into two families: class one and
class two accordingly. A critical class two graph with maximum degree Δ is called a (simple)
Δ‐critical graph.

Let G be a critical (multi)‐graph, ∈e E G( ) and ∈φ G e( − )k . For a vertex ∈v V G( ), let
φ v( ) denote the set of colors assigned to edges incident with v, and ⧹φ v k φ v( ) = [ ] ( ), that is, the
set of colors not assigned to any edge incident with v. We call φ v( ) the set of colors present at v
and φ v( ) the set of colors missing at v. Clearly,    φ v φ v k( ) + ( ) = for each vertex ∈v V G( ). A
vertex set ⊆X V G( ) is φ‐elementary, or simply elementary, if ∩ ∅φ x φ y( ) ( ) = for every pair of
two distinct vertices ∈x y X, . Recently, Chen et al. [8] proved the Goldberg–Seymour
Conjecture that if G is a critical multigraph with ≥χ G k G′( ) = + 1 Δ( ) + 2, then for every
edge e there exists a coloring ∈φ G e( − )k such that V G( ) is φ‐elementary. Consequently,
V G( ) is elementary for every edge k‐coloring of G e− . This result gives a complete
characterization for critical multigraphs G with chromatic index at least GΔ( ) + 2. However,
characterizing elementary sets for critical (multi)‐graphs with χ G G′( ) = Δ( ) + 1, in particular,
(simple) Δ‐critical graphs, is an interesting yet challenging problem in graph edge coloring.

LetG be a Δ‐critical graph, ∈e E G( ) and ∈φ G e( − )Δ . We in general do not know much
about the largest φ‐elementary sets except the following three outstanding conjectures. Hilton's
overfull conjecture [9, 10]: V G( ) is φ‐elementary if ∕ G V GΔ( ) > ( ) 3; Seymour's exact
conjecture [16]: V G( ) is φ‐elementary if G is a planar graph; and Hilton and Zhao's core
conjecture [12]: V G( ) is φ‐elementary if the core GΔ has maximum degree at most 2, where GΔ,
named the core of G, is the subgraph of G induced by all maximum degree vertices. Cao et al.
[5] recently confirmed Hilton and Zhao's core conjecture. The other two of these three
conjectures are remaining wild open. Vizing [19, 20] showed that the vertex set of every Vizing
fan is elementary. Almost all known techniques in studying edge chromatic problems are built
on the elementary properties of Vizing fans and its generalizations. In [17], Stiebitz et al. gave a
survey, up to that time, of the work in this direction. We will give a common generalization
of these results. For ∈x y V G, ( ), let E x y( , )G denote the set of all edges of G joining vertices x
and y.

Definition 1.1 (Tashkinov Tree). Let G be a critical (multi)‐graph with χ G′( ) =

∈k e E x y+ 1, ( , )G and ∈φ G e( − )k . A sequence T x e y e z e z= ( , , , , , …, , )p p1 1 of
alternating distinct vertices and distinct edges is called a Tashkinov tree if for each
∈i p e[ ], i is incident with zi and satisfies the following two conditions:
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T1. The other endvertex of ei is in x y z z{ , , , …, }i1 −1 for ∈i p[ ].
T2. ∈ ∪φ e φ x φ y( ) ( ) ( )1 and ∈ ∪ ∪φ e φ x φ y φ z( ) ( ) ( ) ( )i h for some ∈h i[ − 1] if

≤ ≤i p2 .

Tashkinov trees are given by Tashkinov in [18], where he proved that ifG is a critical multigraph
with ≥ ∈χ G k G e E G′( ) = + 1 Δ( ) + 2, ( ) and ∈φ G e( − )k , then the vertex set of every
Tashkinov tree is φ‐elementary. Clearly, each Tashkinov tree is indeed a tree. We in the following
notice that Vizing fans and some other well‐studied subgraphs are special classes of Tashkinov trees.

1. If we restrict in T1, each ei is incident with x and in T2 h i= − 1, then T is a Vizing fan.
2. If we only impose the above restriction to T1, thenT is amultifan introduced by Stiebitz et al. [17].
3. If we restrict in T1, e1 is incident with y and ei is incident with zi−1 for each ≥i 2, thenT is a

Kierstead path [13].
4. If we restrict in T1, ≥p 2 and each ei with ≥i 2 is incident with z1, thenT is a broom defined in

[6, 7].

We notice that not every vertex set of Tashkinov tree is elementary. Let P* be obtained from
the Petersen graph by deleting a vertex. It is not difficult to verify that P* is a critical graph with
χ P′( *) = 4, but there exist an edge e and a coloring ∈φ P e( * − )3 , such that the vertex set of a
Kierstead path with four vertices is not elementary. For ∈u V G( ), let d u( ) denote the degree of
vertex u in G. By imposing degree condition ≤d y d z Gmin{ ( ), ( )} Δ( ) − 11 , Stiebitz and
Kostachka [14, 17] and Luo and Zhao [15] showed that the vertex set of each Kierstead path
x e y e z e z( , , , , , , )1 1 2 2 is elementary. The result has been extended to brooms [6, 7]. We generalize
these results to a much broader class of Tashkinov trees in this paper.

Definition 1.2 (e‐fan). Let G be a Δ‐critical graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ . A
Tashkinov tree F x e y e z e z= ( , , , , , …, , )e

p p1 1 is a simple e‐fan if in T1 we additionally
require each ei is only incident with x or y, that is, e xz=i i or e yz=i i. Furthermore, in the
above definition of simple e‐fan if we relax the condition that each zi is distinct by
allowing it with possibility to be repeated one more time, say z z z= =i j with ≠i j, that
is, edges xz and yz can appear in Fe, then Fe is called an e‐fan.

(See Figure 1 for a depiction that shows an e‐fan F x e y e z e z= ( , , , , , …, , )e
1 1 6 6 , where a

dashed line at a vertex represents a color missing at the vertex). Clearly, a multifan is an e‐fan

FIGURE 1 An e‐fan F x e y e z e z= ( , , , , , …, , )e
1 1 6 6
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in simple graphs. Moreover, if Fx and Fy are two multifans centered at x and y, respectively,
then ∪F Fx y, named a double fan, is also an e‐fan. The below Theorem 1.3 shows that the vertex
set of every e‐fan provided ≤d x d y Gmin{ ( ), ( )} Δ( ) − 1 is elementary, which is one of the two
main results of this paper. We will give its proof in Section 4, in which it is worth mentioning
that we first prove the vertex set of some special subsequence (will be called linear e‐sequence)
is elementary, then generalize to any two special subsequences and finally to the entire e‐fan.
Actually, a Vizing fan is such a special subsequence centered at one vertex in a multifan, so one
can also use our above method to prove the vertex set of every multifan is elementary.

Theorem 1.3. Let G be a Δ‐critical graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ . If
≤d x d y Gmin{ ( ), ( )} Δ( ) − 1, then V F( )e is φ‐elementary for every e‐fan Fe. Furthermore,

if Fe is maximal, that is, there is no e‐fan containing Fe as a proper subsequence, then

∈

d x d y d z μ x z μ y z( ) + ( ) − 2Δ + (2 ( ) + ( , ) + ( , ) − 2Δ) = 2,
z V F x y

F F
( ) \ { , }e

e e

where μ x z( , )Fe and μ y z( , )Fe taking value 0 or 1 are the number of edges between x and z

and between y and z in Fe, respectively.

We notice that Theorem 1.3 immediately gives that all vertex sets of Vizing fans, multifans,
and double fans provided ≤d x d y Gmin{ ( ), ( )} Δ( ) − 1 are respectively elementary. We also
notice a few applications below.

Corollary 1.4 (Kostachka and Stiebitz [14, 17], and Luo and Zhao [15]). LetG be a Δ‐critical
graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ . For any Kierstead path K x e y e z e z= ( , , , , , , )1 1 2 2 ,
if ≤d y d z Gmin{ ( ), ( )} Δ( ) − 11 , then V K( ) is φ‐elementary.

Proof. Let φ′ be obtained from ∈φ G e( − )Δ by uncoloring e1 and coloring e with color
φ e( )1 . Since ∈φ e φ x φ( ) ( ), ′1 is an edge GΔ( )‐coloring of G e− 1. Moreover, since

∈φ e φ z′( ) ( )1 and ∈ ∪φ e φ x φ y F y e z e x e z′( ) ′( ) ′( ), = ( , , , , , , )e
2 1 1 2 2 is an e‐fan with

respect to e1 and φ′. By Theorem 1.3, V F V K( ) = ( )e is φ′‐elementary, and so
φ‐elementary. □

Using the same trick in the above proof, we get the following more general result.

Corollary 1.5 (Cao et al. [6]). Let G be a Δ‐critical graph, ∈e xy E G= ( ) and
∈φ G e( − )Δ . For any broom B x e y e z e z= ( , , , , , …, , )p p1 1 , if d y d zmin{ ( ), ( )}1

≤ GΔ( ) − 1, then V B( ) is φ‐elementary.

