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For a vertex u in a graph and a given positive integer k, let Mk(u) denote the set of vertices 
whose distance from u is at most k. A graph satisfies the local Dirac’s condition if the 
degree of each vertex u in it is at least |M2(u)|

2 . Asratian et al. disproved that a connected 
graph G on at least three vertices is Hamiltonian if G satisfies the local Dirac’s condition. 
In this paper, we prove that if a connected graph G on at least three vertices satisfies the 
local Dirac’s condition, then G contains a 2-factor. Our result is best possible.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite and simple graphs in this paper. For notation and terminology not defined here, readers are referred 
to [6]. We denote the minimum degree of a graph G by δ(G). Let NG (v) denote the set of neighbors of v and NG [v] =
NG(v) ∪ {v} in a graph G with v ∈ V (G); moreover, if there is no confusion, we use N(v) and N[v] to denote NG(v) and 
NG [v], respectively. For a graph G with v ∈ V (G) and S ⊆ V (G), let NS (v) = S ∩ NG(v), dS (v) = |NS(v)| and d(v) denote 
dG (v) for brevity if there is no confusion. For a graph G with A, B ⊆ V (G), let eG (A, B) denote the number of edges with 
one end in A and the other end in B , and we use eG(v, B) to denote eG({v}, B) for brevity. Let α(G) and κ(G) denote the 
independence number and the connectivity of a graph G , respectively. For a vertex u in a graph and a positive integer k, let 
Mk(u) denote the set of vertices whose distance from u is at most k. Let N2(u) = M2(u) \ N[u] and d2(u) = |N2(u)|.

The following is a well-known result on the Hamiltonicity of graphs due to Dirac [9].

Theorem 1.1. ([9]) Let G be a graph with at least three vertices. If δ(G) ≥ |V (G)|
2 , then G is Hamiltonian.

Asratian and Khachatryan [2] gave the following local criteria for the Hamiltonicity of graphs, which is a generalization 
of Dirac’s Theorem.

Theorem 1.2. ([2]) Let G be a connected graph with at least three vertices. If d(u) ≥ |M3(u)|
2 for each vertex u ∈ V (G), then G is 

Hamiltonian.
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Fig. 1. A graph with a cut vertex u satisfying the local Dirac’s condition.

Fig. 2. A graph G without a 2-factor.

Moreover, in [3–5], the authors developed local criteria for the existence of Hamilton cycles in finite connected graphs, 
which are analogues of the classical global criteria due to Ore [11] and Chvátal-Erdő [8]. Readers are referred to [10,12,14]
for more local conditions on Hamiltonicity of graphs.

We say a graph G satisfies the local Dirac’s condition if for each vertex u ∈ V (G), d(u) ≥ |M2(u)|
2 . Asratian et al. [5] gave a 

2-connected graph as a counterexample to disprove that a connected graph G on at least three vertices is Hamiltonian if G
satisfies the local Dirac’s condition. The graph in Fig. 1 satisfies the local Dirac’s condition and is not 2-connected, which 
implies the local Dirac’s condition is neither a sufficient condition on the Hamiltonicity nor 1-toughness of a graph.

Though the local Dirac’s condition can not guarantee the Hamiltonicity of graphs, in this paper, we prove that it is a 
sufficient condition for a graph to contain a 2-factor, as follows.

Theorem 1.3. Let G be a connected graph with at least three vertices. If d(u) ≥ |M2(u)|
2 for each vertex u ∈ V (G), then G contains a 

2-factor.

The graph G in Fig. 2 contains no 2-factor and d(vi) = |M2(vi)|−1
2 for each vertex vi in G, i ∈ {1, 2, 3, 4}. Thus the bound 

in Theorem 1.3 is sharp.

2. Preliminaries

Suppose (S, T ) is an ordered pair of disjoint vertex sets in a graph G . For a component C of G − (S ∪ T ), C is called 
an odd component with respect to (S, T ) (resp., even component) if eG(C, T ) ≡ 1 (mod 2) (resp., eG(C, T ) ≡ 0 (mod 2)). 
Let HG(S, T ) denote the set of the odd components of G − (S ∪ T ) and hG(S, T ) = |HG(S, T )|; moreover, let δG(S, T ) =
2|S| − 2|T | + ∑

x∈T
dG−S (x) − hG(S, T ). The following sufficient and necessary conditions on the existence of a 2-factor are 

derived from Tutte’s f -factor theorem in [13].

