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index. Consequently, the total chromatic number x”'(G) can
be computed in polynomial-time in this case.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

By a (multi)graph G, we mean a finite undirected graph without loops, but possibly
with multiple edges. A total-coloring of a graph G is an assignment of colors to the edges
and vertices of G such that no two adjacent edges receive the same color, no two adjacent
vertices receive the same color and no edge has the same color as its two endpoints. The
total chromatic number of a graph G, denoted by x”(G), is the least number of colors
required for a total-coloring of G. Similarly, vertex-coloring and chromatic number (G),
and edge-coloring and chromatic index x'(G) of a graph G are defined, respectively.
Compared with vertex-coloring and edge-coloring, the theory of total-coloring is less
studied with fewer results. This may be due to the fact that finding a total-coloring is
much more difficult than finding a vertex-coloring or an edge-coloring separately.

Let A(G) and p(G) denote the maximum degree and the maximum number of edges
between any two distinct vertices of G, respectively. Behzad [2] in 1965 conjectured
that x”/(G) < A(G) + 2 if G is a simple graph. The best known upper bound for total
chromatic number is due to Molloy and Reed [9] who showed that there is a universal
constant ¢ such that x”(G) < A(G) + ¢ for every simple graph G. They provided a proof
for ¢ = 10%%, so long as A(G) > Aq for a particular constant Ag.

It is a common belief that the total-coloring is strongly related to the edge-coloring.
Vizing [14], and independently, Gupta [7] proved that x'(G) < A(G) + u(G). Vizing [15]
in 1968 proposed that x”(G) < A(G) + u(G) + 1. A slightly stronger version is that
X" (G) < x'(G) + 1. (See Stiebitz et al. [13], page 262.) Goldberg [6] in 1984 conjectured
that x”(G) = x/(G) provided x'(G) > A(G) + 3. We are not aware of any nontrivial
sufficient conditions such that the total chromatic number and the chromatic index are
the same besides the following one due to Cao, Chen and Jing [3]: if x'(G) > max{A(G)+
2,|[V(G)| + 1} then x”"(G) = x'(G). The condition |V(G)| < x'(G) may be too strong.
In this paper, we confirm Goldberg’s conjecture asymptotically as follows.

Theorem 1.1. Let G be a graph with mazimum degree A sufficiently large. If X' (G) >
A +10A3%/36 then x"(G) = X'(G).

For the condition “A sufficiently large”, we actually only need AV S 4A3 and A >1
from our proof. In the study of vertex-coloring and edge-coloring, there is an essential and
powerful re-coloring tool — Kempe change (vertex version and edge version). However,
this tool has yet been developed for total-coloring. By applying the probabilistic method
(Chernoff bounds (various forms) and the Local Lemma), some upper bounds of x” are
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obtained. (See Molloy and Reed [10].) In our proof, we develop a technique to give a
total-coloring of “dense graphs” and extend this coloring to the whole graph. We then
combine this technique with the probabilistic method to carry out the proof. This hybrid
approach may shed some light on tackling other total-coloring problems.

Apart from the maximum degree A(G), there is another trivial lower bound for x'(G),
called the density of GG, defined by

2|E(H
w(G):maX{w : HQG, |H|230dd},

where |H| = |V(H)| is the order of H. The following result, conjectured independently
by Goldberg [5] and Seymour [11] in the 1970s and recently confirmed by Chen, Jing
and Zang [4], shows that the density represents the chromatic index in some common
cases.

Theorem 1.2. Let G be a graph. If X'(G) > A(G) + 2, then x'(G) = [w(G)].

Denote by x¢(G) the fractional chromatic index of a graph G. Seymour [11] showed
that x¢(G) = max{A(G), w(G)}. Since the fractional chromatic index can be com-
puted in polynomial-time, x’(G) can be determined in polynomial-time provided x/(G) >
A(G) + 2. Hence, Theorem 1.1 implies that for graphs G with maximum degree A suf-
ficiently large and x'(G) > A + 10A35/36 the total chromatic number can be computed
in polynomial-time.

The rest of this paper is organized as follows. In Section 2, we will give some notation
and terminology, and state some technical results; In Section 3, we prove Theorem 1.1
based on the results in Section 2; And Sections 4 and 5 give the proofs of these preliminary
results stated in Section 2.

2. Preliminaries

We generally follow Stiebitz et al. [13] for notation and terminology. For a vertex
v € V(G), denote Ng(v) and Eg(v) the set of vertices adjacent to v and the set of edges
incident to v in G, respectively. Clearly, dg(v) = |Eg(v)| is the degree of v in G. For
vertex sets U, W C V(G), let Eg(U, W) denote the set of all edges of G joining a vertex
of U with a vertex of W. When W = V(G)\U, we call E¢(U,W) the boundary of U
in G and denote by d¢(U), that is, 0g(U) = Eq(U,V(G)\U). Let dg(U) = |0 (U)|.
Let Eg(u,w) and Eg(u, W) denote Eg({u},{w}) and Eg({u}, W), respectively. For
any two disjoint subgraphs F' and H of G, we define Eq(F,H) = Eq(V(F),V(H)),
0g(F) = 0g(V(F)) and dg(F) = dg(V(F)). Given a graph property P, we say a
subgraph H C G is a maximal subgraph with property P if H is maximal among all
subgraphs satisfying property P.

For a total-coloring ¢ of a graph G, a vertex set W C V(G) is called ¢-distinct if the
colors assigned to the vertices in W and the edges incident to W are mutually distinct.
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Theorem 2.1. Let G be a graph with maximum degree A sufficiently large, and let
Vi,...,Vin be m disjoint independent vertex sets of G. Suppose that Gy is obtained from
G by contracting each Vi to a single vertex. If x'(Go) < A+ [2A35/36] and |V;| < A1/36
fori € {1,...,m}, then G has a total-coloring ¢ using at most A + [10A35/36] colors
such that V; is p-distinct fori € {1,...,m}.

