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1. Introduction

In this paper, we only consider simple and undirected graphs. Let G be a graph and v € V(G). We denote the degree of v
by degc(v) and the vertices which are adjacent to v by Ng(v). For a set S € V(G), the subgraph induced by S and V(G) \ S
are denoted by G[S] and G - S, respectively. We denote the number of vertices in S by |S|.

A subset X is independent in G if G[X] has no edge. The independence number of G is denoted by «(G), which means
the maximum number of vertices in an independent set of G. Define 0,(G) = min{}_ degs(x) | X is independent in G and

xeX

|X| =k }. G is called K; ,-free if K;, is not an induced subgraph of G. We write claw-free graph for the K; ;-free graph. The
center of a claw refers to the vertex of degree 3 in Kj 3 and x-claw refers to a claw with center x.
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We call v a leaf of tree T if degr(v) =1 and denote L(T) the set of leaves of T. A vertex v with degr(v) > 3 is called a
branch vertex of tree T and define B(T) the set of branch vertices of T.

There are some well-known results such as Ore’s Theorem [8] and Chvatal-Erd6s’s Theorem [4] related to conditions of
degree sum and independence number ensuring a Hamiltonian path in G, respectively. Note that a Hamiltonian path is a
spanning tree with two leaves. With this viewpoint, researchers gave several results concerning about such two types of
conditions to guarantee the existence of spanning tree with bounded leaves(see the survey paper [9]).

The following two results generalize Ore’s Theorem [8] and Chvatal-Erdés’s Theorem [4], respectively.

Theorem 1.1 (Broerma and Tuinstra [1]). Let k > 2. If G is a connected graph of order n such that 05,(G) > n—k+1, then G
has a spanning tree with at most k leaves.

Theorem 1.2 (Win [10]). Let k > 2. If G is an m-connected graph such that «(G) < m+k — 1, then G has a spanning tree with
at most k leaves.

Since there are many researches on Hamiltonian path problem in Kj ,-free graphs, it is also natural for us to search for
conditions for Kj ,-free graphs to ensure the existence of spanning trees with bounded leaves. Here are some related results
on K ,-free graphs.

Theorem 1.3 (Kano et al. [6]). Let k > 2. If G is a connected claw-free graph of order n such that oy, 1(G) > n—k, then G has a
spanning tree with at most k leaves.

Theorem 1.4 (Kyaw [7]). Let G be a connected K; 4-free graph of order n.

(i) If 03(G) = n, then G has a Hamiltonian path.
(ii) If 0341(G) =n— % for some integer k > 3, then G has a spanning tree with at most k leaves.

Theorem 1.5 (Chen et al. [2]). Let m > 2. If G is an m-connected Kj 4-free graph of order n such that 0y, 3(G) > n+2m—2,
then G has a spanning tree with at most 3 leaves.

Theorem 1.6 (Chen et al. [3]). If G is a connected K; s-free graph of order n such that 05(G) > n—1, then G has a spanning
tree with at most 4 leaves.

Theorem 1.7 (Hu and Sun [5]). If G is a connected K; 5-free graph of order n such that 0g(G) > n— 1, then G has a spanning
tree with at most 5 leaves.

In this paper, we consider «(G) for a 2-connected K; -free graph with r > 4 to guarantee the existence of a spanning
tree with bounded leaves.

Theorem 1.8. Let k > 2 and r > 4. If G is a 2-connected K; ~free graph such that a(G) < k + (%1 - LWJ, then G has a
spanning tree with at most k leaves.

By taking r = 4 in Theorem 1.8, we have the following corollary.

Corollary 1.9. Let k > 2. If G is a 2-connected K; 4-free graph such that «(G) < 2k + 1, then G has a spanning tree with at most
k leaves.

Note that a tree with at most k leaves contains at most k — 2 branch vertices. We can easily obtain the following corollary.

Corollary 1.10. Let k > 0. If G is a 2-connected K; 4-free graph such that a(G) < 2k + 5, then G has a spanning tree with at most
k branch vertices.

With the same independence number condition of Corollary 1.10, we further provide the following result for connected
K; 4-free graphs.

Theorem 1.11. Let k > 0. If G is a connected K; 4-free graph such that «(G) < 2k + 5, then one of the following two statements
holds:

(i) G has a spanning tree with at most k branch vertices;
(ii) there exists a block B in G with a(B) < 2.

We provide the following conjecture for connected claw-free graphs to end this section.

Conjecture 1.12. Let k > 2. If G is a 2-connected claw-free graph such that o (G) < 2k + 2, then G has a spanning tree with at
most k leaves.

In next section, we show that the upper bounds of «(G) are sharp in Theorem 1.8 and Conjecture 1.12 if it is true. We
prove Theorem 1.8 and Theorem 1.11 in Sections 3 and 4, respectively.
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Fig. 2. Graph Gs.

2. Sharpness of Theorem 1.8 and Conjecture 1.12

First, we show that the upper bound of o (G) in Theorem 1.8 is sharp. This is shown in the following examples G; and
G,.

Denote t = L%J and h=k+1-t(r-3).

Case 1.1 # k+ 3.

In this case, [mj =0.

If h 0, we construct a graph G; from a complete graph Kye,, with V(Ky.2) = {x0. Xy, X1, X}, ..., X, X} and (r—2)t +
h+1 complete graphs Ki(m > 3) by identifying r —2 complete graphs Ki, with every pair of {x;,x} for 1 <i<t and by
identifying h+1 complete graphs K, with {xo.x;} (see Fig. 1). Then G; is 2-connected K; ,-free and o (Gy) =t(r—2) +
h+1=t(r-2)+k+1-t(r-3)+1=k+1+t+1=k+1+ [’;f—%l. However, for every spanning tree T; of G;, we have
IL(Ty)| =t(r—3)+h=k+ 1. Case 2. r =k + 3.

In this case, [¥17 =2 and Ll = 1

We construct a graph G, from a pair of vertex set {xp,x;} and r—1 complete graphs K, (m > 3) by identifying r — 1
complete graphs Kp with {xo,x;}. Then G, is 2-connected K ,-free and a(G,) =r—1=k+ 2, but G, has no spanning tree
with at most k leaves.

