
1

Byzantine-Resilient High-Dimensional
Federated Learning

Deepesh Data and Suhas Diggavi, Fellow, IEEE

Abstract—We study stochastic gradient descent (SGD) with
local iterations in the presence of Byzantine clients, motivated by
federated learning. The clients, instead of communicating with
the server in every iteration, maintain their local models, which
they update by taking several SGD iterations based on their own
datasets and then communicate the net update with the server,
thereby achieving communication efficiency. Furthermore, only a
subset of clients communicates with the server at synchronization
times. The Byzantine clients may collude and send arbitrary
vectors to the server to disrupt the learning process. To combat
the adversary, we employ an efficient high-dimensional robust
mean estimation algorithm at the server to filter-out corrupt
vectors; and to analyze the outlier-filtering procedure, we develop
a novel matrix concentration result that may be of independent
interest. We provide convergence analyses for both strongly-
convex and non-convex smooth objectives in the heterogeneous
data setting. We believe that ours is the first Byzantine-resilient
local SGD algorithm and analysis with non-trivial guarantees. We
corroborate our theoretical results with experiments for neural
network training.

Keywords: Federated learning; Byzantine attacks; local
iterations; robust mean estimation

I. INTRODUCTION

In the federated learning (FL) paradigm [1]–[4], several
clients (e.g., mobiles devices, organizations, etc.) collabora-
tively learn a machine learning model, where the training pro-
cess is facilitated by the data held by the participating clients
(without data centralization) and is coordinated by a central
server (e.g., the service provider). Due to its many advantages
over the traditional centralized learning [5] (e.g., training a
machine learning model without collecting the clients’ data,
which, in addition to reducing the communication load on the
network, provides a basic level of privacy to clients’ data), FL
has emerged as an active area of research recently; see [6] for a
detailed survey. Stochastic gradient descent (SGD) has become
a de facto standard in optimization for training machine

Parts of this work have appeared in the International Conference of Machine
Learning (ICML) 2021 and the IEEE International Symposium of Information
Theory (ISIT) 2021.

This work was supported in part by NSF grants #2139304, #2007714 and
Army Research Laboratory grant under Cooperative Agreement W911NF-17-
2-0196. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation here
on.

Deepesh Data is with Meta Platforms, Inc., Bellevue, WA 98005, USA,
and Suhas Diggavi is with the University of California, Los Angeles
(UCLA), Los Angeles, CA 90095, USA (deepesh.data@gmail.com, suhas-
diggavi@ucla.edu).

Part of this work was done when Deepesh Data was at UCLA.

learning models at such a large scale [3], [6], [7], where clients
iteratively communicate the gradient updates with the central
server, which aggregates the gradients, updates the learning
model, and sends the aggregated gradient back to the clients.
The promise of FL comes with its own set of challenges [6]:
(i) optimizing with heterogeneous data at different clients – the
local datasets at clients may be “non-i.i.d.”, i.e., can be thought
of as being generated from different underlying distributions;
(ii) slow and unreliable network connections between server
and clients, so communication in every iteration may not be
feasible; (iii) availability of only a subset of clients for training
at a given time (maybe due to low connectivity, as clients
may be in different geographic locations); and (iv) robustness
against malicious/Byzantine clients who may send incorrect
gradient updates to the server to disrupt the training process.
In this paper, we propose and analyze an SGD algorithm that
simultaneously addresses all these challenges. First we setup
the problem, put our work in context with the related work,
and then summarize our contributions.

We consider an empirical risk minimization problem, where
data is stored at R clients, each having a different dataset
(with no probabilistic assumption on data generation); client
r 2 [R] has dataset Dr. Let Fr : Rd ! R denote the local loss
function associated with the dataset Dr, which is defined as
Fr(x) , Ei2U [nr][Fr,i(x)], where nr = |Dr|, i is uniformly
distributed over [nr] , {1, 2, . . . , nr}, and Fr,i(x) is the loss
associated with the i’th data point at client r with respect
to (w.r.t.) x. Our goal is to solve the following minimization
problem:

argmin
x2C

⇣
F (x) , 1

R

RX

r=1

Ei2U [nr][Fr,i(x)]
⌘
, (1)

where C ✓ Rd denotes the parameter space that is either equal
to Rd or a compact and convex set.

In the absence of the above-mentioned FL challenges, we
can minimize (1) using distributed vanilla SGD, where in any
iteration, server broadcasts the current model parameters to all
clients, each of them then samples a stochastic gradient from
its local dataset and sends it back to the server, who aggregates
the received gradients and updates the global model. However,
this simple solution does not satisfy the FL challenges, as
every client communicates with the server (i.e., no sampling
of clients) in every SGD iteration (i.e., no local iterations),
and furthermore, this solution breaks down even with a single
malicious client [8].
Related Work. Recent work have proposed variants of the
above-described vanilla SGD that address some of the FL

2

Distributed SGD with Byzantine adversaries

M broadcasts x

M bg(x) ⇡ 1
|H|
P

i2H g
i
(x)?

W1

(D1, F1)

W2

(D2, F2)

W3

(D3, F3)

WR

(DR, FR)

g 1
(x
)

e g 2
(x

) g
3 (x

)

eg
R (x)

Fig. 1 In the master-worker architecture for distributed optimization, each of
the R workers (denoted by Wi) stores local datasets – worker r stores Dr

with an associated local loss function Fr . We are in a heterogeneous data
setting, where the local datasets Dr’s are arbitrary and are not necessarily
generated from the same distribution. Master (denoted by M) wants to learn a
machine learning model through SGD which minimizes the average of local
loss functions; see (1). The adversarial nodes are denoted in red color. Let
H denote the set of honest workers. In any SGD iteration, master broadcasts
the current model parameter vector x to all workers. Each honest worker
i computes the stochastic gradient gi(x) and sends it back to the master;
corrupt nodes may send arbitrary vectors. Master wants to compute bg(x) ⇡
1

|H|

P
i2H

gi(x) in order to update the model parameter vector. Computing
bg(x) and providing convergence analyses for strongly-convex and non-convex
objectives is the subject of this paper.

challenges. The algorithms in [9]–[16] work under different
heterogeneity assumptions but do not provide any robustness
to malicious clients. On the other hand, [8], [17]–[23] provide
robustness, but with no local iterations or sampling of clients;
furthermore, they assume homogeneous (either same or i.i.d.)
data across all clients. A different line of work [24]–[30] use
different techniques to provide robustness, and that without
local iterations or sampling of clients: [24], [25], [26], [28]
use coding across datasets, which is hard to implement in FL;
[29] change the objective function and adds a regularizer term
to combat the adversary; [30] effectively reduce the heteroge-
neous problem to a homogeneous problem by clustering, and
then learning happens within each cluster having homogeneous
data.

Lately, there have been some works [31]–[33] that studied
Byzantine robust optimization in the homogeneous data setting
(without local iterations) and did convergence analyses with
momentum updates, matching rates with that of vanilla SGD.
It is important to note that the use of momentum updates
in these papers help defend against time-coupled attacks in
which an adversary strategically constructs an attack over
time (i.e., builds the attack over the execution of gradient
descent); these attacks are very difficult to combat. The first
paper to recognize and defend time-coupled attacks (without
using momentum) was [19], that proposed a defense algorithm
in the unrealistic distributed setting where clients sample
stochastic gradients from the same dataset, and analyzed it for
convex functions using martingale-based analysis. A similar
technique was extended to the non-convex case (under the
same assumptions) in [34]. Both these papers also assume that

the stochastic gradients have bounded noise, almost surely (as
opposed to be bounded in expectation). This assumption was
removed recently in [31]–[33], [35], which recognized that
time-coupled attacks can also be handled by using momentum
updates together with simple robust aggregation method at
the server. Among these papers, the analyses in [31]–[33] are
again confined to the setting where all clients sample stochastic
gradients from the same dataset, which is orthogonal to the
inherently non-i.i.d. data setup of FL. Recently, [35] proposed
a new technique of bucketing to extend the aforementioned
momentum analysis that can be combined with existing robust
aggregators (in the homogeneous case) to the heterogeneous
case. The resulting convergence rate is qualitatively better, in
the sense that it coincides with the SGD rate in the absence
of Byzantine corruption. It is worth noting that none of these
papers incorporated local iterations into their algorithms and
analyses, which is one of the main ingredient in FL to achieve
communication efficiency.

We are only aware of one paper [36], that analyzed SGD in
FL setting (i.e., including local iterations), but the approxima-
tion error (even in the Byzantine-free setting) of their solution
could be as large as O(D2 + G

2), where G is the gradient
bound and D is the diameter of the parameter space that
contains the optimal parameters x⇤ and all the local parameters
xt

r
ever emerged at any client r 2 [R] in any iteration

t 2 [T]; this, in our opinion, makes their bound vacuous.
In optimization, one would ideally like to have convergence
rates depend on D with a factor that decays with the number
of iterations, e.g., with 1

T
or 1

p
T

, as also in Theorem 1. In
Section VI, we also empirically demonstrate the poor learning
performance of their algorithm.

Our Contributions. In this paper, we tackle heterogeneity
assuming that the gradient dissimilarity among local datasets
is bounded (see (6), which is the same heterogeneity assump-
tion in [35]), and propose and analyze a Byzantine-resilient
SGD algorithm (Algorithm 1) with local iterations and client
sampling under the bounded variance assumption for SGD (see
(2)). We provide convergence analyses for strongly-convex and
non-convex smooth objectives. Our convergence results are
summarized below, where b is the mini-batch size for stochas-
tic gradients, �2 is the variance bound, 2 captures the gradient
dissimilarity, H is the number of local iterations in between
any two consecutive synchronization indices, K is the number
of clients sampled at synchronization times, ✏ is the fraction
of communicating Byzantine clients at synchronization times,
and ✏

0 is any constant such that ✏+ ✏
0  1

3 .
For strongly-convex objectives, our algorithm can find ap-

proximate optimal parameters exponentially (in T

H
) fast, and

for non-convex objectives, it can reach to an approximate sta-
tionary point with a speed of 1

T/H
. See Theorem 1 for conver-

gence results. The approximation error � essentially consists
of two types of error terms: �1 = O

⇣
H�

2

b✏0

�
1 + 3d

2K

�
(✏+ ✏

0)
⌘

and �2 = O(H
2), where �1 arises due to stochastic sampling

of gradients and �2 arises due to dissimilarity in the local
datasets. Observe that �1 decreases as we increase the batch
size b of stochastic gradients and becomes zero if we take
full-batch gradients (which implies � = 0), as is the case in

3

Theorem 2. Note that even though the variance (and gradient
dissimilarity) of accumulation of H gradients blows up by a
factor of H

2, still both �1 and �2 have a linear dependence
on the number of local iterations H . See a detailed discussion
in Section II-B on the approximation error analysis and the
convergence rates, and also for the reason behind obtaining
rates that are off by a factor of H when compared to vanilla

SGD – looking ahead, the reason is working with weak
assumptions.

To tackle the malicious behavior of Byzantine clients, we
borrow tools from recent advances in high-dimensional robust
statistics [37]–[40]; in particular, we use the polynomial-time
outlier-filtering procedure from [39], which was developed for
robust mean estimation (RME) in high dimensions. In order to
use their algorithm (described in Algorithm 2) in our setting
that combines Byzantine resilience with local iterations, we
develop a novel matrix concentration result (see Theorem 3),
which may be of independent interest. As far as we know,
this is the first concentration result for stochastic gradients
with local iterations on heterogeneous data.

We believe that ours is the first work that combines local

iterations with Byzantine-resilience for SGD and achieves non-
trivial results under weak assumptions, while employing the
RME algorithm for filtering corrupt updates. RME algorithms
are provably superior than the existing algorithms based on
median, trimmed-mean, etc., in high-dimensions; see also Sec-
tion III for a detailed discussion on this. Unlike existing works,
we also analyze our algorithm on heterogeneous data and
allow sampling of clients. This required us to derive a nobel
matrix concentration result in the general FL setting. Note that
the earlier work that provide robustness (even without local
iterations or sampling of clients) either assume homogeneous
data across clients [8], [17]–[20], [22], [23] or require strong
assumptions, such as the bounded gradient assumption on local
functions [21].
Paper organization. We describe our algorithm and state
the convergence results in Section II. In Section III, we
describe our main technical tool, a new matrix concentration
result for analyzing the robust accumulated gradient estimation
procedure. We prove the convergence results in Section IV and
Section V. We provide empirical evaluation of our method
in Section VI. We instantiate our assumptions in the sta-
tistical heterogeneous data model in Section VII. Omitted
details/proofs are provided in the appendices.

II. PROBLEM SETUP AND OUR RESULTS

In this section, we state our assumptions, describe the
adversary model and our algorithm, and state our convergence
results followed by important remarks about them.