We will use the following three theorems to prove Theorem 2.1 in Section 4. The first
one, due to Shannon in 1949 [12], gives an upper bound of chromatic index involving
only the maximum degree.

Theorem 2.2 (Shannon’s theorem). If G is a graph with maximum degree A, then x'(G) <
[3A/2].

The second one, due to Hoeffding in 1963 [8], generalizes Chernoff bounds (the upper
tail part).

Theorem 2.3 (Hoeffding’s inequality). Let Xy,...,X, be random wvariables and X =
i Xiand p = E[X]. Ifa < X; <b forallie{l,...,n}, then P[X > p+1] <
02

¢ nlo-a? for all v > 0.

The third one is the symmetric case of the Lovdsz Local Lemma. (See Alon and
Spencer [1], Corollary 5.1.2.)

Theorem 2.4 (The local lemma, symmetric case). Let Ay, ..., A, be events in an arbitrary
probability space. Suppose that each event A; is mutually independent of all other events
Aj but at most d, and P[A;] <p forie€ {1,...,n}. If dpd < 1, then P[A?_, 4;] > 0.

A subgraph H of a graph G is an induced subgraph if H contains all edges of G that
have both endpoints in V(H). An induced subgraph H of graph G with |H| > 3 odd
is said to be k-dense if 2|E(H)| > (k — 1)(|H| — 1), k-near-dense if H is k-dense and
X'(H) = k, and k-exact-dense if 2|E(H)| = k(|H| — 1) and x'(H) = k.

Lemma 2.5. If G is a graph with X' (G) > A(G)+2, then G contains a X' (G)-near-dense
subgraph.

Proof. Since x'(G) > A(G) + 2, by Theorem 1.2 there exists a subgraph H C G with
|H| > 3 odd such that x/'(G) = P‘E(H)li‘. Then 2EUEL - X' (G) — 1, which in turn

[H|-1 [H|-1
gives that H is x'(G)-dense and x'(H) > x'(G). Combining this with the fact that
X' (H) < X' (G), we get that H is x’'(G)-near-dense subgraph of G. O
Remark 2.6. The following properties follow directly from the definition.

(1) A k-exact-dense graph is k-near-dense;
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(2) A k-near-dense graph is ki-dense for k1 < k;

(3) If G is a k-dense graph, then x'(G) > k;

(4) If x'(G) = k, then 2|E(H)| < k(]H| — 1) for every subgraph H C G with |H| odd,
moreover, if the equality holds, then H must be an induced subgraph; and

(5) If H is a x'(G)-dense subgraph of G, then H is x’(G)-near-dense.

Theorem 2.7. Let A > 2 be a positive integer and r € (%, 1) be a real number such that
A" > [A=], and let G be a graph such that A(G) < A and X'(G) > A+ 2A". If G
itself is a X' (G)-near-dense graph, then for every k > x'(G), there exists a k-exact-dense
spanning supgraph G* such that dg-(v) < k — A'™" — (A — dg(v)) for each v € V(G).

The proof of Theorem 2.7 will be presented in Section 5. Let G be a graph and
W C V(G). Let G/W denote the graph obtained from G by contracting the set W, that
is, we replace in G the set W with a new vertex w, each boundary edge e € Eg(x,y) with
x ¢ W and y € W by an edge with endpoints z and w, and delete all edges in G[W]. We
call G/W a minor of G. We notice that the term minor defined here is slightly broader
than the commonly used term minor which requires that G[W] is connected. Given an
induced subgraph H of G, we define G/H = G/V(H). Moreover, we say that G/H is
obtained from G by contracting H and G is obtained from G/H by uncontracting H.
The following simple observation is needed in our proof.

Lemma 2.8. Let G be a graph and H be a k-dense subgraph of G. Let vy be the resulting
vertez from the contraction of H. If F' is a k-dense subgraph of G/H containing vy,
then the graph F* obtained from F by uncontracting vy is also a k-dense subgraph of G.

Proof. On the one hand, since both F and H are k-dense, |F'| and |H| are both at least
3 and odd, and satisfy the following inequalities.

2AE(F) > (k — 1)(|F| ~ 1) and 2B(H)| > (k— 1)(|H]| - 1).

On the other hand, considering that F* is obtained from F' by uncontracting vy, we
gain that |F*| = |F|+ |H| — 1 and |E(F*)| = |E(F)| + |E(H)|. Hence, |F*| is odd and

20E(F7)| = 2|E(F)[ +2|E(H)| > (k = D)(IF| + [H] = 2) = (k = D(|F*| = 1),
which in turn gives that F'* is a k-dense subgraph of G. O

The following result was obtained in Cao et al. [3] (Lemma 3.2 on page 4). For com-
pleteness, we include the proof here.

Lemma 2.9. If a graph G satisfies X' (G) > A(G)+2, then two mazimal x'(G)-ezact-dense
subgraphs (if exists) are either the same or disjoint.
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Proof. Let k = x/(G) and A = A(G). Let H; and Hs be two distinct maximal k-exact-
dense subgraphs of G such that V(Hy) NV (Hz) # 0. By Remark 2.6-(4), both H; and
H, are induced subgraphs. Let F; = Hy — V(H; N Hy) and Fy, = Hy — V(Hy N Ha).
Following the maximality of H; and H,, we have Fy # () # Fb.

We claim that |H; N Hs| is odd. Otherwise, both |F;| and |F3| are odd. Since F;
and Fy are both subgraphs of G, 2|E(F;)| < k(|F;| — 1) for ¢ € {1,2}. Since H; is
k-exact-dense for ¢ € {1,2}, we have 2|E(H;)| = k(|H;| — 1). Note that 2|E(H;)| =
2|E(F;)| + 2|E(Hy N Ha)| + 2|E(Hy N Ha, F;)|. Thus, we have the following.

