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The chromatic index χ′(G) of a graph G is the least number 
of colors assigned to the edges of G such that no two adjacent 
edges receive the same color. The total chromatic number
χ′′(G) of a graph G is the least number of colors assigned 
to the edges and vertices of G such that no two adjacent 
edges receive the same color, no two adjacent vertices receive 
the same color and no edge has the same color as its two 
endpoints. The chromatic index and the total chromatic 
number are two of few fundamental graph parameters, and 
their correlation has always been a subject of intensive study 
in graph theory.
By definition, χ′(G) ≤ χ′′(G) for every graph G. In 1984, 
Goldberg conjectured that for any multigraph G, if χ′(G) ≥
Δ(G) + 3 then χ′′(G) = χ′(G). In this paper, we show 
that Goldberg’s conjecture is asymptotically true. More 
specifically, we prove that for a multigraph G with maximum 
degree Δ sufficiently large, χ′′(G) = χ′(G) provided χ′(G) ≥
Δ + 10Δ35/36. When χ′(G) ≥ Δ(G) + 2, the chromatic index 
χ′(G) is completely determined by the fractional chromatic 
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index. Consequently, the total chromatic number χ′′(G) can 
be computed in polynomial-time in this case.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

By a (multi)graph G, we mean a finite undirected graph without loops, but possibly 
with multiple edges. A total-coloring of a graph G is an assignment of colors to the edges 
and vertices of G such that no two adjacent edges receive the same color, no two adjacent 
vertices receive the same color and no edge has the same color as its two endpoints. The
total chromatic number of a graph G, denoted by χ′′(G), is the least number of colors 
required for a total-coloring of G. Similarly, vertex-coloring and chromatic number χ(G), 
and edge-coloring and chromatic index χ′(G) of a graph G are defined, respectively. 
Compared with vertex-coloring and edge-coloring, the theory of total-coloring is less 
studied with fewer results. This may be due to the fact that finding a total-coloring is 
much more difficult than finding a vertex-coloring or an edge-coloring separately.

Let Δ(G) and μ(G) denote the maximum degree and the maximum number of edges 
between any two distinct vertices of G, respectively. Behzad [2] in 1965 conjectured 
that χ′′(G) ≤ Δ(G) + 2 if G is a simple graph. The best known upper bound for total 
chromatic number is due to Molloy and Reed [9] who showed that there is a universal 
constant c such that χ′′(G) ≤ Δ(G) + c for every simple graph G. They provided a proof 
for c = 1026, so long as Δ(G) ≥ Δ0 for a particular constant Δ0.

It is a common belief that the total-coloring is strongly related to the edge-coloring. 
Vizing [14], and independently, Gupta [7] proved that χ′(G) ≤ Δ(G) + μ(G). Vizing [15]
in 1968 proposed that χ′′(G) ≤ Δ(G) + μ(G) + 1. A slightly stronger version is that 
χ′′(G) ≤ χ′(G) + 1. (See Stiebitz et al. [13], page 262.) Goldberg [6] in 1984 conjectured 
that χ′′(G) = χ′(G) provided χ′(G) ≥ Δ(G) + 3. We are not aware of any nontrivial 
sufficient conditions such that the total chromatic number and the chromatic index are 
the same besides the following one due to Cao, Chen and Jing [3]: if χ′(G) ≥ max{Δ(G) +
2, |V (G)| + 1} then χ′′(G) = χ′(G). The condition |V (G)| < χ′(G) may be too strong. 
In this paper, we confirm Goldberg’s conjecture asymptotically as follows.

Theorem 1.1. Let G be a graph with maximum degree Δ sufficiently large. If χ′(G) ≥
Δ + 10Δ35/36, then χ′′(G) = χ′(G).

For the condition “Δ sufficiently large”, we actually only need eΔ1/18
> 4Δ3 and Δ ≥ 1

from our proof. In the study of vertex-coloring and edge-coloring, there is an essential and 
powerful re-coloring tool – Kempe change (vertex version and edge version). However, 
this tool has yet been developed for total-coloring. By applying the probabilistic method 
(Chernoff bounds (various forms) and the Local Lemma), some upper bounds of χ′′ are 
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obtained. (See Molloy and Reed [10].) In our proof, we develop a technique to give a 
total-coloring of “dense graphs” and extend this coloring to the whole graph. We then 
combine this technique with the probabilistic method to carry out the proof. This hybrid 
approach may shed some light on tackling other total-coloring problems.

Apart from the maximum degree Δ(G), there is another trivial lower bound for χ′(G), 
called the density of G, defined by

ω(G) = max
{

2|E(H)|
|H| − 1 : H ⊆ G, |H| ≥ 3 odd

}
,

where |H| = |V (H)| is the order of H. The following result, conjectured independently 
by Goldberg [5] and Seymour [11] in the 1970s and recently confirmed by Chen, Jing 
and Zang [4], shows that the density represents the chromatic index in some common 
cases.

Theorem 1.2. Let G be a graph. If χ′(G) ≥ Δ(G) + 2, then χ′(G) = �ω(G)�.

Denote by χf (G) the fractional chromatic index of a graph G. Seymour [11] showed 
that χf (G) = max{Δ(G), ω(G)}. Since the fractional chromatic index can be com-
puted in polynomial-time, χ′(G) can be determined in polynomial-time provided χ′(G) ≥
Δ(G) + 2. Hence, Theorem 1.1 implies that for graphs G with maximum degree Δ suf-
ficiently large and χ′(G) ≥ Δ + 10Δ35/36, the total chromatic number can be computed 
in polynomial-time.

The rest of this paper is organized as follows. In Section 2, we will give some notation 
and terminology, and state some technical results; In Section 3, we prove Theorem 1.1
based on the results in Section 2; And Sections 4 and 5 give the proofs of these preliminary 
results stated in Section 2.

2. Preliminaries

We generally follow Stiebitz et al. [13] for notation and terminology. For a vertex 
v ∈ V (G), denote NG(v) and EG(v) the set of vertices adjacent to v and the set of edges 
incident to v in G, respectively. Clearly, dG(v) = |EG(v)| is the degree of v in G. For 
vertex sets U, W ⊆ V (G), let EG(U, W ) denote the set of all edges of G joining a vertex 
of U with a vertex of W . When W = V (G)\U , we call EG(U, W ) the boundary of U
in G and denote by ∂G(U), that is, ∂G(U) = EG(U, V (G)\U). Let dG(U) = |∂G(U)|. 
Let EG(u, w) and EG(u, W ) denote EG({u}, {w}) and EG({u}, W ), respectively. For 
any two disjoint subgraphs F and H of G, we define EG(F, H) = EG(V (F ), V (H)), 
∂G(F ) = ∂G(V (F )) and dG(F ) = dG(V (F )). Given a graph property P , we say a 
subgraph H ⊆ G is a maximal subgraph with property P if H is maximal among all 
subgraphs satisfying property P .