2 | ADDING COLORS OF EDGES INCIDENT WITH
VERTICES WITH SMALL DEGREES TO MISSING
COLOR SETS

In this section, we will consider some extensions of the missing color set at a vertex and some
more generally elementary properties and structures. Starting with Vizing's classic results
[19, 20], missing colors have played a crucial role in revealing properties of critical graphs. Let

CAO ET AL. | 51
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G be a Δ‐critical graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ . Woodall [21, 22] treated color φ yz( )

of the edge yz as a missing color in φ y( ) if d z( ) is “small.” This technique was used in [1–4] in
their work on Vizing's average degree conjecture and the hamiltonian property of Δ‐critical
graphs. For a vertex ∈v V G( ), let

≠ ≤

∪

φ v φ vw w x d w G d x

C v φ v φ v

( ) = { ( ) : and ( )
1

2
(Δ( ) − ( ))}, and

( ) = ( ) ( ).

x
s

φ x x
s

,

Similarly, we define φ v( )y
s and C v( )φ y, . Since ≥d x d w G( ) + ( ) Δ( ) + 2 for every neighbor

w of x [17], we have ∅φ x( ) =x
s , that is, C x φ x( ) = ( )φ x, . Similarly, ∅φ y( ) =y

s , that is,

C y φ y( ) = ( )φ y, . Incorporating this idea, Kostochka and Stiebitz [14, 17] extended multifan
as follows. A sequence F x e y e z e z= ( , , , , , …, , )c

p p1 1 of alternating distinct vertices and
distinct edges is called a C‐fan if for each ei with ∈ ∈i p e E x z[ ], ( , )i G i and there exists a h

with ≤ ≤h i0 − 1 such that ∈φ e C z( ) ( )i φ x h, , where z y=0 . The vertex set V F( )c is called
φc‐elementary if ∩ ∅C z C z( ) ( ) =φ x i φ x j, , for every two distinct vertices z z,i j in V F( )c , where
≤ ≤i j p0 < and ∈z x y{ , }0 .

Theorem 2.1 (Kostochka and Stiebitz [14, 17]). Let G be Δ‐critical graph, ∈e E G( ) and
∈φ G e( − )Δ . Then V F( )c is φc‐elementary for every C‐fan Fc.

Definition 2.2 (C‐e‐fan). Let G be a Δ‐critical graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ .
A C‐e‐fan at x and y is a sequence F x e y e z e z= ( , , , , , …, , )ce

p p1 1 of alternating vertices
and edges satisfying the following two conditions:

C1. The edges e e e, , …, p1 are distinct with e xz=i i or e yz=i i for ∈i p[ ].
C2. ∈ ∪φ e C x C y( ) ( ) ( )φ y φ x1 , , and ∈ ∪ ∪φ e C x C y C z( ) ( ) ( ) ( )i φ y φ x φ w e h, , , ( )h for some

∈h i[ − 1] if ≤ ≤i p2 , where w e( )h is the endvertex of eh in x y{ , }.

(See Figure 2 for a depiction that shows a C‐e‐fan F x e y e z e z= ( , , , , , …, , )ce
1 1 6 6 with

≤d u G d x( ) (Δ( ) − ( ))
1

2
and ≤d v G d y( ) (Δ( ) − ( ))

1

2
in a graph G, where a dashed line at a

vertex represents a color missing at the vertex). Since each edge ei with ∈i p[ ] is incident with x or

FIGURE 2 A C‐e‐fan F x e y e z e z= ( , , , , , …, , )ce
1 1 6 6
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y, let w e( )i denote this vertex. Note that some vertices of z z, …, p1 may appear twice, say
z z z= =i j with ≠i j, that is, edges xz and yz appear in Fce. In C‐e‐fan Fce, we define
C x C x C y C y C z C z( ) = ( ), ( ) = ( ), ( ) = ( )φ φ y φ φ x φ i φ w e i, , , ( )i for single zi, and C z C z( ) = ( )φ φ w e i, ( )i

∪C z( )φ w e j, ( )j for repeated zi and zj with z z z= =i j . The vertex set V F( )ce is called φce‐elementary

if ∩ ∅C u C v( ) ( ) =φ φ for every two distinct vertices u v, in V F( )ce . The below Theorem 2.3 is the
other of the two main results of this paper, whose proof will be given in Section 5 and has the similar
main idea of Theorem 1.3 but much more complicated.

Theorem 2.3. Let G be a Δ‐critical graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ . For a
C‐e‐fan F x e y e z e z= ( , , , , , …, , )ce

p p1 1 , if ≤d x d y Gmax{ ( ), ( )} Δ( ) − 1 and the following
condition holds, then V F( )ce is φce‐elementary.

C3. For any two distinct colors α β, with ∈α φ z( )w e
s

i( )i
and ∈β φ z( )w e

s
j( )j

for

≤ ≤i j p1 < , denote by u v, the two vertices, and e z u′ = i and e z v″ = j the two edges
such that φ e α( ′) = and φ e β( ″) = , then we have ≠u v.

Furthermore, if Fce is maximal, that is, there is no C‐e‐fan containing Fce as a proper
subsequence, then the following equation holds:

∈

     C x C y μ x z μ y z C z( ) + ( ) = ( ( , ) + ( , ) − 2 ( ) ),φ φ

z V F x y
F F φ

( ) \ { , }ce

ce ce

where μ x z( , )Fce and μ y z( , )Fce taking value 0 or 1 are the number of edges between x and z

and between y and z in Fce, respectively.

3 | NOTATION AND LEMMAS

Let G be a Δ‐critical graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ . For a color ∈α [Δ], let E G( )φ α,

denote the set of edges colored with α. Let ∈α β, [Δ] be two distinct colors and H be the
spanning subgraph induced by E G( )φ α, and E G( )φ β, . Clearly, every component of H is either a
path or an even cycle which are referred as α β( , )‐chains of G. If we interchange the colors α
and β on α β( , )‐chain C, then we obtain a new edge Δ‐coloring of G, wrote by ∕φ C, which is
also in  G e( − )Δ . This operation is called a Kempe change. Furthermore, we say that a chain C

has endvertices u and v if C is a path joining vertices u and v. For a vertex v of G, we denote by
P α β φ( , , )v the unique α β( , )‐chain containing the vertex v. For two vertices ∈u v V G, ( ), the
two chains P α β φ( , , )u and P α β φ( , , )v are either identical or disjoint.

Lemma 3.1 (Stiebitz et al. [17]). Let G be a Δ‐critical graph, ∈e xy E G= ( ) and
∈φ G e( − )Δ . And let F x e y e y e y= ( , , , , , …, , )p p0 1 1 be a multifan at x , where y y=0 .

Then the following statements hold:

a( ) V F( ) is φ‐elementary.
b( ) If ∈α φ x( ) and ∈β φ y( )i for ≤ ≤i p0 , then P α β φ P α β φ( , , ) = ( , , )x yi .

The following lemma is a simple corollary of Lemma 3.1.

CAO ET AL. | 53
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Lemma 3.2 (Stiebitz et al. [17]). Let G be a Δ‐critical graph. Then for any edge
∈e xy E G= ( ) and ∈φ G e( − )Δ , we have ≥d x d y( ) + ( ) Δ + 2.

Lemma 3.3 (Kostochka and Stiebitz [14] and Stiebitz et al. [17]). Let G be a Δ‐critical
graph, ∈e xy E G= ( ) and ∈φ G e( − )Δ . And let F x e y e y e y= ( , , , , , …, , )c

p p0 1 1 be a

C‐fan at x , where y y=0 . Then the following statements hold:

a( ) V F( )c is φc‐elementary, that is, ∩ ∅C x C y( ) ( ) =φ x φ x i, , for i p= 0, 1, …, , and
∩ ∅C y C y( ) ( ) =φ x i φ x j, , for ≤ ≤i j p0 < .

b( ) If ∈α C x( )φ x, and ∈β C y( )φ x i, for ≤ ≤i p0 , then P α β φ P α β φ( , , ) = ( , , )x yi .

In a Δ‐critical graphG with ∈e xy E G= ( ), a vertex u is called a small vertex with respect to

x (with respect to y, respectively) if ≤d u( )
d xΔ − ( )

2
( ≤d u( )

d yΔ − ( )

2
, respectively). We list the

following simple facts [14, 17].

Lemma 3.4. In a Δ‐critical graphG with ∈e xy E G= ( ), for any small vertices u v, with
respect to x (with respect to y, respectively), we have ∩ ∩ ≥ φ x φ u φ v( ) ( ) ( ) 1

( ∩ ∩ ≥ φ y φ u φ v( ) ( ) ( ) 1, respectively). In particular, provided ≤d x d y( ) ( ), no matter
u and v are small vertices with respect to x or y, then we have ∩ ∩ ≥ φ x φ u φ v( ) ( ) ( ) 1.
Furthermore, if ≤d x G( ) Δ( ) − 1 and u is a small vertex with respect to x

( ≤d y G( ) Δ( ) − 1 and u is a small vertex with respect to y, respectively), then we have
∩ ≥ φ x φ u( ) ( ) 2 ( ∩ ≥ φ y φ u( ) ( ) 2, respectively).