Assumption 1 (Bounded local variances). The stochastic

gradients sampled from any local dataset have uniformly

bounded variance over C for all clients, i.e., there exists a

finite �, such that for all x 2 C, r 2 [R], we have

Ei2U [nr]krFr,i(x)�rFr(x)k2  �
2
. (2)

It will be helpful to formally define mini-batch stochastic
gradients, where instead of computing stochastic gradients

based on just one data point, each client samples b � 1
data points (without replacement) from its local dataset and
computes the average of b gradients. For any x 2 Rd

, r 2
[R], b 2 [nr], consider the following set

F⌦b

r
(x) :=

(
1

b

X

i2Hb

rFr,i(x) : Hb 2
✓
[nr]

b

◆)
. (3)

Note that g
r
(x) 2U F⌦b

r
(x) is a mini-batch stochastic

gradient with batch size b at client r. It is not hard to see
the following, which hold for all x 2 C, r 2 [R]:

E [g
r
(x)] = rFr(x), (4)

E kg
r
(x)�rFr(x)k2  �

2
/b. (5)

Assumption 2 (Bounded gradient dissimilarity). The differ-

ence of the local gradients rFr(x), r 2 [R] and the global

gradient rF (x) = 1
R

P
R

r=1rFr(x) is uniformly bounded

over Rd
for all clients, i.e., there exists a finite , such that

krFr(x)�rF (x)k2  
2
, 8x 2 C, r 2 [R]. (6)

Assumption 1 has been standard in the SGD literature. As-
sumption 2 has also been used earlier to bound heterogeneity
in datasets; see, for example, [41], [42], which study decentral-
ized SGD (without adversaries), and more recently [35], which
study distributed SGD with adversaries, all with momentum.
Note that when clients compute full-batch gradients, we have
� = 0 in Assumption 1; similarly, when all clients have
access to the same dataset as in [8], [19], we have  = 0
in Assumption 2. Note that (6) can be seen as a deterministic

condition on local datasets, under which we derive our results.
A Note on Assumption 2. In the presence of Byzantine
adversaries, since we do not know which clients are corrupt,
we have to make some structural assumption on the data that
can provide relationships among gradients sampled at different
nodes for reliable decoding, and Assumption 2 is a natural way
to achieve that. There are many alternatives to establish this
relationship, e.g., by assuming homogeneous (same or i.i.d.)
data across clients [8], [17]–[20], [22], [23] or by explicitly
introducing redundancy in the system via coding-theoretic
solutions [24], [25], [28]; however, these approaches fall short
of in the FL setting.

Assuming bounded gradients of local functions (i.e.,
krFr(x)k  G for some finite G) is a common assumption in
literature with heterogeneous data; see, for example, [13], [15,
without adversaries] and [21, with adversaries]. Note that un-
der this assumption, we can trivially bound the heterogeneity
among local datasets by krFr(x)�rFs(x)k  2G. So, as-
suming bounded gradients not only simplifies the analysis but
also obscures the effect of heterogeneity on the convergence
bounds, which Assumption 2 clearly brings out.1

Bounds on �
2 and 

2 in the Statistical Heterogeneous
Model. Since all our results (matrix concentration and
convergence) are given in terms of � and , to show a

1See [12] for a detailed discussion on the inappropriateness of making
bounded gradient assumption in heterogeneous data settings and how it
obscures the effect of heterogeneity on convergence rates (even without
robustness).

4

clear dependence of our results on the dimensionality of the
problem, we bound these quantities in the statistical hetero-

geneous data model under different distributional assumptions
on local gradients; see Section VII for more details, where
we prove the following: For the SGD variance bound, we
show that if local gradients have sub-Gaussian distribution,
then � = O(

p
d log(d)). For the gradient dissimilarity bound,

we show that if either the local gradients have sub-exponential
distribution and each worker has at least n = ⌦(d log(nd))
data points or local gradients have sub-Gaussian distribution
and n 2 N is arbitrary, then   mean + O(

p
d log(nd)/n),

where mean denotes the distance of the expected local gradi-
ents from the global gradient. Note that we make distributional
assumptions on data generation only to derive bounds on �,;
otherwise, all our results hold for arbitrary datasets satisfying
(5), (6).

Adversary Model. Throughout the paper, we assume that
✏ denotes the fraction of the K communicating clients that
are corrupt, i.e., at most ✏K (out of K) clients that com-
municate with the server at synchronization indices may be
corrupt, where K  R is the number of clients chosen at
synchronization indices. This translates to, in the worst case,
having ✏K

R
fraction (i.e., a total of ✏K) of corrupt nodes in the

entire system, as in the worst-case, all the corrupt nodes can
be selected in a communication round; however, in practice,
due to several constraints, such as the unreliable network
connection (for which the adversary has no control over), we
cannot expect that the server will select all corrupt nodes in
all iterations. The corrupt clients may collude and arbitrarily
deviate from their pre-specified programs: at synchronization
indices, instead of sending the true stochastic gradients (or
local models), corrupt clients may send adversarially chosen
vectors to the server (they may not even send anything if they
wish, in which case, the server can treat them as erasures and
replace them with a fixed value). Note that, in the erasure
case, server knows which clients are corrupt; whereas, in the
Byzantine problem, server does not have this information.
Note that our theoretical results hold against a worst case
adversary, who is aware of the aggregation rule used by the
server and has access to local gradients/models at all clients;
with all this knowledge, such an adversary may conduct an
adaptive attack, and our proposed method safeguards against
such adaptive adversaries.

A. Main Results

Let IT = {t1, t2, . . . , tk, . . .}, with t1 = 0, denote the set
of synchronization indices (where maxi�1 |ti+1 � ti| = H)
when the server arbitrarily selects a subset of K  R clients
(denoted by K ✓ [R]) and sends the global model (denoted
by x) to them; each client r 2 K updates its local model xr

by taking SGD steps based on its local dataset until the next
synchronization time, when all clients in K send their local
models to the server. Note that some of these clients may be

Algorithm 1 Byzantine-Resilient SGD with Local Iterations

1: Initialize. Set t := 0, x0
r
:= 0, 8r 2 [R], and x := 0.

Here, x denotes the global model and x0
r

denotes the local
model at client r at time 0. Fix a constant step-size ⌘ and
a mini-batch size b.

2: while (t  T) do
3: Server selects an arbitrary subset K ✓ [R] of |K| = K

clients and sends x to all clients in K.
4: All clients r 2 K do in parallel:
5: Set xt

r
= x.

6: while (true) do
7: Take a mini-batch stochastic gradient g

r
(xt

r
) 2U

F⌦b(xt

r
) and update the local model:

xt+1
r
 xt

r
� ⌘g

r
(xt

r
)); t (t+ 1).

8: if (t 2 IT) then

9: Let ext

r
=

8
<

:
xt

r
if client r is honest,

> if client r is corrupt,
,

where > is an arbitrary vector in Rd.
10: Send ext

r
to the server and break the inner while

loop.
11: end if
12: end while
13: At Server:
14: Receive {exr, r 2 K} from the clients in K.
15: For every r 2 K, let eg

r,accu := (exr � x)/⌘.
16: Apply the decoding algorithm RAGE (see Algorithm 2

on page 7) on {eg
r,accu, r 2 K}. Let

bgaccu := RAGE(eg
r,accu, r 2 K).

17: Update the global model x ⇧C(x � ⌘bgaccu), where
⇧C denotes the projection operator onto the set C.

18: end while

corrupt and may send arbitrary vectors.2 Server employs the
decoding RAGE and update the global model x based on that.
We present our Byzantine-resilient SGD algorithm with local
iterations in Algorithm 1.

Our convergence results are for both strongly-convex and
non-convex smooth objectives, and we state them in the
following theorem. Since our main focus in this paper is on
Byzantine resilience and also combining it with local itera-
tions, to avoid the technical complications arising due to the
projection operator (in line 17), we prove our results assuming
that the parameter space C is equal to Rd. The analysis
involving the projection can be done using the techniques in
[18].

Before stating the results, we need some definitions first.
• L-smoothness: A function F : C ! R is called L-smooth

over C ✓ Rd, if for every x,y 2 C, we have krF (x)�
rF (y)k  Lkx�yk (this property is also known as L-

2Note that the only disruption that the corrupt clients can cause in the
training process is during the gradient aggregation at synchronization indices
by sending adversarially chosen vectors to the server, and we give unlimited
power to the adversary for that. Because of this and for the purpose of analysis,
we can assume, without loss of generality, that in between the synchronization
indices, the corrupt clients sample stochastic gradients and update their local
parameters honestly.

5

Lipschitz gradients). This is also equivalent to F (y) 
F (x) + hrF (x),y � xi+ L

2 kx� yk2.
• µ-strong convexity: A function F : C ! R is called
µ-strongly convex over C ✓ Rd (for µ � 0), if for every
x,y 2 C, we have F (y) � F (x) + hrF (x),y � xi +
µ

2 kx� yk2.

Theorem 1 (Mini-Batch Local Stochastic Gradient Descent).
Let Kt denote the set of K clients that are active at any

given time t 2 [0 : T] and ✏ denote the fraction of corrupt

clients in Kt. For a global objective function F : Rd ! R,

let Algorithm 1 generate a sequence of iterates {xt

r
: t 2 [0 :

T], r 2 Kt} when running with a fixed step-size ⌘ = 1
8HL

. Fix

any ✏
0
> 0, ✏ � 0, � > 1/2 such that ✏  1

3 � �✏
0

holds. Then

with probability 1 � T

H
exp(� (2��1)✏02(1�✏)K

8), the sequence

of average iterates {xt = 1
K

P
r2Kt

xt

r
: t 2 [0 : T]} satisfy

the following convergence guarantees:

• Strongly-convex: If F is L-smooth for L � 0, and µ-

strongly convex for µ > 0, we get:

E
��xT � x⇤

��2 
⇣
1� µ

16HL

⌘T ��x0 � x⇤
��2 + 13

µ2
�.

• Non-convex: If F is L-smooth for L � 0, we get:

1

T

TX

t=0

E
��rF (xt)

��2 
⇥
E[F (x0)]� E[F (x⇤)]

⇤

T/16HL

+
9

2
�.

In both the bounds above, � =
�
3⌥ 2

H
+ 11H�

2

b
+ 36H

2
�

with ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�
, where �

2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+

28H2

2
, and expectation is taken over the sampling of mini-

batch stochastic gradients.

We prove the strongly-convex part of Theorem 1 in
Section IV and the non-convex part in Section V. In addition
to other complications arising due to handling Byzantine
clients together with local iterations, our proof deviates
from the standard proofs for local SGD: We need to show
two recurrences, which arise because at synchronization
indices, server performs decoding to filter-out the corrupt
clients, while at other indices there is no decoding, as there
is no communication. The proof of the first recurrence is
significantly more involved than that of the other one.

Failure Probability. The failure probability of our algorithm
is at most T

H
exp(� (2��1)✏02(1�✏)K

8), which holds for any
✏
0
> 0, ✏ � 0, � > 1/2 such that ✏  1

3 � �✏
0. This bound

though scales linearly with T , also goes down exponentially
with K. As a result, in settings such as federated learning,
where number of clients could be large (e.g., in tens/hundreds
of millions) and server samples about a thousand, we can get
a very small probability of error, even if run our algorithm for
a long time. As a concrete scenario, say, the total number of
devices is R = 10 million and the server selects K = 1250 of
them. Then, even if we want robustness against one million
malicious clients, by choosing � = 100 and ✏

0 = 1
�
(13 �

1
10),

the probability of failure of our algorithm would still be less
than T

H
e
�30, which even if T = 106 and H = 1, would

still be less than 10�7. Note that the bound on probability of

error in Theorem 1 is a worst-case bound, and in practice,
our algorithm succeeds with moderate parameter values; see,
for example, Section VI for our experimental setup and the
results.

Note that the error probability is due to the stochastic sam-
pling of gradients, and if we want a “zero” probability of error,
we can run full-batch GD, for which we get the following
result (yielding the approximation error of � = O(H

2)).

Theorem 2 (Full-Batch Local Gradient Descent). In the same

setting as that of Theorem 1, except for that we running

Algorithm 1 with a fixed step-size ⌘ = 1
5HL

, and in any

iteration, instead of sampling mini-batch stochastic gradients,

every honest client takes full-batch gradients from their local

datasets. If ✏  1
3 , then with probability 1, the sequence of

average iterates {xt = 1
K

P
r2Kt

xt

r
: t 2 [0 : T]} satisfy the

following convergence guarantees:

• Strongly-convex: If F is L-smooth for L � 0 and µ-

strongly convex for µ > 0, we get:

kxT � x⇤k2 
⇣
1� µ

10HL

⌘T
kx0 � x⇤k2 + 14

µ2
�GD.

(7)

• Non-convex: If F is L-smooth for L � 0, we get:

1

T

TX

t=0

��rF (xt)
��2  10HL

T

⇥
F (x0)� F (x⇤)

⇤
+

24

5
�GD.

(8)

In (7), (8), �GD = 2⌥ 2
GD

H
+ 25H

2
, where ⌥GD = O (H

p
✏).

We provide a compete proof of Theorem 2 in Appendix D.
For this, we also give a much simplified proof for the matrix
concentration result of Theorem 3, which is required to prove
convergence.

B. Important Remarks About Theorem 1

Analysis of the Approximation Error. In Theorem 1, the
approximation error � essentially consists of two types of error
terms: �1 = O

⇣
H�

2

b✏0

�
1 + 3d

2K

�
(✏+ ✏

0)
⌘

and �2 = O(H
2),

where �1 arises due to stochastic sampling of gradients and
�2 arises due to dissimilarity in the local datasets. Observe
that �1 decreases as we increase the batch size b of stochastic
gradients and becomes zero if we take full-batch gradients
(which implies � = 0), as is the case in Theorem 2. Note
that even though the variance (and gradient dissimilarity)
of accumulation of H gradients blows up by a factor of
H

2, still both �1 and �2 have a linear dependence on the
number of local iterations H . Observe that since we are
working with heterogeneous datasets, the presence of gradient
dissimilarity bound 

2 (which captures the heterogeneity) in
the approximation error is inevitable, and will always show
up when bounding the deviation of the true “global” gradient
from the decoded one in the presence of Byzantine clients,
even when H = 1; see also Figure 2 for a pictorial intuition.
Convergence Rates. In the strongly-convex case, Algorithm 1
approximately finds the optimal parameters x⇤ (within �

error) with
�
1� µ

16HL

�T speed. Note that
�
1� µ

16HL

�T 

6

exp�
µ

16L
T

H , which implies an exponentially fast (in T/H)
convergence rate. In the non-convex case, Algorithm 1 reaches
to a stationary point (within � error) with a speed of 1

T/H
.

