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2-factor
Barrier

1. Introduction

We consider finite and simple graphs in this paper. For notation and terminology not defined here, readers are referred
to [6]. We denote the minimum degree of a graph G by §(G). Let Ng(v) denote the set of neighbors of v and Ng[v] =
Ng(v) U {v} in a graph G with v € V(G); moreover, if there is no confusion, we use N(v) and N[v] to denote N¢(v) and
N¢[v], respectively. For a graph G with v € V(G) and S C V(G), let Ns(v) = SN Ng(v),ds(v) = |Ns(v)| and d(v) denote
dg(v) for brevity if there is no confusion. For a graph G with A, B C V(G), let eg(A, B) denote the number of edges with
one end in A and the other end in B, and we use e;(v, B) to denote eg({v}, B) for brevity. Let «(G) and «(G) denote the
independence number and the connectivity of a graph G, respectively. For a vertex u in a graph and a positive integer k, let
My (u) denote the set of vertices whose distance from u is at most k. Let N2 (u) = My (u) \ N[u] and dy(u) = |N2(u)|.

The following is a well-known result on the Hamiltonicity of graphs due to Dirac [9].

Theorem 1.1. ([9]) Let G be a graph with at least three vertices. If §(G) > @ then G is Hamiltonian.

Asratian and Khachatryan [2] gave the following local criteria for the Hamiltonicity of graphs, which is a generalization
of Dirac’s Theorem.

Theorem 1.2. ([2]) Let G be a connected graph with at least three vertices. If d(u) > Wf'zﬂ for each vertex u € V(G), then G is
Hamiltonian.
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Fig. 1. A graph with a cut vertex u satisfying the local Dirac’s condition.
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Fig. 2. A graph G without a 2-factor.

Moreover, in [3-5], the authors developed local criteria for the existence of Hamilton cycles in finite connected graphs,
which are analogues of the classical global criteria due to Ore [11] and Chvatal-Erdé [8]. Readers are referred to [10,12,14]
for more local conditions on Hamiltonicity of graphs.

We say a graph G satisfies the local Dirac’s condition if for each vertex u € V(G),d(u) > M Asratian et al. [5] gave a
2-connected graph as a counterexample to disprove that a connected graph G on at least three vertices is Hamiltonian if G
satisfies the local Dirac’s condition. The graph in Fig. 1 satisfies the local Dirac’s condition and is not 2-connected, which
implies the local Dirac’s condition is neither a sufficient condition on the Hamiltonicity nor 1-toughness of a graph.

Though the local Dirac’s condition can not guarantee the Hamiltonicity of graphs, in this paper, we prove that it is a
sufficient condition for a graph to contain a 2-factor, as follows.

Theorem 1.3. Let G be a connected graph with at least three vertices. If d(u) > W for each vertex u € V(G), then G contains a
2-factor.

The graph G in Fig. 2 contains no 2-factor and d(v;) = % for each vertex v; in G,i € {1, 2, 3, 4}. Thus the bound
in Theorem 1.3 is sharp.

2. Preliminaries

Suppose (S, T) is an ordered pair of disjoint vertex sets in a graph G. For a component C of G — (SUT), C is called
an odd component with respect to (S, T) (resp., even component) if ec(C,T) =1 (mod 2) (resp., eg(C,T) =0 (mod 2)).
Let Hg(S,T) denote the set of the odd components of G — (SUT) and hg(S, T) = |Hg(S, T)|; moreover, let 5¢(S,T) =

2|S| = 2|T| + >_ dg—s(x) — hg(S, T). The following sufficient and necessary conditions on the existence of a 2-factor are
xeT
derived from Tutte’s f-factor theorem in [13].

Theorem 2.1. ([13]) A multigraph G contains a 2-factor if and only if §6(S, T) > 0 forevery S, T C V(G) with SNT = .

By the definition of 8¢ (S, T), we can obtain 8¢ (S, T) =0 (mod 2) for every S, T C V(G) with SN T = ¢@; moreover, by
Theorem 2.1, if G contains no 2-factor, then G has an ordered pair (S, T) with SNT =¢ and 85(S, T) < —2. In a multigraph
G, an ordered pair (S, T) is called a barrier if SNT =@ and 8¢(S, T) < —2. A barrier (S, T) is called a minimal barrier if
|SUT]| is minimized among all the barriers of G.

In this paper, for a barrier (S, T) of a graph G without a 2-factor, let Cy;41 denote the union of each component C in
Hg(S, T) with eg(C, T) =2k + 1,k > 0. The following result gives the characterizations of a graph G without a 2-factor, in
which (1)-(3) are obtained from [1], and (4)-(5) from [7].