4 | PROOF OF THEOREM 1.3

In a simple e‐fan F x e y e z e z= ( , , , , , …, , )e
p p1 1 , a linear e‐sequence is a subsequence

x e y e z e z( , , , , , …, , )l l l ls s1 1
with ≤ ⋯ ≤l l l p1 < < < s1 2 such that ∈ ∪φ e φ x φ y( ) ( ) ( )l1 and

∈φ e φ z( ) ( )l li i−1
for ≤ ≤i s2 . Specifically, a linear e‐sequence is a x‐generated e‐sequence if

∈φ e φ x( ) ( )l1 , or a y‐generated e‐sequence if ∈φ e φ y( ) ( )l1 .

Proof. In the e‐fan F x e y e z e z= ( , , , , , …, , )e
p p1 1 , if z z=i j with ≤ ≤i j p1 < , we delete the

edge ej and the vertex zj from Fe. By the definition of e‐fan, one can easily check that the
remaining sequence is still an e‐fan. Repeat the above operation. Finally, we get a simple e‐fan
F′e with respect to the e‐fan Fe. Obviously,V F V F( ) = ( ′ )e e . Hence, we may assume that the
original e‐fan Fe is a simple e‐fan. We show the following two claims.

Claim 1. The vertex set of any linear e‐sequence is elementary.

Proof. Suppose that Claim 1 is false. Without loss of generality, we choose φ such that
there exists a y‐generated e‐sequence S x e y e z e z= ( , , , , , …, , )y l l l l ls s0 1 1

with e e=l0 , whose
vertex set is not elementary with s as small as possible. Note that e xz=l l1 1

. Let
∈φ e β φ y( ) = ( )l l1 1

and ∈φ e β φ z( ) = ( )l l li i i−1
for ≤ ≤i s2 .

If ≤s 1, then Sy is a Vizing fan at x , which has elementary vertex set by Lemma 3.1.
We assume ≥s 2. By the minimality of s V S z, ( ) \ { }y ls is elementary. Together with the
definition of y‐generated e‐sequence, we have that for any color ∈γ φ x( )1 , no edge in

54 | CAO ET AL.

 10970118, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22903 by O

klahom
a State U

niversity, W
iley O

nline Library on [09/05/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



E S( )y is colored with γ1; for any color γ2, if ∈γ φ y( )2 or ∈γ φ z( )l2 i
for ≤ ≤i s1 − 1, then

only the edge el1 or eli+1
in E S( )y may be colored with γ2. We will use above facts about Sy

without explicit mention. The following observation will also be used very often.

I. For any two colors ∈γ φ x( )1 and ∈γ φ z( )l2 i
with ≤ ≤i s1 − 1, we have ≠γ γ1 2 and

P γ γ φ P γ γ φ( , , ) = ( , , )x z1 2 1 2li
.

Proof. Recall that V S z( ) \ { }y ls is elementary. We easily have ≠γ γ1 2. Suppose
≠P γ γ φ P γ γ φ( , , ) ( , , )x z1 2 1 2li

. For the path P γ γ φ( , , )z 1 2li
, one endvertex is zli and the other

endvertex is some vertex ≠z x′ . Note that ∉z y z z′ { , , …, }l li1 −1
and none of e e, …,l li1

is
colored with γ1 or γ2. Hence, the coloring ∕φ φ P γ γ φ′ = ( , , )z 1 2li

satisfies φ e φ e′( ) = ( )l lj j

for each ∈j i φ x φ x φ y φ y φ z φ z[ ], ′( ) = ( ), ′( ) = ( ), ′( ) = ( )l lj j
for each ∈j i[ − 1] and

∪φ z φ z γ γ′( ) = ( ( )\ { }) { }l l 2 1i i
. Consequently, the coloring φ′ results in a new y‐generated

e‐sequence S x e y e z e z′ = ( , , , , , …, , )y l l l l li i0 1 1
with ∈ ∩γ φ z φ x′( ) ′( )l1 i

, contradicting the
minimality of s. This completes the proof of the observation I. □

Subclaim 1.1. We may assume that ∩ ≠ ∅φ z φ x( ) ( )ls .

Proof. Since V S( )y is not elementary, and by the minimality of s, there exists a color
∈ ∩η φ z φ x y z z( ) ({ , , , …, })l l ls s1 −1

. If ∈ ∩η φ z φ x( ) ( )ls , then we are done. Otherwise, we
have ∩ ∅φ z φ x( ) ( ) =ls and ∈ ∩η φ z φ y z z( ) ({ , , …, })l l ls s1 −1

, that is, ∈ ∩η φ z φ y( ) ( )ls or
∈ ∩η φ z φ z z( ) ({ , …, })l l ls s1 −1

. By the definition of Sy, we have ≠ ∈η β φ z( )l ls s−1
. Let

∈α φ x( ). Since ∩ ∅φ z φ x( ) ( ) =ls , we have ≠α η and ∈α φ z( )ls . Note that if ∈η φ y( ),
then P α η φ P α η φ( , , ) = ( , , )x y by Lemma 3.1 since Vizing fan x e y( , , )l0 . Also if ∈η φ z( )li ,
then P α η φ P α η φ( , , ) = ( , , )x zli

for ≤ ≤i s1 − 1 by the observation I. Therefore,
P α η φ( , , )x and P α η φ( , , )zls are disjoint. For the path P P α η φ= ( , , )zls , one endvertex is
zls and the other endvertex ∉z V S′ ( )y , and we have ∩ ∅E P E S( ) ( ) =φ α y, . Note that if

∈η β φ y= ( )l1
, then el1 is on P α η φ( , , )x . To further discuss ∩E P E S( ) ( )φ η y, , we consider

the following two cases.
If η β= li+1

and eli+1
is on P for ∈η φ z( )li and ≤ ≤i s1 − 2, then we have

∩E P E S e( ) ( ) = { }φ η y l, i+1
. Hence, the coloring ∕φ φ P=1 satisfies φ e φ e( ) = ( )l l1 j j

for
≠j i φ e α φ x φ x φ y φ y φ z φ z, ( ) = , ( ) = ( ), ( ) = ( ), ( ) = ( )l l l1 1 1 1i j j+1

for each ∈j s[ − 1] and
∪φ z φ z η α( ) = ( ( )\ { }) { }l l1 s s

. Consequently, the coloring φ1 results in a smaller x‐generated
e‐sequence x e y e z e z( , , , , , …, , )l l l l li i s s0 +1 +1

with ∈ ∩α φ z φ x( ) ( )l1 1s
, contradicting the

minimality of s.
If ∈η φ y( ), or ≠η βli+1

for ∈η φ z( )li and ≤ ≤i s1 − 1, or η β= li+1
and eli+1

is not on
P for ∈η φ z( )li and ≤ ≤i s1 − 2, then we have ∩ ∅E P E S( ) ( ) =φ η y, . Hence, the
coloring ∕φ φ P=1 satisfies φ e φ e( ) = ( )l l1 j j

for each ∈j s φ x φ x φ y[ ], ( ) = ( ), ( ) =1 1

φ y φ z φ z( ), ( ) = ( )l l1 j j
for each ∈j s[ − 1] and ∪φ z φ z η α( ) = ( ( )\ { }) { }l l1 s s

.
Consequently, Sy is still a y‐generated e‐sequence with ∈ ∩α φ z φ x( ) ( )l1 1s , as desired.
This completes the proof of Subclaim 1.1. □

By the subclaim above, we assume that there exists a color ∈ ∩η φ z φ x( ) ( )ls . To reach
contradictions, we consider the following two cases.

Case 1. e xz=l ls s
.
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Note that ∈φ e β φ z( ) = ( )l l ls s s−1
and none of e e, …,l ls1 −1

is colored with βls or η. Recolor els
with η to obtain a new coloring φ1. Thus S x e y e z e z′ = ( , , , , , …, , )y l l l l ls s0 1 1 −1 −1

is a new y‐generated
e‐sequence under φ1 such that ∈ ∩β φ z φ x( ) ( )l l1 1s s−1

, contradicting the minimality of s.
Case 2. e yz=l ls s

.