For a total-coloring ϕ of a graph G, a vertex set W ⊆ V (G) is called ϕ-distinct if the 
colors assigned to the vertices in W and the edges incident to W are mutually distinct.
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Theorem 2.1. Let G be a graph with maximum degree Δ sufficiently large, and let 
V1, . . . , Vm be m disjoint independent vertex sets of G. Suppose that G0 is obtained from 
G by contracting each Vi to a single vertex. If χ′(G0) ≤ Δ + �2Δ35/36� and |Vi| ≤ Δ1/36

for i ∈ {1, . . . , m}, then G has a total-coloring ϕ using at most Δ + �10Δ35/36	 colors 
such that Vi is ϕ-distinct for i ∈ {1, . . . , m}.

We will use the following three theorems to prove Theorem 2.1 in Section 4. The first 
one, due to Shannon in 1949 [12], gives an upper bound of chromatic index involving 
only the maximum degree.

Theorem 2.2 (Shannon’s theorem). If G is a graph with maximum degree Δ, then χ′(G) ≤
�3Δ/2	.

The second one, due to Hoeffding in 1963 [8], generalizes Chernoff bounds (the upper 
tail part).

Theorem 2.3 (Hoeffding’s inequality). Let X1, . . . , Xn be random variables and X =∑n
i=1 Xi and μ = E[X]. If a ≤ Xi ≤ b for all i ∈ {1, . . . , n}, then P [X ≥ μ + γ] ≤

e
− 2γ2

n(b−a)2 for all γ > 0.

The third one is the symmetric case of the Lovász Local Lemma. (See Alon and 
Spencer [1], Corollary 5.1.2.)

Theorem 2.4 (The local lemma, symmetric case). Let A1, . . . , An be events in an arbitrary 
probability space. Suppose that each event Ai is mutually independent of all other events 
Aj but at most d, and P [Ai] ≤ p for i ∈ {1, . . . , n}. If 4pd ≤ 1, then P [Λn

i=1Ai] > 0.

A subgraph H of a graph G is an induced subgraph if H contains all edges of G that 
have both endpoints in V (H). An induced subgraph H of graph G with |H| ≥ 3 odd 
is said to be k-dense if 2|E(H)| > (k − 1)(|H| − 1), k-near-dense if H is k-dense and 
χ′(H) = k, and k-exact-dense if 2|E(H)| = k(|H| − 1) and χ′(H) = k.

Lemma 2.5. If G is a graph with χ′(G) ≥ Δ(G) + 2, then G contains a χ′(G)-near-dense 
subgraph.

Proof. Since χ′(G) ≥ Δ(G) + 2, by Theorem 1.2 there exists a subgraph H ⊆ G with 

|H| ≥ 3 odd such that χ′(G) =
⌈

2|E(H)|
|H|−1

⌉
. Then 2|E(H)|

|H|−1 > χ′(G) − 1, which in turn 

gives that H is χ′(G)-dense and χ′(H) ≥ χ′(G). Combining this with the fact that 
χ′(H) ≤ χ′(G), we get that H is χ′(G)-near-dense subgraph of G. �
Remark 2.6. The following properties follow directly from the definition.

(1) A k-exact-dense graph is k-near-dense;
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(2) A k-near-dense graph is k1-dense for k1 ≤ k;
(3) If G is a k-dense graph, then χ′(G) ≥ k;
(4) If χ′(G) = k, then 2|E(H)| ≤ k(|H| − 1) for every subgraph H ⊆ G with |H| odd, 

moreover, if the equality holds, then H must be an induced subgraph; and
(5) If H is a χ′(G)-dense subgraph of G, then H is χ′(G)-near-dense.

Theorem 2.7. Let Δ ≥ 2 be a positive integer and r ∈ (1
2 , 1) be a real number such that 

Δr ≥ �Δ1−r�, and let G be a graph such that Δ(G) ≤ Δ and χ′(G) ≥ Δ + 2Δr. If G
itself is a χ′(G)-near-dense graph, then for every k ≥ χ′(G), there exists a k-exact-dense 
spanning supgraph G∗ such that dG∗(v) ≤ k − Δ1−r − (Δ − dG(v)) for each v ∈ V (G).

The proof of Theorem 2.7 will be presented in Section 5. Let G be a graph and 
W ⊆ V (G). Let G/W denote the graph obtained from G by contracting the set W , that 
is, we replace in G the set W with a new vertex w, each boundary edge e ∈ EG(x, y) with 
x /∈ W and y ∈ W by an edge with endpoints x and w, and delete all edges in G[W ]. We 
call G/W a minor of G. We notice that the term minor defined here is slightly broader 
than the commonly used term minor which requires that G[W ] is connected. Given an 
induced subgraph H of G, we define G/H = G/V (H). Moreover, we say that G/H is 
obtained from G by contracting H and G is obtained from G/H by uncontracting H. 
The following simple observation is needed in our proof.

Lemma 2.8. Let G be a graph and H be a k-dense subgraph of G. Let vH be the resulting 
vertex from the contraction of H. If F is a k-dense subgraph of G/H containing vH , 
then the graph F ∗ obtained from F by uncontracting vH is also a k-dense subgraph of G.

Proof. On the one hand, since both F and H are k-dense, |F | and |H| are both at least 
3 and odd, and satisfy the following inequalities.

2|E(F )| > (k − 1)(|F | − 1) and 2|E(H)| > (k − 1)(|H| − 1).

On the other hand, considering that F ∗ is obtained from F by uncontracting vH , we 
gain that |F ∗| = |F | + |H| − 1 and |E(F ∗)| = |E(F )| + |E(H)|. Hence, |F ∗| is odd and

2|E(F ∗)| = 2|E(F )| + 2|E(H)| > (k − 1)(|F | + |H| − 2) = (k − 1)(|F ∗| − 1),

which in turn gives that F ∗ is a k-dense subgraph of G. �
The following result was obtained in Cao et al. [3] (Lemma 3.2 on page 4). For com-

pleteness, we include the proof here.

Lemma 2.9. If a graph G satisfies χ′(G) ≥ Δ(G) +2, then two maximal χ′(G)-exact-dense 
subgraphs (if exists) are either the same or disjoint.
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Proof. Let k = χ′(G) and Δ = Δ(G). Let H1 and H2 be two distinct maximal k-exact-
dense subgraphs of G such that V (H1) ∩ V (H2) �= ∅. By Remark 2.6-(4), both H1 and 
H2 are induced subgraphs. Let F1 = H1 − V (H1 ∩ H2) and F2 = H2 − V (H1 ∩ H2). 
Following the maximality of H1 and H2, we have F1 �= ∅ �= F2.

We claim that |H1 ∩ H2| is odd. Otherwise, both |F1| and |F2| are odd. Since F1
and F2 are both subgraphs of G, 2|E(Fi)| ≤ k(|Fi| − 1) for i ∈ {1, 2}. Since Hi is 
k-exact-dense for i ∈ {1, 2}, we have 2|E(Hi)| = k(|Hi| − 1). Note that 2|E(Hi)| =
2|E(Fi)| + 2|E(H1 ∩ H2)| + 2|E(H1 ∩ H2, Fi)|. Thus, we have the following.