2E(Hy N Hy)| + 2|E(Hy N Ha, Fy)| > k(|H:| — 1) — k(|F,| = 1) = k- |[Hy N Hy| (1)

Since dg(Hy N Hy) > |E(Hy N Hy, Fy)| + |E(Hy N Ha, F)|, we have
2
2|E(H, N Hy)| + de(Hy N Hy) Z |E(H, N Hy)| + |E(H, 0 Ha, Fy)|) > k - |Hy N Hyl,

where we applied (1) for the last inequality.

On the other hand, 2|E(H1NHz)|+de(HiNH2) = - cv (1,nm,) da(v) < A |HiNHa|.
So, we get A > k, giving a contradiction to k > A + 2.

Since |Hy N Hy| is odd and H; N Hy C G, we have 2|E(Hy N Hs)| < k(|Hy N Ha| —1).
Recall that 2|E(H;)| = k(|H;| — 1) for ¢ € {1,2}. Thus,

2|E(Hy U Hy)| = 2|E(Hy)| + 2|E(H2)| — 2|E(Hy N Hy)|
2 k(|Hy| = 1) + k([Ha| = 1) = k(|H1 N Ho| = 1)
e k‘(|H1 UHQ‘ — 1)
In addition, we have 2| E(H1UH3)| < k(|H UH3|—1) because of x'(H1UH3) < x/'(G) = k.

Hence, Hy U Hs is a k-exact-dense subgraph, giving a contradiction to the maximality
of Hy and Hy,. O

3. Proof of Theorem 1.1

Let ¢ be an edge-coloring of a graph G with colors from a palette C. For each vertex
v € V(G), we define the following two color sets

o) ={ple) : e€ Eg(v)} and p(v) = C\p(v),

and call p(v) the set of colors present at v and B(v) the set of colors missing at v. We
call ¢ a k-edge-coloring of G if |C| < k. Similarly, a total-coloring ¢’ of G is called a
k-total-coloring if it uses no more than k colors.

We now present the proof of Theorem 1.1. Let G be a graph with maximum degree
A sufficiently large and x'(G) > A+ 10A%/36, Let k = x/(G), ky = A+ [10A35/36] and
ko = A + [2A35/36]. Clearly, k > ki > ko > A + 2.
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Claim 3.1. If a subgraph H C G is (kg + 1)-dense, then
|H| < AY% and de(H) < A — (ko — A)(|H| - 1).

Proof. By the Handshaking Lemma, A-|H| > >, ¢y (g dc(v) = 2|E(H)|+dc(H). Since
H is (ko+1)-dense, we have 2|E(H)| > ko(|H|—1), and so A-|H| > ko(|H|—1)+de(H).
Hence, dg(H) < A — (ko — A)(|H| — 1). Applying ko = A + [2A35/36] > A 4 2A35/36
and dg(H) > 0, we get |H| < AY/36, O

In the following algorithm, we define a sequence G; = (Go, G, . . ., G¢) of minors of G
and a companion sequence H; = (Hy,...,H;_1) for t > 0.

Algorithm 1. Let Gy = G. Initially, we set Gy = (Gy) and Hg = 0. Note that x'(Go) =
kE > A(Gp) + 2. Lemma 2.5 shows that G has a k-near-dense subgraph. Let Hy be
a maximal k-near-dense subgraph of Gy and Gy = Gy/Hy. Set G = (Go,G1) and
Hi = (Hp).

Suppose that we have defined a sequence G, = (Gy,G1,...,G) and its companion
sequence H; = (Hy,...,H;_1) for some t > 1. If x'(Gt) < ko, then we stop and let
T = t. Otherwise, we have x'(Gy) > ko > A + 2. Using the result A > A(G;) shown in
Claim 3.3 below, we get X'(Gt) > A(G¢t)+2. By Lemma 2.5, G; has a x'(G¢)-near-dense
subgraph. Let H; be a maximal x'(G¢)-near-dense subgraph in G; and Gy = Gt/ H;.
Set Qt+1 = (Go, Gl, ceey Gt, Gt+1) and ,Ht+1 = (Ho, ce ,Htfl, Ht).

In Algorithm 1, for each ¢t € {0,...,T — 1}, since H; is x'(G¢)-near-dense subgraph
of G, we have |H;| > 3, and so |Giy1| < |G| — 2. Hence, T is well defined, that is,
Algorithm 1 terminates after a finite number of steps. We call Gr = (Gy,...,Gr) a
maximal dense-minor-sequence, and H; the companion of G; for t € {0,...,7 — 1}.
Denote by vy, the resulting vertex from the contraction of H;.

For each Gy, we call each vertex in V(G;)\V(G) a contracted vertex. So, the vertices
in V(G;) are divided into two classes: the original vertices of G and the contracted
vertices. Algorithm 1 naturally generates an onto function f; : V(G) — V(G;) such
that the pre-image f,; ! (v) is the vertex set of G whose contraction results in v if v is a
contracted vertex, and f; '(v) = {v} otherwise. We call f; ' (v) the root of v for each
v € V(Gy).

Claim 3.2. For each contracted vertex v € V(Gy), the subgraph G[f;*(v)] induced by the
root of v is (ko + 1)-dense.

Proof. We first notice that H, is (ko + 1)-dense for every s € {0,...,T — 1} because Hy
is X' (G)-near-dense and x'(Gs) > ko + 1.

Suppose that v is the resulting vertex from the contraction of Hy for some s < t—1. If
H, does not contain any contracted vertex, then f; *(v) = V/(H,). Since H, is (ko + 1)-
dense, we are done. Suppose that H, contains some contracted vertices. Let r be the
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largest index such that the contraction of H, results in a contracted vertex, say u, in
H,. Let S, be the subgraph of G, obtained from H, by uncontracting u back to H,.
Applying Lemma 2.8 (with G = G,, H = H,, F = H, and F* = S,.), we see that
S, is (ko 4 1)-dense. Repeating this process, we eventually obtain that G[f;*(v)] is
(ko + 1)-dense. O

Claim 3.3. A(G;) < A foranyt € {0,...,T}.