Lemma 2.1. ([1,7]) Let G be a graph without a 2-factor, and (S, T) be a minimal barrier of G. Then
(1) T isindependent;

(2) if C is an even component with respect to (S, T), then eg(T,C) =0;

(3) if C is an odd component with respect to (S, T), theneg(v,C) <1 foreveryv € T;

(4) foreveryv e S, |{C e Hs(S,T):eq(v,C)>1} +ec(v,T) >4;

(5) IT1 > S|+ > k1 k- 1Cok+11-

The following result is an important tool in the proof of our main result.
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Lemma 2.2. Let G[X, Y] be a bipartite graph without isolated vertices such that each edge xy € E(G) with x € X, y € Y satisfies the
following conditions:

(1) d(x) >d(y) — 1 and y has at most one neighbor with degree d(y) — 1;
(2) ifxq € N(y) withd(x1) =d(y) — 1, then d(y) > 3 and each vertex in N(y) \ {x1} has degree at least d(y) + 1.

Then, |X| <|Y|.

Proof. We give each edge xy of G a weight with w(xy) = %X), where w(xy) denotes the weight of xy,x e X,y €Y. For
each vertex yg € Y, by the hypothesis of Lemma 2.2, we can obtain the following inequalities (1)-(2):

S woy = Y < OOy it > d(yo) for every x € N(yo); (1)
NGy d(x) d(yo)
X 0) xeN(yo)
~ 1INl -1 1 .
E w(xyo) = E _d(x) < dyo) +1 + dyo) — 1 <1, otherwise. (2)

xeN(yo) xeN(yo)

By the above inequalities (1)-(2), we have the following inequality (3), which is as we claimed.

X= Y we=Y Y ﬁszylzm . 3)
ye

ecE(G eY xeX
© Y xy€E(G)

Note that M, (v) = N[v]U Ny(v) and |[M2(v)| =d(v) +d2(v) + 1 for each vertex v in a graph. Then it is easy to obtain
the following result.

Remark 1. If G satisfies the local Dirac’s condition, then d(v) > dy(v) + 1 for each vertex v of G.
3. Proof of Theorem 1.3

Suppose on the contrary, there exists a connected graph G with at least three vertices satisfying the local Dirac’s condi-
tion, but G contains no 2-factor. Let E(H¢(S, T)) denote the union of the edge sets of all the components in H¢(S, T), and
for a vertex subset W of SUT, let ec(W,H¢(S,T)) denote the number of edges between W and all the components in
Hc(S, T). Then, by Theorem 2.1, we choose a barrier (S, T) of G such that

(1) (S, T) is a minimal barrier of G;
(2) subject to (1), |E(H(S, T))| is maximized;
(3) subject to (1) and (2), e¢ (S, Hg(S, T)) is maximized.

Claim 1. §(G) > 2.

Proof. We have either N[v] = V(G) or dy(v) > 1 for each vertex v € V(G). If N[v] = V(G), then d(v) > |[V(G)|—1=> 2.
Since G satisfies the local Dirac’s condition, d(v) > dy(v) +1>2 if do(v) > 1. O

Claim 2. For each v € T, if Nc(v) # @ for some component C € Cy with |C| =1, thendg_s(v) = 1.

Proof. Suppose on the contrary, there exists a vertex v € T and a component C € C; with |[C| =1 and d¢_s(v) > 2. Let
C = {u}. By Lemma 2.1 (1)-(3), there are d¢_s(v) components of H(S, T), which contains exactly one neighbor of v. Thus
ec({v}, Hg(S,T)) =dg_s(v) > 2. Let T" := (TU{u}) \ {v}. Clearly, |[SUT| = |SUT’|. We have hg(S,T') =hg(S,T)—dg_s(v)+
1 by Lemma 2.1 (2)-(3), and Y, cp do—s(W) =) ,crdo—s(W) —dg_s(v) + 1 by C € Cy. Thus, §¢(S,T') =85(S, T). Since
ICl=1 and dg_s(v) > 2, we have |E(Hg(S,T")| > |E(Hg(S, T))|, a contradiction to the choice of (S, T). Thus dg_s(v) =
1. O

For each vertex v € T, we define a mapping f, from Hs(S,T) to P(N2(v)) such that f,(C) = Ny(v) N V(C) for
C € H¢(S, T), where P(N2(v)) ={S:S C Ny(v)}. Clearly, f,(C)N fy,(C")=@ if C and C’ are two distinct components
in Hg(S, T).