By the observation I, we have P η β φ P η β φ( , , ) = ( , , )x l z ls ls s−1
. For the path P P η β φ= ( , , )z lls s

,
one endvertex is zls and the other endvertex ∉z V S′ ( )y , and we have ∩E P E S e( ) ( ) = { }y ls .
Let ∕φ φ P=1 . Hence x e y e z e z( , , , , , …, , )l l l l ls s0 1 1 −1 −1

is still a y‐generated e‐sequence under
φ1 whose vertex set is still elementary, and y e x e z( , , , , )l l ls s0

is a Vizing fan at y

under φ1 since ∈φ e η φ x( ) = ( )l1 1s
. Since ≤d x d ymin{ ( ), ( )} Δ − 1, there exists a missing

color ∈ ∪δ φ x φ y( ) ( )1 1 such that ≠δ η β, l1
. Suppose ∈δ φ x( )1 . We have P δ β φ( , , ) =x l 1s

P δ β φ( , , )z l 1ls s
by Lemma 3.1, since otherwise, the coloring ∕φ φ P δ β φ′ = ( , , )z l1 1ls s

results in
∈ ∩δ φ z φ x′( ) ′( )ls , which is a contradiction. But we have P δ β φ P δ β φ( , , ) = ( , , )x l z l1 1s ls s−1

by
the observation I, giving a contradiction. Similarly, if ∈δ φ y( )1 , then P δ β φ( , , ) =y l 1s

P δ β φ( , , )z l 1ls s
by Lemma 3.1. But P δ β φ P δ β φ( , , ) = ( , , )y l z l1 1s ls s−1

, also giving a contradiction.
This completes the proof of Claim 1. □

Claim 2. The union of vertex sets of any two linear e‐sequences is elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose φ such
that there exist two linear e‐sequences S x e y e z e z= ( , , , , , …, , )l l l l1 s s1 1

and S =2

x e y e z e z( , , , , , …, , )l l l l′ ′ ′ ′
s t1 1

whose vertex sets have common missing color with s t+ as

small as possible, where ≥s t, 1. Note thatV S( )1 andV S( )2 are elementary by Claim 1. By
the minimality of s t+ , we have ≠z zl l ′s t

and there exists a color ∈ ∩η φ z φ z( ) ( )l l ′s t
. Since

≤d x d ymin{ ( ), ( )} Δ − 1, there exists a missing color ∈ ∪δ φ x φ y( ) ( ) such that δ is
different from the colors φ e( )l1 and φ e( )l ′1 which are also in ∪φ x φ y( ) ( ). (φ e( )l1 and φ e( )l ′1
could be the same color). Assume ∈δ φ z( )0 , where ∈z x y{ , }0 . Then P δ η φ( , , ) =z0

P δ η φ( , , )zls , since otherwise, for the coloring ∕φ φ P δ η φ′ = ( , , )zls , we have S1 is still a linear
e‐sequence under φ′, but ∈ ∩δ φ z φ z′( ) ′( )l0 s

, giving a contradiction to Claim 1. Similarly,
we have P δ η φ P δ η φ( , , ) = ( , , )z zlt0 ′ . Hence z z, l0 s

and zl ′t are endvertices of one δ η( , )‐chain,
which is a contradiction. This completes the proof of Claim 2. □

Now we are ready to show that V F( )e is elementary. Suppose not. Note that x y{ , } is
elementary and each linear e‐sequence in Fe contains vertices x and y. There exist one
color η and two distinct vertices zi and zj in V F( )e such that ∈ ∩η φ z φ z( ) ( )i j , where
≤ ≤i j p0 < and ∈z x y{ , }0 . By the definition of simple e‐fan, there exist two linear

e‐sequences (may not be disjoint) with zi and zj respectively as the last vertex, which is a
contradiction to Claim 1 for i = 0 or a contradiction to Claim 2 for ≤ ≤i p1 − 1. This
proves that V F( )e is elementary.

Now we show the “furthermore” part. We assume that Fe is maximal. Let the edge set
e eΓ = { , …, }p1 and the color set ∈ φ zΓ′ = ( )z V F( )e . Note that φ x φ y( ), ( ) and φ z( )i for each

∈i p[ ] are disjoint sinceV F( )e is elementary. Let φ e φ eΓ* = { ( ), …, ( )}p1 be a multiset. We have

∈

   p μ x z μ y z= Γ = ( ( , ) + ( , )) = Γ* .
z V F x y

F F
( ) \ { , }e

e e

(1)
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Now we calculate  Γ* in another way. By the definition of e‐fan, ∈φ e( ) Γ′i for each ∈i p[ ].
By the maximality of Fe, for any color ∈α αΓ′, appears exactly once in Γ* if ∈ ∪α φ x φ y( ) ( ).
Otherwise, α appears exactly twice in Γ*. Thus we have

∈

       φ x φ y φ zΓ* = ( ) + ( ) + 2 ( ) .
z V F x y( ) \ { , }e (2)

Combining Equations (1) and (2), we prove that

∈

d x d y d z μ x z μ y z( ) + ( ) − 2Δ + (2 ( ) + ( , ) + ( , ) − 2Δ) = 2
z V F x y

F F
( ) \ { , }e

e e

since φ x d x φ y d y( ) = Δ − ( ) + 1, ( ) = Δ − ( ) + 1 and φ z d z( ) = Δ − ( ). The proof is now
finished. □

5 | PROOF OF THEOREM 2.3

Note that when ≠d x d y( ) ( ) the values of  C z( )φ w e i, ( )i and  C z( )φ w e j, ( )j may not be equal for
repeated vertices z z=i j with ≠i j inC‐e‐fan Fce. We define simple C‐e‐fan if we further require
that vertices x y z z, , , …, p1 are distinct except the repeated vertices z z=i j with ≤ ≤i j p1 <

such that ⊂C z C z( ) ( )φ w e i φ w e j, ( ) , ( )i j
in the definition of C‐e‐fan. In a simple C‐e‐fan

F x e y e z e z= ( , , , , , …, , )ce
p p1 1 , a linear ce‐sequence is a subsequence x e y e z e z( , , , , , …, , )l l l ls s1 1

with ≤ ⋯ ≤l l l p1 < < < s1 2 such that ∈ ∪φ e C x C y( ) ( ) ( )l φ y φ x, ,1
and ∈φ e C z( ) ( )l φ w e l, ( )i li i−1 −1

for ≤ ≤i s2 . Specifically, a linear ce‐sequence is a x‐generated ce‐sequence if ∈φ e C x( ) ( )l φ y,1
, or

a y‐generated ce‐sequence if ∈φ e C y( ) ( )l φ x,1
.

Proof. In the C‐e‐fan F x e y e z e z= ( , , , , , …, , )ce
p p1 1 , if z z=i j with ≤ ≤i j p1 < and

⊇C z C z( ) ( )φ w e i φ w e j, ( ) , ( )i j
, we delete the edge ej and the vertex zj from Fce. By the definition

of C‐e‐fan, one can easily check that the remaining sequence is still a C‐e‐fan. Repeat the
above operation. Finally, we get a simple C‐e‐fan F′ce with respect to the C‐e‐fan Fce.
Obviously,V F V F( ) = ( ′ )ce ce and theC u( )φ in Fce is the same as theC u( )φ in F′ce for each
vertex u. Hence, we may assume that the original C‐e‐fan Fce is a simple C‐e‐fan. We
show the following two claims.

Claim 1. The vertex set of any linear ce‐sequence is φce‐elementary.

Proof. Suppose that Claim 1 is false. Without loss of generality, we choose φ such that
there exists a y‐generated ce‐sequence S x e y e z e z= ( , , , , , …, , )y l l l l ls s0 1 1

with e e=l0 , whose
vertex set is not φce‐elementary with s as small as possible. Note that e xz=l l1 1

. Let
∈φ e β C y( ) = ( )l l φ x,1 1

and ∈φ e β C z( ) = ( )l l φ w e l, ( )i i li i−1 −1
for ≤ ≤i s2 . We consider the

following two cases of s.
First we consider the case ≤s 1. It is easy to see that Sy is a C‐fan at x . By the

statement a( ) of Lemma 3.3, we have ∩ ∅ ∩ ∅C x C y C x C z( ) ( ) = , ( ) ( ) =φ x φ x φ x φ x l, , , , 1
and

∩ ∅C y C z( ) ( ) =φ x φ x l, , 1
. Recall that C x φ x( ) = ( )φ x, . Since we suppose that Claim 1 is

false, there are four subcases left to consider.
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If there exists ∈ ∩η φ x φ y( ) ( )y
s , then it contradicts Lemma 3.3 sinceC‐fan y e x( , , )l0 at y.

If there exists ∈ ∩η φ x φ y( ) ( )y
s

x
s , then there is an edge e xu′ = such that ≠u y φ e η, ( ′) =

and ≤d u( )
d yΔ − ( )

2
, and there is an edge e yv″ = such that ≠v x φ e η, ( ″) = and

≤d v( )
d xΔ − ( )

2
. Obviously, ≠u v. Recall that ≤d x d ymax{ ( ), ( )} Δ − 1. It follows from

Lemma 3.4 that there are two colors ∈ ∩δ φ x φ v( ) ( )1 and ∈ ∩δ φ y φ u( ) ( )2 with ≠δ βl2 1
.

We have ≠δ δ1 2 and P δ δ φ P δ δ φ( , , ) = ( , , )x y1 2 1 2 by Lemma 3.1 since Vizing fan x e y( , , )l0 .
Apply Kempe changes on P δ δ φ( , , )u 1 2 and P δ δ φ( , , )v 1 2 to get a new coloring φ1 such that
∈ ∩δ φ x φ u( ) ( )1 1 1 and ∈ ∩δ φ y φ v( ) ( )2 1 1 . Recolor the edge e′ with δ1 and the edge e″ with

δ2 to get a new coloring φ2 such that ∈ ∩η φ x φ y( ) ( )2 2 . Now by coloring the edge e with η,
we color the entire graph G with Δ colors, which contradicts the fact that χ G′( ) = Δ + 1.