Proof. For any vertex v € V(G,), if v is a contracted vertex, by Claim 3.2 we have
that G[f; ' (v)] is (ko 4+ 1)-dense. Combining this with Claim 3.1, we have dg,(v) =
da(G[f7 1 (v)]) < A. If v is not a contracted vertex, then dg,(v) = dg(v) < A. Hence,
A(Gy) <A, O

Claim 3.4. For each t € {0,...,T — 1}, we have x'(Giy1) < X' (Gy).

Proof. Suppose on the contrary that x'(Gir1) > x'(Gt) for some t € {0,...,T — 1}.
Since t < T — 1, we have x'(Gt) > ko > A+2, and so X' (G¢+1) > A+ 2. Combining this
with A(Gy41) < A (Claim 3.3), we have x'(G¢11) > A(Gq1) + 2. Applying Lemma 2.5
to Giy1, we get a x'(Gyy1)-near-dense subgraph Siy1 in Gypq.

We claim that vy, € V(Siq1). Otherwise, Syt itself is a subgraph of Gy, and so
X' (Gix1) = X'(Si+1) < X' (Gy), giving a contradiction to the assumption x'(Gyr1) >
X'(Gt). Let S; be the subgraph of G; obtained from S;;; by uncontracting vy,, i.e.,
replacing vy, with Hy in S;y1. Since Siy1 is X' (Git1)-dense and x'(Gir1) > X' (Gy), it
follows that S, is x'(G¢)-dense. Combining this with the fact that H; is a x’(Gy)-dense
subgraph of Gy and applying Lemma 2.8, we see that S; is also x/(G¢)-dense subgraph of
G¢. By Remark 2.6-(5), S; is a x’(G¢)-near-dense subgraph of G;. However, S; contains
H,; as proper subgraph, which gives a contradiction to the maximality of H;. O

For each t € {0,...,T} and any subgraph G; C Gy, let W(G}) = V(G)\V(G), the
set of contracted vertices in G}. Let F; = G — Uvev(gt)E(G[ft_l(v)D. For each v €
V(Gy)\W(G}), we have that f, ' (v) = {v} is a singleton set, and so E(G[f; (v)]) = 0.
Hence, we have that

Uvevan E(GLf; (0)]) = Unew @) E(GLfH (w)])
F,=G~- UwGW(Gt)E(G[ftil(w)])'

Claim 3.5. For every t € {0,...,T}, there is a k-total-coloring v of F; such that the
root fH(w) is @s-distinct for every w € W(Gy).

Since Gy = G, we have W(Gg) = ), which in turn gives Fy = G. Hence, the coloring
o in Claim 3.5 is a k-total-coloring of G, which gives Theorem 1.1. The remainder is
dedicated to the proof of Claim 3.5.
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Proof of Claim 3.5. We first consider the case that ¢ = T'. In this case, we have x'(Gy) <
ko = A + [2A3%/36]. For any w € W(G}), by Claim 3.2 G[f; ' (w)] is a (ko + 1)-dense
subgraph of G, and so |f; }(w)| < A/36 (by Claim 3.1). Note that f;*(w) for w € W(GY)
are mutually disjoint independent vertex sets in graph F;. By Theorem 2.1, there exists
a ki-total-coloring ¢; of F; such that f;'(w) is ps-distinct for all w € W(G;). Since
k1 <k, Claim 3.5 holds for Fj}.

Assume that t < T — 1 and Claim 3.5 holds for Fi,1, i.e., there is a k-total-coloring
@¢r1 of Fyyq such that ft;ll (w) are ¢yy1-distinct for all w € W(Gyy1). We will find a
desired k-total-coloring of F; based on ;1 so that Claim 3.5 holds for F;. Recall that
H; is a maximal x'(G;)-near-dense subgraph of G; and Gi41 = G¢/H;.

Let W* = f; . (vn,) = f7'(V(Hy)), W(H;) = {w1,...,wp}, and W; = f ' (w;) for
i € {1,...,m}. By definition, we have

Ft =G - UwGW(Gt)\W(Ht)E(G[ftil(w)]) - UszW(Ht)E(G[WZ])
Fip1 = G = Upew 6o\ (on  E(GLfR 1 (W)]) — B(GIWX)).

Note that W(G)\W (H;) = W(Gip1)\{va, } and f 4 (w) = f; ' (w) for any w €
W(G)\W (H;), and U, W, C W*. Hence, F;41 is a spanning subgraph of F; and
E(Fy — Fiy1) = E(GIW?]) = Uy, ew ) E(GIW;]) = E(F;[W*]). Moreover, Fy,[W*] is
an independent vertex set. Hence, the k-total-coloring ¢;41 of Fyyi is a partial color-
ing of F} except that edges in E(F;[W*]) are yet colored. We will find an edge-coloring
7' of Fy[W*] using colors 1,...,k such that its combination with ¢y gives a desired
k-total-coloring of F;.

Note that H; is obtained from F;[W*] by contracting Wy,..., Wy, into wy,...,wy,
respectively. Hence, an edge-coloring 7 of H; gives an edge-coloring 7’ of F}[W*] with
the property that for every W;, all edges incident to it are assigned different colors. We
will find a k-edge-coloring 7 of H; to get an edge-coloring of Fi[W*] to fulfill our goal
stated above. This strategy is depicted in Fig. 1.
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Since H; is a x'(Gy)-near-dense subgraph of G, we have x'(H;) = x'(G;). Applying it
with k = x/(G) > x'(Gy) > ko, we get k > X' (Hy) > ko = A+ [2A3%/36] > A 4 2A35/36,
By Claim 3.3, we have A(H;) < A(G¢) < A. From the assumption of A being sufficiently
large, we have A%%/36 > [A1/36]. Applying Theorem 2.7 with r = 32, we see that H,
has a k-exact-dense spanning supgraph H; such that dpy(v) < k— A/36 — (A —dpy, (v))
for every v € V(H;). By the definition of k-exact-dense, 2|E(H;)| = k(|H;| — 1) and
X'(Hf) = k.