By Claim 2 and Lemma 2.1 (3), we can obtain the following result.

Claim 3. For each vertex v € T, if Nc(v) # @ for some component C € Ukzl Cok11, then |C’| > 2 and f,(C’) # @ for each component
C"in C1 with N¢/ (v) # @.
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By Lemma 2.1 (3), each vertex v € T has at most one neighbor in each component of H¢(S, T). Then we have the
following result.

Claim 4. For any vertex v € T and any component C € H¢ (S, T) with |C| > 2, if Nc(v) # @, then f,(C) # @.
Claim 5. Given an edge uv withv e T,u € V(C),and C € Ukz] Cok+1,ifdg—c, (v) <2, then Nt (u) = {v},dc(u) =1andds(v) = 1.

Proof. By Lemma 2.1 (3), N¢(v) = {u}. Let C; ={C € C1 : N¢(v) # #}. By Claim 3, |C’| = 2 and f,(C") # @ for each component
C’ in C; provided C; #¢. Thus, |C]| < Y [fv(C')| <da(v). We have dy(v) < |C]| + 1. Otherwise, d(v) > |C;| +2, and then
C’eC)

d(v) = dy(v) + 1= |Cj|+ 3, which implies d;_¢, (v) > 3, giving a contradiction.

Suppose |C| =1, i.e, C ={u}. Then, dr(u) > 3 since C € [ J;- Cak+1- Note that Nt (u) \ {v} € N(v) by Lemma 2.1 (1).
It follows that d2(v) > > |fy(C)|+ (dr(u) — 1) > |C;| + (dr(u) — 1) > |C| + 2, giving a contradiction. Thus, |C| > 2 and

C'eCy

then |f,(C)| = 1 by Claim 4, which implies d2(v) > |C{| + | fy(C)| = |C{| + 1. Note that dc(u) = |fv(O)|. If | fy(C)| =2 or
Nr(u)\ {v} #9, then we have dy(v) > |C;| + 2, giving a contradiction. Thus, Nt (u) = {v} and d¢(u) = 1. Moreover, we have
d(v) = |C{| + 1 and hence d(v) > |C]| + 2, which implies dg_c, (v) =2 by dg_¢,(v) < 2. Suppose Ns(v) = #. Then, by
dg—c,(v) =2 and Lemma 2.1 (1), there is a component C’ € (|~ Cak+1) \ {C} with N¢/(v) # @. As the preceding proof for
C, |C'I =2 and |f,(C")| = 1. It follows that d2(v) > |C}|+1fv(C)|+|fv(C)| = |C]|+2, giving a contradiction. Thus Ns(v) # @,
and ds(v)=1bydg_¢c,(v)=2. O

Claim 6. For v € T, if Nc(v) # @ for some C € Uy Cak+1, then dg ¢, (v) > 3.

Proof. Let Nc(v) = {u} by Lemma 2.1 (3). Suppose on the contrary, dc_c,(v) < 2. Then, ds(v) =1 by Claim 5. Let
Ns(v) = {w}. Clearly, w # u. By dg_¢, (v) <2, we have Ng_c,(v) = {w,u}. By Claim 5, dc(u) =1, which implies |C| > 2
and |fy(C)| =1. Let Nc(u) = {u1}. Then, f,(C) ={u1}. Suppose [N7(w)| > 2 and let wi € Ny (w) \ {v}. Then, wq € N2(v) by
Lemma 2.1 (1). Let C} ={C € C1 : Nc(v) # ¢}. By Claim 3, f,,(C) # ¢ for each component C’ in C| provided C] # #. Clearly,
uy # wy and {uq, wi} € Na(v). Moreover, {u1, wi} N f,(C') = ¢ for each C’ € C;. It follows that da(v) > |Cj| + 2, which
implies dg_¢, (v) = 3, giving a contradiction. Thus N7(w) = {v}.