Next, we show that the upper bound 2k+2 in Conjecture 1.12 is sharp if it is true. For 0 <i <k, let T; and T, be
two triangles with V(T;) = {x;, y;,z} and V(T/) = {x], y;, z}}, respectively. Consider a graph Gz constructed from a complete
graph Ky with V(Kyp,0) = {0, X, X1. %], ..., xk,xi} and 2k + 2 complete graphs Ky, (m > 3) by identifying 2k + 2 complete
graphs K with every pair of {y;,y/} and {z;, z{} for 0 <i < k, respectively (see Fig. 2). Then Gs is 2-connected claw-free with
o (G3) = 2k + 3, but G3 has no spanning tree with at most k leaves.

3. Proof of Theorem 1.8

We begin with some additional notations. Let x and y be two vertices of G, we denote the distance between x and

y in G by d¢(x,y). Let u and v be two vertices in a spanning tree T of G, the unique path from u to v in T is denoted by

T[u, v]. We write T[u, v] — {u, v}, T[u, v] — {u}, T[u,v] — {v} by T(u, v), T(u,v] and T[u, v), respectively. Set I(T) = V(T) — L(T)

and f(T) = I/rrlLe(l%gf(T, v), where f(T,v) = ) (degr(z) —2)dr(v,z). Note that (degr(z) —2)dr(v,z) =0 if degr(z) = 2. Set
€ zel(T)

&)= 3 g&T.x), where g(T.x) = max{dr(x.y)|y € Ng(x)}.

xeL(T)
Proof of Theorem 1.8.. Suppose that G is a 2-connected Kj ,-free graph and every spanning tree has at least k + 1 leaves in
G. We choose a spanning tree T of G satisfying that

(C1) |L(T)] is as small as possible;
(C2) Subject to (C1), f(T) is as large as possible;
(C3) Subject to (C1) and (C2), g(T) is as large as possible.

Assume that L(T) = {xg,X1,...,X:} and f(T) = f(T,xg). Then t > k. T is considered as a rooted tree and xg is the root of T.
For 1 <i<t, r; is the last branch vertex of T on T[xg,x;] and r;" is the successor of r; on T[xg, x;]. For v € V(T) — {xo}, the
predecessor of v is denoted by v~ on T[xg,v]. O
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Claim 3.1. L(T) is independent in G.

Proof. Assume that x;x; € E(G) for some i and j with 0 <i# j<t. Then T* =T — {r;r;'} + {xx;} is a spanning tree with
L(T*) = (L(T) — {x;,x;}) U {r{"}, contradicting (C1). This proves Claim 3.1. O

Remark 3.1. From the proof of Claim 3.1, we know that for every spanning tree T* of G with |L(T*)| < |L(T)|, then L(T*) is
independent in G with |L(T*)| = |L(T)|.

Claim 3.2. For 1 <i <t, there is no neighbour of xo on T(r;, ;).

Proof. Assume that y € Ng(xg) with y € V(T (r;,x;)) for some 1 <i <t. Then T* =T — {yy~} + {xoy} is a spanning tree of G.
If y~ =r;, then |L(T*)| < |L(T)|, contrary to (C1); if y~ # r;, then T* satisfies (C1). Note that B(T*) = B(T). Then dr«(z,x;) =
dr« (xg, X;) + d7 (2, xo) for any z € B(T). Since dr«(xg, X;) > 1, we have dr«(z, x;) > dr(z,Xp). Thus f(T*,x;) > f(T,xp). Then we
have f(T*) > f(T), contrary to (C2). O

For 1 <i; <... <i; <t, denote by r; ; the last common vertex of the paths T[xo, x; |, ..., T[xo, x; ]. We denote the suc-
cessor of r;; on T[rj;, x;] and T[r;j, x;] by rlf; and r; respectively. Denote the predecessor of r;; on T[xg, r;;] by T The prede-
cessor of y on T (rj;, x;) is denoted by y~.

Claim 3.3. Ng(x;) € V(T (xg,%;)) for 1 <i<t.
Proof. Assume that there exists x; € L(T) — {xo.x;} satisfying that x; has a neighbour y on T(r;;,x;). Obviously, r; e
V(T[r,-j,xi)) and rje V(T[rij,xj)).

Set T* =T — {ryr;'} + {x;y}. Then T* is a spanning tree with L(T*) = (L(T) — {x;}) U {r;"}. Then I(T*) = (I(T) — {r;'}H) U
{x;}. Note that dr«(xq,1;) = dr(xq,17), degy«(r;) = degr(r;) — 1, dr«(Xg,y) = dr(Xg,y) and degr«(y) = degr(y) + 1. Note that
degr«(x;) = 2, degT(r;“)=2 and (degr(z) — 2)dr(xg, z) = (degr«(z) — 2)dr= (g, z) for all ze I(T*) NI(T) — {r;,y}. Hence,

(T %) = f(T.x0) = Y (degr-(2) —2)dr-(X0.2) — Y _ (degr(z) — 2)dr(x0.2)

zel(T*) zel(T)

= Y (degr-(2)—2)dr-(x0,2)— Y. (degr(2) —2)dr(xo,2)
zel(T)\{xi} zel(M\{r;'}

= > (degr-(2) —2)dr-(x0.2) — »_ (degr(z) —2)dr(Xo.2)
ze{ri.y} ze{ri.y}

= ) (degr(2) — degr(2))dr(Xo.2)
ze{ri.y}

= dr(x0,y) — dr (xo0. T;).

This together with (C2) implies that dr (xo, 1;) = dr (X0, ). (1

If y e V(T (rjj. rj]), we set T' =T — {yy~} + {x;y}. Then T’ is a spanning tree and I(T") = (I(T) — {y~}) U {x;}. If degr (y~) >
3, we have L(T’) = L(T) — {x;}, contradicting (C1). So degr(y~) = 2. Note that (degr(z) — 2)dr (xg, z) = (degy (2) — 2)d7/ (X0, 2)
for all z e I(T*) NI(T) — V(T[y, r;]). We have

f(T' x0) = f(T.x0) = ) (degr(2) —2)dr (x0.2) = ) (degr(2) - 2)dr(xo.2)

2el(T) 2el(T)
= ) (degr(2)—-2)dp(x0.2)— Y. (degr(z) —2)dr(xo,2)
zel(T")\{xi} zel(M\{y~}
= Y (degr(2)-2)dr(x0,2)— Y (degr(z) —2)dr(x,2)
zeV(T[yrs]) zeV(T[yr])
= ) (degr(z)—2)(dr(X0,2) — dr(0,2))
zeV(T[yn])
> ) (degr(z)—2)[dr(xo, 1) — dr(x0,y) +2]-
zeV (T[y.r;])