2|E(H1 ∩ H2)| + 2|E(H1 ∩ H2, Fi)| ≥ k(|Hi| − 1) − k(|Fi| − 1) = k · |H1 ∩ H2| (1)

Since dG(H1 ∩ H2) ≥ |E(H1 ∩ H2, F1)| + |E(H1 ∩ H2, F2)|, we have

2|E(H1 ∩ H2)| + dG(H1 ∩ H2) ≥
2∑

i=1
(|E(H1 ∩ H2)| + |E(H1 ∩ H2, Fi)|) ≥ k · |H1 ∩ H2|,

where we applied (1) for the last inequality.
On the other hand, 2|E(H1∩H2)| +dG(H1∩H2) =

∑
v∈V (H1∩H2) dG(v) ≤ Δ ·|H1∩H2|. 

So, we get Δ ≥ k, giving a contradiction to k ≥ Δ + 2.
Since |H1 ∩ H2| is odd and H1 ∩ H2 ⊆ G, we have 2|E(H1 ∩ H2)| ≤ k(|H1 ∩ H2| − 1). 

Recall that 2|E(Hi)| = k(|Hi| − 1) for i ∈ {1, 2}. Thus,

2|E(H1 ∪ H2)| = 2|E(H1)| + 2|E(H2)| − 2|E(H1 ∩ H2)|
≥ k(|H1| − 1) + k(|H2| − 1) − k(|H1 ∩ H2| − 1)

= k(|H1 ∪ H2| − 1).

In addition, we have 2|E(H1∪H2)| ≤ k(|H1∪H2| −1) because of χ′(H1∪H2) ≤ χ′(G) = k. 
Hence, H1 ∪ H2 is a k-exact-dense subgraph, giving a contradiction to the maximality 
of H1 and H2. �
3. Proof of Theorem 1.1

Let ϕ be an edge-coloring of a graph G with colors from a palette C. For each vertex 
v ∈ V (G), we define the following two color sets

ϕ(v) = {ϕ(e) : e ∈ EG(v)} and ϕ(v) = C\ϕ(v),

and call ϕ(v) the set of colors present at v and ϕ(v) the set of colors missing at v. We 
call ϕ a k-edge-coloring of G if |C| ≤ k. Similarly, a total-coloring ϕ′ of G is called a
k-total-coloring if it uses no more than k colors.

We now present the proof of Theorem 1.1. Let G be a graph with maximum degree 
Δ sufficiently large and χ′(G) ≥ Δ + 10Δ35/36. Let k = χ′(G), k1 = Δ + �10Δ35/36� and 
k0 = Δ + �2Δ35/36�. Clearly, k ≥ k1 ≥ k0 ≥ Δ + 2.
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Claim 3.1. If a subgraph H ⊆ G is (k0 + 1)-dense, then

|H| < Δ1/36 and dG(H) < Δ − (k0 − Δ)(|H| − 1).

Proof. By the Handshaking Lemma, Δ ·|H| ≥
∑

v∈V (H) dG(v) = 2|E(H)| +dG(H). Since 
H is (k0 +1)-dense, we have 2|E(H)| > k0(|H| −1), and so Δ · |H| > k0(|H| −1) +dG(H). 
Hence, dG(H) < Δ − (k0 − Δ)(|H| − 1). Applying k0 = Δ + �2Δ35/36� ≥ Δ + 2Δ35/36

and dG(H) ≥ 0, we get |H| < Δ1/36. �
In the following algorithm, we define a sequence Gt = (G0, G1, . . . , Gt) of minors of G

and a companion sequence Ht = (H0, . . . , Ht−1) for t ≥ 0.

Algorithm 1. Let G0 = G. Initially, we set G0 = (G0) and H0 = ∅. Note that χ′(G0) =
k ≥ Δ(G0) + 2. Lemma 2.5 shows that G0 has a k-near-dense subgraph. Let H0 be 
a maximal k-near-dense subgraph of G0 and G1 = G0/H0. Set G1 = (G0, G1) and 
H1 = (H0).

Suppose that we have defined a sequence Gt = (G0, G1, . . . , Gt) and its companion 
sequence Ht = (H0, . . . , Ht−1) for some t ≥ 1. If χ′(Gt) ≤ k0, then we stop and let 
T = t. Otherwise, we have χ′(Gt) > k0 ≥ Δ + 2. Using the result Δ ≥ Δ(Gt) shown in 
Claim 3.3 below, we get χ′(Gt) ≥ Δ(Gt) +2. By Lemma 2.5, Gt has a χ′(Gt)-near-dense 
subgraph. Let Ht be a maximal χ′(Gt)-near-dense subgraph in Gt and Gt+1 = Gt/Ht. 
Set Gt+1 = (G0, G1, . . . , Gt, Gt+1) and Ht+1 = (H0, . . . , Ht−1, Ht).

In Algorithm 1, for each t ∈ {0, . . . , T − 1}, since Ht is χ′(Gt)-near-dense subgraph 
of Gt, we have |Ht| ≥ 3, and so |Gt+1| ≤ |Gt| − 2. Hence, T is well defined, that is, 
Algorithm 1 terminates after a finite number of steps. We call GT = (G0, . . . , GT ) a
maximal dense-minor-sequence, and Ht the companion of Gt for t ∈ {0, . . . , T − 1}. 
Denote by vHt

the resulting vertex from the contraction of Ht.
For each Gt, we call each vertex in V (Gt)\V (G) a contracted vertex. So, the vertices 

in V (Gt) are divided into two classes: the original vertices of G and the contracted 
vertices. Algorithm 1 naturally generates an onto function ft : V (G) → V (Gt) such 
that the pre-image f−1

t (v) is the vertex set of G whose contraction results in v if v is a 
contracted vertex, and f−1

t (v) = {v} otherwise. We call f−1
t (v) the root of v for each 

v ∈ V (Gt).

Claim 3.2. For each contracted vertex v ∈ V (Gt), the subgraph G[f−1
t (v)] induced by the 

root of v is (k0 + 1)-dense.

Proof. We first notice that Hs is (k0 + 1)-dense for every s ∈ {0, . . . , T − 1} because Hs

is χ′(Gs)-near-dense and χ′(Gs) ≥ k0 + 1.
Suppose that v is the resulting vertex from the contraction of Hs for some s ≤ t −1. If 

Hs does not contain any contracted vertex, then f−1
t (v) = V (Hs). Since Hs is (k0 + 1)-

dense, we are done. Suppose that Hs contains some contracted vertices. Let r be the 
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largest index such that the contraction of Hr results in a contracted vertex, say u, in 
Hs. Let Sr be the subgraph of Gr obtained from Hs by uncontracting u back to Hr. 
Applying Lemma 2.8 (with G = Gr, H = Hr, F = Hs and F ∗ = Sr), we see that 
Sr is (k0 + 1)-dense. Repeating this process, we eventually obtain that G[f−1

t (v)] is 
(k0 + 1)-dense. �
Claim 3.3. Δ(Gt) ≤ Δ for any t ∈ {0, . . . , T }.

Proof. For any vertex v ∈ V (Gt), if v is a contracted vertex, by Claim 3.2 we have 
that G[f−1

t (v)] is (k0 + 1)-dense. Combining this with Claim 3.1, we have dGt
(v) =

dG(G[f−1
t (v)]) < Δ. If v is not a contracted vertex, then dGt

(v) = dG(v) ≤ Δ. Hence, 
Δ(Gt) ≤ Δ. �
Claim 3.4. For each t ∈ {0, . . . , T − 1}, we have χ′(Gt+1) ≤ χ′(Gt).