By Lemma 2.1 (4), there are at least three components of H (S, T) in which w has a neighbor. Suppose N¢x(w) # @ and
Nc=(v) = @ for a component C* € Hg(S, T). Let w* € Nc«(w). Then, w* € N(v). Clearly, w* # uq and {w™*,u1} € Ny(v).
Moreover, {u1, w*} N fy(C) =@ for each €’ € C}. Thus d2(v) > |C;| + 2, and then dg_¢, (v) > 3, a contradiction. Thus
Ncx(v) # ¢ for each component C* € Hg(S, T) with Nc«(w) # (. It follows that there are at least three components of
Hc(S, T) in which v has a neighbor. Moreover, by ds(v) =1, we have dg(v) > 4, which implies |C]| =2 by dg_¢, (v) =2.
Suppose C1, Cy are two distinct components in C{. Then (N¢,(v) U N¢,(v)) € Na(u). Recall that f,(C) = {u}. Since C
(Uk>1C2k+1 and dr (u) =dc(u) =1 by Claim 5, there is some vertex u’ € V(C) \ {u} with Nt (u") # @, which implies N(u;) N
N2 (u) # @. Suppose u* € N(u1) N Na(u). Clearly, {u*} N N¢,(v) =0,i=1,2, and hence da(u) > 3. Thus d(u) > da(u) + 1 >4,
which implies ds(u) > 2 by dc(u) =1 and dr(u) = 1. Let up € Ns(u) \ {w}. By Ns(v) = {w}, we have up € N(v). Clearly,
uq #uy and {uq, uz} N fy(C") =9 for each C’ € C{. Thus, d2(v) > |C7| + [{uq, u2}| =|C;| + 2, and then d¢_¢, (v) > 3, giving
a contradiction. 0O

Let H be the resulting graph obtained by doing the following operations on G:

) Remove all the even components;
) Remove all the components in Cy;
) Remove all the edges in G[S];

) For each component C € ( J; Cak41, suppose Nr(C) = {v§, v§, -+, v$,}. Firstly, replace C by an independent set U¢ =

c ,C C o 0, C c c : i 1, C C ;
{uf,uj, -+, u;}. Secondly, join u; to vs;_; and v, respectively, and moreover, join uj to vy, 1 <i<k.

(1
(2
3
(4

Clearly, the vertices in SUT of G are not changed in H, and we still use S and T to denote the two vertex sets in H.
Since T is an independent set in G by Lemma 2.1 (1), by the above operations, H is a bipartite graph. In the following proof,

let H=H[Y,Tland Y; =Y\ S, where Y =SU(|J | U°). By the above operations, we can obtain the following two
k>1CeCoriq
results.

Claim7.|Y| =S| + Zkzl k- 1Coks1l-
Claim 8. dy (y) < 3 for each vertex y € Y1.

Claim 9. For each vertex v e T, dy(v) =dg_c, (v) > 1.
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Proof. By Lemma 2.1 (1)-(2), Ng(v) CSU (U,<ZO Cak+1) for each vertex v € T. Thus we have dy(v) =dg_c,(v) from the

operations on G. Suppose on the contrary that H contains an isolated vertex v in T. Then, Ng(v) € |J C.LetCj ={Ce(y:
CeCq

Nc(v) # @}. Then, |Cj| = 2 since dg(v) > 2 by Claim 1 and Lemma 2.1 (3), and hence |C| > 2 by Claim 2, for each component

C € C;. Moreover, each C in C} contains at least one vertex in N(v) in G by Claim 4. Thus d(v) = »° |fv(C)| = |C|, which
CeC}

implies dg(v) > |C]|+ 1. It follows that Ng(v) contains a vertex not in any component of Cj, a contradiction. O

Claim 10. For any v € T, if Ng(v) N V(C) = @ for each component C € C1 with |C| =1, then dy(v) > dy(u) for each vertex u €
Ny (v).

Proof. Clearly, Ny(v)NYq # 0 if and only if Ng(v) has a neighbor in some component of | ;- Cak+1. Suppose Ng(v) has a
neighbor in some component of |- Cak+1. Then, dg_¢, (v) >3 by Claim 6, and hence dy(v) >3 > dy(y) by Claim 8 and
Claim 9 for each y e Y1 N Ny(v).

By the operations on G, SN Ny (v) = SNNg(v). Suppose w € SN Ny (v). Let C; ={C € C1 : Nc(v) # @}. By the hypothesis
of the claim, |C’| = 2 for each C’ € C] provided C; # ¥, and hence |f,(C")| =1 by Claim 4. Since Ny(w) C T, we have
Ny (w)\ {v} € Na(v) by Lemma 2.1 (1). Clearly, ( U fv(C)) "(Ny(w)\ {v}) =0. Thendc(v) = do(v)+1= > |fy(C)|+

C’eC) C’eC}
da(w) > |Cq| +du(w). Thus, dg(v) =dg_c,(v) =du(w). O

Claim 11. For any vertex v € T, if there exists a vertex u € Ny (v) with dg(u) > dy(v), then dg(u) > 3,dy(v) =dy(u) — 1, and
dy(v') >dy(u) + 1 for each vertex v € Ny (u) \ {v}.