Theorem 2.1. ([13]) A multigraph G contains a 2-factor if and only if δG(S, T ) ≥ 0 for every S, T ⊆ V (G) with S ∩ T = ∅.

By the definition of δG (S, T ), we can obtain δG(S, T ) ≡ 0 (mod 2) for every S, T ⊆ V (G) with S ∩ T = ∅; moreover, by 
Theorem 2.1, if G contains no 2-factor, then G has an ordered pair (S, T ) with S ∩ T = ∅ and δG (S, T ) ≤ −2. In a multigraph 
G , an ordered pair (S, T ) is called a barrier if S ∩ T = ∅ and δG(S, T ) ≤ −2. A barrier (S, T ) is called a minimal barrier if 
|S ∪ T | is minimized among all the barriers of G .

In this paper, for a barrier (S, T ) of a graph G without a 2-factor, let C2k+1 denote the union of each component C in 
HG(S, T ) with eG(C, T ) = 2k + 1, k ≥ 0. The following result gives the characterizations of a graph G without a 2-factor, in 
which (1)-(3) are obtained from [1], and (4)-(5) from [7].

Lemma 2.1. ([1,7]) Let G be a graph without a 2-factor, and (S, T ) be a minimal barrier of G. Then

(1) T is independent;
(2) if C is an even component with respect to (S, T ), then eG(T , C) = 0;
(3) if C is an odd component with respect to (S, T ), then eG(v, C) ≤ 1 for every v ∈ T ;
(4) for every v ∈ S, |{C ∈HG(S, T ) : eG(v, C) ≥ 1}| + eG(v, T ) ≥ 4;
(5) |T | > |S| + ∑

k≥1 k · |C2k+1|.

The following result is an important tool in the proof of our main result.
2
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Lemma 2.2. Let G[X, Y ] be a bipartite graph without isolated vertices such that each edge xy ∈ E(G) with x ∈ X, y ∈ Y satisfies the 
following conditions:

(1) d(x) ≥ d(y) − 1 and y has at most one neighbor with degree d(y) − 1;
(2) if x1 ∈ N(y) with d(x1) = d(y) − 1, then d(y) ≥ 3 and each vertex in N(y) \ {x1} has degree at least d(y) + 1.

Then, |X | ≤ |Y |.

Proof. We give each edge xy of G a weight with w(xy) = 1
d(x) , where w(xy) denotes the weight of xy, x ∈ X, y ∈ Y . For 

each vertex y0 ∈ Y , by the hypothesis of Lemma 2.2, we can obtain the following inequalities (1)-(2):
∑

x∈N(y0)

w(xy0) =
∑

x∈N(y0)

1

d(x)
≤ |N(y0)|

d(y0)
= 1, if d(x) ≥ d(y0) for every x ∈ N(y0); (1)

∑

x∈N(y0)

w(xy0) =
∑

x∈N(y0)

1

d(x)
≤ |N(y0)| − 1

d(y0) + 1
+ 1

d(y0) − 1
≤ 1,otherwise. (2)

By the above inequalities (1)-(2), we have the following inequality (3), which is as we claimed.

|X | =
∑

e∈E(G)

w(e) =
∑

y∈Y

∑

x∈X
xy∈E(G)

1

d(x)
≤

∑

y∈Y

1 = |Y | � (3)

Note that M2(v) = N[v] ∪ N2(v) and |M2(v)| = d(v) + d2(v) + 1 for each vertex v in a graph. Then it is easy to obtain 
the following result.

Remark 1. If G satisfies the local Dirac’s condition, then d(v) ≥ d2(v) + 1 for each vertex v of G .

3. Proof of Theorem 1.3

Suppose on the contrary, there exists a connected graph G with at least three vertices satisfying the local Dirac’s condi-
tion, but G contains no 2-factor. Let E(HG (S, T )) denote the union of the edge sets of all the components in HG (S, T ), and 
for a vertex subset W of S ∪ T , let eG(W , HG(S, T )) denote the number of edges between W and all the components in 
HG(S, T ). Then, by Theorem 2.1, we choose a barrier (S, T ) of G such that

(1) (S, T ) is a minimal barrier of G;
(2) subject to (1), |E(HG(S, T ))| is maximized;
(3) subject to (1) and (2), eG (S, HG(S, T )) is maximized.

Claim 1. δ(G) ≥ 2.