This together with (1) implies that f(T’.xp) — f(T.x9) =2 Y. (degr(z) —2). Noting that r; € V(T[y.r;]), we get
zeV(T[y.rj])
F@) = f(T) = f(T',x0) — f(T. %) = 2[degy (rj) — 2] = 2, contrary to (C2).
If yeV(T(rj.xj)), we set T =T — {rjrj.r} + {x;y}. Then T” is a spanning tree and I(T") = (I(T) — {rj.*}) U{x}. If y- =
rj, then L(T") =L(T) - {x;}, contrary to (C1). Thus, y~ #r;. Note that degy,(r;) =degr(rj) — 1, dr»(Xo.1j) =dr(xo.7}),

4
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degr(y) =2, degrn (y) = degr(y) + 1 = 3. From (1), we have dy» (xo,y) > dr (Xg, ;) + 2 > dr(Xg,y) + 2. By the similar discus-
sion to that in the proof of (1),
F(T77.%0) = f(T.%0) = Y eirs) (degr(2) — 2)dr (X0, 2) — i) (degr (2) — 2)dr (X0, 2)
=D sel T\ i) (degr//(z) — 2)dr/(x0,2) — Zzgl(r)\{r]f} (degr (2) — 2)dr (%0, 2)
= Zzg{rhy} (degT’/(z) - z)dT’/(XO’ Z) - Zze{rﬁy} (degT (Z) - z)dT (XO7 Z)
= (degr(r;) — degr (r;))dr (Xo. 1) + dr (X0, ¥)
= dr/(x0.¥) — dr (0. 1)
>dr(Xo,y) — dr (X0, ).
> 2.
This implies that f(T”) — f(T) > f(T”,xy) — f(T, %) > 2, also contradicting (C2). This proves Claim 3.3. O
Claim 3.4. Let 1 <i# j <t. Then ¢ Ng(x;) and rlf; ¢ Ng(xg).
Proof. Suppose that Claim 3.4 is false. Set
T {rari} + {xiry | 1:fx,»rl.1‘, cEG)
T —{ryri} +{xorf}. i xorf € E(G).
Then T* is a spanning tree with |L(T*)| < |L(T)|, contrary to (C1). O
For 0 <i <, let y; be the neighbour of x; such that dy (x;,y;) = g(T, x;). According to Claim 3.3, y; € V(T (xg, x;)) for 1 <i <

t. We denote the successor of y; on T[xg,x;] by y. Set I = {i € [1,t] : y; e V(T[r;,x))} and I, = {i € [1,£] : y; € V(T (xo, 7)) }.
ObViOUSly, 11 mlz =¢ and I] UIZ = [1, t]

Claim 3.5. For i € Iy, there exists z; € V(T[y;, x;)) satisfying that zj ¢ N¢[x;] and V (Tly;, z;]) < Ng(x;) where Ng[x;] = Ng(x;) U
{x;} and z{" is the successor of z; on T[xg, x;].

Proof. Suppose that Claim 3.5 is false. Then there is an integer i € I; such that Ng[x;]1 NV (T[r;, x;]) = V(T[y;, x;]). Since G is 2-
connected, G —y; is connected. There is u; € V(T (¥;,X;)) such that u; has a neighbour v; in T — Ty;, x;]. Set T* =T — {u; u;} +
{u7x;}. Then T* is a spanning tree with L(T*) = (L(T) — {x;}) U {y;} that satisfies (C1) and (C2). Noting that dr- (u;, ;) =
dr (x;,y;), we have dr-(u;, v;) > dr(x;,¥;), which implies that g(T*, u;) > g(T, x;). On the other hand, by Claims 3.2 and 3.3,
we have Ng(x;) NV (T (r;,x;)) =@ for 0 < j#i < t. Hence, g(T*, x;) = g(T, x;) for 0 < j # i <t. We have g(T*) > g(T), contrary
to (C3). O

By Claim 3.5, there exists z; € V(T[y;, x;)) satisfying that zI~ ¢ Ng[x;], V(T[y;. zi]) € Ng(x;) and let L{(T) = {z; : i € I }. De-
note zj =y; for j e L, and let Ly(T) = {z; : j € l}. For h =1, 2, define XM ={x;:iel,} and Ly(T) = {zf 1z e L (D)}

By the choice of z; for i e I; UL, we define two surjections 6, : X" — L;I (T) for h=1,2. Note that z; € V(T (y;, x;)) for
iely. Since V(T (y;, %)) NV(T(yj,x;)) =0 for i # j e Iy, 0; is a bijection. Thus |Ly(T)| = [L}(T)| = [L].

Claim 3.6. |L,(T)| = |L,(T)| = [12]7.

T

Proof. Let 9{1 (z;) be the preimage of z; in X2 for z; € L, (T). Suppose that 92*] (z)) ={xj:s=1}foriehand z; =z =...=
z;.. By Claim 3.3, we have z; € V(T(xo,xi}_)) for 1 < j <s. Hence, z; € V(T (o, 1y, i ])- We claim that

{z7. %, ....x }U {Z;; :1 < j <s} is independent in G. (%)

Suppose to the contrary that (x) is false. By Claim 3.1, {x; ,..., x;,} is independent. Then one of the following cases
occurs.

. z'?z;; € E(G) for some j € [1,s]. If degr(z;) >3, then T* =T — {z;z,-,z,-zﬁ} + {z,-x,-j,z;zlf;} is a spanning tree with L(T*) =
L(T) — {x,-j}, contrary to (C1). Hence, degr(z;) = 2. For any h e [1,s]\ {j}, T®W =T — {zl?z,-,z,'z; rihr;;} + {zix,-j,zlfz?zix,-h}
is a spanning tree with L(TM) = (L(T) — {xi;. %, U {ri:}. contrary to (C1).

* Z X € E(G) for some j € [1,s]. It follows that dy (x,»j,z,?) =dr (xij, zi)+1>g(T, xl-j). contrary to the choice of z;.

. xl-jz;; € E(G) for some j#hell,s] If zlf; =z;;, then T® =T — {ziz;;,xax,»j}-i- {z,-xij,z;;xij} is a spanning tree with
L(T@®) c (I(T) — {xHu {xi;}. It is straight to check that f(T® xy) > f(T, xp), which indicates that f(T®) > f(T), con-
trary to (C2). Hence z;; # z;’:. Then T® =T — {Z,-z;;} + {xijz;;} is a spanning tree with L(T®)) = L(T) — {x;,}, contrary to
(c1).