Note that the convergence rates of vanilla SGD (i.e., without
local iterations and in Byzantine-free settings) are exponential
(in T) and 1

T
for strongly-convex and non-convex objectives,

respectively; whereas, our convergence rates are affected by
the number of local iterations H . The reason for this is
precisely because we need ⌘  1

8HL
to bound the drift in

local parameters across clients; see Lemma 2. Instead, if we
had assumed a stronger bounded gradient assumption (which
trivially bounds the heterogeneity, as explained on page 3),
then Lemma 2 would hold for a constant step-size (e.g.,
⌘ = 1

2L would suffice), which would lead to vanilla SGD
like convergence rates.

III. ROBUST ACCUMULATED GRADIENT ESTIMATION

In this section, first we discuss the inadequacy of traditional
methods (such as coordinate-wise median and trimmed-mean)
for filtering corrupt gradients in our setting, and then we
motivate and describe the robust accumulated gradient esti-
mation (RAGE) procedure that we use in Algorithm 1 as a
subroutine at every synchronization index. Then we prove our
new matrix concentration result that is required to establish
the performance guarantee of RAGE.
Inadequacy of Median and Trimmed-Mean. Coordinate-
wise median (med) and trimmed-mean (trimmean) are the
two widely used robust estimation procedures that are easy to
describe and implement, and they have been employed earlier
for robust gradient aggregation in distributed optimization; see,
for example, [18], [22, i.i.d. data setting] and [36, FL setting].
Below we argue that these methods give poor performance
in FL settings for learning high-dimensional models; we also
validate this claim through experiments in Section VI.
• For the simple task of robust mean estimation with inputs
coming a unit covariance distribution, med and trimmean have
an error that scales with the dimension as

p
d [37], [39];

when we apply these methods in each SGD iteration, this error
translates to a large sub-optimality gap in the convergence rate.
• The adversary may corrupt samples in a way that they
preserve the norm of the original uncorrupted samples, but
have different adversarially chosen directions (these are called
directional attacks); since the performance of these methods
are based on the magnitude of the samples, they cannot
distinguish between the corrupt and uncorrupt samples. We
also implement directional attacks in Section VI to show the
efficacy of our method empirically.
• When taking coordinate-wise median, for estimating each
coordinate, we use only a single sample and discard the rest.
This is not a good idea in large-scale settings with non-
i.i.d. data, such as FL, where there are potentially millions
of clients, and if we somehow are able to use samples from
all (or most of the) honest clients, we could get a significant
reduction in variance of stochastic gradients. In med, we do
not take advantage of this variance reduction, which leads
to a performance degradation, which may be detrimental for
performance due to heterogeneity in data. The same reason

also applies to the robust gradient aggregation method (KRUM)
adopted in [8], which also uses only one of the input gradients
and discards the rest, giving poor performance.
Robust Mean Estimation. The above limitations of tradi-
tional methods motivate us to employ modern tools from high-
dimensional robust statistics [37], [39], [40]. In particular,
we use the polynomial-time outlier-filtering procedure for
high-dimensional robust mean estimation (RME) from [39]
for robust gradient aggregation in Algorithm 1. For clear
exposition of the ideas behind their algorithm, we use a version
of their algorithm as described in Algorithm 2, which is from
[43]. The crucial observation in these RME algorithms is that
if the empirical mean of the samples is far from their true
mean, then the empirical covariance matrix has high largest
eigenvalue. So, the idea is to iteratively filter out samples
that have large projection on the principal eigenvector of the
empirical covariance matrix, and keep on doing it until the
largest eigenvalue of the empirical covariance matrix becomes
sufficiently small (line 7). This is done via a soft-removal
method, where we assign weights (confidence score) to the
samples and down-weighting those that have large projection
(line 10) – in each iteration t, at least one sample (whose
projection ⌧

(t)
i

is the maximum) gets 0 weight. In the end,
take the weighted average of the surviving samples.3

The RME algorithms overcome most of the above-
mentioned limitations of traditional methods, except for that
their guarantees are not directly applicable to our setting. This
is because the error guarantee of RME algorithms are given
in terms of concentration of the good samples around their
sample mean, which is easy to bound if good samples come
from the same distribution. Note that our setup significantly
deviates from this, where not only the input samples (which
are accumulated gradients) come from different distributions
(as clients have heterogeneous data), but each of them is also
a sum of H stochastic gradients (due to local iterations). Since
local iterations cause local parameters to drift from each other,
bounding the concentration of good samples requires bounding
this drift.

To this end, we develop a novel matrix concentration
inequality that first shows an existence of a large subset
of uncorrupted accumulated stochastic gradients and then
bounds their concentration around the sample mean; see (9) in
Theorem 3 below. As far as we know, this is the first matrix
concentration result in an FL setting.

First we setup the notation. Let Algorithm 1 generate a
sequence of iterates {xt

r
: t 2 [0 : T], r 2 Kt} when running

with a fixed step-size ⌘  1
8HL

, where Kt denotes the set
of K clients that are active at time t 2 [0 : T]. Take any
two consecutive synchronization indices tk, tk+1 2 IT . Note
that |tk+1 � tk|  H . For an honest client r 2 Ktk

, let
g
tk,tk+1
r,accu :=

P
tk+1�1
t=tk

g
r
(xt

r
) denote the sum of local mini-

batch stochastic gradients sampled by client r between time

3Note that the outlier-filtering procedure described in Algorithm 2 is
intuitive and easy to understand. There are better algorithms that are also more
efficient and can achieve better guarantees; see, for example, [44]. All these
algorithms require the same bounded matrix concentration assumption that
we show in Theorem 3, thus making them applicable to use as a subroutine
in Algorithm 1 without requiring any modification in our analysis.

7

Algorithm 2 Robust Accumulated Gradient Estimation
(RAGE) [39], [43]

1: Input: K vectors g1, g2, . . . , gK
2 Rd such that there is

a subset of them S ⇢ [K] with |S| � 2K
3 having bounded

covariance �max

⇣
1
|S|

P
i2S

(g
i
� g

S
) (g

i
� g

S
)T
⌘


�
2
0 , where g

S
= 1

|S|

P
i2S

g
i
.

2: For any w 2 [0, 1]K with kwk1 > 0, define

µ(w) =
KX

i=1

wi

kwk1
g
i

⌃(w) =
KX

i=1

wi

kwk1
(g

i
� µ(w))(g

i
� µ(w))T

3: Let w(0) = [1
K
, . . . ,

1
K
] be a length K vector.

4: Let C � 11 be a universal constant.
5: Let ⌃(0) = ⌃(w(0)).
6: Let t = 0.
7: while �max(⌃(w(t))) > C�

2
0 do

8: Let v(t) be the principal eigenvector of ⌃(w(t)).
9: For i 2 [K], define ⌧

(t)
i

=
⌦
v(t)

, g
i
� µ(w(t))

↵2
.

10: For i 2 [K], compute w
(t+1)
i

=

✓
1� ⌧

(t)
i

⌧
(t)
max

◆
w

(t)
i

, where

⌧
(t)
max = max

i:w(t)
i

>0
⌧
(t)
i

.
11: t = t+ 1
12: end while
13: return bg =

P
K

i=1
w

(t)
i

kw(t)k1
g
i
.

tk and tk+1, where g
r
(xt

r
) 2U F⌦b

r
(xt

r
) satisfies (4), (5).

At iteration tk+1, every honest client r 2 Ktk
reports its

local model xtk+1
r to the server, from which server computes

g
tk,tk+1
r,accu (see line 15 of Algorithm 1), whereas, the corrupt

clients may report arbitrary and adversarially chosen vectors in
Rd. Server does not know the identities of the corrupt clients,
and its goal is to produce an estimate bgtk,tk+1

accu of the average
accumulated gradients from honest clients as best as possible.

Theorem 3 (Matrix Concentration). Suppose an ✏ fraction

of K clients that communicate with the server are corrupt.

In the setting described above, suppose we are given K 
R accumulated gradients egtk,tk+1

r,accu , r 2 Ktk
in Rd

, where

egtk,tk+1
r,accu = g

tk,tk+1
r,accu if r’th client is honest, otherwise can

be arbitrary. For any ✏
0
> 0, � > 1/2, with probability

1 � exp(� (2��1)2✏02(1�✏)K
8), there exists a subset S ✓ Ktk

of uncorrupted gradients of size (1� (✏+ �✏
0))K s.t.

�max

⇣ 1

|S|
X

i2S

(g
i
� g

S
) (g

i
� g

S
)T
⌘

 25H2
�
2

b✏0

⇣
1 +

d

(1� (✏+ �✏0))K

⌘
+ 28H2


2
, (9)

where, for i 2 S , g
i
= g

tk,tk+1

i,accu , g
S
= 1

|S|

P
i2S

g
tk,tk+1

i,accu , and

�max denotes the largest eigenvalue.

Theorem 3 establishes the concentration results required for
the RME algorithm (described in Algorithm 2) that we employ
in Algorithm 1. This RME algorithm takes a collection of
vectors as input, out of which an unknown large subset (at

rF1(x)

g1

rF2(x)

g2

rF3(x)

g3 �
p

b

rF4(x)

g4

rF5(x)

g5

rF6(x)

g6

rF7(x)

g7

rF8(x)

rF9(x)

rF (x)



rF[2:7](x)

g[2:7]

bg(x)

Fig. 2 We have total 9 workers, out of which 2 workers (numbered 8, 9)
are Byzantine. Since different workers have different datasets, their true local
gradients (denoted by rFi(x)) are placed in different locations. The blue
dashed circles (numbered 1 to 7) are centered at the true local gradients of
honest workers, and have their radius equal to the standard deviation �/

p
b,

which implies that their stochastic gradient samples gi may not lie inside
the blue circles. The red dashed circles correspond to the Byzantine workers,
and we do not have any control over them. Let {g2, . . . , g7} be the subset
S of uncorrupted gradients ensured by the first part of Theorem 3. Let the
robust gradient estimator in the second part of Theorem 3 outputs bg(x) as
an estimate of g[2:7] := 1

6

P7
i=2 gi. To bound the approximation error

Ekbg(x)�rF (x)k, note that Ekbg(x)�rF (x)k  Ekbg(x)�g[2:7](x)k+
Ekg[2:7]�rF[2:7](x)k+krF[2:7](x)�rF (x)k, where the first term can
be bounded by O(�0

p
✏+ ✏0), the second term can be bounded by the square

root of �2
/6b, which comes from the variance bound for sampling, and the

third term can be bounded by , which is the gradient dissimilarity bound from
(6). Note that the  term is inevitable because, in the presence of a constant
number of Byzantine workers, intuitively, rF[2:7](x) will shift away from
rF (x) by a constant fraction of .

least a 2
3 -fraction) is promised to be well-concentrated around

its sample mean, and outputs an estimate of the sample mean.
The formal guarantee is given as follows:

Theorem 4 (Outlier-Filtering Algorithm [39]). Under the

same setting and notation of Theorem 3, if (✏ + �✏
0)  1

3 ,

then we can find an estimate bg of g
S

in polynomial-time with

probability 1, such that kbg � g
S
k  O

�
�0

p
✏+ ✏0

�
, where

�
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+ 28H2


2
.

Note that, instead of the RME algorithm, if we use med
or trimmean, we would get an extra multiplicative factor
of
p
d in the upper-bound on kbg � g

S
k above. This would

translate to an extra multiplicative factor of d in the error term
O
⇣⇣

H�
2

b✏0

�
1 + 3d

2K

�
+H

2
⌘
(✏+ ✏

0)
⌘

in our approximation
error of Theorem 1. Therefore, effectively, we save a factor
of d in the approximation error of our convergence results by
using RME algorithms for outlier-filtering.

A. Proof-Sketch of Theorem 3 – Matrix Concentration

In order to prove Theorem 3, first we show the following
result, which states that if we have m independent distributions

8

each having bounded variance, and we take one sample from
each of them, then there exists a large subset of these samples
that has bounded variance as well.

Lemma 1. Suppose there are m independent distributions

p1, p2, . . . , pm in Rd
such that Ey⇠pi

[y] = µ
i
, i 2 [m]

and each pi has a bounded variance in all directions, i.e.,

Ey⇠pi
[hy � µ

i
,vi2]  �

2
pi
, 8v 2 Rd

, kvk = 1. Take

any ✏
0

> 0 and � > 1/2. Then, given m independent

samples y1,y2, . . . ,ym
, where y

i
⇠ pi, with probability

1 � exp(� (2��1)2✏02m
8), there is a subset S of (1 � �✏

0)m
points such that

�max

✓
1

|S|
X

i2S

ey
i
eyT

i

◆


4�2
pmax

✏0

✓
1 +

d

(1� �✏0)m

◆
,

where ey
i
= y

i
� µ

i
and �

2
pmax

= maxi2[m] �
2
pi

.

Lemma 1 is proved in Appendix A.
The important thing to note here is that the m samples

come from different distributions, which makes it distinct from
existing results, such as [45, Proposition B.1], which shows
concentration of i.i.d. samples.

Now we give a proof-sketch of Theorem 3 with the help of
Lemma 1. A complete proof is provided in Appendix B.