Let 7* be a k-edge-coloring of H;'. Since a matching of H; contains at most (| H;|—1)/2
edges, each color class of 7* must be a near perfect matching. So, each color is missing
at exact one vertex. Hence, 7*(v) are pairwise disjoint for v € V(H;) and the following
holds.

[T ()] = k — dag (v) > AV 4 (A — dg, (v)). (2)

Since H; C H}, by restricting 7* to H; we get a k-edge-coloring 7 of H,. For each vertex
v € V(Hy), we have 7(v) 2 7*(v).
On the other hand, for each v € V(H;), we claim that

[f7 ()| <AV and  dp,owe (f7(v) < A —dpy, (v) 3)

where dp, _w-(f; ! (v)) denotes the number of the edges with one endpoint in f;*(v)
and the other endpoint in V' (F})\W*.

For the first inequality of (3), if v is a contracted vertex, ie., v € W(H;) =
{wy,...,wm}, then G[f7*(v)] is (ko +1)-dense. By Claim 3.1, we have |f; ! (v)| < A/36,
If v is not a contracted vertex, then f; '(v) = {v}. Hence, | f; (v)| = |[{v}| =1 < A1/36,

For the second inequality of (3), we notice that dp, (f;'(v)) = dg,(v) and
dp,we(f; 1 (v)) = dp, (v). Hence,

dp,—w-(f 1 (v)) = dp,(f7 (0) = dpw (f7 () = da, (v) = du, (v) < A = dy, (v).
Combining (2) and (3), we get following inequality for every v € V(Hy).
[T ()| > £ @) + dr—w- (f7 1 (v)) (4)
Under the k-total-coloring ¢, 1 of Fyy1, for each vertex v € V(H,), let C, denote the
set of colors assigned to the vertices in f;*(v) and edges incident to f; ' (v). Note that

fr H(v) € W* for v € V(Hy). Since W* = ftjrll (vp,) is an independent vertex set in Fyiq
and W* is ¢;41-distinct, the color sets C,, for v € V(H;) are mutually disjoint and

Col = I (o) + dry (f7 () = 17 )] + dp—w (7 (0) < [75(0)]-
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Recall that the color sets 7*(v) for v € V(H;) are mutually disjoint. Hence, by permuting
colors, we may assume that

T(v) D 7 (v) 2 C, for every v € V(Hy) (5)

Let 7' be the edge-coloring of F[WW*] generated from the coloring 7 of Hy, that is,
7' (e') = w(e) if ¢/ € F;[W*] is the image of e € F(H;) under the natural corresponding
between E(H;) and E(F,[W*]). For every vertex v € V(Hy), by (5) we have 7/(f, *(v)) =
7(v) 2 C,. So, no colors in C, are assigned to edges incident to f, *(v) in F;[IW*] under
coloring /. Hence, the combination of the coloring ¢;y; and 7’ gives a k-total-coloring
¢ of Fy. For each w;, there are three disjoint sets of colors involving W;: o1 (W;),
i1 (E(W;, G=W*)), and 7' (Eq(W;, W*=W;)) = n(Eg, (w;)). Hence, W is ¢;-distinct.
Additionally, we note that coloring ¢; agrees with ;11 on every edge and every vertex
not in F;[W*]. Therefore, for every contracted vertex w € W(G,), the vertex set f; ' (w)
is py-distinct, and so ¢, is the desired k-total-coloring of Fy. O

4. Proof of Theorem 2.1

In order to simplify the presentation of the proof, we omit floors and ceilings and
treat large numbers as integers whenever this does not affect the argument. We reserved
enough room in the calculation to absorb the differences.

Let G be a graph with maximum degree A sufficiently large. Let Vi,...,V,, be m
mutually disjoint independent vertex sets of G, and let Gy be obtained from G by
contracting each V; to a single vertex. Suppose that x'(Go) < A + 2A35/36 and |V,| <
AY36 for £ € {1,...,m}. We will show that G has a total-coloring 7 using at most
A 4 10A35/36 colors such that all V; are n-distinct.

Set k = A+10A%/36 and kg = A +2A3%/36, Let ¢ be a kg-edge-coloring of G using
the colors 1, ..., kg. Since V1,...,V,, are independent vertex sets, ¢y naturally becomes
a ko-edge-coloring ¢ of G with the additional property that for each ¢ € {1,...,m},
edges incident to V; are assigned different colors.

Let K be obtained from G by adding edges to V; such that K[V;], the subgraph
induced by V4, is a complete (simple) graph for £ € {1,...,m}. Since |V;| < A1/36 for
¢e{l,...,m}, we have A(K) < A+ Al/36,

Let s = [A'6/36] and t = |ko/s]|. By definition, we have

A 4 2A35/36

Ao/ 3 1 — 1<t < A20/36 LoAI/30 g0 gLt < k.

We specify s sets of colors: C; = {1,...,t},...,Cs = {(s = 1)t + 1,...,st}. Clearly,
CiU---UCs ={1,...,st} is a subset of the set of colors used by the edge-coloring ¢.

Definition 4.1. With respect to a partition Uy,...,Us of V(G), we say that an edge
e € E(G) discords a vertex u € V(G) if p(e) € C; and u € U; for some i € {1,...,s}.
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Moreover, we say that e conflicts with w if either e discords a vertex in V;, when u € V
for some ¢ € {1,...,m} or e discords u itself when u ¢ U}*,V,.

Claim 4.2. There is a partition Uy, ...,Us of V(G) such that

(i). for each vertex v and U;, [Nx(v) NU;| <t —1,
(ii). for each vertex v, there are at most 4A34/36 edges e incident with v that conflicts
with the other endpoint of e in G.

Proof. Assign each vertex to a uniformly random part with probability % (where of
course, these choices are made independently). For each pair (v, i) we let A, ; be the
event that (i) fails to hold for (v, ¢) and B, be the event that (ii) fails to hold for v. We
will use Hoeffding’s Inequality to prove the following inequalities by assuming that A is
sufficiently large.