. zifzi € E(G) for some j#he(l,s]. Then T® =T — {zizi*_,z,-zi} + {zl.*_za,z,-xij} is a spanning tree with L(T®) = L(T) —
J i) J
{xij}, contrary to (C1).
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Therefore, (x) is true. Since G is K; ,-free and z is adjacent to each vertex in {z,x;,...,x,}U{z/ : 1 <j<s}, we have
J
s <1 —3. This implies that |L,(T)| = |L}(T)| = f% . O

Set U =L(T)UL{(T)ULy(T). By the definitions of L(T), L;(T) and L,(T), three vertex sets L(T), L;(T) and L,(T) are
disjoint. Thus |U| = |L(T)| + |L1 (T)| + Lo (T)]|.

Claim 3.7. U is independent in G.

Proof. First, we show that L;(T) UL,(T) is independent. Set T, =T — {z,-zi*,zjzj*} +{zix;. zjx;} for z; #zj € L) (T) ULY(T).
By Claim 3.3, z; € V(T (x9.%;)) and zj € V(T (xp,x;)). Then Ty is a spanning tree with L(T) < (L(T) — {x;, x;}) U {zi*,zj*}. By
Remark 3.1, L(T,) is independent in G. Hence, zi*z]f ¢ E(G).

Next, we show that both L(T) UL{(T) and L(T) UL,(T) are independent sets. Set T, =T — {z,-z;’} +{zix;} for z; e L) (T) U
L,(T). Then T, is a spanning tree with L(T,) < (L(T) — {x;}) U {z;"}. By Remark 3.1, L(T,) is independent in G. Hence, z;'x; ¢
E(G) for j € [0, t] — {i}. On the other hand, by Claims 3.1 and 3.5, L(T) is independent in G and zlfr ¢ No(x;) for z; e L) (T) U
L., (T).

2(Tglerefore, U is independent in G. O

Claim 3.8. o (G) =k+1+ [%1, LW+ k| =t=k || + {%] = (%1, and k = p(r — 3) for some integer p > 1.

Proof. Recall that |I;| + || =t >k and |L{(T)| = |L}(T)| = |l1|. By Claim 3.6, |L(T)| = |L5(T)| = f%]. This together with
Claim 3.7 and the assumption «(G) < k + f’r‘%ﬂ - ], we have
a(G) = U] = I[LT)]+ L (T)|+|Lo(T)]
>+ 1+ + 4]

>t+1+ [
>k+1+[25]

1
o e

which implies «(G) =k+ 1+ (%1, L]+ || =t=k, || + [%1 = (%1. and k = p(r — 3) for some integer p> 1. O

Recall that L,(T) = {z : z; € I, (T)}. By Claim 3.8, we have p= r% with p > 1 and there is a partition {X;,...,X,} of

L(T) — {xo} satisfying that |X;| =1 for i € I, and |X;| = — 3 for i € I,. By relabeling x1, ..., x, (if necessary), we may assume
that for each i € [1, p], x; € X;. Fori e I, let X; = {x; , ..., Xi_,}, where iy = i. Then z: =..=z s =z;". We denote F* = {z; :

ie[1.pl. z; € V(T(x0.¥0))}. By Claim 3.2, we assume that yo € V(T (xo, 13,]) for some i; € [1, k]. Denote by rq the first branch
vertex of T on T[xg, r;, ] (possible ro =r;,) and rg the successor of ry on T[xo, xi |-
Case 1 F* =¢.

Claim 3.9. There exists zy € V(T (xo,y0)) such that zy ¢ Ngl[xo] and V(T[z3,yo]) € Ng(xo), where z% is the successor of zg on
T[xo0, xi, ).

Proof. Suppose that Claim 3.9 is false. Then Ng[xo] NV (T[xo.,1;,]) = V(T[X0,¥0]) and ro,r;, and yo are all on the path
T[xg, ;1. If yo € V(T (ro, 17, 1), then xorg € E(G), a contradiction to Claim 3.4. If yg € V(T (xg, rg]), since G — yq is a connected
graph, there exists ug € V(T (xo,y0)) satisfying that up has a neighbour vy in T —T[xg,yol. Set T* =T — {ugut} + {xoug}.
Then T* is a spanning tree with L(T*) = (L(T) — {xo}) U {up} that satisfies (C1) and (C2). Noting that dr« (ug,yo) = dr(xg.¥o),
we have dr- (ug, V) > dr (o, Yo) and g(T*, up) > g(T, xp). On the other hand, since F* = ¢, we have Ng(x;) NV (T (X9, o)) = @
and g(T*,x;) = g(T, x;) for 1 < j < k. Hence g(T*) > g(T), contrary to (C3). O

Claim 3.10. {zy} UU is independent in G.

Proof. Recall that U is independent in G.

First, we prove that {z} UL(T) is independent in G. We have zq ¢ Ng(xo) by Claim 3.9. Set T =T — {zoz{ } + {x0z{}. Then
T, is a spanning tree with L(Ty) = (L(T) — {Xo}) U {z0}. By Remark 3.1, zg is a leaf of T, and L(T;) is independent in G. Hence,
zoX; ¢ E(G) forie[1,k].

Next, we show that {zg} UL (T) UL,(T) is independent in G. Set T, = T — {2928, ziz] } + {x0z], zix;} for z; € L} (T) UL, (T).
Since F* = ¢ and z; € V(T (xo,1;)), Tp is a spanning tree with L(T,) < (L(T) — {xo. x;}) U {2p, z}. By Remark 3.1, both z, and
zf are leaves of T, and L(T,) is independent. Hence, zozi+ ¢ E(G) for z; € L (T) UL, (T).

Therefore, {zg} UU is independent in G. O

By Claim 3.10, we have a(G) > |{zp} UU| > k+ 1 + (%1 + 1, contrary to Claim 3.8. Hence Theorem 1.8 holds for Case 1.

Case 2 F* £ .

Choose z; € V(T (xo, o)) such that dr(xo,z;) is as large as possible for z; € F*. Denote the successor of z; on T(xo, X;,)
and T (xp, X;,) by z}’ and zj, respectively. By Claim 3.3, we have r;, ;, € V(T[z;, r; ]).