If there exists ∈ ∩η φ x φ z( ) ( )y
s

l1 , then there is an edge e xu′ = such that ≠u y φ e η, ( ′) =

and ≤d u( )
d yΔ − ( )

2
. Since ≤d x d ymax{ ( ), ( )} Δ − 1, it follows from Lemma 3.4 that there is

a color ∈ ∩δ φ y φ u( ) ( ) with ≠δ βl1. We have ∈x P η δ φ P η δ φ( , , ) = ( , , )y u by Lemma 3.3
since C‐fan y e x( , , )l0 at y. Recall that S x e y e z= ( , , , , )y l l l0 1 1

is a C‐fan at x . The coloring
∕φ φ P η δ φ= ( , , )z1 l1

results in ∈ ∩δ φ z φ y( ) ( )l1 11
, which contradicts Lemma 3.3 because Sy

is still a C‐fan at x under φ1.
If there exists ∈ ∩η φ x φ z( ) ( )y

s
x
s

l1 , then there is an edge e xu′ = such that ≠u y φ,

e η( ′) = and ≤d u( )
d yΔ − ( )

2
, and there is an edge e z v″ = l1 such that ≠v x φ e η, ( ″) = and

≤d v( )
d xΔ − ( )

2
. Obviously, ≠u v, and we have ≠v y by Lemma 3.2. By Lemma 3.4, there

are two colors ∈ ∩δ φ x φ v( ) ( )1 and ∈ ∩δ φ y φ u( ) ( )2 with ≠δ βl2 1
. We have

P δ δ φ P δ δ φ( , , ) = ( , , )x y1 2 1 2 by Lemma 3.1 since Vizing fan x e y( , , )l0 . Apply Kempe
changes on P δ δ φ( , , )u 1 2 and P δ δ φ( , , )v 1 2 to get a new coloring φ1 such that
∈ ∩δ φ x φ u( ) ( )1 1 1 and ∈ ∩δ φ y φ v( ) ( )2 1 1 . Note that S x e y e z= ( , , , , )y l l l0 1 1

is still a C‐fan
at x under φ1. Recolor the edge e′ with δ1 to get a new coloring φ2. Thus
∈ ∩η φ x C z( ) ( )φ x l2 ,2 1

, which contradicts Lemma 3.3 because Sy is still a C‐fan at x under
φ2. This completes the proof of Claim 1 for ≤s 1.

Now we consider the case ≥s 2. By the minimality of s V S e z, ( \ { , })y l ls s
is

φce‐elementary. Together with the definition of y‐generated ce‐sequence, we have that
for any color ∈γ C x( )φ y1 , , no edge in E S( )y is colored with γ1; for any color γ2, if
∈γ C y( )φ x2 , or ∈γ C z( )φ w e l2 , ( )li i

with ≤ ≤i s1 − 1, where zli is not a repeated vertex,
then only the edge el1 or eli+1

in E S( )y may be colored with γ2; for any color ∈γ C z( )φ3 ,
where z is a repeated vertex with z z z= =l li j and ≤ ≤i j s1 < − 1, only the edge eli+1

or
elj+1

in E S( )y may be colored with γ3. We will use above facts about Sy without explicit
mention. The following observation will also be used very often.

II. For any color γ1 with ∈ ∪γ φ x φ y( ) ( )1 and ≠γ βl1 1
, if color ∈γ φ z( )l2 i

with ≤ ≤i s1 − 1, then we have ≠γ γ1 2 and P γ γ φ P γ γ φ( , , ) = ( , , )x z1 2 1 2li
or

P γ γ φ P γ γ φ( , , ) = ( , , )y z1 2 1 2li
; if ∈γ φ z( )w e

s
l2 ( )li i

with ≤ ≤i s1 − 1, denote by u the

vertex and e z u′ = li the edge such that φ e γ( ′) = 2, and further provide ∈γ φ u( )1 ,
then we have ∈z P γ γ φ P γ γ φ( , , ) = ( , , )l x u1 2 1 2i

or ∈z P γ γ φ P γ γ φ( , , ) = ( , , )l y u1 2 1 2i
.

Proof. We first assume ∈γ φ x( )1 . Recall thatV S e z( \ { , })y l ls s
is φce‐elementary. We easily

have ≠γ γ1 2 and ∈γ φ x( )2 . Suppose ≠P γ γ φ P γ γ φ( , , ) ( , , )x z1 2 1 2li
( ≠P γ γ φ P γ γ φ( , , ) ( , , )x u1 2 1 2 ,
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respectively). For the path P γ γ φ( , , )z 1 2li
(P γ γ φ( , , )u 1 2 , respectively), one endvertex is zli (u,

respectively) and the other endvertex is some vertex ≠z x′ . Note that ∉z y z z′ { , , …, }l li1 −1

and none of e e, …,l li1
is colored with γ1. Since zli may be a repeated vertex in Sy, we

consider the following two cases. If zli is not a repeated vertex or zli is a repeated vertex
with z z=l li k and ≤ ≤i k s1 < − 1, then none of e e, …,l li1

is colored with γ2. Hence,
the coloring ∕φ φ P γ γ φ= ( , , )z1 1 2li

( ∕φ φ P γ γ φ= ( , , )u1 1 2 , respectively) results in a new
y‐generated ce‐sequence S x e y e z e z′ = ( , , , , , …, , )y l l l l li i0 1 1

with ∈ ∩γ φ z φ x( ) ( )l1 1 1i

( ∈ ∩γ C z φ x( ) ( )φ w e l1 , ( ) 1li i1
, respectively), contradicting the minimality of s.

If zli is a repeated vertex with z z=l lk i
and ≤ ≤k i s1 < − 1, then only the edge elk+1

of
e e, …,l li1

may be colored with γ2. We claim that elk+1
is not on P γ γ φ( , , )z 1 2li

(P γ γ φ( , , )u 1 2 ,
respectively). If ≠φ e γ( )l 2k+1

, then we are done. If φ e γ( ) =l 2k+1
and e xz=l lk k+1 +1

, then elk+1

is on P γ γ φ( , , )x 1 2 , and we are also done. If φ e γ e yz( ) = , =l l l2k k k+1 +1 +1
and elk+1

is on
P γ γ φ( , , )z 1 2li

(P γ γ φ( , , )u 1 2 , respectively), then the coloring ∕φ φ P γ γ φ′ = ( , , )z 1 2li

( ∕φ φ P γ γ φ′ = ( , , )u 1 2 , respectively) results in a smaller x‐generated ce‐sequence
x e y e z e z( , , , , , …, , )l l l l lk k i i0 +1 +1

since ∈φ e γ φ x′( ) = ′( )l 1k+1
such that ∈ ∩γ φ z φ x′( ) ′( )l1 i

( ∈ ∩γ C z φ x
′

( ) ′( )φ w e l1 , ( )li i
, respectively), contradicting the minimality of s. Now

we have that elk+1
is not on P γ γ φ( , , )z 1 2li

(P γ γ φ( , , )u 1 2 , respectively). Let the coloring
∕φ φ P γ γ φ= ( , , )z1 1 2li

( ∕φ φ P γ γ φ= ( , , )u1 1 2 , respectively), which results in a new
y‐generated ce‐sequence S x e y e z e z′ = ( , , , , , …, , )y l l l l li i0 1 1

with ∈ ∩γ φ z φ x( ) ( )l1 1 1i

( ∈ ∩γ C z φ x( ) ( )φ w e l1 , ( ) 1li i1
, respectively), also contradicting the minimality of s. This

completes the proof of P γ γ φ P γ γ φ( , , ) = ( , , )x z1 2 1 2li
(P γ γ φ P γ γ φ( , , ) = ( , , )x u1 2 1 2 , respectively).

Similarly, we have P γ γ φ P γ γ φ( , , ) = ( , , )y z1 2 1 2li
(P γ γ φ P γ γ φ( , , ) = ( , , )y u1 2 1 2 , respectively) for

∈γ φ y( )1 and ≠γ βl1 1
. □

By the minimality of s, we have that either zls is not a repeated vertex or zls is a repeated
vertex with z z=l lk s

and ⊂C z C z( ) ( )φ w e l φ w e l, ( ) , ( )lk k ls s
, where ≤ k s1 < . By the minimality of

s again, there exists a color ∈ ∩ ∪ ∪( )η C z C x C y C z( ) ( ) ( ) ( )φ w e l φ y φ x φ w e l, ( ) , , , ( )ls s li i
with

≤ ≤i s1 − 1. And if zls is a repeated vertex with z z=l lk s and ≤ k s1 < , then we have
∈η C z C z φ z φ z( ) \ ( ) = ( )\ ( )φ w e l φ w e l w e

s
l w e

s
l, ( ) , ( ) ( ) ( )ls s lk k ls

s lk
k
. Let ∈α φ x( ).

Subclaim 1.1. We may assume that ∩ ≠ ∅C z φ x( ) ( )φ w e l, ( )ls s
.

Proof. To prove the above subclaim, we consider the following three cases.

Case 1. ∈ ∩η C z C x( ) ( )φ w e l φ y, ( ) ,ls s
.