Proof. We have either N[v] = V (G) or d2(v) ≥ 1 for each vertex v ∈ V (G). If N[v] = V (G), then d(v) ≥ |V (G)| − 1 ≥ 2. 
Since G satisfies the local Dirac’s condition, d(v) ≥ d2(v) + 1 ≥ 2 if d2(v) ≥ 1. �
Claim 2. For each v ∈ T , if NC (v) �= ∅ for some component C ∈ C1 with |C | = 1, then dG−S(v) = 1.

Proof. Suppose on the contrary, there exists a vertex v ∈ T and a component C ∈ C1 with |C | = 1 and dG−S (v) ≥ 2. Let 
C = {u}. By Lemma 2.1 (1)-(3), there are dG−S (v) components of HG (S, T ), which contains exactly one neighbor of v . Thus 
eG({v}, HG(S, T )) = dG−S (v) ≥ 2. Let T ′ := (T ∪{u}) \{v}. Clearly, |S∪T | = |S∪T ′|. We have hG(S, T ′) = hG(S, T ) −dG−S (v) +
1 by Lemma 2.1 (2)-(3), and 

∑
w∈T ′ dG−S (w) = ∑

w∈T dG−S (w) − dG−S (v) + 1 by C ∈ C1. Thus, δG(S, T ′) = δG(S, T ). Since 
|C | = 1 and dG−S (v) ≥ 2, we have |E(HG(S, T ′))| > |E(HG(S, T ))|, a contradiction to the choice of (S, T ). Thus dG−S (v) =
1. �

For each vertex v ∈ T , we define a mapping f v from HG(S, T ) to P(N2(v)) such that f v(C) = N2(v) ∩ V (C) for 
C ∈ HG(S, T ), where P(N2(v)) = {S : S ⊆ N2(v)}. Clearly, f v(C) ∩ f v(C ′) = ∅ if C and C ′ are two distinct components 
in HG(S, T ).

By Claim 2 and Lemma 2.1 (3), we can obtain the following result.

Claim 3. For each vertex v ∈ T , if NC (v) �= ∅ for some component C ∈ ⋃
k≥1 C2k+1 , then |C ′| ≥ 2 and f v(C ′) �= ∅ for each component 

C ′ in C1 with NC ′(v) �= ∅.
3
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By Lemma 2.1 (3), each vertex v ∈ T has at most one neighbor in each component of HG (S, T ). Then we have the 
following result.

Claim 4. For any vertex v ∈ T and any component C ∈HG(S, T ) with |C | ≥ 2, if NC (v) �= ∅, then f v(C) �= ∅.

Claim 5. Given an edge uv with v ∈ T , u ∈ V (C), and C ∈ ⋃
k≥1 C2k+1 , if dG−C1(v) ≤ 2, then NT (u) = {v}, dC (u) = 1 and dS (v) = 1.

Proof. By Lemma 2.1 (3), NC (v) = {u}. Let C′
1 = {C ∈ C1 : NC (v) �= ∅}. By Claim 3, |C ′| ≥ 2 and f v(C ′) �= ∅ for each component 

C ′ in C′
1 provided C′

1 �= ∅. Thus, |C′
1| ≤

∑

C ′∈C′
1

| f v(C ′)| ≤ d2(v). We have d2(v) ≤ |C′
1| + 1. Otherwise, d2(v) ≥ |C′

1| + 2, and then 

d(v) ≥ d2(v) + 1 ≥ |C′
1| + 3, which implies dG−C1 (v) ≥ 3, giving a contradiction.

Suppose |C | = 1, i.e., C = {u}. Then, dT (u) ≥ 3 since C ∈ ⋃
k≥1 C2k+1. Note that NT (u) \ {v} ⊆ N2(v) by Lemma 2.1 (1). 

It follows that d2(v) ≥ ∑

C ′∈C′
1

| f v(C ′)| + (dT (u) − 1) ≥ |C′
1| + (dT (u) − 1) ≥ |C′

1| + 2, giving a contradiction. Thus, |C | ≥ 2 and 

then | f v(C)| ≥ 1 by Claim 4, which implies d2(v) ≥ |C′
1| + | f v(C)| ≥ |C′

1| + 1. Note that dC (u) = | f v(C)|. If | f v(C)| ≥ 2 or 
NT (u) \ {v} �= ∅, then we have d2(v) ≥ |C′

1| + 2, giving a contradiction. Thus, NT (u) = {v} and dC (u) = 1. Moreover, we have 
d2(v) = |C′