Proof. Suppose on the contrary that χ′(Gt+1) > χ′(Gt) for some t ∈ {0, . . . , T − 1}. 
Since t ≤ T − 1, we have χ′(Gt) > k0 ≥ Δ + 2, and so χ′(Gt+1) > Δ + 2. Combining this 
with Δ(Gt+1) ≤ Δ (Claim 3.3), we have χ′(Gt+1) > Δ(Gt+1) + 2. Applying Lemma 2.5
to Gt+1, we get a χ′(Gt+1)-near-dense subgraph St+1 in Gt+1.

We claim that vHt
∈ V (St+1). Otherwise, St+1 itself is a subgraph of Gt, and so 

χ′(Gt+1) = χ′(St+1) ≤ χ′(Gt), giving a contradiction to the assumption χ′(Gt+1) >

χ′(Gt). Let St be the subgraph of Gt obtained from St+1 by uncontracting vHt
, i.e., 

replacing vHt
with Ht in St+1. Since St+1 is χ′(Gt+1)-dense and χ′(Gt+1) > χ′(Gt), it 

follows that St+1 is χ′(Gt)-dense. Combining this with the fact that Ht is a χ′(Gt)-dense 
subgraph of Gt and applying Lemma 2.8, we see that St is also χ′(Gt)-dense subgraph of 
Gt. By Remark 2.6-(5), St is a χ′(Gt)-near-dense subgraph of Gt. However, St contains 
Ht as proper subgraph, which gives a contradiction to the maximality of Ht. �

For each t ∈ {0, . . . , T } and any subgraph G′
t ⊆ Gt, let W (G′

t) = V (G′
t)\V (G), the 

set of contracted vertices in G′
t. Let Ft = G − ∪v∈V (Gt)E(G[f−1

t (v)]). For each v ∈
V (Gt)\W (Gt), we have that f−1

t (v) = {v} is a singleton set, and so E(G[f−1
t (v)]) = ∅. 

Hence, we have that

∪v∈V (Gt)E(G[f−1
t (v)]) = ∪w∈W (Gt)E(G[f−1

t (w)])

Ft = G − ∪w∈W (Gt)E(G[f−1
t (w)]).

Claim 3.5. For every t ∈ {0, . . . , T }, there is a k-total-coloring ϕt of Ft such that the 
root f−1

t (w) is ϕt-distinct for every w ∈ W (Gt).

Since G0 = G, we have W (G0) = ∅, which in turn gives F0 = G. Hence, the coloring 
ϕ0 in Claim 3.5 is a k-total-coloring of G, which gives Theorem 1.1. The remainder is 
dedicated to the proof of Claim 3.5.



294 G. Chen, Y. Hao / Journal of Combinatorial Theory, Series B 158 (2023) 286–304
Fig. 1. ϕt+1 + π′ −→ ϕt.

Proof of Claim 3.5. We first consider the case that t = T . In this case, we have χ′(Gt) ≤
k0 = Δ + �2Δ35/36�. For any w ∈ W (Gt), by Claim 3.2 G[f−1

t (w)] is a (k0 + 1)-dense 
subgraph of G, and so |f−1

t (w)| < Δ1/36 (by Claim 3.1). Note that f−1
t (w) for w ∈ W (Gt)

are mutually disjoint independent vertex sets in graph Ft. By Theorem 2.1, there exists 
a k1-total-coloring ϕt of Ft such that f−1

t (w) is ϕt-distinct for all w ∈ W (Gt). Since 
k1 ≤ k, Claim 3.5 holds for Ft.

Assume that t ≤ T − 1 and Claim 3.5 holds for Ft+1, i.e., there is a k-total-coloring 
ϕt+1 of Ft+1 such that f−1

t+1(w) are ϕt+1-distinct for all w ∈ W (Gt+1). We will find a 
desired k-total-coloring of Ft based on ϕt+1 so that Claim 3.5 holds for Ft. Recall that 
Ht is a maximal χ′(Gt)-near-dense subgraph of Gt and Gt+1 = Gt/Ht.

Let W ∗ = f−1
t+1(vHt

) = f−1
t (V (Ht)), W (Ht) = {w1, . . . , wm}, and Wi = f−1

t (wi) for 
i ∈ {1, . . . , m}. By definition, we have

Ft = G − ∪w∈W (Gt)\W (Ht)E(G[f−1
t (w)]) − ∪wi∈W (Ht)E(G[Wi])

Ft+1 = G − ∪w∈W (Gt+1)\{vHt }E(G[f−1
t+1(w)]) − E(G[W ∗]).

Note that W (Gt)\W (Ht) = W (Gt+1)\{vHt
} and f−1

t+1(w) = f−1
t (w) for any w ∈

W (Gt)\W (Ht), and ∪m
i=1Wi ⊆ W ∗. Hence, Ft+1 is a spanning subgraph of Ft and 

E(Ft − Ft+1) = E(G[W ∗]) − ∪wi∈W (Ht)E(G[Wi]) = E(Ft[W ∗]). Moreover, Ft+1[W ∗] is 
an independent vertex set. Hence, the k-total-coloring ϕt+1 of Ft+1 is a partial color-
ing of Ft except that edges in E(Ft[W ∗]) are yet colored. We will find an edge-coloring 
π′ of Ft[W ∗] using colors 1, . . . , k such that its combination with ϕt+1 gives a desired 
k-total-coloring of Ft.

Note that Ht is obtained from Ft[W ∗] by contracting W1, . . . , Wm into w1, . . . , wm, 
respectively. Hence, an edge-coloring π of Ht gives an edge-coloring π′ of Ft[W ∗] with 
the property that for every Wi, all edges incident to it are assigned different colors. We 
will find a k-edge-coloring π of Ht to get an edge-coloring of Ft[W ∗] to fulfill our goal 
stated above. This strategy is depicted in Fig. 1.
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Since Ht is a χ′(Gt)-near-dense subgraph of Gt, we have χ′(Ht) = χ′(Gt). Applying it 
with k = χ′(G) ≥ χ′(Gt) > k0, we get k ≥ χ′(Ht) > k0 = Δ + �2Δ35/36� ≥ Δ + 2Δ35/36. 
By Claim 3.3, we have Δ(Ht) ≤ Δ(Gt) ≤ Δ. From the assumption of Δ being sufficiently 
large, we have Δ35/36 ≥ �Δ1/36�. Applying Theorem 2.7 with r = 35

36 , we see that Ht

has a k-exact-dense spanning supgraph H∗
t such that dH∗

t
(v) ≤ k − Δ1/36 − (Δ −dHt

(v))
for every v ∈ V (Ht). By the definition of k-exact-dense, 2|E(H∗

t )| = k(|H∗
t | − 1) and 

χ′(H∗
t ) = k.