If ∈ ∩η C z φ x( ) ( )φ w e l, ( )ls s
, then we are done. Otherwise, first suppose ∈ ∩η φ z φ x( ) ( )l y

s
s

,

then there is an edge e xu′ = such that ≠u y φ e η, ( ′) = and ≤d u( )
d yΔ − ( )

2
. It follows

from Lemma 3.4 that there is a color ∈ ∩δ φ y φ u( ) ( ) with ≠δ βl1. We have
∈x P η δ φ P η δ φ( , , ) = ( , , )y u by Lemma 3.3 since C‐fan y e x( , , )l0 at y. The coloring

∕φ φ P η δ φ= ( , , )z1 ls
results in ∈δ φ z( )l1 s

and Sy is still a y‐generated ce‐sequence under φ1.
We have P α δ φ P α δ φ( , , ) = ( , , )x y1 1 by Lemma 3.1 since Vizing fan x e y( , , )l0 under φ1. Then
the coloring ∕φ φ P α δ φ= ( , , )z2 1 1ls

results in ∈ ∩α φ z φ x( ) ( )l2 2s
, which is as desired because

Sy is still a y‐generated ce‐sequence under φ2 and ∩ ≠ ∅C z φ x( ) ( )φ w e l, ( ) 2ls s2
.
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Now suppose ∈ ∩η φ z φ x( ) ( )w e
s

l y
s

( )ls s
. Thus there is an edge e xu′ = such that

≠u y φ, e η( ′) = and ≤d u( )
d yΔ − ( )

2
, and there is an edge e z v″ = ls such that

≠v w e φ e η( ), ( ″) =ls and ≤d v( )
d w eΔ − ( ( ))

2

ls . Obviously, ≠u v. We consider the

following two subcases. If ≤d x d y( ) ( ), then by Lemma 3.4, there is a color
∈ ∩ ∩δ φ x φ u φ v( ) ( ) ( ). Recolor the edge e′ with δ to get a new coloring φ1 such

that ∈ ∩η φ z φ x( ) ( ) ( )w e
s

l1 ( ) 1ls s
. Then we are done because Sy is still a y‐generated

ce‐sequence under φ1 and ∩ ≠ ∅C z φ x( ) ( )φ w e l, ( ) 1ls s1
. If d x d y( ) > ( ), then by Lemma 3.4,

there is a color ∈ ∩ ∩δ φ y φ u φ v( ) ( ) ( ). We have P α δ φ P α δ φ( , , ) = ( , , )x y by
Lemma 3.1 since Vizing fan x e y( , , )l0 . Note that el1 is on P α δ φ( , , )x if δ β= l1

. Apply
Kempe changes on P α δ φ( , , )u and P α δ φ( , , )v to get a new coloring φ2 such that
∈ ∩ ∩α φ x φ u φ v( ) ( ) ( )2 2 2 . Since Sy is still a y‐generated ce‐sequence under φ2, we are

in the previous subcase in this paragraph with α in place of δ.

Case 2. ∈ ∩η C z C y( ) ( )φ w e l φ x, ( ) ,ls s
.

If ∈ ∩η φ z φ y( ) ( )ls , then we have P α η φ P α η φ( , , ) = ( , , )x y by Lemma 3.1 since
Vizing fan x e y( , , )l0 . Note that el1 is on P α η φ( , , )x if η β= l1

. Then the coloring
∕φ φ P α η φ= ( , , )z1 ls

results in ∈ ∩α φ z φ x( ) ( )l1 1s
, as desired because Sy is still a

y‐generated ce‐sequence under φ1 and ∩ ≠ ∅C z φ x( ) ( )φ w e l, ( ) 1ls s1
.

If ∈ ∩η φ z φ y( ) ( )l x
s

s
, then there is an edge e yu′ = such that ≠u x φ e η, ( ′) = and

≤d u( )
d xΔ − ( )

2
. By Lemma 3.4, there is a color ∈ ∩δ φ x φ u( ) ( ). We have ∈y Px

η δ φ P η δ φ( , , ) = ( , , )u by Lemma 3.3 since C‐fan x e y e z( , , , , )l l l0 1 1
at x . Note that el1 is on

P η δ φ( , , )x if η β= l1
. Then the coloring ∕φ φ P η δ φ= ( , , )z1 ls

results in ∈ ∩δ φ z φ x( ) ( )l1 1s
, as

desired.
If ∈ ∩η φ z φ y( ) ( )w e

s
l( )ls s

, then there is an edge e z u′ = ls such that ≠u w e φ( ),ls

e η( ′) = and ≤d u( )
d w eΔ − ( ( ))

2

ls . It follows from Lemma 3.4 that there is a color

∈ ∩δ φ w e φ u( ( )) ( )ls with ≠δ η. We consider the following two subcases. If w e x( ) =ls ,
then we have P η δ φ P η δ φ( , , ) = ( , , )x y by Lemma 3.1 since Vizing fan x e y( , , )l0 . Note that
el1 is on P η δ φ( , , )x if η β= l1

. Then the coloring ∕φ φ P η δ φ= ( , , )u1 results in
∈ ∩δ φ z φ x( ) ( ) ( )x

s
l1 1s

, as desired. If w e y( ) =ls , then we have P α δ φ P α δ φ( , , ) = ( , , )x y

by Lemma 3.1. Note that el1 is on P α δ φ( , , )x if δ β= l1
. Then the coloring

∕φ φ P α δ φ= ( , , )u2 results in ∈α φ u( )2 . We have P α η φ P α η φ( , , ) = ( , , )x y2 2 by
Lemma 3.1 since Vizing fan x e y( , , )l0 under φ2. Then the coloring ∕φ φ P α η φ= ( , , )u3 2 2

results in ∈ ∩α φ z φ x( ) ( ) ( )y
s

l3 3s
, as desired.

If ∈ ∩η φ z φ y( ) ( )w e
s

l x
s

( )ls s
, then there is an edge e yu′ = such that ≠u x φ e η, ( ′) = and

≤d u( )
d xΔ − ( )

2
, and there is an edge e z v″ = ls such that ≠v w e φ e η( ), ( ″) =ls and

≤d v( )
d w eΔ − ( ( ))

2

ls . Obviously, ≠u v. We consider the following two subcases. If

≤d x d y( ) ( ), then by Lemma 3.4, there is a color ∈ ∩ ∩δ φ x φ u φ v( ) ( ) ( ). We have
∈y P η δ φ P η δ φ( , , ) = ( , , )x u by Lemma 3.3 since C‐fan x e y e z( , , , , )l l l0 1 1

at x . Note that el1
is on P η δ φ( , , )x if η β= l1

. Then the coloring ∕φ φ P η δ φ= ( , , )v1 results in

∈ ∩δ φ z φ x( ) ( ) ( )w e
s

l1 ( ) 1ls s
, as desired. If d x d y( ) > ( ), then by Lemma 3.4, there is a

color ∈ ∩ ∩δ φ y φ u φ v( ) ( ) ( ). We have P α δ φ P α δ φ( , , ) = ( , , )x y by Lemma 3.1. Note
that el1 is on P α δ φ( , , )x if δ β= l1

. Apply Kempe changes on P α δ φ( , , )u and P α δ φ( , , )v to
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get a new coloring φ2 such that ∈ ∩ ∩α φ x φ u φ v( ) ( ) ( )2 2 2 . Thus we are in the previous
subcase in this paragraph with α in place of δ.

Case 3. ∈ ∩η C z C z( ) ( )φ w e l φ w e l, ( ) , ( )ls s li i
for ≤ ≤i s1 − 1.

By the minimality of s, we have ≠z zl ls i
. If ∈ ∩η φ z φ z( ) ( )l ls i

, then
P α η φ P α η φ( , , ) = ( , , )x zli

by the observation II. For the path P P α η φ= ( , , )zls , one
endvertex is zls, the other endvertex is ∉z V S′ ( )y and ∩ ∅E P E S( ) ( ) =φ α y, . To apply
Kempe change on P, we should discuss the following ∩E P E S( ) ( )φ η y, . Let z z=l li j with
≤ ≠ ≤i j s1 − 1 if zli is a repeated vertex in Sy. Note that only one of e e,l li j+1 +1

may be
colored with η. We consider the following two subcases. If η β= li+1

and eli+1
is on P (or

η β= lj+1
and elj+1

is on P by symmetry), then ∩E P E S e( ) ( ) = { }φ η y l, i+1
and the coloring

∕φ φ P=1 results in a smaller x‐generated ce‐sequence x e y e z e z( , , , , , …, , )l l l l li i s s0 +1 +1
since

∈φ e α φ x( ) = ( )l1 1i+1
such that ∈ ∩α φ z φ x( ) ( )l1 1s

, contradicting the minimality of s. If
≠η β β,l li j+1 +1

, or η β= li+1
and eli+1

is not on P, then ∩ ∅E P E S( ) ( ) =φ η y, and the coloring

∕φ φ P=1 results in ∈ ∩α φ z φ x( ) ( )l1 1s
, as desired because Sy is still a y‐generated

ce‐sequence under φ1.
If ∈ ∩η φ z φ z( ) ( )w e

s
l l( )ls s i

, then there is an edge e z u′ = ls such that

≠u w e φ e η( ), ( ′) =ls and ≤d u( )
d w eΔ − ( ( ))

2

ls . It follows from Lemma 3.4 that there is a

color ∈ ∩δ φ w e φ u( ( )) ( )ls and ≠δ βl1. We claim that we may assume ∩ ≠ ∅φ x φ u( ) ( ) .
If w e x( ) =ls , then we are done. Otherwise, consider the case w e y( ) =ls . We have
P α δ φ P α δ φ( , , ) = ( , , )x y by Lemma 3.1. Then the coloring ∕φ φ P α δ φ′ = ( , , )u results in
∈ ∩α φ x φ u′( ) ′( ), as desired. Now let ∈ ∩γ φ x φ u( ) ( ). By the observation II, we have

P γ η φ P γ η φ( , , ) = ( , , )x zli
. By the similar proof of the first subcase of Case 3 (i.e., the case

∈ ∩η φ z φ z( ) ( )l ls i
) with P γ η φ( , , )u in place of P and γ in place of α, we can obtain the

coloring ∕φ φ P γ η φ= ( , , )u1 such that ∈ ∩γ φ z φ x( ) ( ) ( )w e
s

l1 ( ) 1ls s
, as desired.