1| + 1 and hence d(v) ≥ |C′
1| + 2, which implies dG−C1 (v) = 2 by dG−C1 (v) ≤ 2. Suppose NS(v) = ∅. Then, by 

dG−C1 (v) = 2 and Lemma 2.1 (1), there is a component C ′ ∈ (
⋃

k≥1 C2k+1) \ {C} with NC ′ (v) �= ∅. As the preceding proof for 
C , |C ′| ≥ 2 and | f v(C ′)| = 1. It follows that d2(v) ≥ |C′

1| +| f v(C ′)| +| f v(C)| = |C′
1| +2, giving a contradiction. Thus NS (v) �= ∅, 

and dS (v) = 1 by dG−C1 (v) = 2. �
Claim 6. For v ∈ T , if NC (v) �= ∅ for some C ∈ ⋃

k≥1 C2k+1 , then dG−C1(v) ≥ 3.

Proof. Let NC (v) = {u} by Lemma 2.1 (3). Suppose on the contrary, dG−C1 (v) ≤ 2. Then, dS (v) = 1 by Claim 5. Let 
NS (v) = {w}. Clearly, w �= u. By dG−C1 (v) ≤ 2, we have NG−C1 (v) = {w, u}. By Claim 5, dC (u) = 1, which implies |C | ≥ 2
and | f v(C)| = 1. Let NC (u) = {u1}. Then, f v(C) = {u1}. Suppose |NT (w)| ≥ 2 and let w1 ∈ NT (w) \ {v}. Then, w1 ∈ N2(v) by 
Lemma 2.1 (1). Let C′

1 = {C ∈ C1 : NC (v) �= ∅}. By Claim 3, f v(C ′) �= ∅ for each component C ′ in C′
1 provided C′

1 �= ∅. Clearly, 
u1 �= w1 and {u1, w1} ⊆ N2(v). Moreover, {u1, w1} ∩ f v(C ′) = ∅ for each C ′ ∈ C′

1. It follows that d2(v) ≥ |C′
1| + 2, which 

implies dG−C1 (v) ≥ 3, giving a contradiction. Thus NT (w) = {v}.
By Lemma 2.1 (4), there are at least three components of HG (S, T ) in which w has a neighbor. Suppose NC∗ (w) �= ∅ and 

NC∗ (v) = ∅ for a component C∗ ∈ HG(S, T ). Let w∗ ∈ NC∗ (w). Then, w∗ ∈ N2(v). Clearly, w∗ �= u1 and {w∗, u1} ⊆ N2(v). 
Moreover, {u1, w∗} ∩ f v(C ′) = ∅ for each C ′ ∈ C′

1. Thus d2(v) ≥ |C′
1| + 2, and then dG−C1 (v) ≥ 3, a contradiction. Thus 

NC∗ (v) �= ∅ for each component C∗ ∈ HG(S, T ) with NC∗ (w) �= ∅. It follows that there are at least three components of 
HG(S, T ) in which v has a neighbor. Moreover, by dS(v) = 1, we have dG(v) ≥ 4, which implies |C′

1| ≥ 2 by dG−C1 (v) = 2. 
Suppose C1, C2 are two distinct components in C′

1. Then (NC1 (v) ∪ NC2 (v)) ⊆ N2(u). Recall that f v(C) = {u1}. Since C ∈⋃
k≥1 C2k+1 and dT (u) = dC (u) = 1 by Claim 5, there is some vertex u′ ∈ V (C) \ {u} with NT (u′) �= ∅, which implies N(u1) ∩

N2(u) �= ∅. Suppose u∗ ∈ N(u1) ∩ N2(u). Clearly, {u∗} ∩ NCi (v) = ∅, i = 1, 2, and hence d2(u) ≥ 3. Thus d(u) ≥ d2(u) + 1 ≥ 4, 
which implies dS (u) ≥ 2 by dC (u) = 1 and dT (u) = 1. Let u2 ∈ NS(u) \ {w}. By NS(v) = {w}, we have u2 ∈ N2(v). Clearly, 
u1 �= u2 and {u1, u2} ∩ f v(C ′) = ∅ for each C ′ ∈ C′

1. Thus, d2(v) ≥ |C′
1| + |{u1, u2}| = |C′

1| + 2, and then dG−C1 (v) ≥ 3, giving 
a contradiction. �

Let H be the resulting graph obtained by doing the following operations on G:

(1) Remove all the even components;
(2) Remove all the components in C1;
(3) Remove all the edges in G[S];
(4) For each component C ∈ ⋃

k≥1 C2k+1, suppose NT (C) = {vC
0 , vC

1 , · · · , vC
2k}. Firstly, replace C by an independent set UC =

{uC
1 , uC

2 , · · · , uC
k }. Secondly, join uC

i to vC
2i−1 and vC

2i , respectively, and moreover, join uC
1 to vC

0 , 1 ≤ i ≤ k.