Let π∗ be a k-edge-coloring of H∗
t . Since a matching of H∗

t contains at most (|H∗
t | −1)/2

edges, each color class of π∗ must be a near perfect matching. So, each color is missing 
at exact one vertex. Hence, π∗(v) are pairwise disjoint for v ∈ V (Ht) and the following 
holds.

|π∗(v)| = k − dH∗
t
(v) ≥ Δ1/36 + (Δ − dHt

(v)). (2)

Since Ht ⊆ H∗
t , by restricting π∗ to Ht we get a k-edge-coloring π of Ht. For each vertex 

v ∈ V (Ht), we have π(v) ⊇ π∗(v).
On the other hand, for each v ∈ V (Ht), we claim that

|f−1
t (v)| < Δ1/36 and dFt−W ∗(f−1

t (v)) ≤ Δ − dHt
(v) (3)

where dFt−W ∗(f−1
t (v)) denotes the number of the edges with one endpoint in f−1

t (v)
and the other endpoint in V (Ft)\W ∗.

For the first inequality of (3), if v is a contracted vertex, i.e., v ∈ W (Ht) =
{w1, . . . , wm}, then G[f−1

t (v)] is (k0 +1)-dense. By Claim 3.1, we have |f−1
t (v)| < Δ1/36. 

If v is not a contracted vertex, then f−1
t (v) = {v}. Hence, |f−1

t (v)| = |{v}| = 1 < Δ1/36.
For the second inequality of (3), we notice that dFt

(f−1
t (v)) = dGt

(v) and 
dFt[W ∗](f−1

t (v)) = dHt
(v). Hence,

dFt−W ∗(f−1
t (v)) = dFt

(f−1
t (v)) − dFt[W ∗](f−1

t (v)) = dGt
(v) − dHt

(v) ≤ Δ − dHt
(v).

Combining (2) and (3), we get following inequality for every v ∈ V (Ht).

|π∗(v)| > |f−1
t (v)| + dFt−W ∗(f−1

t (v)) (4)

Under the k-total-coloring ϕt+1 of Ft+1, for each vertex v ∈ V (Ht), let Cv denote the 
set of colors assigned to the vertices in f−1

t (v) and edges incident to f−1
t (v). Note that 

f−1
t (v) ⊆ W ∗ for v ∈ V (Ht). Since W ∗ = f−1

t+1(vHt
) is an independent vertex set in Ft+1

and W ∗ is ϕt+1-distinct, the color sets Cv for v ∈ V (Ht) are mutually disjoint and

|Cv| = |f−1
t (v)| + dFt+1(f−1

t (v)) = |f−1
t (v)| + dFt−W ∗(f−1

t (v)) < |π∗(v)|.
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Recall that the color sets π∗(v) for v ∈ V (Ht) are mutually disjoint. Hence, by permuting 
colors, we may assume that

π(v) ⊇ π∗(v) ⊇ Cv for every v ∈ V (Ht) (5)

Let π′ be the edge-coloring of Ft[W ∗] generated from the coloring π of Ht, that is, 
π′(e′) = π(e) if e′ ∈ Ft[W ∗] is the image of e ∈ E(Ht) under the natural corresponding 
between E(Ht) and E(Ft[W ∗]). For every vertex v ∈ V (Ht), by (5) we have π′(f−1

t (v)) =
π(v) ⊇ Cv. So, no colors in Cv are assigned to edges incident to f−1

t (v) in Ft[W ∗] under 
coloring π′. Hence, the combination of the coloring ϕt+1 and π′ gives a k-total-coloring 
ϕt of Ft. For each wi, there are three disjoint sets of colors involving Wi: ϕt+1(Wi), 
ϕt+1(E(Wi, G −W ∗)), and π′(EG(Wi, W ∗−Wi)) = π(EHt

(wi)). Hence, Wi is ϕt-distinct. 
Additionally, we note that coloring ϕt agrees with ϕt+1 on every edge and every vertex 
not in Ft[W ∗]. Therefore, for every contracted vertex w ∈ W (Gt), the vertex set f−1

t (w)
is ϕt-distinct, and so ϕt is the desired k-total-coloring of Ft. �
4. Proof of Theorem 2.1

In order to simplify the presentation of the proof, we omit floors and ceilings and 
treat large numbers as integers whenever this does not affect the argument. We reserved 
enough room in the calculation to absorb the differences.

Let G be a graph with maximum degree Δ sufficiently large. Let V1, . . . , Vm be m

mutually disjoint independent vertex sets of G, and let G0 be obtained from G by 
contracting each Vi to a single vertex. Suppose that χ′(G0) ≤ Δ + 2Δ35/36 and |V�| ≤
Δ1/36 for � ∈ {1, . . . , m}. We will show that G has a total-coloring η using at most 
Δ + 10Δ35/36 colors such that all V� are η-distinct.

Set k = Δ +10Δ35/36 and k0 = Δ +2Δ35/36. Let ϕ0 be a k0-edge-coloring of G0 using 
the colors 1, . . . , k0. Since V1, . . . , Vm are independent vertex sets, ϕ0 naturally becomes 
a k0-edge-coloring ϕ of G with the additional property that for each � ∈ {1, . . . , m}, 
edges incident to V� are assigned different colors.

Let K be obtained from G by adding edges to V� such that K[V�], the subgraph 
induced by V�, is a complete (simple) graph for � ∈ {1, . . . , m}. Since |V�| ≤ Δ1/36 for 
� ∈ {1, . . . , m}, we have Δ(K) < Δ + Δ1/36.

Let s = �Δ16/36� and t = �k0/s	. By definition, we have

Δ + 2Δ35/36

Δ16/36 + 1
− 1 < t ≤ Δ20/36 + 2Δ19/36 and s · t ≤ k0.

We specify s sets of colors: C1 = {1, . . . , t}, . . . , Cs = {(s − 1)t + 1, . . . , st}. Clearly, 
C1 ∪ · · · ∪ Cs = {1, . . . , st} is a subset of the set of colors used by the edge-coloring ϕ.

Definition 4.1. With respect to a partition U1, . . . , Us of V (G), we say that an edge 
e ∈ E(G) discords a vertex u ∈ V (G) if ϕ(e) ∈ Ci and u ∈ Ui for some i ∈ {1, . . . , s}. 
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Moreover, we say that e conflicts with u if either e discords a vertex in V� when u ∈ V�

for some � ∈ {1, . . . , m} or e discords u itself when u /∈ ∪m
�=1V�.

Claim 4.2. There is a partition U1, . . . , Us of V (G) such that

(i). for each vertex v and Ui, |NK(v) ∩ Ui| ≤ t − 1,
(ii). for each vertex v, there are at most 4Δ34/36 edges e incident with v that conflicts 

with the other endpoint of e in G.

Proof. Assign each vertex to a uniformly random part with probability 1
s (where of 

course, these choices are made independently). For each pair (v, i) we let Av,i be the 
event that (i) fails to hold for (v, i) and Bv be the event that (ii) fails to hold for v. We 
will use Hoeffding’s Inequality to prove the following inequalities by assuming that Δ is 
sufficiently large.

A. P [Av,i] < e−Δ1/18
< 1

4Δ3 for every pair (v, i), and
B. P [Bv] < e−Δ1/18

< 1
4Δ3 for every v.