If ∈ ∩η φ z φ z( ) ( )l w e
s

l( )s li
i
, then there is an edge e z u′ = li such that

≠u w e φ e η( ), ( ′) =li and ≤d u( )
d w eΔ − ( ( ))

2

li . It follows from Lemma 3.4 that there is a

color ∈ ∩δ φ w e φ u( ( )) ( )li with ≠δ βl1. We claim that we may assume
∩ ≠ ∅φ x φ u( ) ( ) . If w e x( ) =li , then we are done. Otherwise, consider the case

w e y( ) =li . We have P α δ φ P α δ φ( , , ) = ( , , )x y by Lemma 3.1. Then the coloring
∕φ φ P α δ φ′ = ( , , )u results in ∈ ∩α φ x φ u′( ) ′( ), as desired. Now let ∈ ∩γ φ x φ u( ) ( ).

By the observation II, we have P γ η φ P γ η φ( , , ) = ( , , )x u . By the similar proof of the first
subcase of Case 3 with γ in place of α, we can obtain the coloring ∕φ φ P γ η φ= ( , , )z1 ls

such that ∈ ∩γ φ z φ x( ) ( )l 1s , as desired.
If ∈ ∩η φ z φ z( ) ( )w e

s
l w e

s
l( ) ( )ls

s li
i
, then there is an edge e z u′ = ls such that

≠u w e φ e η( ), ( ′) =ls and ≤d u( )
d w eΔ − ( ( ))

2

ls , and there is an edge e z v″ = li such that

≠v w e φ e η( ), ( ″) =li and ≤d v( )
d w eΔ − ( ( ))

2

li . Obviously, ≠u v. We claim that we may

assume ∩ ∩ ≠ ∅φ x φ u φ v( ) ( ) ( ) . If ≤d x d y( ) ( ), then it follows from Lemma 3.4 that
there is a color ∈ ∩ ∩δ φ x φ u φ v( ) ( ) ( ), and so we are done. If d x d y( ) > ( ), then it
follows from Lemma 3.4 that there is a color ∈ ∩ ∩δ φ y φ u φ v( ) ( ) ( ). We have
P α δ φ P α δ φ( , , ) = ( , , )x y by Lemma 3.1. Apply Kempe changes on P α δ φ( , , )u and
P α δ φ( , , )v , and get a new coloring φ′ such that ∈ ∩ ∩α φ x φ u φ v′( ) ′( ) ′( ), as desired.
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Now let ∈ ∩ ∩γ φ x φ u φ v( ) ( ) ( ). By the observation II, we have P γ η φ P γ η φ( , , ) = ( , , )x u .
By the similar proof of the first subcase of Case 3 with P γ η φ( , , )u in place of P

and γ in place of α, we can obtain the coloring ∕φ φ P γ η φ= ( , , )u1 such that
∈ ∩γ φ z φ x( ) ( ) ( )w e

s
l1 ( ) 1ls s

, as desired.

Combining the above Cases 1, 2, and 3, we complete the proof of Subclaim 1.1. □

Thus we assume that there exists a color ∈ ∩η C z φ x( ) ( )φ w e l, ( )ls s
. We consider the following

two cases.

Case 1. ∈ ∩η φ z φ x( ) ( )ls .

Suppose w e x( ) =ls . Recolor the edge els with η to get a new coloring φ1. Thus
∈ ∩β φ x C z( ) ( )l φ w e l1 , ( )s ls s1 −1 −1

, which contradicts the minimality of s. So we assume w e( ) =ls y.
Since ≤d y( ) Δ − 1, there exists a missing color γ with ≠γ βl1. We have P η γ φ( , , ) =x P η γ φ( , , )y by
Lemma 3.1. Let ∕φ φ P η γ φ= ( , , )z2 ls

, and we have ∈ ∩γ φ y φ z( ) ( )l2 2 s
. Recolor the edge els with γ

to get a new coloring φ3. Thus ∈ ∩β φ y C z( ) ( )l φ w e l3 , ( )s ls s3 −1 −1 , also contradicting the minimality of s.

Case 2. ∈ ∩η φ z φ x( ) ( )w e
s

l( )ls s
.

Suppose ∈β φ z( )l ls s−1
. Since ∈η φ z( )w e

s
l( )ls s
, there is an edge e z u′ = ls such that

≠u w e φ e η( ), ( ′) =ls and ≤d u( )
d w eΔ − ( ( ))

2

ls . It follows from Lemma 3.4 that there is a color
∈ ∩δ φ w e φ u( ( )) ( )ls with ≠δ η β, l1

. By the observation II, we have P δ β φ( , , )w e l( )ls s

P δ β φ= ( , , )z lls s−1
. Note that els is on P δ β φ( , , )w e l( )ls s

. Let ∕φ φ P δ β φ= ( , , )u l1 s
. Hence Sy is still a

y‐generated sequence under φ1 with ∈β φ u( )l 1s
. We claim that we may assume ∈η φ w e( ( ))l1 s

. If
w e x( ) =ls , we are done. Otherwise, w e y( ) =ls . We have P η δ φ P η δ φ( , , ) = ( , , )x y1 1 by Lemma 3.1.
Recall ≠δ βl1. The coloring ∕φ φ P η δ φ′ = ( , , )x1 results in ∈η φ y′( ), as desired. Now we assume
∈η φ w e( ( ))l1 s

. We have P η β φ P η β φ w e z u( , , ) = ( , , ) = ( )w e l u l l l( ) 1 1ls s s s s
. Then the coloring

∕φ φ P η β φ= ( , , )w e l2 1 ( ) 1ls s
results in ∈ ∩β φ w e φ z( ( )) ( )l l l2 2s s s−1

, contradicting the minimality of s.
Now we suppose ∈β φ z( )l w e

s
l( )s ls
s

−1
−1

. In this case, there is an edge e z u′ = ls such that

≠u w e φ e η( ), ( ′) =ls and ≤d u( )
d w eΔ − ( ( ))

2

ls , and there is an edge e z v″ = ls−1
such that ≠v w

e φ e β( ), ( ″) =l ls s−1
and ≤d v( )

d w eΔ − ( ( ))

2

ls−1 . By the condition C3 in Section 2, we have ≠u v. It
follows from Lemma 3.4 that there is a color ∈ ∪ ∩ ∩δ φ w e φ w e φ u φ v( ( ( )) ( ( ))) ( ) ( )l ls s−1

. We
first claim that we may assume that ∈δ φ w e( ( ))ls and ≠δ βl1. Suppose ∈δ φ w e( ( ))ls but δ β= l1

.
Thus w e y( ) =ls . Recall that ≤d x d ymax{ ( ), ( )} Δ − 1. Hence there exist ∈γ φ x( )1 with ≠γ η1

and ∈γ φ y( )2 with ≠γ δ β= l2 1
. By Lemma 3.1, we have P γ δ φ P γ δ φ( , , ) = ( , , )x y1 1 and

P γ γ φ P γ γ φ( , , ) = ( , , )x y1 2 1 2 . Apply Kempe changes on P γ δ φ( , , )u 1 and P γ δ φ( , , )v 1 to get a new
coloring φ′. And then apply Kempe changes on P

′u γ γ φ( , , )1 2
and P

′v γ γ φ( , , )1 2
to get a new coloring φ″.