Claim 3.11. z;*, zjf ¢ Ng(Xo) and there exists ug € V(T (z;,yo)) (possible ug = z}f) satisfying that ug ¢ Ng(xg) and V(T[uar,yo]) -
Ng (x0)-
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Proof. If xoz;* € E(G), then T, = {z]zJr r]1r+}+{xoz] ,Zxj,} with L(Tp) = (L(T) —{xo,x“})u{ﬁ} contrary to (C1).
Then z;* ¢ Ng(xo). If 1y, j, #2j, then zjt =z and thus z% ¢ No(xo). If 13, j, = zj, then T, = {z]z*} + {xoz;*} with L(Ty) =
L(T) — {xg}, contrary to (C1). So z* ¢ Ng(xo). Therefore, there exists ug € V(T(z},¥0)) (possible U :z;f) satisfying that
ug ¢ Ng(x0) and V(T[ug, yol) < NG(XO) O

Set L*(T) = (L(T) — {x;, H U {rJ.*l} and U* = L*(T) U L1 (T) U Ly (T).
Claim 3.12. U* is independent in G.

Proof. Note that U is independent in G.

First, we show that L*(T) is independent. Set Ty =T — {r}, r;f]}-i— {zjx;,}. Then T, is a spanning tree with L(To) = (L(T) —
{x; hu {r}fl}. By Remark 3.1, L(Ty) is independent. Hence, rjtxh ¢ E(G) for h € [0, k] - {j1}

Next, we prove that {rj.rl} U (L1 (T) ULy(T) — {z]f}) is independent in G. Set T, =T — {r;, rj.*l,zhzl:r} +{z;x;j,. zyxy} for z, €
L (T)UL/z(T)f{Zj}. Then by Claim 3.3 and the maximality of dr(xp,z;), Ty is a spanning tree with L(T,) < (L(T) —
{xj,, xsH U {rjt,z;}. By Remark 3.1, both rjfl and z; are leaves of T, and L(T,) is independent in G. Hence, rjtzh+ ¢ E(G)
for z, e L} (T) ULY(T) — {z;}.

At last, we may consider that z;fr;’1 ¢ E(G). In fact, if z}“r;r] € E(G), then T, = {rJ1 sz+} +{zjx},, z*r}’]} with L(T) =
L(T) - {x;, }, contrary to (C1).

Therefore, U* is independent in G. O
Claim 3.13. r;,;, ¢ T[ro. o)

Proof. Assume that r;, ;, € T[ro. yo). This together with Claim 3.2 and r; j, € V(T[z;,r;,]) implies that r; j, € V(T[z;, yo)). Let
ug be the vertex in Claim 3.11, we have V(T[uf,yo]) € Ng(xo). By Claim 3. 4 Ug € V(T(r,m,yo)) Then it follows that Tiyjy €
V(T[z;,ug)). Thus ug ¢ NG(ZT)‘ Otherwise, if r;, ;, € V(T(zj, up)), then T" = {sz+ Uolg, T, j, 1111}+ {xoug, uoz;’ xj zj} is a
spanning tree with L(T") € L(T) — {xp.xj,} + {r;;j1 }, contrary to (C1). If 1y, ;, =z, then T =T — {zjz}’, uoug } + {xoug. uoz;f}
is a spanning tree with L(T”) < L(T) — {xg}, contrary to (C1).

Now we show that {ug} UU* or {r+ } UU* is independent in G.

Note that U* is independent. Assume that w e {uq, lm}

First, we show that {w} UL*(T) is independent. Set
I { T— {uoug, rjlr;} + {xoug,zjle } if w = up;
a-= .
T {riljl r;]rjl’ T r]J'rl } + {Xou(J)r’ ZjXjy }’ if w= ritf ’
Then by Claim 3.3, Ty is a spanning tree with L(Tg) € (L(T) — {xo,xj,}) U {w, r+} By Remark 3.1, both w and r;’ are leaves of
T, and L(T) is independent in G. By Claims 3.4 and 3.11, w ¢ N¢(xg). Hence, err ¢ E(G) and wxy, ¢ E(G) for h € [0, k] — {j1}.
Next, we prove that {ug} UL{(T)ULy(T) or {rjm}uLl (T) ULy (T) is mdependent in G. Note that w ¢ NG(z;r) For zj, €
Li(T) U L5 (T) — {z;}, we set

I {T - lu0u+,zhzh+} + {Xoug. zpXp }. if 7 ¢ F*;
b= ot s + + ot v ; * + +
T —A{rijrt; . zizf w2 Y+ {z0r 2nxn 2%, | 1fzh eF*and ri; z; € E(G).

o If zf; ¢ F*, then by Claim 3.3, T, is a spanning tree with L(T,) € (L(T) — {xq, x,}) U {uo,z;lr}. By Remark 3.1, both ug and
z; are leaves of T, and L(T,) is independent. Hence, uozh+ ¢ E(G) for z, e L{(T) UL, (T).
o Ifz} €« F* and r*} z; € E(G), then by Claim 3.3, T, is a spanning tree of G with L(T,) = (L(T) — {Xn, X, H U {z}*}, contrary
( 1). Thus rJr z+ ¢ E(G). Hence, r+ z+ ¢ E(G) for z, e L} (T) UL, (T).

Therefore, {ug} UU* or {r+ }U U* is independent in G. Thus a(G) = [U*| +1=k+1+[5 31 +1, contrary to Claim 3.8.
This proves Claim 3.13. O

By Claim 3.13, rj j, € V(T[yo. 13, ]) UV (T[yo, rj,]). Without loss of generality, assume that r; j, € V(T[yo, 1;, D-
Claim 3.14. One of the following two statements holds.

(i) ug ¢ NG(z]T) or there exists wy € V(T(zjf, ug)) satisfying that wq ¢ NG(z]f) and V(T[w{, ug]) < N(;(zjf);
(ii) up =z} or V(T[z} . uol) < Nelz]].

Proof. Suppose that Claim 3.14(ii) is false. Then |V(T[z]f,u0])| >3 and V(T[z]ﬂuo]) ;(_Nc[z;r]. If ug e NG(z;r), then since
V(T[z}r, upl) ¢ NG[zj*], there is wg € V(T(zj, ug)) satisfying that wy ¢ NG(z;r) and V(T[w{, ug]) Nc(zj*). O

Subcase 2.1 Claim 3.14(i) holds.
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In this subcase, wg ¢ Ng (z]f) UNg(x9). In fact, suppose that xqwg e E(G). Then by Claim 33, T*=T-—
{r;, r;’],wowﬂz]»z}’} + {zjle,xowo,zng} is a spanning tree with L(T*) = (L(T) — {xg,x;, }) U {r;’l}, contrary to (C1).