Let tk, tk+1 2 IT be any two consecutive synchronization
indices. For i 2 Ktk

corresponding to an honest client, let
Y

tk

i
, Y

tk+1
i

, . . . , Y
tk+1�1
i

be a sequence of (tk+1 � tk)  H

(dependent) random variables, where for any t 2 [tk : tk+1 �
1], the random variable Y

t

i
is distributed as

Y
t

i
⇠ Unif

⇣
F⌦b

i

�
xt

i

�
xtk

i
, Y

tk

i
, . . . , Y

t�1
i

��⌘
. (10)

Here, Y
t

i
corresponds to the mini-batch stochastic gradient

sampled from the set
F⌦b

i

�
xt

i

�
xtk

i
, Y

tk

i
, . . . , Y

t�1
i

��
, which itself depends on the

local parameters xtk

i
(which is a deterministic quantity) at

the last synchronization index and the past realizations of
Y

tk

i
, . . . , Y

t�1
i

. This is because the evolution of local parame-
ters xt

i
depends on xtk

i
and the choice of gradients in between

time indices tk and t� 1. Now define Yi :=
P

tk+1�1
t=tk

Y
t

i
. Let

pi be the distribution of Yi, which we will take when using
Lemma 1.

It is not hard to show that for any honest client i 2 Ktk
,

we have EkYi � E[Yi]k2  H
2
�
2

b
. It is also easy to see that

the hypothesis of Lemma 1 is satisfied with µ
i
= E[Yi],�2

pi
=

H
2
�
2

b
for all honest clients i 2 Ktk

, i.e., we have Ey
i
⇠pi

[hy
i
�

E[y
i
],vi2]  H

2
�
2

b
, 8v 2 Rd

, kvk = 1.
We are given K different accumulated gradients (each is a

summation of H gradients), out of which at least (1�✏)K are
according to the correct distribution. By considering only the
uncorrupted gradients (i.e., taking m = (1 � ✏)K), we have
from Lemma 1 that there exists a subset S ✓ Ktk

of size
(1 � �✏

0)(1 � ✏)K � (1 � (✏ + �✏
0))K that satisfies (in the

following, ey
i
= y

i
� E[y

i
])

�max

⇣ 1

|S|
X

i2S

ey
i
eyT

i

⌘
 b�2

0 , (11)

where b�2
0 := 4H2

�
2

b✏0

⇣
1 + d

(1�(✏+�✏0))K

⌘
.

Note that (11) bounds the deviation of the points in S from
their respective means E[y

i
]. However, in (9), we need to

bound the deviation of the points in S from their sample mean
1
|S|

P
i2S

y
i
. As it turns out, due to heterogeneity in data and

our use of local iterations, this extension is non-trivial and
requires some technical work, given next.

From the alternate definition of the largest eigenvalue
of symmetric matrices A 2 Rd⇥d, we have �max(A) =
supv2Rd,kvk=1 v

TAv. With this, (11) is equivalent to

sup
v2Rd:kvk=1

1

|S|
X

i2S

hy
i
� E[y

i
],vi2  b�2

0 . (12)

Define y
S
:= 1

|S|

P
i2S

y
i

to be the sample mean of points
in S . Take an arbitrary unit vector v 2 Rd. Using some
algebraic manipulations provided in Appendix B, we get

1

|S|
X

i2S

hy
i
� y

S
,vi2  6b�2

0+

4

|S|
X

i2S

1

|S|
X

j2S

��E[y
j
]� E[y

i
]
��2 (13)

Using the gradient dissimilarity bound and the L-smoothness
of F , we can show that for honest clients r, s 2 Ktk

, we have
kE[y

r
]� E[y

s
]k2  H

P
tk+1�1
t=tk

�
62 + 3L2Ekxt

r
� xt

s
k2
�
.

Using this bound in (13) together with some algebraic ma-
nipulations, we get

1

|S|
X

i2S

hy
i
� y

S
,vi2  6b�2

0 + 24H2

2

+
12HL

2

|S|
X

i2S

1

|S|
X

j2S

tk+1�1X

t=tk

Ekxt

r
� xt

s
k2 (14)

Now we bound the last term of (14), which is the drift
in local parameters at different clients in between any two
synchronization indices.

Lemma 2. If ⌘  1
8HL

, we have
P

tk+1�1
t=tk

E kxt

r
� xt

s
k2 

7H3
⌘
2
⇣

�
2

b
+ 32

⌘
.

Substituting this in (14) together with some algebraic ma-
nipulations provided in Appendix B, we get

1

|S|
X

i2S

hy
i
� y

S
,vi2  25H2

�
2

b✏0

⇣
1 +

d

(1� (✏+ �✏0))K

⌘

+ 28H2

2
.

Note that this bound holds for all unit vectors v 2 Rd.
Now substituting g

tk,tk+1

i,accu = y
i
, g

tk,tk+1

S,accu = y
S

and using the
alternate definition of largest eigenvalue proves Theorem 3.

IV. CONVERGENCE PROOF OF THE STRONGLY-CONVEX
PART OF THEOREM 1

Let IT := {t1, t2, . . . , tk, . . .} with t1 = 0 be the set
of synchronization indices at which server selects a subset
K ✓ [R] of K clients and sends the current global model
parameters to them. Upon receiving that, clients in K performs
local SGD steps based on their own local datasets until the next
synchronization index, at which they send their local model

9

parameters to the server. When server has received the updates
from clients, it applies the outlier-filtering procedure RAGE
(see Algorithm 1) to robustly estimate the average of the
uncorrupted accumulated gradients and then updates the global
model parameters. We assume that H = maxi�1(ti+1 � ti).

At any iteration t 2 [T], let Kt ✓ [R] denote the set of
clients that are active at time t. Let xt := 1

K

P
r2Kt

xt

r
denote

the average parameter vector of the clients in the active set Kt.
Note that, for any ti 2 IT , the clients in Kti

remain active at
all time indices t such that t 2 [ti : ti+1 � 1].

In the following, we denote the decoded gradient at the
server at any synchronization time ti+1 by bgti,ti+1

accu , which is an
estimate of the average of the accumulated gradients between
time ti and ti+1 of the honest clients in Kti

, as in Theorem 3.
From Algorithm 1, we can write the parameter update rule for
the global model at the synchronization indices as:

xti+1 = xti � ⌘bgti,ti+1
accu .

Note that at any synchronization index ti 2 IT , when server
selects a subset Kti

of clients and sends the global parameter
vector xti , all clients in Kti

set their local model parameters
to be equal to the global model parameters, i.e., xti

r
= xti

holds for every r 2 Kti
.

Now we proceed with proving the strongly-convex part of
Theorem 1.

First we derive a recurrence relation for the synchronization
indices and then later we extend the proof to all indices.
Consider the (i+ 1)’st synchronization index ti+1 2 IT .

xti+1 = xti � ⌘bgti,ti+1
accu

= xti � ⌘
1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)

� ⌘

0

@bgti,ti+1
accu � 1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)

1

A

For simplicity of notation, define E ,⇣
bgti,ti+1

accu � 1
K

P
r2Kti

P
ti+1�1
t=ti

rFr(xt

r
)
⌘

. Substituting
this in the above and using xti = 1

K

P
r2Kti

xti
r

gives

xti+1 =
1

K

X

r2Kti

xti
r
� ⌘

1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)� ⌘E

=
1

K

X

r2Kti

xti
r
� ⌘

ti+1�1X

t=ti

rFr(x
t

r
)

!
� ⌘E

=
1

K

X

r2Kti

�
xti+1�1
r

� ⌘rFr(x
ti+1�1
r

)
�
� ⌘E

= xti+1�1 � ⌘
1

K

X

r2Kti

rFr(x
ti+1�1
r

)� ⌘E

= xti+1�1 � ⌘rF (xti+1�1)� ⌘E

+ ⌘
1

K

X

r2Kti

�
rF (xti+1�1)�rFr(x

ti+1�1
r

)
�

(15)

Subtracting x⇤ from both sides gives:

xti+1 � x⇤ = xti+1�1 � x⇤ � ⌘rF (xti+1�1)| {z }
=: u

�⌘E

+ ⌘
1

K

X

r2Kti

�
rF (xti+1�1)�rFr(x

ti+1�1
r

)
�

| {z }
=: v

(16)

This gives xti+1 � x⇤ = u+ ⌘(v � E). Taking norm on both
sides and then squaring gives
��xti+1 � x⇤

��2 = kuk2 + ⌘
2kv � Ek2 + 2⌘hu,v � Ei (17)

Now we use a simple but powerful trick on inner-products
together with the inequality 2ha, bi  kak2 + kbk2 and get:

2⌘hu,v � Ei = 2

⌧r
⌘µ

2
u,

r
2⌘

µ
(v � E)

�

 ⌘µ

2
kuk2 + 2⌘

µ
kv � Ek2 (18)

Substituting this back in (17) gives

��xti+1 � x⇤
��2 

⇣
1 +

⌘µ

2

⌘
kuk2 + ⌘

✓
⌘ +

2

µ

◆
kv � Ek2


⇣
1 +

⌘µ

2

⌘
kuk2 + 2⌘

✓
⌘ +

2

µ

◆
kvk2 + 2⌘

✓
⌘ +

2

µ

◆
kEk2

Substituting the values of u,v, E and taking expectation w.r.t.
the stochastic sampling of gradients by clients in Kti

between
iterations ti and ti+1 (while conditioning on the past) gives:

E
��xti+1 � x⇤

��2


⇣
1 +

µ⌘

2

⌘
E
��xti+1�1 � ⌘rF (xti+1�1)� x⇤

��2

+ 2⌘

✓
⌘ +

2

µ

◆
E

������
1

K

X

r2Kti

(rF (xti+1�1)�rFr(x
ti+1�1
r

))

������

2

+ 2⌘

✓
⌘ +

2

µ

◆
E

������
bgti,ti+1

accu � 1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)

������

2

(19)

Now we bound each of the three terms on the RHS of (19)
separately in Claim 1, Claim 2, and Claim 3, respectively.

Claim 1. For ⌘ <
1
L

, we have

E
��xti+1�1 � ⌘rF (xti+1�1)� x⇤

��2

 (1� µ⌘)E
��xti+1�1 � x⇤

��2 . (20)

Claim 2. For ⌘  1
8HL

, we have

E

������
1

K

X

r2Kti

�
rFr(x

ti+1�1
r

)�rF (xti+1�1)
�
������

2

 22 +
7H

32

✓
�
2

b
+ 32

◆
. (21)

10

Claim 3. If ⌘  1
8HL

, then with probability at least 1 �
exp

⇣
� (2��1)2✏02(1�✏)K

8

⌘
, we have

E

������
bgti,ti+1

accu � 1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)

������

2

 3⌥ 2 +
8H2

�
2

b
+ 30H2


2
, (22)

where ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�

and �
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+

28H2

2
.

Claim 1, Claim 2, and Claim 3 are proved in Appendix C.
Using the bounds from (20), (21), (22) in (19) and using�

1 + µ⌘

2

�
(1� µ⌘) 

�
1� µ⌘

2

�
for the first term gives

E
��xti+1 � x⇤

��2


⇣
1� µ⌘

2

⌘
E
��xti+1�1 � x⇤

��2

+ 2⌘

✓
⌘ +

2

µ

◆✓
22 +

7H

32

✓
�
2

b
+ 32

◆◆

+ 2⌘

✓
⌘ +

2

µ

◆✓
3⌥ 2 +

8H2
�
2

b
+ 30H2


2

◆


⇣
1� µ⌘

2

⌘
E
��xti+1�1 � x⇤

��2

+
6⌘

µ

✓
3⌥ 2 +

9H2
�
2

b
+ 33H2


2

◆
, (23)

where ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�

and �
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+

28H2

2. In the last inequality (23) we used ⌘  1

8LH
 1

L


1
µ

, which implies (⌘ + 2
µ
)  3

µ
. Note that (23) holds with

probability at least 1� exp
⇣
� (2��1)2✏02(1�✏)K

8

⌘
.

Note that above recurrence in (23) holds only at the syn-
chronization indices ti 2 IT for i = 1, 2, 3, However,
in order to establish a recurrence that we can use to prove
convergence, we need to show a recurrence relation for all t.
Now we give a recurrence at non-synchronization indices.