Consequently, we have ∈ ∩γ φ u φ v″( ) ″( )2 , as desired because γ2 is the desired color instead of δ.
Now suppose ∉δ φ w e( ( ))ls . Thus we have ≠w e w e( ) ( )l ls s−1

and ∈δ φ w e( ( ))ls−1
. Since

≤d x d ymax{ ( ), ( )} Δ − 1, there exists a missing color ∈γ φ w e( ( ))ls such that ≠γ δ β, l1
. We

have P γ δ φ P γ δ φ( , , ) = ( , , )x y by Lemma 3.1. Apply Kempe changes on P γ δ φ( , , )u and P γ δ φ( , , )v to
get a new coloring φ‴. Thus ∈ ∩ ∩γ φ w e φ u φ v‴( ( )) ‴( ) ‴( )ls , as desired because γ is
the desired color instead of δ. Now we assume that ∈δ φ w e( ( ))ls and ≠δ βl1. Then
P δ β φ P δ β φ( , , ) = ( , , )w e l v l( )ls s s

by the observation II. Note that els is on P δ β φ( , , )w e l( )ls s
. Let the

coloring ∕φ φ P δ β φ= ( , , )u l1 s
. Hence Sy is still a y‐generated ce‐sequence under φ1 with ∈β φ u( )l 1s

.
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Next, we show that we may assume ∈η φ w e( ( ))l1 s
. If w e x( ) =ls , we are done. Otherwise,

w e y( ) =ls . We have P η δ φ P η δ φ( , , ) = ( , , )x y1 1 by Lemma 3.1. The coloring ∕φ φ P η δ φ′ = ( , , )x1 1

results in ∈η φ y′( )1 , as desired. Now note that P η β φ P η β φ w e z u( , , ) = ( , , ) = ( )w e l u l l l( ) 1 1ls s s s s
.

Then the coloring ∕φ φ P η β φ= ( , , )w e l2 1 ( ) 1ls s
results in ∈ ∩β φ w e φ z( ( )) ( ) ( )l l w e

s
l2 2 ( )s s ls s−1 −1

,
contradicting the minimality of s. This completes the proof of Case 2.

Combining the above Cases 1 and 2, we complete the proof of Claim 1 for ≥s 2. Together
with the proof of Claim 1 for ≤s 1, we prove Claim 1. □

Claim 2. The union of vertex sets of any two linear ce‐sequences is φce‐elementary.

Proof. Suppose that Claim 2 is false. Without loss of generality, we choose φ

such that there exist two linear ce‐sequences S x e y e z e z= ( , , , , , …, , )l l l l1 s s1 1
and

S x e y e z e z= ( , , , , , …, , )l l l l2 ′ ′ ′ ′
t t1 1

whose union of vertex sets is not φce‐elementary with

s t+ as small as possible, where ≥s t, 1. Note that V S( )1 and V S( )2 are φce‐elementary
by Claim 1. By the minimality of ≠s t z z+ , l l ′s t

and there exists a color
∈ ∩η C z C z( ) ( )φ w e l φ w e l, ( ) , ( ) ′ls s lt t′ . We consider the following three cases. If ∈η φ z( )ls

∩φ z( )l ′t , then zls and zl ′t are respectively not repeated vertices in S1 and S2 since the

minimality of s t+ . By the same proof of Claim 2 in Theorem 1.3, we can obtain three
endvertices on one Kempe chain, which gives a contradiction.

If ∈ ∩η φ z φ z( ) ( )w e
s

l l( ) ′
ls

s t
(or ∈ ∩η φ z φ z( ) ( )l w e

s
l( ) ′s lt t′

by symmetry), then there is an

edge e z u′ = ls such that ≠u w e φ e η( ), ( ′) =ls and ≤d u( )
d w eΔ − ( ( ))

2

ls . It follows from

Lemma 3.4 that there is a color ∈ ∩δ φ w e φ u( ( )) ( )ls . By the definition of linear
ce‐sequence in C‐e‐fan and the minimality of s t z+ , ls may be a repeated vertex in S1,
while zl ′t is not a repeated vertex in S2. Note that φ e( )l1 and φ e( )l ′1 are in ∪C x C y( ) ( )φ y φ x, , .

(φ e( )l1 and φ e( )l ′1 could be the same color). We consider the following two subcases. If

∉δ φ e φ e{ ( ), ( )}l l ′1 1
, then we have P δ η φ P δ η φ( , , ) = ( , , )w e u( )ls by the observation II since S1

is φce‐elementary. Similarly, we have P δ η φ P δ η φ( , , ) = ( , , )w e z( )ls lt′
by observation II since

S2 is φce‐elementary. Thus w e z( ),l l ′s t
and u are three endvertices of P δ η φ( , , )w e( )ls , which

gives a contradiction. Now we consider the remaining case ∈δ φ e φ e{ ( ), ( )}l l ′1 1
. Let

∈w e x y w e′( ) { , } \ { ( )}l ls s
. Recall that ≤d x d ymax{ ( ), ( )} Δ − 1. Hence we can choose a

color ∈γ φ w e( ′( ))ls with ∉γ φ e φ e{ ( ), ( )}l l ′1 1
. We have P δ γ φ P δ γ φ( , , ) = ( , , )x y by

Lemma 3.1. Apply Kempe change on P δ γ φ( , , )u to get a new coloring φ1. Thus
∈ ∩γ φ φ u

′
( )w e1( ( )) 1ls

. Similarly as the subcase above (when ∉δ φ e φ e{ ( ), ( )}l l ′1 1
), we have

P γ η φ P γ η φ
′

( , , ) = ( , , )w e z( ) 1 1ls lt′
and P γ η φ P γ η φ

′
( , , ) = ( , , )w e u( ) 1 1ls

. Thus w e z′( ),l l ′s t
and u

are three endvertices of P δ η φ
′

( , , )w e( ) 1ls
, which also gives a contradiction.

If ∈ ∩η φ z φ z( ) ( )w e
s

l w e
s

l( ) ( ) ′
ls

s lt t′
, then there is an edge e z u′ = ls such that ≠u w

e φ e η( ), ( ′) =ls and ≤d u( )
d w eΔ − ( ( ))

2

ls , and there is an edge e z v″ = l ′t such that ≠v

w e φ e η( ), ( ″) =l ′t and ≤d v( )
d w eΔ − ( ( ))

2

lt′ . Obviously, ≠u v, and zls and zl ′t may be repeated

vertices respectively in S1 and S2. Without loss of generality, we suppose that
≤d x d y( ) ( ). It follows from Lemma 3.4 that there is a color ∈ ∩ ∩δ φ x φ u φ v( ) ( ) ( ).

We consider the following two subcases. If ∉δ φ e φ e{ ( ), ( )}l l ′1 1
, then we have

P δ η φ P δ η φ( , , ) = ( , , )x u by the observation II. Similarly, we have P δ η φ( , , ) =x

P δ η φ( , , )v . Thus x u, and v are three endvertices on one δ η( , )‐chain, which is a
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contradiction. Now we consider the remaining case ∈δ φ e φ e{ ( ), ( )}l l ′1 1
. Recall that

≤d x d ymax{ ( ), ( )} Δ − 1. Hence we can choose a color ∈γ φ y( ) with ∉γ φ e φ{ ( ),l1

e( )}l ′1
. We have P δ γ φ P δ γ φ( , , ) = ( , , )x y by Lemma 3.1. Apply Kempe changes on

P δ γ φ( , , )u and P δ γ φ( , , )v to get a new coloring φ1. Thus we have ∈γ φ y( )1

∩ ∩φ u φ v( ) ( )1 1 . Thus we are back to the previous subcase with y in place of x and γ
in place of δ. This completes the proof of Claim 2. □

Now we are ready to show that V F( )ce is φce‐elementary. Suppose not. Note that x y{ , } is
φce‐elementary and each linear ce‐sequence in Fce contains vertices x and y. There exist one
color η and two distinct vertices zi and zj such that ∈ ∩η C z C z( ) ( )φ w e i φ w e j, ( ) , ( )i j

, where
≤ ≤i j p0 < and ∈z x y{ , }0 . By the definition of simple C‐e‐fan, there exist two linear

ce‐sequences with zi and zj respectively as the last vertex, which is a contradiction to Claim 1
for i = 0 or a contradiction to Claim 2 for ≤ ≤i p1 − 1. This proves that V F( )ce is
φce‐elementary.

Now we show the “furthermore” part. We assume that Fce is maximal. Let the edge set
e eΓ = { , …, }p1 and the color set ∈ C zΓ′ = ( )z V F φ( )ce . Note that C x C y( ), ( )φ φ and C z( )φ , where

∈z V F x y( ) \ { , }ce , are disjoint since V F( )ce is φce‐elementary. We have

∈

   p μ x z μ y z= Γ = ( ( , ) + ( , )) = Γ* .
z V F x y

F F
( ) \ { , }ce

ce ce

(3)

Now we calculate  Γ* in another way. By the definition of C‐e‐fan, ∈φ e( ) Γ′i for each
∈i p[ ]. By the maximality of Fce, for any ∈α αΓ′, appears exactly once in Γ* if
∈ ∪α C x C y( ) ( )φ φ . Otherwise, α appears exactly twice in Γ*. Thus we have

∈

       C x C y C zΓ* = ( ) + ( ) + 2 ( ) .φ φ

z V F x y

φ

( ) \ { , }ce (4)

Combining Equations (3) and (4), we prove that

∈

     C x C y μ x z μ y z C z( ) + ( ) = ( ( , ) + ( , ) − 2 ( ) ).φ φ

z V F x y
F F φ

( ) \ { , }ce

ce ce

The proof is now finished. □
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