A. P[A, ;] < e AT < 1&s for every pair (v,4), and
B. P[B,] < =AY < s for every v.

We first complete the proof of Claim 4.2 based on (A) and (B) before giving their
proofs. For each vertex v € V(G), let D(v) denote the union of Ng(v) and these
Vi that contain a neighbor of v. Since |Vi| < AY36 for ¢ € {1,...,m}, it follows
that |D(v)] < A - Al/36 = A37/36, Note that events B, and A,; are determined by
the partition assignments of the vertices in D(v). Thus, by the Mutual Independence
Principle, they are mutually independent of all events concerning vertices which are
not in D(v) U Ng(D(v)). Notice that each vertex v involves with one event B, and
s events Ay 1,...,Ays. So, every event is mutually independent of all but at most
(s + DID(v) U Na(D@)] < (s + 1D(D@)] - A) < (TA/36 4 1)] . AT . A < A3
other events. Since 4 - 7tz - A% = 1, by Theorem 2.4 (the Local Lemma) there is a
partition satisfying both (i) and (ii).

Proof of A. Given a pair (v,%) with v € V(G) and 1 < i < s, we will show that P[4, ;] <
e=AY" For each u € Nk (v), let X,, be a 0 — 1 variable such that X, = 1 if u € U; and
X, = 0 otherwise. Let X = ZueNK () X,. Clearly, X is the number of neighbors of v
assigned to U; in K. Recall that |[Ng (v)] < A + A/36, Since E[X,] = P[X, = 1] = 1/s
for each u € Nk (v), we have
p=E[X] = Z E[X,] = |NI;(U)\ < (A 4 AV/36) /AI6/36 _ A20/36 | A=15/36
wEN (v)

Since t > (A + 2A3%5/36)/(A16/36 1 1) — 1 and A is large, a simple calculation gives
us t > A20/36 L A=15/36 L A19/36 4 A19/36 Applying Hoeffding’s Inequality with
b=1and a =0, we get the following.
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2(A19/36)2 2A38/36 _Al/18
=€

P[Ay] = P[X > ] <P[X > p+ A < o™ Ne@T < o™ 2

In the above inequality, we used that | Ny (v)] < A + AY36 <2A. O

Proof of B. Given a vertex v € V(G), we wish to show that P[B,] < e=2"" For
each color set C;, let E¢, denote the set of edges in G assigned colors in C;. Let I =
Ne()\(U V) and L = {¢ € {1,...,m} : Ng(v) NV, # 0}. For u € I, let X,, be
the number of edges in Eg(v,u) that conflict with u, that is, the number of edges in
E¢(v,u) that discord u. For i € {1,...,s}, if u € U; then there are |Eg(v,u) N E¢,]
edges in Fg(v,u) that conflict with u. Hence, we have the following.

E[X.) =Y (|Ec(v,u) N Ec,| PlueUy) = |Ec(v, )|

i=1

(6)

S

For each ¢ € L, let X, be the number of pairs (e, w) with e € Eg(v, V) and w € V; such
that e discords w, and let X be the number of edges incident with v that conflict with
the other endpoint in Vp. Since Vp = Ui_; (Ve N U;), we have

X;= Y |Ec(v,V)NEq| <Y |Ea(v, V)N Ec,| [VenUi| = X,
1<i<s, VyNU; #0D i=1

For each w € Vj, let X, be the number of edges e € Eg(v,V;) discording w. Clearly,
Xe =3 yev, Xw- Similar to (6), we have E[X,,| = [Eg(v, V})|/s. Hence,

. . A1/36
S By, = (B VOl Vil _ [Ea(e. V)] 4

E [Xé] - S - S

(7)

weVy
We divide each of I and L into two subsets as follows.

Li={uel : |Eg(v,u)| <AV &Iy ={uel : |Eg(v,u)| > A/}
Ly={CeL : [Bav,Vy)| <AY®} & Ly ={te L : |Ba(v,Vy)| > A/}

Let Y = Zueh Xy + ZE€L1 Xy, Z = Zueb Xy + ZE€L2 Xg,and X = 37 o, Xy +
> ver, X¢. Clearly, X =Y + Z. By (6) and (7), we have

=Y E[X.+ ) E[X] < Z|Egvu|+ Z|EG |- A1/36

uel leL ueI EGL

1/36
< dG(Z)u.a/?ts/ < AZ21/36

Consequently, we have E[Y] < E[X] < A?Y/36 and E[Z] < E[X] < A%1/36,
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For each u € I;, we have X, < |Eg(v,u)| < A'/35, For each ¢ € L;, we know
X, < |Eg(v, V)| - |Ve| < A'™/36 Notices that |I1| + |L1| < |[Ng(v)] < A. Applying
Hoeffding’s Inequality with n = |I;| + |L1|, b = A'™/36 and a = 0, we get the following
inequality.

2(A34/36)2 1
P[Y > 24%/%] < P[Y > E[Y] + A%/%] < o7 sl — o728 < 2
For each color set Cj, since |C;| =t < A20/36 4+ 2A19/36 it follows that |Eg(v,u) N
Ec¢,| <t for each u € Ng(v). So, for each u € I, there are at most ¢ edges in Eg(v,u)
discording u. Hence X, < t. For each ¢ € L, there are at most ¢ - |V;| pairs (e, w)
with e € Eg(v, V) and w € V; such that w € U; and ¢(e) € C; for some 4, and so
Xe<t-|Vo] <t- AL/36 Note that - A1/36 < A21/36 4 9A20/36 < 1 4A21/36 (because A
is large) and |Io| + |Lo| < dg(v)/AY/36 < A22/36 Applying Hoeffding’s Inequality with
n = |Iy| + |La|, b = 1.4A2'/36 and a = 0, we get the following inequality (where we used
1.4% < 2).