Claim 3.15. If ug ¢ Nc(zj*), then {up} UU* is independent in G.
Proof. Note that U* is independent in G.

First, we show that {ug} UL*(T) is independent in G. Set T, = T — {uguf, ;, rﬁ“‘ {xoug,z;x;, }. Then by Claim 3.3, Ty is a
spanning tree of G with L(Tq) < (L(T) — {X0.xj,}) U {uo. rj.*l}. By Remark 3.1, both uy and r;.rl are leaves of T, and L(Ty) is an
independent set. By Claim 3.11, ug ¢ Ng(xg). Hence, uor].+1 ¢ E(G) and ugx,, ¢ E(G) for h € [0, k] — {j1}-

Next, we prove that {ug} UL{(T) UL,(T) is independent in G. Note that uy ¢ Ng (z;f). For zj, € L{ (T) UL, (T) — {z;}, we set

Iom T —{uoug, zvz} } + {xoutg. znX, }. %f zf ¢ Fx;
T —{uoug, zvz, ruri } + {xoug. zuxn, . X525}, if z) € F~.
Then by Claim 3.3, T, is a spanning tree of G with
(L(T) = {x0. %, }) U {0, Z; }. if z; ¢ F*;
(L(T) = {x0, %n,. X, }) U {uo, 2, 1}, if z e F*.

h>'h
By Remark 3.1, both ug and z; are leaves of T, and L(T,) is independent in G. Hence, uoz,;r ¢ E(G) for z; € L{(T) UL, (T).
Therefore, {ug} UU* is independent in G. O

L(Ty) < {

Claim 3.16. If ug € NG(zjf), then {wg} UU* is independent in G.

Proof. Note that U* is independent in G.

First, we show that {wg} UL*(T) is independent in G. Set T, =T — {wowg,zjzj*,rj1 r}fl} +{x0u+,zj+w0+,zjxh}. Then by
Claim 3.3, Ty is a spanning tree of with L(Ty) < (L(T) — {Xo,x;, }) U {wo, rjfl}. By Remark 3.1, wy and r}: are two leaves of T,
and L(Tg) is independent in G. If xowp € E(G), then by Claim 3.3, T* =T — {r, r]f’l , w0w+,zjz}’} +{zjxj,, xawo, z;fwa’} is a span-
ning tree with L(T*) = (L(T) — {xo, x;, }) U {r}f1 }, contrary to (C1). Thus wg ¢ Ng(Xg). Hence, Wgrjt ¢ E(G) and wqx, ¢ E(G) for

helo,t]-{j1}.
Next, we prove that {wy} UL;(T) UL,(T) is independent in G. Note that wy ¢ N¢ (z;r). For z, € L} (T) UL, (T) — {z;}, we set

Tb = T- {WOWBF,ZJ'Z?,Z,.,Z’T} + {Z;rwar’zhxhl’zth }’ lf Z}J,r ¢ F*;
T — {wowg, zjz}, zuz tur | + {27 Wi, xoud zuxn, 2%, ), if Z € F~.
Then by Claim 3.3, T, is a spanning tree with
. + if 7+ *.
LTy (L(T) —{xn,. %), }) U {wo,zh },+ . }f z,}r ¢ F*,
(L(T) = {x0. %n,. X, }) U {wo. zf . 1t} if z e F~.

By Remark 3.1, both wy and zf; are leaves of T, and L(T,) is independent in G. Hence, woz; ¢ E(G) for z, e L} (T) UL, (T).
Therefore, {wg} UU* is independent in G. O

Subcase 2.2 Claim 3.14(ii) holds and yq # Ti, for some 1 <h<r-3.
Claim 3.17. degr(x) =2 for any x V(T[z},ya]).

Proof. Suppose that degr(x) > 3 for some x V(T[z}’,ya]). Denote the successor of x on T[xg, yo] by x*. If x € V(T[ug, y; ),
then x* e Ng(xg). Set T* =T — {xx*} + {xox*}. Then T* is a spanning tree with L(T*) = L(T) — {xo}, contrary to (C1).
If er(T[z}r,ua]), then if |V(T[zj+,u0])| =2, then x:Zj*. Set T'=T — {zjz]f,rjlr]frl}+{x0uar,zjxh}. Then T’ is a span-
ning tree with L(T') = (L(T) — {0, X}, }) U {r;.’1 }, contrary to (C1). If |V(T[z}’, up)| > 3, then set T" =T — {xx*,z;zf, r}, r;.: 1+

j
{xoug,zjle,zijr}. Then T” is a spanning tree with L(T") = (L(T) — {0, %;, }) U {r;.r]}, contrary to (C1). O
By Claims 3.3 and 3.17, V(T[xo, 13, ;) 2 V(T[x0, o). Denote the successor of yo on T[xo, x;,] by y0+.
Claim 3.18. {yo™} UU* is independent in G.

Proof. Note that U* is independent in G.

First, we show that {yo*} UL*(T) is independent in G. Set T, =T — {y0y0+,zjzjr} + {X0¥0, 2;;, }. Then by Claim 3.3, Ty
is a spanning tree with L(Tq) < (L(T) — {xo.%;,}) U {yoﬂz;r}. By Remark 3.1, both y{ and z}r are two leaves of T, and L(T,)
is independent in G. So yo*x;, ¢ E(G) for h e [1,t] — {j;}. By the choice of yg, yo*xo ¢ E(G). If y0+r;.’] € E(G), then set T, =
To —{rj, r1'+1}+ {y0+rjfl}. Thus L(T,) = (L(T) — {x0, x;,}) U {z}r}, contrary to (C1).

8
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Next, we prove that {yo*} UL;(T) ULy(T) is independent. If y} =z} for some z, € L} (T) UL, (T) — {z;}, then we need to
consider the graph Glyo, X0, ¥y, Yg, Xn, - - - -» Xy, _,]. Since G is K -free, we have ygyy € E(G) or xtyy € E(G) or ya“xh’ € E(G)
for some 1 <l <r-3.

e y3yy €E(G). Then T' =T — {yoy¥{. oy - Th, r;lrl} + {xoyo,ygya,yoxhl} is a spanning tree with L(T') = (L(T) — {xg, X, }) U
{r}j1 }, contrary to (C1).