Clearly, the vertices in S ∪ T of G are not changed in H , and we still use S and T to denote the two vertex sets in H . 
Since T is an independent set in G by Lemma 2.1 (1), by the above operations, H is a bipartite graph. In the following proof, 
let H = H[Y , T ] and Y1 = Y \ S , where Y = S ∪ (

⋃
k≥1

⋃
C∈C2k+1

UC ). By the above operations, we can obtain the following two 

results.

Claim 7. |Y | = |S| + ∑
k≥1 k · |C2k+1|.

Claim 8. dH (y) ≤ 3 for each vertex y ∈ Y1 .

Claim 9. For each vertex v ∈ T , dH (v) = dG−C1 (v) ≥ 1.
4
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Proof. By Lemma 2.1 (1)-(2), NG(v) ⊆ S ∪ (
⋃

k≥0 C2k+1) for each vertex v ∈ T . Thus we have dH (v) = dG−C1 (v) from the 
operations on G . Suppose on the contrary that H contains an isolated vertex v in T . Then, NG(v) ⊆ ⋃

C∈C1

C . Let C′
1 = {C ∈ C1 :

NC (v) �= ∅}. Then, |C′
1| ≥ 2 since dG (v) ≥ 2 by Claim 1 and Lemma 2.1 (3), and hence |C | ≥ 2 by Claim 2, for each component 

C ∈ C′
1. Moreover, each C in C′

1 contains at least one vertex in N2(v) in G by Claim 4. Thus d2(v) ≥ ∑

C∈C′
1

| f v(C)| ≥ |C′
1|, which 

implies dG (v) ≥ |C′
1| + 1. It follows that NG (v) contains a vertex not in any component of C′

1, a contradiction. �
Claim 10. For any v ∈ T , if NG(v) ∩ V (C) = ∅ for each component C ∈ C1 with |C | = 1, then dH (v) ≥ dH (u) for each vertex u ∈
NH (v).

Proof. Clearly, NH (v) ∩ Y1 �= ∅ if and only if NG (v) has a neighbor in some component of 
⋃

k≥1 C2k+1. Suppose NG(v) has a 
neighbor in some component of 

⋃
k≥1 C2k+1. Then, dG−C1 (v) ≥ 3 by Claim 6, and hence dH (v) ≥ 3 ≥ dH (y) by Claim 8 and 

Claim 9 for each y ∈ Y1 ∩ NH (v).
By the operations on G , S ∩ NH (v) = S ∩ NG(v). Suppose w ∈ S ∩ NH (v). Let C′

1 = {C ∈ C1 : NC (v) �= ∅}. By the hypothesis 
of the claim, |C ′| ≥ 2 for each C ′ ∈ C′

1 provided C′
1 �= ∅, and hence | f v(C ′)| ≥ 1 by Claim 4. Since NH (w) ⊆ T , we have 

NH (w) \ {v} ⊆ N2(v) by Lemma 2.1 (1). Clearly, (
⋃

C ′∈C′
1

f v(C ′)) ∩ (NH (w) \ {v}) = ∅. Then dG(v) ≥ d2(v) + 1 ≥ ∑

C ′∈C′
1

| f v(C ′)| +
dH (w) ≥ |C′

1| + dH (w). Thus, dH (v) = dG−C1 (v) ≥ dH (w). �
Claim 11. For any vertex v ∈ T , if there exists a vertex u ∈ NH (v) with dH (u) > dH (v), then dH (u) ≥ 3, dH (v) = dH (u) − 1, and 
dH (v ′) ≥ dH (u) + 1 for each vertex v ′ ∈ NH (u) \ {v}.