Take an arbitrary t 2 [T] and let ti 2 IT be such that
t 2 [ti : ti+1 � 1]; when H � 2, such t’s exist. Note that
xt = 1

K

P
r2Kti

xt

r
.

xt+1 = xt � ⌘
1

K

X

r2Kti

g
r
(xt

r
)

= xt � ⌘
1

K

X

r2Kti

rFr(x
t

r
)

� ⌘

⇣ 1

K

X

r2Kti

g
r
(xt

r
)� 1

K

X

r2Kti

rFr(x
t

r
)
⌘

= xt � ⌘rF (xt) +
⌘

K

X

r2Kti

�
rF (xt)�rFr(x

t

r
)
�

� ⌘

K

X

r2Kti

�
g
r
(xt

r
)�rFr(x

t

r
)
�

(24)

Now, subtracting x⇤ from both sides and following the same
steps as in from (16) to (19), we get (in the following,

expectation is taken w.r.t. the stochastic sampling of gradients
at the t’th iteration while conditioning on the past):

E
��xt+1 � x⇤

��2 
⇣
1 +

µ⌘

2

⌘
E
��xt � x⇤ � ⌘rF (xt)

��2

+ 2⌘

✓
⌘ +

2

µ

◆
E

������
1

K

X

r2Kti

�
rF (xt)�rFr(x

t

r
)
�
������

2

+ 2⌘

✓
⌘ +

2

µ

◆
E

������
1

K

X

r2Kti

�
g
r
(xt

r
)�rFr(x

t

r
)
�
������

2

(25)

We can bound the first two terms on the RHS
of (25) using (20) and (21), respectively, as
E kxt � ⌘rF (xt)� x⇤k2  (1� µ⌘)E kxt � x⇤k2

and E
��� 1
K

P
r2Kti

(rF (xt)�rFr(xt

r
))
���
2



22+ 7H
32

⇣
�
2

b
+ 32

⌘
. To bound the third term on the RHS of

(25), we use the fact that variance of the sum of independent
random variables is equal to the sum of the variances and
that clients sample stochastic gradients g

r
(xt

r
) independent

of each other; using this fact and (5), we can bound
E
��� 1
K

P
r2Kti

(g
r
(xt

r
)�rFr(xt

r
))
���
2
 �

2

bK
. Substituting

these in (25) and using
�
1 + µ⌘

2

�
(1� µ⌘) 

�
1� µ⌘

2

�
for

the first term and (⌘ + 2
µ
)  3

µ
(which follows because

⌘  1
8HL

 1
L
 1

µ
) give

E
��xt+1 � x⇤

��2


⇣
1� µ⌘

2

⌘
E
��xt � x⇤

��2

+
6⌘

µ

✓
22 +

7H

32

✓
�
2

b
+ 32

◆
+

�
2

bK

◆


⇣
1� µ⌘

2

⌘
E
��xt � x⇤

��2 + 6⌘

µ

✓
3H

2 +
2H�

2

b

◆
(26)

Note that (26) holds with probability 1.
Now we have a recurrence at the synchronization indices

given in (23) and at non-synchronization indices given in (26).
Let ↵ =

�
1� µ⌘

2

�
, �1 =

⇣
3⌥ 2 + 9H2

�
2

b
+ 33H2


2
⌘

, and

�2 =
⇣
3H

2 + 2H�
2

b

⌘
. Substituting these and using (23) for

the synchronization indices and (26) for the rest of the indices,
we get:

E
��xT � x⇤

��2

 ↵
T
��x0 � x⇤

��2 + 6⌘

µ

0

@
T/HX

i=0

H�1X

j=1

↵
iH+j

�2 +

T/HX

i=0

↵
iH

�1

1

A

(27)

 ↵
T
��x0 � x⇤

��2 + 6⌘

µ

1X

i=0

↵
i
�2 +

1X

i=0

↵
iH

�1

!

= ↵
T
��x0 � x⇤

��2 + 6⌘

µ

✓
1

1� ↵
�2 +

1

1� ↵H
�1

◆
(28)

Since ↵ =
�
1� µ⌘

2

�
, we have ↵

H =
�
1� µ⌘

2

�H (a)


exp(�µ⌘H

2)
(b)
 1 � µ⌘H

2 +
⇣

µ⌘H

2

⌘2 (c)
 1 � µ⌘H

2 + 1
16

µ⌘H

2 =

1� 15
16

µ⌘H

2 . In (a) we used the inequality (1� 1
x
)x  1

e
which

11

holds for any x > 0; in (b) we used exp(�x)  1 � x + x
2

which holds for any x � 0; in (c) we used ⌘  1
8HL

and
µ  L, which together imply µ⌘H

2  1
16 . Substituting these in

(28) gives

E
��xT � x⇤

��2


⇣
1� µ⌘

2

⌘T ��x0 � x⇤
��2 + 6⌘

µ

✓
2

µ⌘
�2 +

32

15µ⌘H
�1

◆


⇣
1� µ⌘

2

⌘T ��x0 � x⇤
��2 + 6⇥ 32

15µ2

✓
15

16
�2 +

1

H
�1

◆


⇣
1� µ⌘

2

⌘T��x0 � x⇤
��2+ 13

µ2

✓
3⌥ 2

H
+
11H�

2

b
+36H

2

◆

(29)

Note that the last term on the RHS of (29) is independent of
⌘, which together with the dependence of ⌘ on the first term
implies that bigger the ⌘, faster the convergence. Since we
need ⌘  1

8HL
for Claim 2 and Claim 3 to hold, we choose

⌘ = 1
8HL

. Substituting this in (29) yields the convergence rate
in the strongly-convex part of Theorem 1.
Error Probability Analysis. Note that (23) holds with
probability at least 1 � exp

⇣
� (2��1)2✏02(1�✏)K

8

⌘
and (26)

holds with probability 1. Since to arrive at (27) (which leads to
our final bound (29)), we used (23) T

H
times and (26)

�
T � T

H

�

times; as a consequence, by union bound, we have that (29)
holds with probability at least 1� T

H
exp

⇣
� (2��1)2✏02(1�✏)K

8

⌘
,

which is at least (1 � �), for any � > 0, provided we run
our algorithm for at most T  �H exp

⇣
� (2��1)2✏02(1�✏)K

8

⌘

iterations.
This concludes the proof of the strongly-convex part of

Theorem 1.

V. CONVERGENCE PROOF OF THE NON-CONVEX PART OF
THEOREM 1

Let Kt ✓ [R] denote the subset of clients of size |Kt| = K

sampled at the t’th iteration. For any t 2 [ti : ti+1 � 1], let
xt = 1

K

P
k2Kti

xt

k
denote the average of the local parameters

of clients in the sampling set Kti
.

Similar to the proof given in Section IV for the strongly-
convex part of Theorem 1, here also, first we derive a
recurrence for the synchronization indices and then for non-
synchronization indices.

For the synchronization indices t1, t2, . . . , tk, . . . 2 IT ,
from (15), we have

xti+1 = xti+1�1 � ⌘rF (xti+1�1) + ⌘C (30)

where

C =
1

K

X

r2Kti

�
rF (xti+1�1)�rFr(x

ti+1�1
r

)
�

�
⇣
bgti,ti+1

accu � 1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)
⌘
. (31)

Now, using the definition of L-smoothness in (30), we have

F (xti+1)

 F (xti+1�1) +
⌦
rF (xti+1�1),xti+1 � xti+1�1

↵

+
L

2

��xti+1 � xti+1�1
��2

= F (xti+1�1)� ⌘
⌦
rF (xti+1�1),rF (xti+1�1)� C

↵

+
⌘
2
L

2

��rF (xti+1�1)� C
��2

= F (xti+1�1)� ⌘
��rF (xti+1�1)

��2 + ⌘
⌦
rF (xti+1�1), C

↵

+
⌘
2
L

2

��rF (xti+1�1)� C
��2

(a)
 F (xti+1�1)� ⌘

��rF (xti+1�1)
��2

+ ⌘

 ��rF (xti+1�1)
��2

4
+ kCk2

!

+
⌘
2
L

2

��rF (xti+1�1)� C
��2

(b)
 F (xti+1�1)� 3⌘

4

��rF (xti+1�1)
��2 + ⌘kCk2

+ ⌘
2
L

⇣��rF (xti+1�1)
��2 + kCk2

⌘

= F (xti+1�1)� ⌘

✓
3

4
� ⌘L

◆��rF (xti+1�1)
��2

+ ⌘ (1 + ⌘L) kCk2 (32)

In (a), we used the inequality 2ha, bi  ⌧kak2 + 1
⌧
kbk2,

which holds for every ⌧ > 0, and we used ⌧ = 1
2 in (a). In

(b), we used the inequality ka+ bk2  2(kak2 + kbk2). For
⌘  1

8HL
 1

8L , we have (3/4� ⌘L) � 1/2 and (1+ ⌘L)  9
8 .

Substituting these in (32) and taking expectation w.r.t. the
stochastic sampling of gradients at clients in Kit

between
iterations ti and ti+1 (while conditioning on the past) gives:

E[F (xti+1)]  E[F (xti+1�1)]� ⌘

2
E
��rF (xti+1�1)

��2

+
9⌘

8
EkCk2. (33)

Now we bound EkCk2. Substituting the value of C from
(31) gives:

EkCk2  2E

������
1

K

X

r2Kti

�
rF (xti+1�1)�rFr(x

ti+1�1
r

)
�
������

2

+ 2E

������
bgti,ti+1

accu � 1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)

������

2

 2

✓
22 +

7H

32

✓
�
2

b
+ 32

◆◆

+ 2

✓
3⌥ 2 +

8H2
�
2

b
+ 30H2


2

◆

 2

✓
3⌥ 2 +

9H2
�
2

b
+ 33H2


2

◆
(34)

Here, the first inequality used ka+bk2  2(kak2+kbk2) and
the second inequality used the bounds from (21) and (22).

Substituting the bound from (34) into (33) gives

E[F (xti+1)]  E[F (xti+1�1)]� ⌘

2
E
��rF (xti+1�1)

��2

12

+
9⌘

4

✓
3⌥ 2 +

9H2
�
2

b
+ 33H2


2

◆
(35)

where ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�

and �
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+

28H2

2. Note that (35) holds with probability at least 1 �

exp
⇣
� (2��1)2✏02(1�✏)K

8

⌘
.

Note that the above recurrence in (35) holds only at the
synchronization indices ti 2 IT for i = 1, 2, 3, Now we
give a recurrence at non-synchronization indices.

We have done a similar calculation in the proof of the
strongly-convex part of Theorem 1. Take an arbitrary t 2 [T]
and let ti 2 IT be such that t 2 [ti : ti+1 � 1]; when H � 2,
such t’s exist. Note that xt = 1

K

P
r2Kti

xt

r
.

From (24), we have xt+1 = xt � ⌘rF (xt) + ⌘D, where

D =
1

K

X

r2Kti

�
rF (xt)�rFr(x

t

r
)
�

� 1

K

X

r2Kti

�
g
r
(xt

r
)�rFr(x

t

r
)
�
.

Using L-smoothness of F , and then performing similar
algebraic manipulations that we used in order to arrive at (33),
we get:

E[F (xt+1)]  E[F (xt)]� ⌘

2
E
��rF (xt)

��2 + 9⌘

8
EkDk2

(36)

Now we bound EkDk2:

EkDk2  2E

������
1

K

X

r2Kti

�
rF (xt)�rFr(x

t

r
)
�
������

2

+ 2E

������
1

K

X

r2Kti

�
g
r
(xt

r
)�rFr(x

t

r
)
�
������

2

 2

✓
22 +

7H

32

✓
�
2

b
+ 32

◆
+

�
2

bK

◆

 2

✓
3H

2 +
2H�

2

b

◆
(37)

Here, the second inequality used the same bounds on both the
quantities on the RHS of the first inequality that we used to
go from (25) to (26).

Substituting the bound on EkDk2 from (37) into (36) gives

E[F (xt+1)]  E[F (xt)]� ⌘

2
E
��rF (xt)

��2

+
9⌘

4

✓
3H

2 +
2H�

2

b

◆
(38)

Note that (38) holds with probability 1.
Now we have a recurrence at synchronization indices given

in (35) and at non-synchronization indices given in (38).
Adding (35) and (38) from t = 0 to T (use (35) for the
synchronization indices and (38) for the rest of the indices)
gives:

TX

t=0

E[F (xt+1)] 
TX

t=0

E[F (xt)]� ⌘

2

TX

t=0

E
��rF (xt)

��2

+
9⌘

4


T

H

✓
3⌥ 2 +

9H2
�
2

b
+ 33H2


2

◆

+

✓
T � T

H

◆✓
3H

2 +
2H�

2

b

◆�
(39)

Since
�
T � T

H

�
 T , we can upper-bound the last term by

9⌘T
4

⇣
3⌥ 2

H
+ 11H�

2

b
+ 36H

2
⌘

. Substituting this in (39) and
then rearranging, we get:

1

T

TX

t=0

E
��rF (xt)

��2  2

⌘T

⇥
E[F (x0)]� E[F (xT+1)]

⇤

+
9

2

✓
3⌥ 2

H
+

11H�
2

b
+ 36H

2

◆

(40)

Note that the last term in (40) is a constant. So, it would be
best to take the step-size ⌘ to be as large as possible such that
it satisfies ⌘  1

8HL
. We take ⌘ = 1

8HL
. Substituting this in

(40) and using F (xT+1) � F (x⇤) gives

1

T

TX

t=0

E
��rF (xt)

��2  16HL

T

⇥
E[F (x0)]� E[F (x⇤)]

⇤

+
9

2

✓
3⌥ 2

H
+

11H�
2

b
+ 36H

2

◆
,

(41)

where ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�

and �
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+

28H2

2. Note that (41) is the convergence rate in the non-

convex part of Theorem 1.
Error Probability Analysis. Note that (35) holds with
probability at least 1 � exp

⇣
� (2��1)2✏02(1�✏)K

8

⌘
and (38)

holds with probability 1. Since to arrive at (39) (which leads to
our final bound (41)), we used (35) T

H
times and (38)

�
T � T

H

�

times; as a consequence, by union bound, we have that (41)
holds with probability at least 1� T

H
exp

⇣
� (2��1)2✏02(1�✏)K

8

⌘
,

which is at least (1 � �), for any � > 0, provided we run
our algorithm for at most T  �H exp

⇣
� (2��1)2✏02(1�✏)K

8

⌘

iterations.
This concludes the proof of the non-convex part of Theo-

rem 1.

VI. EXPERIMENTS

In this section, we present numerical results on a non-convex
objective. Additional implementation details can be found in
Appendix F.
Setup. We train a single layer neural network for image
classification on the MNIST handwritten digit (from 0-9)
dataset. The hidden layer has 25 nodes with ReLU activation
function and the output has softmax function. The dimension
of the model parameter vector is 19, 885.4 All clients compute
stochastic gradients on a batch-size of 128 in each iteration and
communicate the local parameter vectors with the server after

4784 ⇥ 25 = 19, 600 weights between the input and the first layer, 25
bias terms (one for each node in the hidden layer), 25 ⇥ 10 = 250 weights
between the first layer and the output layer, and 10 bias terms (one for each
node in the output layer).