We first complete the proof of Claim 4.2 based on (A) and (B) before giving their 
proofs. For each vertex v ∈ V (G), let D(v) denote the union of NG(v) and these 
V� that contain a neighbor of v. Since |V�| ≤ Δ1/36 for � ∈ {1, . . . , m}, it follows 
that |D(v)| ≤ Δ · Δ1/36 = Δ37/36. Note that events Bv and Av,i are determined by 
the partition assignments of the vertices in D(v). Thus, by the Mutual Independence 
Principle, they are mutually independent of all events concerning vertices which are 
not in D(v) ∪ NG(D(v)). Notice that each vertex v involves with one event Bv and 
s events Av,1, . . . , Av,s. So, every event is mutually independent of all but at most 
(s + 1)|D(v) ∪ NG(D(v))| ≤ (s + 1)(|D(v)| · Δ) ≤ (�Δ16/36 + 1)� · Δ37/36 · Δ < Δ3

other events. Since 4 · 1
4Δ3 · Δ3 = 1, by Theorem 2.4 (the Local Lemma) there is a 

partition satisfying both (i) and (ii).

Proof of A. Given a pair (v, i) with v ∈ V (G) and 1 ≤ i ≤ s, we will show that P [Av,i] <
e−Δ1/18 . For each u ∈ NK(v), let Xu be a 0 − 1 variable such that Xu = 1 if u ∈ Ui and 
Xu = 0 otherwise. Let X =

∑
u∈NK (v) Xu. Clearly, X is the number of neighbors of v

assigned to Ui in K. Recall that |NK(v)| < Δ + Δ1/36. Since E[Xu] = P [Xu = 1] = 1/s

for each u ∈ NK(v), we have

μ = E[X] =
∑

u∈NK (v)

E[Xu] = |NK(v)|
s

< (Δ + Δ1/36)/Δ16/36 = Δ20/36 + Δ−15/36.

Since t > (Δ + 2Δ35/36)/(Δ16/36 + 1) − 1 and Δ is large, a simple calculation gives 
us t > Δ20/36 + Δ−15/36 + Δ19/36 > μ + Δ19/36. Applying Hoeffding’s Inequality with 
b = 1 and a = 0, we get the following.
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P [Av,i] = P [X ≥ t] ≤ P [X > μ + Δ19/36] ≤ e
− 2(Δ19/36)2

|NK (v)| < e− 2Δ38/36
2Δ = e−Δ1/18

In the above inequality, we used that |Nk(v)| < Δ + Δ1/36 ≤ 2Δ. �
Proof of B. Given a vertex v ∈ V (G), we wish to show that P [Bv] < e−Δ1/18 . For 
each color set Ci, let ECi

denote the set of edges in G assigned colors in Ci. Let I =
NG(v)\(∪m

�=1V�) and L = {� ∈ {1, . . . , m} : NG(v) ∩ V� �= ∅}. For u ∈ I, let Xu be 
the number of edges in EG(v, u) that conflict with u, that is, the number of edges in 
EG(v, u) that discord u. For i ∈ {1, . . . , s}, if u ∈ Ui then there are |EG(v, u) ∩ ECi

|
edges in EG(v, u) that conflict with u. Hence, we have the following.

E[Xu] =
s∑

i=1
(|EG(v, u) ∩ ECi

| · P [u ∈ Ui]) = |EG(v, u)|
s

(6)

For each � ∈ L, let X� be the number of pairs (e, w) with e ∈ EG(v, V�) and w ∈ V� such 
that e discords w, and let X∗

� be the number of edges incident with v that conflict with 
the other endpoint in V�. Since V� = ∪s

i=1(V� ∩ Ui), we have

X∗
� =

∑
1≤i≤s, V�∩Ui �=∅

|EG(v, V�) ∩ ECi
| ≤

s∑
i=1

|EG(v, V�) ∩ ECi
| · |V� ∩ Ui| = X�.

For each w ∈ V�, let Xw be the number of edges e ∈ EG(v, V�) discording w. Clearly, 
X� =

∑
w∈V�

Xw. Similar to (6), we have E[Xw] = |EG(v, V�)|/s. Hence,

E[X�] =
∑

w∈V�

E[Xw] = |EG(v, V�)| · |V�|
s

≤ |EG(v, V�)| · Δ1/36

s
. (7)

We divide each of I and L into two subsets as follows.

I1 = {u ∈ I : |EG(v, u)| ≤ Δ14/36} & I2 = {u ∈ I : |EG(v, u)| > Δ14/36}

L1 = {� ∈ L : |EG(v, V�)| ≤ Δ14/36} & L2 = {� ∈ L : |EG(v, V�)| > Δ14/36}

Let Y =
∑

u∈I1
Xu +

∑
�∈L1

X�, Z =
∑

u∈I2
Xu +

∑
�∈L2

X�, and X =
∑

u∈I Xu +∑
�∈L X�. Clearly, X = Y + Z. By (6) and (7), we have

E[X] =
∑
u∈I

E[Xu] +
∑
�∈L

E[X�] ≤ 1
s

∑
u∈I

|EG(v, u)| + 1
s

∑
�∈L

|EG(v, V�)| · Δ1/36

≤ dG(v) · Δ1/36

Δ16/36 ≤ Δ21/36.

Consequently, we have E[Y ] ≤ E[X] ≤ Δ21/36 and E[Z] ≤ E[X] ≤ Δ21/36.
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For each u ∈ I1, we have Xu ≤ |EG(v, u)| ≤ Δ14/36. For each � ∈ L1, we know 
X� ≤ |EG(v, V�)| · |V�| ≤ Δ15/36. Notices that |I1| + |L1| ≤ |NG(v)| ≤ Δ. Applying 
Hoeffding’s Inequality with n = |I1| + |L1|, b = Δ15/36 and a = 0, we get the following 
inequality.

P [Y > 2Δ34/36] ≤ P [Y > E[Y ] + Δ34/36] ≤ e
− 2(Δ34/36)2

Δ(Δ15/36)2 = e−2Δ
1

18 <
e−Δ

1
18

2

For each color set Ci, since |Ci| = t ≤ Δ20/36 + 2Δ19/36, it follows that |EG(v, u) ∩
ECi

| ≤ t for each u ∈ NG(v). So, for each u ∈ I, there are at most t edges in EG(v, u)
discording u. Hence Xu ≤ t. For each � ∈ L, there are at most t · |V�| pairs (e, w)
with e ∈ EG(v, V�) and w ∈ V� such that w ∈ Ui and ϕ(e) ∈ Ci for some i, and so 
X� ≤ t · |V�| ≤ t · Δ1/36. Note that t · Δ1/36 ≤ Δ21/36 + 2Δ20/36 ≤ 1.4Δ21/36 (because Δ
is large) and |I2| + |L2| < dG(v)/Δ14/36 ≤ Δ22/36. Applying Hoeffding’s Inequality with 
n = |I2| + |L2|, b = 1.4Δ21/36 and a = 0, we get the following inequality (where we used 
1.42 < 2).