Proof. By dy(u) > dy(v) and Claim 10, v has a neighbor in some component C € C; with |C| = 1. Suppose C = {w}. Then,
Ng(v) € SU{w} by Claim 2, and so u € S and dy(v) =dg(v) — 1. Since H = H[Y, T] is a bipartite graph, Ny(u) € T.
By Lemma 2.1 (1), (Ng(u) \ {v}) € N(v). Thus, dg(v) > dy(v) + 1 > dy(u), which implies dy(v) =dc(v) —1>dy(u) — 1.
By dy(u) > dy(v), we have dy(v) =dy(u) — 1, which implies Np(v) = Ny (u) \ {v}. Thus, (Ng(u) \ T) € Ng(v), and u has
at most w as a neighbor in the components of H¢ (S, T). It follows that dy(u) = [Ng(u) N T| > 3 by Lemma 2.1 (4). Since
No(v) =Npg@)\{v} ST and Ng(w) € SU{v}, we have Ng[w] C Ng[v]. We have Ng[w] = Ng[v]. Otherwise, Ng(w) \ {v} is
a proper subset of N¢(v) \ {w}, which implies |ec(w, S)| < leg(v, S)|. Let T' := (T U{w})\ {v} and C’ :={v}. By |C| =1 and
dc_s(v) =1, it is easy to see that H¢g (S, T") = (Hc(S,T) \ {C}H) U{C’} and 8¢(S,T') =8¢(S, T). By |lec(v, S)| > leg(w, S)|,
we have eg(S, Hg(S,T")) > eg(S, Hg(S,T)), giving a contradiction to the choice of (S, T). Thus, we have w € N(u) by
N¢[w] = Ng[v]. By Ny (w) = {v} and Lemma 2.1 (1), we have {w}U (Np(u) \ {u'}) € N (u’) for each vertex u’ € Ny (u) \ {v}.
Thus, dg (') >da(u') +1>dy(u) + 1.

Let u; € Ny(u) \ {v}. Suppose u; has no neighbor in any component of Cy. Then dy(ui) =dg(ui) >dy(u) + 1 by
uy € T. Suppose Nc¢/(uq) # @ for some component C' € C; with |C'| =1. By Nr(w) = {v} and w € N(u), we have w €
Na(uq). Let C" = {w’}. Then, Ng_s(uy) = {w'} by Claim 2. Clearly, w # w’ and Ng(w’) € S U {uq}. Suppose there is a
vertex uy € Ng(w') \ {u1} with ujuy ¢ E(G). Then, u; € S and hence uy # w. Thus {uy, w}U (Ny(u) \ {u1}) € N(uq) and
dy(u1) > dy(u) + 1, which implies dg(u1) > da(u1) + 1> dy(u) + 2. Since Ng_s(uq) = {w'}, we have dy(u1) =dg(uq) — 1>
dy(u) + 1. Suppose N¢(w’) € Ng[uq]l. Then, Ng[w’] = N¢[u1]. Otherwise, |eg(u1, S)| > leg(W', S)|. Let T* := (T U {w'}) \
{u1}. As the preceding proof for v and w, we have 3¢ (S, T*) = 8¢(S, T), and ec(S, Hg(S, T*)) > ec(S, H¢(S, T)), giving
a contradiction to the choice of (S, T). Thus uw’ € E(G) by u € N¢g(u1), which implies w’ € No(v), giving a contradiction
with N»(v) = Ny (u) \ {v}. Suppose |C”| > 2 for each component C” € C; with N¢»(up) # ¥. Then, by Claim 4, |f,,(C")| > 1
for each component C” € C; with N¢v(uq) # @. Note that | J fu,(C") U (Ny(u) \ {u1}) U {w} € Na(uy). Then dg(uq) >

C"eCy

> |fu](C//)| +dy(u) + 1. Thus dy(uq) >dg(u) +1. O
C"eCq

By Claim 9, T contains no isolated vertex in H. Note that Y may contain some isolated vertex y in H if and only if y € S
with Ng(y) N T =@. Let Y =Ng(T) and H' := H[Y’, T] be a subgraph of H[Y, T]. By Claim 10 and Claim 11, each edge in
H’ satisfies the hypothesis of Lemma 2.2, and hence |T| < |Y’| < |Y| by Lemma 2.2. By Lemma 2.1 (5) and Claim 7, we have
|T| > |Y|, giving a contradiction. Thus Theorem 1.3 is true.
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