13

(a) Training loss vs. no. of epochs under the ‘random
gradient attack’

(b) Test accuracy vs. no. of epochs under the ‘random
gradient attack’

(c) Wall clock time vs. no. of epochs under the ‘random
gradient attack’

(d) Training loss vs. no. of epochs under the ‘reverse
average gradient attack’

(e) Test accuracy vs. no. of epochs under the ‘reverse
average gradient attack’

(f) Wall clock time vs. no. of epochs under the ‘reverse
average gradient attack’

(g) Training loss vs. no. of epochs under the ‘gradient
shift attack’

(h) Test accuracy vs. no. of epochs under the ‘gradient
shift attack’

(i) Wall clock time vs. no. of epochs under the ‘gradient
shift attack’

Fig. 3 We compare the performance of our method (red) against three methods for robust gradient aggregation, namely, coordinate-wise trimmed-mean (black),
coordinate-wise median (green), and Krum (magenta) under three adversarial attacks (A.1, A.2, A.3), and plot training loss, test accuracy, and wall clock time
against number of epochs. The plot in blue corresponds to running Algorithm 1 with no adversaries and no decoding. In the legends, 7L denotes that we are
taking H = 7 local iterations. See also Footnotes 6, 7, 8.

taking H = 7 local iterations. For all the defense mechanisms,
we start with a step-size ⌘ = 0.08 and decrease its learning rate
by a factor of 0.96 when the difference in the corresponding
test accuracies in the last 2 consecutive epochs is less than
0.001.

Heterogeneous Datasets. The MNIST dataset has 60, 000
training images (with 6000 images of each label) and 10, 000
test images (each having 28 ⇥ 28 = 784 pixels), and is
distributed among the 200 clients in the following hetero-

geneous manner: Each client takes a random permutation of
the probability vector [0.8, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0]. Suppose
it obtains a vector p such that pi = 0.8, pj = 0.1, pk = 0.1
for some distinct i, j, k 2 [0 : 9] and pl = 0 for the rest of
the indices, then it selects uniformly at random 800, 100, 100
training images with label i, j, k, respectively.

Adversarial Attacks. We have 12.5% adversarial clients, i.e.,
25 out of 200 clients are corrupt, and the corrupt set of clients
may change in every iteration. We implement six adversarial
attacks:
A.1 the ‘random gradient attack’, where local gradients at

clients are replaced by independent Gaussian random
vectors having the same norm5 as the corresponding
gradients;

A.2 the ‘reverse average gradient attack’, where corrupt
clients send -ve of their average local gradients;

A.3 the ‘gradient shift attack’, where local gradients of corrupt
clients are shifted by a scaled (by factor of 50) Gaussian

5Note that changing the direction while keeping the norm same is among
the worst attacks as the corrupt gradients cannot be filtered out just based on
their norms.

14

(a) Training loss vs. no. of epochs under the ‘all ones
attack’

(b) Test accuracy vs. no. of epochs under the ‘all ones
attack’

(c) Wall clock time vs. no. of epochs under the ‘all ones
attack’

(d) Training loss vs. no. of epochs under the ‘Baruch
attack’

(e) Test accuracy vs. no. of epochs under the ‘Baruch
attack’

(f) Wall clock time vs. no. of epochs under the ‘Baruch
attack’

(g) Training loss vs. no. of epochs under ‘reverse scaled
average gradient attack’

(h) Test accuracy vs. no. of epochs under ‘reverse scaled
average gradient attack’

(i) Wall clock time vs. no. of epochs under reverse
scaled average gradient attack’

Fig. 4 We compare the performance of our method (red) against four methods for robust gradient aggregation, namely, coordinate-wise trimmed-mean (black),
coordinate-wise median (green), Krum (magenta), and Bulyan (cyan) under three adversarial attacks (A.4, A.5, A.6), and plot training loss, test accuracy, and
wall clock time against number of epochs. The plot in blue corresponds to running Algorithm 1 with no adversaries and no decoding. In the legends, 7L
denotes that we are taking H = 7 local iterations. See also Footnotes 6, 7, 8.

random vector (same for all);
A.4 the ‘all ones attack’, where gradients of the corrupt clients

are replaced by the all ones vector;
A.5 the ‘Baruch attack’, which was designed in [46] specifi-

cally for coordinate-wise trimmed mean (trimmean) [18],
Krum [8], and Bulyan [47] defenses; and

A.6 the ‘reverse scaled average gradient attack’, where corrupt
clients compute the -ve of their average local gradients,
scale it by the factor of 50, and then send it.

We train our neural network under all the above-described
adversarial attacks, and demonstrate in Figure 3 and Figure 4
the performance of our method (red color) against four other
methods for robust gradient aggregation, namely, coordinate-

wise trimmed-mean (black color) and coordinate-wise median

(green color), which were used in [18], [22], [36], Krum
(magenta color), which was proposed in [8], and Bulyan (cyan
color), which was proposed in [47]. For reference, we also plot
(in blue color) the performance of Algorithm 1 with the same
setup as above but without adversaries and with no decoding.
For each attack, we plot three curves, one for number of
epochs vs. training loss, one for number of epochs vs. test
accuracy, and one for number of epochs vs. wall clock time.

Performance (training loss and test accuracy vs. number
of epochs). In Figures 3a, 3d, 3g, and Figures 4a, 4d,
4g we compare training loss vs. number of epochs and in
Figures 3b, 3e, 3h, and Figures 4b, 4e, 4h we compare test

15

accuracy vs. number of epochs of our method against the
previously mentioned methods under all six adversarial attacks
that we have implemented.6 In particular, for attacks A.1,
A.3, A.4, A.6, our method (with adversaries) achieves similar

performance for both training loss and test accuracy as that of
running SGD with local iterations but without any adversaries
and defense mechanism at the server; and for attacks A.2,
A.5, the performance difference (test accuracy) is around 0.1
at epoch 40, which is still significantly better than all other
methods.7 This conforms to the inadequacy of using these
methods in our setting, as described in Section III. Note that
the experiments presented in [18], [36] only implemented a
benign ‘label-flipping’ attack, which is a data poisoning attack.
This is not a dynamic attack as, unlike gradient attacks, it does
not adapt to the learning process over iterations. In contrast,
in all our attacks, corrupt clients send adversarial gradients
in every iteration, making them significantly more malicious
than just flipping the labels. As we have mentioned in the
related work (on page 2), and we want to emphasize again,
that though [36] also studied the same problem as ours, but
employed ‘coordinate-wise trimmed mean’ for robust gradient
aggregation, their convergence bound, in our opinion, are
vacuous, as the sub-optimality gap in their bounds always

scales linearly with the diameter of the parameter space.
As far as we know, ours is the first theoretical result that
combines Byzantine-resilience with local iterations for high-
dimensional distributed training on heterogeneous datasets
with good empirical performance.

Performance (wall clock time vs. number of epochs). In
Figures 3c, 3f, 3i, and Figures 4c, 4f, 4i, we compare wall
clock time (i.e., the total time taken by each algorithm over
40 epochs) vs. number of epochs of our method against the
previously mentioned methods under all adversarial attacks
that we have implemented.8 It can be seen that, unlike all other
methods, the time taken by our method (red in color) changes
depending on the attack. This is because our filtering is an
iterative method, and in some attacks, it filters out bad updates
in much fewer iterations than other attacks. For example, in
A.4, A.6, our filtering method takes about 7-8⇥ less time than
Krum, whereas, in A.1, A.2, A.3, A.5, our method takes about
3⇥ more time than Krum.

As mentioned in Appendix F and we would like to em-
phasize that here, that since we run SVD on the matrix
formed by the same 1024 randomly chosen coordinates from

6We found out that the Bulyan defense mechanism is significantly slower
than all other mechanisms. Due to this, we only implemented this for
the Baruch-attack, which was specifically designed against Krum/Bulyan
algorithms. Since a basic building block of Bulyan is Krum, and Krum
performs the worst among all the mechanisms that we implemented, we do
not expect Bulyan to perform significantly better than Krum in other attacks
as well – note that both Krum and Bulyan are the worst performing defense
mechanisms against the Baruch-attack.

7We plot the Krum performance in the training loss vs. number of epochs
figures only for the attacks A.2, A.5; because in all other attacks, the Krum
training loss became very high (above 100) even before epoch 40 and would
have prevented observing other methods’ performance if we had plotted it.

8The wall clock time of Bulyan was significantly higher in comparison to
all other methods, hence we skipped plotting the wall clock time of Bulyan,
as otherwise it would have prevented observing other methods’ performance
if we had plotted it.

all update vectors, our decoding algorithm’s run-time still has
linear dependence on d, because SVD run time is fixed and is
independent of d. In contrast, any coordinate-wise decoding
algorithm (such as, median or trimmed-mean) do necessarily
have to run the algorithm in all d coordinates. Therefore, in
large-scale problems, our modified decoding algorithm would
be on par with coordinate-wise trimmed-mean and coordinate-
wise median, and significantly better than Krum and Bulyan.

VII. BOUNDING THE LOCAL VARIANCES AND GRADIENT
DISSIMILARITY IN THE STATISTICAL HETEROGENEOUS

MODEL

In this section, we bound the gradient dissimilarity 
2 (from

(6)) and local variance �
2 (from (2)) in the statistical model

in heterogeneous setting, where different workers may have
local data generated from potentially different distributions.
The purpose of this section is to provide upper bounds on 

and � in the statistical model.
Let q1, q2, . . . , qR denote the R probability distributions

from which the local data samples at the workers are drawn.
Specifically, the data samples at any worker r are drawn from
qr in an i.i.d. fashion and independently from other workers.
For r 2 [R], let Qr denote the alphabet over which qr is
distributed. For r 2 [R], let fr : Qr ⇥ C ! R denote
the local loss function at worker r, where fr(z,x) is the
loss associated with the sample z 2 Qr w.r.t. the model
parameters x 2 C ✓ Rd. Linear regression is a classic
example of this, where, if z = (w, y) denote the pair of
a feature vector w 2 Rd and the response y 2 R, then
fr(z,x) = 1

2 (hw,xi � y)2. For each worker r 2 [R], we
assume that for any fixed z 2 Qr, the local loss function
fr(z,x) is L-smooth w.r.t. x, i.e., for any z 2 Qr, we have
krfr(z,x)�rfr(z,y)k  Lkx� yk, 8x,y 2 C.

Let µr(x) := Ez⇠qr
[fr(z,x)] denote the expected value of

fr(z,x), when z is sampled from Qr according to qr. For
any x 2 C, let µ(x) := 1

R

P
R

r=1 µr(x) denote the average
value of µr(x), r 2 [R].

We are given nr i.i.d. samples zr,1, zr,2, . . . , zr,nr
at the

r’th worker from qr. Fix an arbitrary parameter vector x 2 C.
Let f̄r(x) := 1

nr

P
nr

i=1 fr(zr,i,x) denote the average loss
at worker r on the nr samples zr,1, . . . , zr,nr

w.r.t. x. Let
f̄(x) := 1

R

P
r

r=1 f̄r(x) denote the average loss across all
workers. The analogues of (6) and (2) in this statistical
heterogeneous model are the following:

��rf̄r(x)�rf̄(x)
��2  

2
, 8x 2 C, (42)

Ei2U [nr]

��rfr(zr,i,x)�rf̄r(x)
��2  �

2
, 8x 2 C. (43)

We need to find good upper bounds on  and � that hold
for all r 2 [R],x 2 C with high probability. We provide
two bounds on , one when the local gradients at workers
are assumed to be sub-exponential random vectors, and other
when they are sub-Gaussian random vectors. We provide a
bound on � assuming that the local gradients are sub-Gaussian
random vectors. These are standard assumptions on gradients
in statistical models, where data at all workers are sampled
from the same distribution in an i.i.d. fashion [17], [20],
[22], which is in contrast to our heterogeneous data setting,

16

where data at different workers may be sampled from different

distributions. Note that these works minimize the population

risk with full batch gradient descent, whereas, we minimize the
empirical risk with stochastic gradient descent. In particular,
[17] and [20] make sub-exponential gradient assumption and
give convergence guarantees only for strong-convex objectives.
On the other hand, [22] gives convergence guarantees for
non-convex objectives, but under a stricter condition of sub-
Gaussian distribution on gradients. In this paper, we provide
convergence guarantees for both strongly-convex and non-
convex objectives. Moreover, as opposed to [17], [20], [22],
our results are in a more general heterogeneous data model.
Note that we need sub-Gaussian assumption only to bound
the variance, which occurs because workers sample stochastic
gradients. In case of full batch gradient descent, we only need
sub-exponential assumption, as the variance is zero.

Now we state the distributional assumptions on local gradi-
ents.

Assumption 3 (Sub-exponential local gradients). For every

x 2 C, the local gradient vectors at any worker r 2 [R] are

sub-exponential random vectors, i.e., there exist non-negative

parameters (⌫,↵) such that

sup
v2Rd:kvk=1

Ez⇠qr
[exp (� hrfr(z,x)�rµr(x),vi)]

 exp
�
�
2
⌫
2
/2
�
, 8|�| < 1

↵
. (44)

Assumption 4 (Sub-Gaussian local gradients). For every

x 2 C, the local gradient vectors at any worker r 2 [R] are

sub-Gaussian random vectors, i.e., there exists a non-negative

parameter �g such that

sup
v2Rd:kvk=1

Ez⇠qr
[exp (� hrfr(z,x)�rµr(x),vi)]

 exp
�
�
2
�
2
g
/2
�
, 8� 2 R. (45)

Though, as stated above in both the assumptions, local
gradients at all workers have the same parameters ((⌫,↵)
for sub-exponential and �g for sub-Gaussian), this is without
loss of generality. In case they have different parameters
((⌫r,↵r), r 2 [R] for sub-exponential and �r, r 2 [R] for sub-
Gaussian), we can take the final parameters to be the maximum
of the respective local parameters – for sub-exponential, we
can take ⌫ = maxr2[R] ⌫r and ↵ = maxr2[R] ↵r, and for
sub-Gaussian, we can take �g = maxr2[R] �r.