P [Z > 2Δ34/36] ≤ P [Z > E[Z] + Δ34/36] ≤ e
− 2(Δ34/36)2

Δ22/36(1.4Δ21/36)2 < e−Δ
1
9 <

e−Δ
1

18

2

By definition, 
∑

u∈I Xu +
∑

�∈L X∗
� is exactly the number of edges e incident with v

that conflicts with the other endpoint of e in G. Since X∗
� ≤ X� for � ∈ {1, . . . , s}, we 

have 
∑

u∈I Xu +
∑

�∈L X∗
� ≤ X. Hence,

P [Bv] ≤ P [X > 4Δ34/36] ≤ P [Y > 2Δ34/36] + P [Z > 2Δ34/36] < e−Δ1/18
,

which completes the proof of Claim 4.2. �
Let U1, . . . , Us be a partition of V (G) satisfying both (i) and (ii). By (i), for each Ui, 

by using the simple greedy procedure, we get a vertex-coloring of K[Ui] with colors in 
Ci, which in turn gives a vertex-coloring θ of K using at most k0 colors. Since in K each 
V� is a clique for each � ∈ {1, . . . , m}, it follows that θ is also a vertex-coloring of G

satisfying that each vertex in any V� is assigned a different color. It is noteworthy that 
the combination of ϕ and θ may not produce a total-coloring of G since some edges may 
have the same color as their endpoints.

Let e ∈ E(G) and u be an endpoint of e. If u /∈ ∪m
�=1V�, we say e rejects u if 

ϕ(e) = θ(u); if u ∈ V� for some � ∈ {1, . . . , m}, we say e rejects u if ϕ(e) ∈ θ(V�). In 
either case, we call e a reject edge. From the construction of vertex-coloring θ, we see 
that if e rejects u then e must conflict with u, but the converse may not be true. For 
each vertex v ∈ V (G), the reject degree of v, denoted by Rejv, is the number of edges 
e incident with v that rejects the other endpoint of e. By (ii), we have Rejv ≤ 4Δ34/36

for each v ∈ V (G).
Let R be a spanning subgraph of G induced by all reject edges. If v /∈ ∪m

�=1V�, then 
there is at most one edge incident with v that rejects v. If v ∈ V� for some �, there are 
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at most |V�| ≤ Δ1/36 edges incident with v sharing a common color with a vertex in V�, 
so there are at most Δ1/36 edges incident with v that rejects v. For each v ∈ V (G), the 
degree dR(v) of v in R is bounded above by the sum of Rejv and the number of edges 
that rejects v. Therefore, dR(v) ≤ 4Δ34/36 +Δ1/36 ≤ 5Δ34/36 for every vertex v ∈ V (G), 
and so Δ(R) ≤ 5Δ34/36.

Let R∗ be obtained from graph R by contracting each V� to a single vertex. Since 
|V�| ≤ Δ1/36 for � ∈ {1, . . . , m}, it follows that Δ(R∗) ≤ Δ(R) · Δ1/36 ≤ 5Δ35/36. By 
Shannon’s Theorem, χ′(R∗) ≤ 3

2 (5Δ35/36) ≤ 8Δ35/36. Let π∗ be an edge-coloring of R∗

using at most 8Δ35/36 new colors different from Δ + 2Δ35/36 colors used in ϕ and θ. 
Clearly, π∗ gives an edge-coloring π of R such that for each V�, all edges in R incident to 
V� have different colors. By combining vertex-coloring θ, edge-coloring ϕ on E(G)\E(R)
and edge-coloring π on E(R), we get a total-coloring η of G such that all V� are η-distinct. 
Note that we used at most Δ + 2Δ35/36 + 8Δ35/36 = Δ + 10Δ35/36 colors in total, which 
completes the proof of Theorem 2.1. �
5. Proof of Theorem 2.7

Let Δ ≥ 2 be an integer and r ∈ ( 1
2 , 1) be a real number such that Δr ≥ �Δ1−r�, and 

let G be a graph such that Δ(G) ≤ Δ and χ′(G) ≥ Δ + 2Δr. Assume that G itself is 
a χ′(G)-near-dense graph. For any k ≥ χ′(G), we will show that G has a k-exact-dense 
spanning supgraph G∗ such that dG∗(v) ≤ k − Δ1−r − (Δ − dG(v)) for every v ∈ V (G).

For each v ∈ V (G), let λ(v) = Δ − dG(v) and call it the deficiency of v in G with 
respect to Δ. For any vertex set W ⊆ V (G), let λ(W ) =

∑
w∈W λ(w); and for a subgraph 

F ⊆ G, let λ(F ) = λ(V (F )). Let k0 = Δ + �2Δr� and k1 = χ′(G). Clearly, k ≥ k1 ≥
k0 ≥ Δ + 2Δr. We first prove the following two claims.

Claim 5.1. Δ > (2Δr − 1)(|G| − 1) + λ(G). In particular, |G| − 1 < Δ1−r ≤ Δr.

Proof. Since G is k1-near-dense, we have that 2|E(G)| > (k1−1)(|G| −1) ≥ (k0−1)(|G| −
1). According to the definition of deficiency, we have that Δ · |G| =

∑
v∈V (G)(dG(v) +

λ(v)) =
∑

v∈V (G) dG(v) +λ(G) = 2|E(G)| +λ(G). Hence, Δ ·|G| > (k0−1)(|G| −1) +λ(G), 
which gives Δ > (k0 − Δ − 1)(|G| − 1) + λ(G). Since k0 ≥ Δ + 2Δr, we further have that 
Δ > (2Δr−1)(|G| −1) +λ(G). Because of Δr ≥ 1 and λ(G) ≥ 0, we have Δ > Δr(|G| −1), 
and so |G| − 1 < Δ1−r ≤ Δr. �
Claim 5.2. Let W ⊆ V (G) with |W | odd. If W �= V (G), then dG(W ) > Δr(2|W | − 1) +
λ(W ), where W = V (G)\W .

Proof. Let D = G[W ] and F = G[W ] be the subgraphs of G induced by W and W , 
respectively. We note that 2|E(D)| ≤ k1(|D| − 1) due to that χ′(D) ≤ χ′(G) = k1 and 
|D| is odd. Since G is k1-near-dense and |G| = |D| + |F |, we have

2|E(G)| > (k1 − 1)(|G| − 1) = k1(|D| − 1) + k1 · |F | − (|G| − 1).
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Consequently, we have the following.

2|E(G)| > 2|E(D)| + k1 · |F | − (|G| − 1) (8)

Applying 
∑

v∈V (G) dG(v) =
∑

v∈V (D) dG(v) +
∑

v∈V (F ) dG(v), we get the following.

2|E(G)| = 2|E(D)| + dG(V (D)) + Δ · |F | − λ(F ). (9)

Combining (8) and (9), we get

dG(V (D)) > (k1 − Δ)|F | + λ(F ) − (|G| − 1) ≥ 2Δr · |F | − (|G| − 1) + λ(F )

> Δr(2|F | − 1) + λ(F ) (since |G| − 1 < Δr)

Since V (D) = W , |F | = |W | and λ(F ) = λ(W ), we are done. �
Let G∗ be a spanning supgraph of G such that

i. χ′(G∗) ≤ k and dG∗(v) ≤ k − �Δ1−r� − λ(v) for each v ∈ V (G), and
ii. |E(G∗)| is maximum subject to the two conditions above.