-

2(aB34/362 N A1

]P[Z > 2A34/36} < P[Z > E[Z] +A34/36} < e AZ2/36(1.4a21/36)2 < efAﬁ < e 5

By definition, o, Xu + >, X/ is exactly the number of edges e incident with v
that conflicts with the other endpoint of e in G. Since X; < X, for £ € {1,...,s}, we
have > o Xu + > pcp X7 < X. Hence,

1/18
)

P[B,] < P[X > 4A%/%] < P[Y > 2A%/%) + P[Z > 2A%/%) < ¢4

which completes the proof of Claim 4.2. O

Let Uy, ..., Us be a partition of V(G) satisfying both (i) and (ii). By (i), for each U,
by using the simple greedy procedure, we get a vertex-coloring of K[U,] with colors in
C;, which in turn gives a vertex-coloring 6 of K using at most kg colors. Since in K each
V4 is a clique for each £ € {1,...,m}, it follows that 6 is also a vertex-coloring of G
satisfying that each vertex in any V; is assigned a different color. It is noteworthy that
the combination of ¢ and # may not produce a total-coloring of G since some edges may
have the same color as their endpoints.

Let e € E(G) and u be an endpoint of e. If u ¢ U}, V,, we say e rejects u if
p(e) = 0(u); if u € V; for some ¢ € {1,...,m}, we say e rejects u if (e) € 0(V;). In
either case, we call e a reject edge. From the construction of vertex-coloring 0, we see
that if e rejects u then e must conflict with u, but the converse may not be true. For
each vertex v € V(G), the reject degree of v, denoted by Rej,, is the number of edges
e incident with v that rejects the other endpoint of e. By (ii), we have Rej, < 4N\34/36
for each v € V(G).

Let R be a spanning subgraph of G induced by all reject edges. If v ¢ U, Vp, then
there is at most one edge incident with v that rejects v. If v € Vp for some ¢, there are
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at most |V,| < A/36 edges incident with v sharing a common color with a vertex in V7,
so there are at most A'/3% edges incident with v that rejects v. For each v € V(G), the
degree dr(v) of v in R is bounded above by the sum of Rej, and the number of edges
that rejects v. Therefore, dp(v) < 4A34/36 L A1/36 < 5A34/36 for every vertex v € V(G),
and so A(R) < 5A34/36,

Let R* be obtained from graph R by contracting each V; to a single vertex. Since
V| < AY/36 for £ € {1,...,m}, it follows that A(R*) < A(R) - A/36 < 5A%/36, By
Shannon’s Theorem, x'(R*) < 3(5A%/36) < 8A%/36, Let 7* be an edge-coloring of R*
using at most 8A3%/36 new colors different from A + 2A35/36 colors used in ¢ and 6.
Clearly, 7* gives an edge-coloring m of R such that for each V, all edges in R incident to
Ve have different colors. By combining vertex-coloring 6, edge-coloring ¢ on E(G)\E(R)
and edge-coloring 7 on E(R), we get a total-coloring 1 of G such that all V; are n-distinct.
Note that we used at most A + 2A35/36 1 §A35/36 — A 1 10A35/36 colors in total, which
completes the proof of Theorem 2.1. O

5. Proof of Theorem 2.7

Let A > 2 be an integer and 7 € (3,1) be a real number such that A" > [A'="], and
let G be a graph such that A(G) < A and x/'(G) > A 4+ 2A". Assume that G itself is
a x'(G)-near-dense graph. For any k > x/(G), we will show that G has a k-exact-dense
spanning supgraph G* such that dg-(v) < k — A" — (A — dg(v)) for every v € V(G).

For each v € V(G), let A(v) = A — dg(v) and call it the deficiency of v in G with
respect to A. For any vertex set W C V/(G), let \(W) = > AM(w); and for a subgraph
F C G, let A(F) = AV(F)). Let ko = A + [2A"] and k1 = X/(G). Clearly, k > k1 >
ko > A+ 2A". We first prove the following two claims.

Claim 5.1. A > (2A" — 1)(|G| — 1) + MG). In particular, |G| —1 < Al7" < A",

Proof. Since G is ky-near-dense, we have that 2| E(G)| > (k1 —1)(|G|—-1) > (ko—1)(|G|—
1). According to the definition of deficiency, we have that A -[G[ = >, v (¢ (da(v) +
A0) = L@ da(®)NG) = 2/ E(G)+A(G). Hence, A-|G| > (ko—1)(|G|—1)+A(G),
which gives A > (ko — A = 1)(|G| — 1) + A(G). Since ko > A+ 2A", we further have that
A > (2A"=1)(|G]—=1)+A(G). Because of A” > 1 and A(G) > 0, we have A > A"(|G|-1),
and so |G| -1 < A" <A™ O

Claim 5.2. Let W C V(G) with |W| odd. If W # V(G), then dg(W) > A"(2]W| — 1) +
AW), where W = V(G)\W.

Proof. Let D = G[W] and F = G[W] be the subgraphs of G induced by W and W,
respectively. We note that 2|E(D)| < k1(]D| — 1) due to that x'(D) < x'(G) = k1 and
|D| is odd. Since G is kj-near-dense and |G| = |D| + |F|, we have

20E(G)| > (k1 = V(1G] = 1) = ka(ID] = 1) + by - [F| = (|G] = 1).
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Consequently, we have the following.
2|E(G)| > 2[E(D)| + k1 - |[F| = (IG] = 1) (8)
Applying 3° cv (e da(v) = X ev(p) da(v) + X ey () da(v), we get the following.
2|E(G)| = 2[E(D)| + da(V(D)) + A - [F| = A(F). (9)
Combining (8) and (9), we get

da(V(D)) > (k1 = J)|F[+ A(F) = (IG] = 1) = 247 - [F| = (|G = 1) + A(F)
> AT(2|F| = 1)+ A(F) (since |G| —1 < AT)

Since V(D) = W, |F| = [W| and A\(F) = A\(W), we are done. [
Let G* be a spanning supgraph of G such that

i. ¥(G*) <k anddg-(v) <k —[A™"] — A(v) for each v € V(G), and
ii. |[E(G*)| is maximum subject to the two conditions above.