A. Bounding the gradient dissimilarity 

In this section, we provide an upper bound on��rf̄r(x)�rf̄(x)
��.

��rf̄r(x)�rf̄(x)
��


��rf̄r(x)�rµr(x)

��+ krµr(x)�rµ(x)k
+
��rf̄(x)�rµ(x)

��


��rf̄r(x)�rµr(x)

��+ krµr(x)�rµ(x)k

+
1

R

RX

r=1

��rf̄r(x)�rµr(x)
�� , (46)

where for the third term, we used f̄(x) = 1
R

P
R

r=1 f̄r(x)
and µ(x) = 1

R

P
R

r=1 µr(x), and applied the triangle
inequality. It follows from (46) that in order to bound��rf̄r(x)�rf̄(x)

�� uniformly over x 2 C, it suffices to
bound krµr(x)�rµ(x)k and

��rf̄r(x)�rµr(x)
�� , 8r 2

[R] uniformly over x 2 C.

Bounding krµr(x)�rµ(x)k. Note that rµr(x) =
Ez⇠qr

[rfr(z,x)] is a property of the distribution qr from
which the data samples have been drawn and so is rµ(x) =
1
R

P
R

r=1rµr(x) the property of q1, . . . , qR. Note that
krµr(x)�rµ(x)k captures heterogeneity among distribu-
tions through their expected values, and is equal to zero in
the i.i.d. homogeneous data setting of [17], [18], [20], [22].
In order to get a meaningful bound for , it is reasonable
to assume that this heterogeneity is bounded. We assume a
uniform bound on the krµr(x)�rµ(x)k for every x 2 C.

Assumption 5. For every worker r 2 [R], the population

mean of the local gradients has a uniformly bounded deviation

from the population mean of the global gradient, i.e.,

krµr(x)�rµ(x)k  mean, 8x 2 C. (47)

Bounding
��rf̄r(x)�rµr(x)

��. Now we bound the differ-
ence between the sample mean and the true mean under both
sub-exponential and sub-Gaussian distributional assumptions
on local gradients. For that we use standard tools, such as con-
centration results for sum of independent sub-Gaussian/sub-
exponential random variables and ✏-net arguments. We prove
in Lemma 6 and Lemma 7, respectively, in Appendix E
that under both the assumptions, with high probability, our

bounds are
��rf̄r(x)�rµr(x)

��  O
✓q

d log(nrd)
nr

◆
for

every x 2 C. Note that under the sub-exponential assumption,
the bound holds only for sufficiently large nr such that nr =
⌦ (d log(nrd)), whereas, under the sub-Gaussian assumption,
the bound holds for every nr.

Substituting these bounds in (46) yields the following result,
which, for notational convenience, we state for the case when
all workers have the same number of data samples. Let
D = max{kx� x0k : x,x0 2 C} be the diameter of C. Note
that D = ⌦(

p
d), and we assume that D can grow at most

polynomially in d.

Theorem 5 (Gradient dissimilarity). Suppose n := nr, 8r 2
[R], and Assumption 5 holds. Then, the gradient dissimilarity

bound under different distributional assumptions is as follows:

1) [Sub-exponential] Suppose Assumption 3 holds. Let n 2
N be sufficiently large such that n = ⌦ (d log(nd)). Then,

with probability at least 1 � R

(1+nLD)d , the following

bound holds for all r 2 [R] and x 2 C:

��rf̄r(x)�rf̄(x)
��  mean +O

 r
d log(nd)

n

!
.

(48)

2) [Sub-Gaussian] Suppose Assumption 4 holds. For every

n 2 N, with probability at least 1 � R

(1+nLD)d , the

17

following bound holds for all r 2 [R] and x 2 C:

��rf̄r(x)�rf̄(x)
��  mean +O

 r
d log(nd)

n

!
.

(49)
Remark 1. Note that under Assumption 3 (sub-exponential),

the gradient dissimilarity bound (48) holds only when each

worker has sufficiently large number of samples n =
⌦ (d log(nd)). On the other hand, under Assumption 4 (sub-

Gaussian), the gradient dissimilarity bound (49) holds for

every n 2 N.

B. Bounding the local variances

The local variance bound at the r’th worker is
Ei2U [nr]

��rfr(zr,i,x)�rf̄r(x)
��2  �

2 (from (43)). We
simplify the LHS:

Ei2U [nr]

��rfr(zr,i,x)�rf̄r(x)
��2

 2Ei2U [nr] krfr(zr,i,x)�rµr(x)k2

+ 2Ei2U [nr]

��rf̄r(x)�rµr(x)
��2

(a)
= 2 krfr(zr,1,x)�rµr(x)k2 + 2

��rf̄r(x)�rµr(x)
��2

(b)
 4 krfr(zr,1,x)�rµr(x)k2 (50)

For the first term on the RHS of (a), we used that zr,i, i 2
[nr] are i.i.d., and the second term follows because it is
independent of i 2 [nr]. Inequality (b) follows because��rf̄r(x)�rµr(x)

��2  krfr(zr,1,x)�rµr(x)k2, since
the average of i.i.d. samples gives tighter concentration in
comparison to if we use just one sample.

Note that bounding krfr(zr,1,x)�rµr(x)k is equivalent
to bounding krfr(z,x)�rµr(x)k for a random z ⇠ qr.
We provide a uniform bound on krfr(z,x)�rµr(x)k for
a random z ⇠ qr in Appendix E-C using the sub-Gaussian
gradient assumption. Below we state our final bound on the
local variances.

Theorem 6 (Variance bound). Suppose n := nr, 8r 2 [R],
and Assumption 4 holds. Then, with probability at least 1 �

R

(1+nLD)d , the following bound holds for all r 2 [R]:

Ei2U [n]

��rfr(zr,i,x)�rf̄r(x)
��2  O (d log(d)) , 8x 2 C.

(51)
Remark 2 (Sub-Gaussian vs. sub-exponential assumption).
Note that, we needed sub-Gaussian assumption on lo-

cal gradients because we wanted to uniformly bound

Ei2[nr] krfr(zr,i,x)�rµr(x)k2, which is the case when

we use only one data sample in each SGD iteration. In this

paper, we use mini-batch SGD with a variable batch size b.

So, when the batch-size b is sufficiently large and satisfies

b = ⌦(d log(bd)), we can work with the sub-exponential

gradient assumption because the large batch size gives a

concentration similar to sub-Gaussian. This would give a

bound of O
⇣

d log(bd)
b

⌘
on variance.

ACKNOWLEDGEMENTS

Deepesh Data would like to thank Navjot Singh for his help
with setting up the experiments.

REFERENCES

[1] J. Konecný, “Stochastic, distributed and federated optimization for
machine learning,” CoRR, vol. abs/1707.01155, 2017.

[2] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
CoRR, vol. abs/1610.02527, 2016.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in International Conference on Artificial Intelligence and Statistics

(AISTATS), 2017, pp. 1273–1282.
[4] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”

in International Conference on Machine Learning (ICML), 2019, pp.
4615–4625.

[5] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y.
Ng, “Large scale distributed deep networks,” in Neural Information

Processing Systems (NIPS), 2012, pp. 1232–1240.
[6] P. Kairouz et al., “Advances and open problems in federated learning,”

CoRR, vol. abs/1912.04977, 2019.
[7] L. Bottou, “Large-scale machine learning with stochastic gradient de-

scent,” in COMPSTAT, 2010, pp. 177–186.
[8] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine

learning with adversaries: Byzantine tolerant gradient descent,” in NIPS,
2017, pp. 119–129.

[9] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. R. Cadambe,
“Local SGD with periodic averaging: Tighter analysis and adaptive
synchronization,” in Neural Information Processing Systems (NeurIPS),
2019, pp. 11 080–11 092.

[10] F. Haddadpour and M. Mahdavi, “On the convergence of local descent
methods in federated learning,” CoRR, vol. abs/1910.14425, 2019.
[Online]. Available: http://arxiv.org/abs/1910.14425

[11] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “SCAFFOLD: stochastic controlled averaging for federated
learning,” in International Conference on Machine Learning (ICML),
2020, pp. 5132–5143.

[12] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in International Conference

on Artificial Intelligence and Statistics (AISTATS), S. Chiappa and
R. Calandra, Eds., 2020, pp. 4519–4529.

[13] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” in International Conference

on Learning Representations (ICLR), 2020. [Online]. Available: https:
//openreview.net/forum?id=HJxNAnVtDS

[14] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Conference

on Machine Learning and Systems (MLSys), 2020. [Online]. Available:
http://arxiv.org/abs/1812.06127

[15] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Conference on Artificial Intelligence (AAAI),
2019, pp. 5693–5700.

[16] D. Basu, D. Data, C. Karakus, and S. N. Diggavi, “Qsparse-local-sgd:
Distributed SGD with quantization, sparsification and local computa-
tions,” in NeurIPS, 2019, pp. 14 668–14 679.

[17] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” POMACS, vol. 1, no. 2,
pp. 44:1–44:25, 2017.

[18] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in ICML, 2018,
pp. 5636–5645.

[19] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient
descent,” in Neural Information Processing Systems (NeurIPS), 2018,
pp. 4618–4628.

[20] L. Su and J. Xu, “Securing distributed gradient descent in high dimen-
sional statistical learning,” POMACS, vol. 3, no. 1, pp. 12:1–12:41, 2019.

[21] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in International Confer-

ence on Machine Learning (ICML), 2019, pp. 6893–6901.
[22] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Defending against

saddle point attack in byzantine-robust distributed learning,” in ICML,
2019, pp. 7074–7084.

[23] D. Data and S. N. Diggavi, “On byzantine-resilient high-dimensional
stochastic gradient descent,” in IEEE International Symposium on In-

formation Theory (ISIT). IEEE, 2020, pp. 2628–2633.

http://arxiv.org/abs/1910.14425
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=HJxNAnVtDS
http://arxiv.org/abs/1812.06127

18

[24] L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:
byzantine-resilient distributed training via redundant gradients,” in Inter-

national Conference on Machine Learning (ICML), 2018, pp. 902–911.
[25] S. Rajput, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DETOX:

A redundancy-based framework for faster and more robust gradient
aggregation,” in NeurIPS, 2019, pp. 10 320–10 330.

[26] D. Data, L. Song, and S. N. Diggavi, “Data encoding methods for
byzantine-resilient distributed optimization,” in ISIT, 2019, pp. 2719–
2723.

[27] D. Data and S. N. Diggavi, “Byzantine-tolerant distributed coordinate
descent,” in ISIT, 2019, pp. 2724–2728.

[28] D. Data, L. Song, and S. N. Diggavi, “Data encoding for byzantine-
resilient distributed optimization,” IEEE Transactions on Information

Theory, vol. 67, no. 2, pp. 1117–1140, 2021.
[29] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: byzantine-

robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Conference on Artificial Intelligence (AAAI),
2019, pp. 1544–1551.

[30] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated
learning in a heterogeneous environment,” CoRR, vol. abs/1906.06629,
2019. [Online]. Available: http://arxiv.org/abs/1906.06629

[31] S. P. Karimireddy, L. He, and M. Jaggi, “Learning from history
for byzantine robust optimization,” in International Conference on

Machine Learning (ICML), ser. Proceedings of Machine Learning
Research, vol. 139. PMLR, 2021, pp. 5311–5319. [Online]. Available:
http://proceedings.mlr.press/v139/karimireddy21a.html

[32] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “Distributed momentum
for byzantine-resilient stochastic gradient descent,” in International Con-

ference on Learning Representations (ICLR). OpenReview.net, 2021.
[Online]. Available: https://openreview.net/forum?id=H8UHdhWG6A3

[33] S. Farhadkhani, R. Guerraoui, N. Gupta, R. Pinot, and J. Stephan,
“Byzantine machine learning made easy by resilient averaging
of momentums,” in International Conference on Machine Learning

(ICML), ser. Proceedings of Machine Learning Research, vol.
162. PMLR, 2022, pp. 6246–6283. [Online]. Available: https:
//proceedings.mlr.press/v162/farhadkhani22a.html

[34] Z. Allen-Zhu, F. Ebrahimianghazani, J. Li, and D. Alistarh, “Byzantine-
resilient non-convex stochastic gradient descent,” in International

Conference on Learning Representations (ICLR). OpenReview.net,
2021. [Online]. Available: https://openreview.net/forum?id=PbEHqvFtcS

[35] S. P. Karimireddy, L. He, and M. Jaggi, “Byzantine-robust learning
on heterogeneous datasets via bucketing,” in International Conference

on Learning Representations (ICLR). OpenReview.net, 2022. [Online].
Available: https://openreview.net/forum?id=jXKKDEi5vJt

[36] C. Xie, O. Koyejo, and I. Gupta, “SLSGD: secure and efficient dis-
tributed on-device machine learning,” in Machine Learning and Knowl-

edge Discovery in Databases - European Conference, ECML PKDD,

Proceedings, Part II, 2019, pp. 213–228.
[37] K. A. Lai, A. B. Rao, and S. S. Vempala, “Agnostic estimation of mean

and covariance,” in FOCS, 2016, pp. 665–674.
[38] J. Steinhardt, M. Charikar, and G. Valiant, “Resilience: A criterion for

learning in the presence of arbitrary outliers,” in ITCS, 2018, pp. 45:1–
45:21.

[39] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stew-
art, “Robust estimators in high-dimensions without the computational
intractability,” SIAM J. Comput., vol. 48, no. 2, pp. 742–864, 2019.