Proof. By dH (u) > dH (v) and Claim 10, v has a neighbor in some component C ∈ C1 with |C | = 1. Suppose C = {w}. Then, 
NG(v) ⊆ S ∪ {w} by Claim 2, and so u ∈ S and dH (v) = dG(v) − 1. Since H = H[Y , T ] is a bipartite graph, NH (u) ⊆ T . 
By Lemma 2.1 (1), (NH (u) \ {v}) ⊆ N2(v). Thus, dG (v) ≥ d2(v) + 1 ≥ dH (u), which implies dH (v) = dG (v) − 1 ≥ dH (u) − 1. 
By dH (u) > dH (v), we have dH (v) = dH (u) − 1, which implies N2(v) = NH (u) \ {v}. Thus, (NG(u) \ T ) ⊆ NG(v), and u has 
at most w as a neighbor in the components of HG (S, T ). It follows that dH (u) = |NG(u) ∩ T | ≥ 3 by Lemma 2.1 (4). Since 
N2(v) = NH (u) \ {v} ⊆ T and NG (w) ⊆ S ∪{v}, we have NG [w] ⊆ NG [v]. We have NG [w] = NG [v]. Otherwise, NG(w) \ {v} is 
a proper subset of NG(v) \ {w}, which implies |eG(w, S)| < |eG(v, S)|. Let T ′ := (T ∪ {w}) \ {v} and C ′ := {v}. By |C | = 1 and 
dG−S (v) = 1, it is easy to see that HG(S, T ′) = (HG(S, T ) \ {C}) ∪ {C ′} and δG(S, T ′) = δG(S, T ). By |eG(v, S)| > |eG(w, S)|, 
we have eG(S, HG(S, T ′)) > eG(S, HG(S, T )), giving a contradiction to the choice of (S, T ). Thus, we have w ∈ N(u) by 
NG [w] = NG [v]. By NT (w) = {v} and Lemma 2.1 (1), we have {w} ∪ (NH (u) \ {u′}) ⊆ N2(u′) for each vertex u′ ∈ NH (u) \ {v}. 
Thus, dG (u′) ≥ d2(u′) + 1 ≥ dH (u) + 1.

Let u1 ∈ NH (u) \ {v}. Suppose u1 has no neighbor in any component of C1. Then dH (u1) = dG(u1) ≥ dH (u) + 1 by 
u1 ∈ T . Suppose NC ′ (u1) �= ∅ for some component C ′ ∈ C1 with |C ′| = 1. By NT (w) = {v} and w ∈ N(u), we have w ∈
N2(u1). Let C ′ = {w ′}. Then, NG−S (u1) = {w ′} by Claim 2. Clearly, w �= w ′ and NG(w ′) ⊆ S ∪ {u1}. Suppose there is a 
vertex u2 ∈ NG(w ′) \ {u1} with u1u2 /∈ E(G). Then, u2 ∈ S and hence u2 �= w . Thus {u2, w} ∪ (NH (u) \ {u1}) ⊆ N2(u1) and 
d2(u1) ≥ dH (u) + 1, which implies dG (u1) ≥ d2(u1) + 1 ≥ dH (u) + 2. Since NG−S (u1) = {w ′}, we have dH (u1) = dG(u1) − 1 ≥
dH (u) + 1. Suppose NG(w ′) ⊆ NG [u1]. Then, NG [w ′] = NG [u1]. Otherwise, |eG(u1, S)| > |eG(w ′, S)|. Let T ∗ := (T ∪ {w ′}) \
{u1}. As the preceding proof for v and w , we have δG(S, T ∗) = δG(S, T ), and eG(S, HG(S, T ∗)) > eG(S, HG(S, T )), giving 
a contradiction to the choice of (S, T ). Thus uw ′ ∈ E(G) by u ∈ NG(u1), which implies w ′ ∈ N2(v), giving a contradiction 
with N2(v) = NH (u) \ {v}. Suppose |C ′′| ≥ 2 for each component C ′′ ∈ C1 with NC ′′(u1) �= ∅. Then, by Claim 4, | fu1 (C

′′)| ≥ 1
for each component C ′′ ∈ C1 with NC ′′ (u1) �= ∅. Note that ⋃

C ′′∈C1

fu1 (C
′′) ∪ (NH (u) \ {u1}) ∪ {w} ⊆ N2(u1). Then dG (u1) ≥

∑
C ′′∈C1

| fu1 (C
′′)| + dH (u) + 1. Thus dH (u1) ≥ dH (u) + 1. �

By Claim 9, T contains no isolated vertex in H . Note that Y may contain some isolated vertex y in H if and only if y ∈ S
with NG(y) ∩ T = ∅. Let Y ′ = NH (T ) and H ′ := H[Y ′, T ] be a subgraph of H[Y , T ]. By Claim 10 and Claim 11, each edge in 
H ′ satisfies the hypothesis of Lemma 2.2, and hence |T | ≤ |Y ′| ≤ |Y | by Lemma 2.2. By Lemma 2.1 (5) and Claim 7, we have 
|T | > |Y |, giving a contradiction. Thus Theorem 1.3 is true.
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