Since k > \'(G) > A+2A" and dg(v) = A= A(v) < k—2A" —\(v) < k—[A""] = \(v)
for every v € V(G), we see that graph G itself satisfies two conditions in i. So, such
a graph G* exists. Since A > 2 > 1, we have [A'="] > 2. Condition i implies that
A(G*) < k—[A'""] < k—2. By the assumption that x'(G*) < k and |G*| = |G| is odd,
we have 2|E(G*)| < k(|G| —1). Thus, in order to prove that G* is k-exact-dense, we only
need to show that 2| E(G*)| > k(|G|—1); and get a contradiction if 2| B(G*)| > k(|G|—1).
Let U={u € V(GQ) : dg-(u) < k—[A¥""] = X(u)}.

Claim 5.3. If |U| > 2, then U is contained in a k-exact-dense subgraph of G*.

Proof. For any two distinct vertices u, v € U, we add a new edge e with endpoints
u,v to G* and let G’ = G* U {e}. According to the definition of U, we have dg/(u) =
dg-(u) +1 < k— [AY™] — A(u) and dg'(v) = dg-(v) +1 < k — [A""] — A(v), which
in turn gives dg(w) < k — [AY™"] — Mw) for any w € V(G). Consequently, A(G’) <
k — [AY="] < k — 2. Since |E(G’)| > |E(G*)|, by the maximality of |E(G*)| we have
X'(G') > k > A(G') + 2. By Theorem 1.2, G’ contains a subgraph F with |F| > 3
odd such that 2|E(F)| > k(|F| — 1), which implies that x'(F) > k. Since F —e C G*
and ' (G*) < k < X/(F), we have e € E(F)\E(G*), X'(F —e) = x(G*) = k and
2|E(F —e€)| = k(|F| — 1). Hence, ' — e is a k-exact-dense subgraph of G* that contains
both u and v.

Fixing u, we have shown that for any vertex v € U with v # u, there is a maximal k-
exact-dense subgraph in G* containing both v and v. Since x'(G*) = k > A(G*) + 2, by
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Lemma 2.9 these maximal k-exact-dense subgraphs are the same graph, and so Claim 5.3
holds. O

By Claim 5.3, we consider the following three cases: (1) U = 0§; (2) |U| = 1; and (3)
U] > 2.

Case 1: U = (). In this case, we have dg(v) = k— [A'="] = X(v) for all v € V(G). Hence,
2B(GY)| = ) dg-(v) = (k—[A"])G] = A(G)
veV(G)
= k(|G| —1)+k—[A"] G| - NG).
Applying A > 2A™ — 1)(|G| — 1) + M(G) (Claim 5.1) to k > A +2A", we get
k> (2A" = 1)|G|+ AG) + 1> [AY] |G| + MNG)

since 2A” — 1 > A" > [A'="]. Therefore, 2| E(G*)| > k(|G| — 1), giving a contradiction.

Case 2: |U| = 1. Let U = {u} and F* = G* — u. Applying Claim 5.2 with W = {u}, we
get dg»(u) > dg(u) > A"(2(|G| = 1) = 1) + A(G — u) > A"(|G] = 1) + A(G — u). Hence,

AB@) = Y de-(0)= 3 (k- [A] = A@) +de (w)
veV(G) veV(G)\{u}
> (k=AY DG = 1) = MG —u) + A™(|G] = 1) + A\(G —u)
> (k— [AY7] 4+ A")(|G] ~ 1) 2 k(G| ~ 1), (since AT > [A*"])

which gives a contradiction.

Case 3: |U| > 2. By Claim 5.3, there is a maximal k-exact-dense subgraph D* containing
U. If D* = G*, then we are done. We now suppose that D* # G*, that is, G* is not
k-exact-dense. Since k > x'(G*) > x/(D*) = k, we have x'(G*) = k. Not being k-exact-
dense gives 2|E(G*)| < k(|G| — 1). Let F* = G* — V(D*). Hence,

20E(GY)] < K(ID™[ + [F*[ = 1) = k(|D*| = 1) + k - [F].

Since D* is k-exact-dense, k(|D*| — 1) = 2|E(D*)|. Given U C V(D*), we have V(F*)N
U = (). Consequently, dg-(v) = k — [A1™"] — A(v) for every vertex v € V(F*). Hence,

KIET (= Y de-(u) + [ATT] |7 4 A(F)
vEV (F*)

= 2[B(F")| + |Eg- (D", F*)| + [AT"] - [F*[ + A(F7).
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Therefore, 2|E(G*)| < 2|E(D*)| + 2|E(F*)| + |Eg«(D*, F*)| + [A'™"] - |F*| + X\(F*).
Combining this with 2|E(G*)| = 2|E(D*)| + 2|E(F*)| + 2|Eg-(D*, F*)|, we get the
following.

|Bg+ (D", F*)| < [AYTT] - [F*] + X(F7). (10)

Note that |Eg«(D*, F*)| = dg«(V(D*)) > dg(V(D*)). Applying Claim 5.2 with W =
V(D*) and W = V(F*) and using |F*| > 2, we get

da(V(D*)) > AT(2|F*| — 1) + M(F*) > AT|F*| + M(F*) > [AY"] - |F*| + X\(F*).
Hence, |Eg~(D*, F*)| > [A="] - |F*| + A(F*), giving a contradiction to (10). O
6. Conclusion and acknowledgment

A natural strength of Theorem 1.1 is whether there is a universal constant ¢ such that
for a graph with maximum degree A sufficiently large, if x'(G) > A + ¢ then x”(G) =
X' (G). Unfortunately, there are a couple of barriers in our proof such as Theorem 2.7
which limits the best bounds we might get is A + A/2. We thank Molloy and Reed for
their book [10] that gave us several inspirational ideas.
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