* Xo¥y €E(G). Then T"=T- {yoya,zjzj*,rh] rﬁl}-i- {Xo¥g.2jXj,. Yoxp,} is a spanning tree with L(T") = (L(T) —
{X0. %}, xp, H U {z;r, rJr1 }, contrary to (C1).

. yathl € E(G) for some 1<l<r—3. Then T =T — {yoyaf,zjz}“,rh’r,:} + {xoyo,zjle,ya’xhl} is a spanning tree with
L(T"y = (L(T) — {xo,le,xhl}) U {z}f, r;fl}, contrary to (C1).

So yg #z}; for any zj € L} (T) ULy(T) —{z;}. Set Tc = Ta — {22} + {zyXp, } for z, € L} (T) ULy (T) — {z;}. Then T is a span-
ning tree with L(T.) € (L(T) — {xo, X, X,}) U {¥{, z}r, z}'}. By Remark 3.1, y{, z}r and z;; are leaves of T. and L(T;) is indepen-
dent in G. Hence, y{z' ¢ E(G) for z, € L} (T) U L5 (T).

Therefore, {yo,*} UU* is independent in G. O

Subcase 2.3 Claim 3.14(ii) holds and y, = Ti, forany 1 <h<r-3.

Claim 3.19. {r]frl, . r].+ 3,xo,ya} is an independent set and degr(yg) =1 — 2.
-

Proof. We first show that {r;fl, s rj+r_3, Xp} is independent in G. By Claim 3.4, {rj.z,xo} is an independent set for 1 <s <r—3.
If r—3=1, then {rlf;,xo} is independent in G. If r—3>2, set T*=T — {yorﬁ,yor].:} +{zjxj,,z;x;,} for 1<p#q=<r-3.
Then by Claim 3.3, T* is a spanning tree with L(T*) = (L(T) — {xjp,qu}) U {r?p, rL}. By Remark 3.1, L(T*) is independent in
G. Hence, r;rprjfq ¢ E(G).

Next, if xoyy € E(G), then by Claim 3.3, T’:T—{yayo,zjz;r}-i-{xoya,zjxj]} is a spanning tree with L(T) = (L(T) —
{xo0.x;,}) U {z}’}, contrary to (C1); if yar}; € E(G) for some 1<s<r—3, then by Claim 33, T =T - {yayo,yorjf;} +
{xo¥0. r};y(;} is a spanning tree with L(T") = (L(T) — {Xg. x;;}) U {r};}, contrary to (C1). Therefore, {r;.“1 ..... rjfrig, X0.Yp ) is in-
dependent in G.

Now we prove that degr(yg) =1 — 2. Assume that degr(yg) >r—1 and ygx € E(T) for x ¢ {r}fl, . rjtd,ya}. Since G
is Kj ,-free and {yo,r;fl,...,rjt_3,x0,ya} is an induced K;, 1, we have xy € E(G) for some y e {rﬁ*~"’rﬁ_3’X0’y5}- By
Claim 3.4, xox ¢ E(G). If xrj.; € E(G) for some 1 <s<r—3,then T, =T — {yorjt,yox} + {xrj.;,zjxjs} is a spanning tree with
L(Tq) = L(T) — {x;,}, contrary to (C1); if xy; € E(G), then T, =T — {yg¥o.¥oX} + {Xo¥0, xyg} is a spanning tree with L(T,) =
L(T) — {xo}, contrary to (C1). O

By Claim 3.19, we have degr(yo) =r—2. Let Ty be a connected component T—z]* such that z; € V(Ty). Then by
Claim 3.17, B(T) — {yo} = B(T¢). Denote B* =B(Tf) — {z;}. Then T*=T — {yor;’1 . ..,yorjt_3,zjz;?} +1{xj,2j, ... Xj,_,2j, XoYo}
is a spanning tree with |L(T*)| = |L(T)|. Assume that dr(xp.z;) =a and dy (z}*,yo) =b. Note that degr:(z) = degr(2),
dr« (zjﬂz) =dr(xg,z) + b+ 1 for any z e B* and degr-(yg) = 2, degr(yp) =1 — 2, dr« (z]*,yo) =b, dr(xg.yo) =a+b+1 and
degr+(z) = degr(zj) + 1 —4, dr« (z;f,zj) =a-+ b+ 1. Hence,

f(T.27) = f(T.x0) = X (degr+(2) —2)dr«(z].2) — ¥ (degr(2) —2)dr(xo.2)

zel(T*) zel(T)
= (3, egr- ) =2 G D)+ X (degr @)= 2dr (2], 2)
zeB* Z€1Zj,Yo
—{ ZB (degr(2) — 2)dr(x0,2) + {Z }(degr(Z) —2)dr(x0,2)}
zeB* Z€1zj.Yo
= Y (degr(z) —2)(b+1) + (degr(zj) +r—4-2)(a+b+1)

zeB*

—{(r—2-2)(a+b+1)+ (degr(z;) — 2)a}
> (degr(z) —2)(b+1) + (degr(zj) —2)(b+ 1)

zeB*
= ) (degr(2)-2)(b+1)
zeB*u{zj}
This together with b+1>0 and (C2) implies that ) (degr(z) —2) <0. Thus degr(z) =2 for ze B*U{z;}. By

ZEB*U{Z]'}

Claim 3.17, we have B(T) = {yp}. In this subcase, k = r — 3 and thus, p = % =1, contrary to Claim 3.8.

By Claims 3.15, 3.16 and 3.18, we have «(G) > |U*|+1>k+1+ (%1 + 1, contrary to Claim 3.8. This completes the
proof of Case 2.
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4. Proof of Theorem 1.11

We define (Gq, Gy, x) a separation of a connected graph G if G can be decomposed into two nonempty connected sub-
graphs G; and G, with V(G{) NV (Gy) = {x}. We call a path P an x-path if P has an end vertex x. An (x,Y)-path is a path
starting at x and ending at a vertex of Y, where the internal vertices are not in {x} UY. An (x,Y,t)-fan is a set of t internally
disjoint (x,Y)-paths with distinct terminal vertices in Y.

Lemma 4.1. Let G be a connected Ky 4-free graph and (Gy, G2, X) be a separation of G. If G; is a block and «(G;) <3, then G;
has a Hamiltonian x-path for i =1, 2.

Proof. For convenience, we can only take G; into consideration. Assume that G; has no Hamiltonian x-path. Choose an
x-path P in G; such that

(C4) P is as long as possible.