Since k ≥ χ′(G) ≥ Δ +2Δr and dG(v) = Δ −λ(v) ≤ k −2Δr −λ(v) ≤ k −�Δ1−r� −λ(v)
for every v ∈ V (G), we see that graph G itself satisfies two conditions in i. So, such 
a graph G∗ exists. Since Δ ≥ 2 > 1, we have �Δ1−r� ≥ 2. Condition i implies that 
Δ(G∗) ≤ k − �Δ1−r� ≤ k − 2. By the assumption that χ′(G∗) ≤ k and |G∗| = |G| is odd, 
we have 2|E(G∗)| ≤ k(|G| −1). Thus, in order to prove that G∗ is k-exact-dense, we only 
need to show that 2|E(G∗)| ≥ k(|G| −1); and get a contradiction if 2|E(G∗)| > k(|G| −1). 
Let U = {u ∈ V (G) : dG∗(u) < k − �Δ1−r� − λ(u)}.

Claim 5.3. If |U | ≥ 2, then U is contained in a k-exact-dense subgraph of G∗.

Proof. For any two distinct vertices u, v ∈ U , we add a new edge e with endpoints 
u, v to G∗ and let G′ = G∗ ∪ {e}. According to the definition of U , we have dG′(u) =
dG∗(u) + 1 ≤ k − �Δ1−r� − λ(u) and dG′(v) = dG∗(v) + 1 ≤ k − �Δ1−r� − λ(v), which 
in turn gives dG′(w) ≤ k − �Δ1−r� − λ(w) for any w ∈ V (G). Consequently, Δ(G′) ≤
k − �Δ1−r� ≤ k − 2. Since |E(G′)| > |E(G∗)|, by the maximality of |E(G∗)| we have 
χ′(G′) > k ≥ Δ(G′) + 2. By Theorem 1.2, G′ contains a subgraph F with |F | ≥ 3
odd such that 2|E(F )| > k(|F | − 1), which implies that χ′(F ) > k. Since F − e ⊆ G∗

and χ′(G∗) ≤ k < χ′(F ), we have e ∈ E(F )\E(G∗), χ′(F − e) = χ′(G∗) = k and 
2|E(F − e)| = k(|F | − 1). Hence, F − e is a k-exact-dense subgraph of G∗ that contains 
both u and v.

Fixing u, we have shown that for any vertex v ∈ U with v �= u, there is a maximal k-
exact-dense subgraph in G∗ containing both u and v. Since χ′(G∗) = k ≥ Δ(G∗) + 2, by 
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Lemma 2.9 these maximal k-exact-dense subgraphs are the same graph, and so Claim 5.3
holds. �

By Claim 5.3, we consider the following three cases: (1) U = ∅; (2) |U | = 1; and (3) 
|U | ≥ 2.

Case 1: U = ∅. In this case, we have dG∗(v) = k −�Δ1−r� −λ(v) for all v ∈ V (G). Hence,

2|E(G∗)| =
∑

v∈V (G)

dG∗(v) = (k − �Δ1−r�)|G| − λ(G)

= k(|G| − 1) + k − �Δ1−r� · |G| − λ(G).

Applying Δ > (2Δr − 1)(|G| − 1) + λ(G) (Claim 5.1) to k ≥ Δ + 2Δr, we get

k > (2Δr − 1)|G| + λ(G) + 1 > �Δ1−r� · |G| + λ(G)

since 2Δr − 1 > Δr ≥ �Δ1−r�. Therefore, 2|E(G∗)| > k(|G| − 1), giving a contradiction.

Case 2: |U | = 1. Let U = {u} and F ∗ = G∗ − u. Applying Claim 5.2 with W = {u}, we 
get dG∗(u) ≥ dG(u) > Δr(2(|G| − 1) − 1) + λ(G − u) ≥ Δr(|G| − 1) + λ(G − u). Hence,

2|E(G∗)| =
∑

v∈V (G)

dG∗(v) =
∑

v∈V (G)\{u}
(k − �Δ1−r� − λ(v)) + dG∗(u)

> (k − �Δ1−r�)(|G| − 1) − λ(G − u) + Δr(|G| − 1) + λ(G − u)

≥ (k − �Δ1−r� + Δr)(|G| − 1) ≥ k(|G| − 1), (since Δr ≥ �Δ1−r�)

which gives a contradiction.

Case 3: |U | ≥ 2. By Claim 5.3, there is a maximal k-exact-dense subgraph D∗ containing 
U . If D∗ = G∗, then we are done. We now suppose that D∗ �= G∗, that is, G∗ is not 
k-exact-dense. Since k ≥ χ′(G∗) ≥ χ′(D∗) = k, we have χ′(G∗) = k. Not being k-exact-
dense gives 2|E(G∗)| < k(|G| − 1). Let F ∗ = G∗ − V (D∗). Hence,

2|E(G∗)| < k(|D∗| + |F ∗| − 1) = k(|D∗| − 1) + k · |F ∗|.

Since D∗ is k-exact-dense, k(|D∗| − 1) = 2|E(D∗)|. Given U ⊆ V (D∗), we have V (F ∗) ∩
U = ∅. Consequently, dG∗(v) = k − �Δ1−r� − λ(v) for every vertex v ∈ V (F ∗). Hence,

k|F ∗| =
∑

v∈V (F ∗)

dG∗(v) + �Δ1−r� · |F ∗| + λ(F ∗)

= 2|E(F ∗)| + |EG∗(D∗, F ∗)| + �Δ1−r� · |F ∗| + λ(F ∗).
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Therefore, 2|E(G∗)| < 2|E(D∗)| + 2|E(F ∗)| + |EG∗(D∗, F ∗)| + �Δ1−r� · |F ∗| + λ(F ∗). 
Combining this with 2|E(G∗)| = 2|E(D∗)| + 2|E(F ∗)| + 2|EG∗(D∗, F ∗)|, we get the 
following.

|EG∗(D∗, F ∗)| < �Δ1−r� · |F ∗| + λ(F ∗). (10)

Note that |EG∗(D∗, F ∗)| = dG∗(V (D∗)) ≥ dG(V (D∗)). Applying Claim 5.2 with W =
V (D∗) and W = V (F ∗) and using |F ∗| ≥ 2, we get

dG(V (D∗)) > Δr(2|F ∗| − 1) + λ(F ∗) > Δr|F ∗| + λ(F ∗) ≥ �Δ1−r� · |F ∗| + λ(F ∗).

Hence, |EG∗(D∗, F ∗)| > �Δ1−r� · |F ∗| + λ(F ∗), giving a contradiction to (10). �
6. Conclusion and acknowledgment

A natural strength of Theorem 1.1 is whether there is a universal constant c such that 
for a graph with maximum degree Δ sufficiently large, if χ′(G) ≥ Δ + c then χ′′(G) =
χ′(G). Unfortunately, there are a couple of barriers in our proof such as Theorem 2.7
which limits the best bounds we might get is Δ + Δ1/2. We thank Molloy and Reed for 
their book [10] that gave us several inspirational ideas.
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