Suppose that x and y are the end vertices of P. Obviously, Ng, (y) € V(P) as (C4) and Gy has no x-claw as G being K; 4-free.
We set a direction from x to y in P. Since P is not a hamiltionian x-path and G; is 2-connected, there exists a (z, P, 2)-fan
such that zQ;u; and zQ,u, are two disjoint (z, P) paths, where z € V(G; — P) and uq,u; € V(P). Let yo be a neighbour of y
in G; such that dp(y,y9) = max dp(y, v). Obviously, y # u,.

veNC1 W)

By the choice of (C4) and yy, it is easy for us to check the following claim. O
Claim 4.2.

(1) duq,uz) =2 2;

(2) {zug*,uy*} and {z,u;*,y} are two independent sets;

(3) if uy~ exists, then {z,u;~, uy~} is also an independent set;
(4) up= urt U ¢ Ng, ().

Next, we will consider two assumptions:

We first assume that x = uq. By Claim 4.2, {x*,z,y} is independent. Since G; has no x-claw, we have x ¢ Ng, (v). Note
that yg # x*,u,~ and 6(G) > 2.

If yo € V(x**Puy~"), then {yg,z x*,u*} is an independent set. In fact, we set

XPyoy P ygz if zy: € E(Gy):
P = { xQizQxuzPyy, P xtygPuy~  if xtyd € E(Gy);
XPyoy P u3y§PuQuz if uytyd € E(Gy).

Then P’ is an x-path in G; with |V(P")| > |V(P)|, which contradicts (C4). By Claim 4.2(1), {z, x*, uy*} is independent. Hence,
{¥$.z.x", uy*} is independent in Gy, a contradiction to (Gy) < 3.

If yo € V(uyPy), then we can utilize the similar discussion to Claim 3.5 in Theorem 1.8 to find zy € V(yoPy) such that
z € Ng, (y) for all z € V(yoPzp) and yzp* ¢ E(Gy). Set

P — xQ1zQauyPzpy EZO+X+PL[27 if xtzo™ € E(Gy);
xPzoy P 29*z if zzo* € E(Gy).

Then P” is an x-path in G; with |[V(P”)| > |V(P)|, which contradicts (C4). Note that {x*,z y} is independent. Hence,
{xT,z,z9",y} is independent in Gy, a contradiction to «(G;) < 3.

We now assume that x # uy. By Claim 4.2(4), uy~, ug*, uz~ ¢ Ng, ().

If yo € V(xPu;~7), then {y$.z,u;*, up*} is an independent set. In fact, if yiu;+ € E(Gy), then P’ = xPyOy(I?uﬁya’PulQ]z
is an x-path in G;, which contradicts (C4). By the similar discussion as above, we have yguf,ygz ¢ E(Gy). Note that
{z.uy™, upy*} is an independent set by Claim 4.2(1). Hence, {y§.z u;".uy*} is an independent set, a contradiction to
o (Gy) < 3.

If yo € V(u;Puy~"), then we can easily see that {y],z u;~,uy"} is an independent set, a contradiction to @ (G;) < 3; if
Yo € V(uPy), then it is easy to check that {y].z u;~,u,~} is an independent set, a contradiction to & (G;) < 3.

Hence, G; has a Hamiltonian x-path. With the similar argument in G;, G, also has a Hamiltonian x-path. Then
Lemma 4.1 holds.

Proof of Theorem 1.11.. If G is 2-connected, then the result holds by Corollary 1.10. If G is not 2-connected, suppose that
o (B) > 3 for every block B in G and G is a minimal counterexample to Theorem 1.11. Let x be a cut vertex in G and (Gq, Gy, x)
be a separation of G. Obviously, @ (Gy) + ¢ (Gy) — 1 < ¢(G) < «(Gy) + @(G;) and «(G;) > 3.

Case 1 ¢(Gq) > 5 and a(Gy) > 5.

Let k; be an integer such that k; = L%J for i=1,2. Then k; > 1.

On one hand, 2k +5 > «(G) > a(Gy) + «(Gy) — 1 > 2(ky + ky + 1) + 5. Hence, ki + k, + 1 < k. G; satisfies the condition
in Theorem 1.11 and the independence number of every block in G; is also no less than 3. On the other hand, since G
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is a minimal counterexample to Theorem 1.11, G; has a spanning tree with at most k; branch vertices. Then |B(T; UT,)| <
[B(Ty) UB(Tp) U {x}| < |B(Ty)| + [B(T)| +1 < ky + K + 1.

Hence, T; UT; is a spanning tree of G with at most k branch vertices, a contradiction with G being a counterexample.

Case 2 «(Gy) > 5 and 3 < a(Gy) < 5.

Let k; be an integer such that k; = LWJ and ky = 0. Then k; > 1 and «(Gy) <5 =2k, +5.

On one hand, 2k+5 > a(G) > a(Gy) + «(Gy) —1>2k; +4+3 —1. Hence, k; +1 <k. G; satisfies the condition in
Theorem 1.11 and the independence number of every block in G; is also no less than 3. On the other hand, since G is
a minimal counterexample to Theorem 1.11, G; has a spanning tree with at most k; branch vertices. Then |[B(T{ UT)| <
[B(Ty) UB(Tp) U{x}| < [B(T)| + [B(T)| +1 < ki +ky + 1=k + 1.

Therefore, T; UT, is a spanning tree of G with at most k branch vertices, a contradiction with G being a counterexample.

Case 33 <u(Gy) <5and 3 <a(Gy) <5.

Let k; = 0. Then o (G;) <5 = 2k; + 5.

On one hand, ¢ (G) > a(Gy) + «(G,) — 1 > 5. G; satisfies the condition in Theorem 1.11 and the independence number of
every block in G; is also no less than 3. On the other hand, since G is a minimal counterexample to Theorem 1.11, G; has a
spanning tree with at most k; branch vertices. Then |[B(T{ UT,)| < |B(T{) UB(T,) U{x}| < |[B(Ty)| + |B(T)| +1 <k; +ky +1 =
1. In fact, ¢ (G) < 5. Otherwise, 2k +5 > «(G) > 6. That is, k > 1> |B(T{ UT,)|. Then T; UT, is a spanning tree of G with at
most k branch vertices, a contradiction with G being a counterexample.

Therefore, «(G) =5 and «(Gy) = «(G,) = 3. By Lemma 4.1, G; has a Hamiltonian x-path P, for i = 1,2. Then Py UP, is a
Hamiltonian path in G, a contradiction with G being a counterexample. Hence Theorem 1.11 holds. O
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