[40] I. Diakonikolas and D. M. Kane, “Recent advances in algorithmic high-
dimensional robust statistics,” CoRR, vol. abs/1911.05911, 2019.

[41] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex
optimization,” in ICML, 2019, pp. 7184–7193.

[42] X. Li, W. Yang, S. Wang, and Z. Zhang, “Communication effi-
cient decentralized training with multiple local updates,” CoRR, vol.
abs/1910.09126, 2019.

[43] J. Li, “Robustness in Machine Learning (CSE 599-M); Lecture 5 -
Efficient filtering from spectral signatures,” 2019. [Online]. Available:
https://jerryzli.github.io/robust-ml-fall19.html

[44] Y. Dong, S. B. Hopkins, and J. Li, “Quantum entropy scoring for fast
robust mean estimation and improved outlier detection,” in Neural In-

formation Processing Systems (NeurIPS), H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019,
pp. 6065–6075.

[45] M. Charikar, J. Steinhardt, and G. Valiant, “Learning from untrusted
data,” in STOC, 2017, pp. 47–60.

[46] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumvent-
ing defenses for distributed learning,” in Neural Information Processing

Systems (NeurIPS), 2019, pp. 8632–8642.

[47] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnera-
bility of distributed learning in byzantium,” in International Conference

on Machine Learning (ICML), 2018, pp. 3518–3527.
[48] J. D. Batson, D. A. Spielman, and N. Srivastava, “Twice-ramanujan

sparsifiers,” SIAM J. Comput., vol. 41, no. 6, pp. 1704–1721, 2012.
[49] R. Vershynin, “Introduction to the non-asymptotic analysis of random

matrices,” CoRR, vol. abs/1011.3027, 2010.

Deepesh Data Deepesh Data is currently working as a research scientist
at Meta Platforms, Inc. Before that he was a postdoctoral scholar at the
University of California, Los Angeles (UCLA), from Mar’18 to Oct’22 and
at the Indian Institute of Technology Bombay (IIT-B) from Sep’17 to Feb’18.
His research interests are in federated machine learning, differential privacy,
cryptography, algorithms, and information theory, with a current focus on
privacy-preserving machine learning.

He received M.Sc. and Ph.D. degrees from the School of Technology
and Computer Science at the Tata Institute of Fundamental Research (TIFR),
Mumbai, India, in 2017, and B.Tech. degree in Computer Science and Engi-
neering from the International Institute of Information Technology, Hyderabad
(IIIT-H), India, in 2011. He has received the Best Paper Award from the ACM
Conference on Computer and Communications Security (CCS) 2021, ACM
India Doctoral Dissertation Award for 2019 (Honorable Mention), TIFR-
Sasken Best Ph.D. Thesis Award for 2017-18 in Technology and Computer
Sciences, and a Microsoft Research India Ph.D. Fellowship for 2014-17.

Suhas N. Diggavi Suhas Diggavi is currently a Professor of Electrical and
Computer Engineering at UCLA. His undergraduate education is from IIT,
Delhi and his PhD is from Stanford University. He has worked as a principal
member research staff at AT&T Shannon Laboratories and directed the
Laboratory for Information and Communication Systems (LICOS) at EPFL.
At UCLA, he directs the Information Theory and Systems Laboratory.

His research interests include information theory and its applications to sev-
eral areas including machine learning, security & privacy, wireless networks,
data compression, cyber-physical systems, bio-informatics and neuroscience;
more information can be found at http://licos.ee.ucla.edu.

He has received several recognitions for his research from IEEE and ACM,
including the 2013 IEEE Information Theory Society & Communications
Society Joint Paper Award, the 2021 ACM Conference on Computer and
Communications Security (CCS) best paper award, the 2013 ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc)
best paper award, the 2006 IEEE Donald Fink prize paper award among
others. He was selected as a Guggenheim fellow in 2021. He also received
the 2019 Google Faculty Research Award, 2020 Amazon faculty research
award and 2021 Facebook/Meta faculty research award. He served as a IEEE
Distinguished Lecturer and also served on board of governors for the IEEE
Information theory society (2016-2021). He is a Fellow of the IEEE.

He is the Editor-in-Chief of the IEEE BITS Information Theory Magazine
and has been an associate editor for IEEE Transactions on Information Theory,
ACM/IEEE Transactions on Networking and other journals and special issues,
as well as in the program committees of several IEEE conferences. He has
also helped organize IEEE and ACM conferences including serving as the
Technical Program Co-Chair for 2012 IEEE Information Theory Workshop
(ITW), the Technical Program Co-Chair for the 2015 IEEE International
Symposium on Information Theory (ISIT) and General co-chair for ACM
Mobihoc 2018. He has 8 issued patents.

http://arxiv.org/abs/1906.06629
http://proceedings.mlr.press/v139/karimireddy21a.html
https://openreview.net/forum?id=H8UHdhWG6A3
https://proceedings.mlr.press/v162/farhadkhani22a.html
https://proceedings.mlr.press/v162/farhadkhani22a.html
https://openreview.net/forum?id=PbEHqvFtcS
https://openreview.net/forum?id=jXKKDEi5vJt
https://jerryzli.github.io/robust-ml-fall19.html

19

APPENDIX A
PROOF OF LEMMA 1

As mentioned in Section III-A, Lemma 1 generalizes [45,
Proposition B.1], where the m samples y1, . . . ,ym

are drawn
independently from a single distribution p with mean µ
and variance bound of �

2
p
, whereas, in our setting, different

y
i
’s may come from different distributions, which may have

different means and variances. Lemma 1 can be proved using
similar arguments given in the proof of [45, Proposition B.1],
and we provide a complete proof of this in this section.

Proof of Lemma 1 relies on the following lemma, which
we prove in Appendix A-A.

Lemma 3. Let p be a distribution on Rd
such that Ey⇠p[y] =

µ and Ey⇠p[hy � µ,vi2]  �
2

for all unit vectors v 2 Rd
.

Let M be a symmetric matrix such that 0 �M � cI for some

constant c > 0 and tr
�
(cI�M)�1

�
 1

4�2
prev

, where �prev � �.

Take an arbitrary ✏
0 2 (0, 1]. Then, for y ⇠ p, with probability

at least 1� ✏
0

2 , we have
�
M+✏

0(y�µ)(y�µ)T
�
� (c+4�2)I

and tr
⇣�

(c+4�2)I� (M+ ✏
0(y�µ)(y�µ)T)

��1
⌘
 1

4�2
prev

.

Now we continue to prove Lemma 1 with the help of
Lemma 3.

Initialize a matrix M := 0, a set S := ;, and c := 4�2
pmax

d.
Note that the preconditioning of Lemma 3 (i.e., 0 �M � cI
and tr

�
(cI �M)�1

�
 1

4�2
prev

) is satisfied with �prev = �pmax .
Go through the stream of m samples from y1 to y

m
. Note that

�pmax � �pi
holds for all i 2 [m]. For notational convenience,

let ey
i
= y

i
�µ

i
for i = 1, 2, . . . ,m. If (M+✏

0ey
i
eyT

i
) satisfies

the conclusion of Lemma 3, i.e.,
�
M+✏

0ey
i
eyT

i

�
� (c+4�2

pi
)I

and tr
⇣�

(c + 4�2
pi
)I � (M + ✏

0ey
i
eyT

i
)
��1
⌘
 1

4�2
pmax

(which

we know holds with probability at least 1 � ✏
0

2), then update
S S [{i}, M M+ ✏

0ey
i
eyT

i
, and c c+ 4�2

pi
.9

Note that, in the next iteration, when we consider the
sample y

i+1, the preconditioning of Lemma 3 is automatically
satisfied: If the conclusion in the i’th step did not hold and we
did not update S,M, c, then the preconditioning of Lemma 3
in the (i+ 1)’st iteration trivially holds, as it used to hold in
the i’th iteration. If the conclusion in the i’th step held and
we updated S,M, c, then the preconditioning of Lemma 3 in
the (i + 1)’st iteration holds, as it is the same condition that
we checked in the conclusion of the i’th iteration for updating
S,M, c.

When we have gone through the stream of m samples, in
the end, we have c = 4�2

pmax
d +

P
i2S

4�2
pi
 4�2

pmax
(d +

|S|) and M �
�
4�2

pmax
(d+ |S|)

�
I, which implies that

�max(M)  4�2
pmax

(d + |S|). Since M =
P

i2S
✏
0ey

i
eyT

i
, we

have �max

⇣
1
|S|

P
i2S

ey
i
eyT

i

⌘
= 1

✏0|S|
�max (M)  4�2

pmax
✏0 (1+

d

|S|
). It only remains to show that |S| � (1��✏0)m holds with

high probability.
9Note that we only observe yi’s, not (yi�µi). In the context of distributed

SGD, the yi’s correspond to the stochastic gradients that the server receives
from clients, and there, the server does not know the true local gradients at
any client – the true local gradient at client i corresponds to the mean µi
here. Yet, in each iteration i, we probabilistically add ✏

0(yi�µi)(yi�µi)
T

to M. We can do that, because we just want to show an existence of a set S
that satisfies the required properties stated in Lemma 1. This is just for the
purpose of analysis, and we are not giving an algorithm to construct S.

By the above discussion, note that for each element i, we
add i to S with probability at least 1 � ✏

0

2 . Since the m

samples y
i
, i 2 [m] are independent of each other, we have

that the distribution of |S| is lower-bounded by the sum of m
independent indicator random variables, where each of them
is equal to 1 with probability 1� ✏

0

2 . So, by Chernoff bound,
we have Pr[|S|  (1 � �✏

0)m]  exp(� (2��1)✏02m
8), which

implies that Pr[|S| � (1 � �✏
0)m] � 1 � exp(� (2��1)✏02m

8).
This holds for any � > 1/2.

We have shown that with probability 1�exp(� (2��1)2✏02m
8),

there exists a subset S of y1, . . . ,ym
such that

|S| � (1 � �✏
0)m and �max

⇣
1
|S|

P
i2S

ey
i
eyT

i

⌘


4�2
pmax
✏0

⇣
1 + d

(1��✏0)m

⌘
. Substituting ey

i
= y

i
� µ

i
for

i = 1, 2, . . . ,m concludes the proof of Lemma 1.

A. Proof of Lemma 3

A version of this lemma has appeared in [45, Lemma B.2],
which, in turn, is essentially the same as [48, Lemma 3.3].
Our proof is along the lines of the proof of [45, Lemma B.2].

For simplicity of notation, let ey = y�µ. Instead of
�
M�

✏
0eyeyT

�
, it will be helpful later to consider

�
M � teyeyT

�
for

arbitrary t 2 [0, ✏0].
By the Sherman-Morrison matrix inversion formula, we

have that if a square matrix A 2 Rn⇥n is invertible and
u,v 2 Rn are column vectors such that (1 + vTA�1u) 6= 0,
then (A + uvT) is invertible and its inverse is equal to
(A+ uvT)�1 = A�1 � A�1uvTA�1

1+vTA�1u .
We want to apply this formula on

�
((c + 4�2)I �M) �

teyeyT
��1 with A = ((c + 4�2)I �M), u =

p
tey, and v =

�
p
tey. For that, we need to show two things: first, that ((c+

4�2)I � M) is invertible, and second, that (1 � teyT ((c +
4�2)I�M)�1ey) 6= 0. For the first requirement, note that M �
(c+ 4�2)I, which follows because M � cI (by assumption),
and � > 0. This implies that ((c+4�2)I�M) is invertible. It
follows from the analysis below (see the paragraph after (54))
that the second requirement also holds for every t 2 [0, ✏0]
with probability at least 1 � ✏

0

2 . Now, applying the Sherman-
Morrison matrix inversion formula on

�
((c + 4�2)I �M) �

teyeyT
��1:

�
((c+ 4�2)I�M)� teyeyT

��1
=
�
(c+ 4�2)I�M

��1

+ t

�
(c+ 4�2)I�M

��1eyeyT
�
(c+ 4�2)I�M

��1

1� teyT
�
(c+ 4�2)I�M

��1ey
(52)

Taking trace on both sides gives

tr
✓⇣

((c+ 4�2)I�M)� teyeyT

⌘�1
◆

= tr
⇣�

(c+ 4�2)I�M
��1
⌘

+
tr
⇣�

(c+ 4�2)I�M
��1eyeyT

�
(c+ 4�2)I�M

��1
⌘

1
t
� eyT

�
(c+ 4�2)I�M

��1ey
.

20

Let �c(M) = tr
�
(cI �M)�1

�
. Using tr(AB) = tr(BA) on

the last term and using the fact that trace of a scalar is the
scalar itself, we get

�c+4�2(M+ teyeyT) = �c+4�2(M)

+
eyT
�
(c+ 4�2)I�M

��2ey
1
t
� eyT

�
(c+ 4�2)I�M

��1ey
. (53)

We are given �c(M)  1
4�2

prev
, and we want to show

�c+4�2(M + teyeyT)  1
4�2

prev
. So, it suffices to prove that

�c+4�2(M + teyeyT)  �c(M). This, in light of (53), is
equivalent to the condition

1

t
� eyT

�
(c+ 4�2)I�M

��1ey

+
eyT
�
(c+ 4�2)I�M

��2ey
�c(M)� �c+4�2(M)| {z }

=:

, (54)

which, as we show in the analysis below, will hold with
probability at least 1 � ✏

0

2 for all t 2 [0, ✏0]. (Assume that
(54) holds with probability at least 1 � ✏

0

2 for all t 2 [0, ✏0].
Note that �c(M) > �c+4�2(M) (from Claim 5 below) and
((c + 4�2)I � M) � 0 hold. Using these in (54) imply
that 1

t
> eyT

�
(c + 4�2)I �M

��1ey holds with probability
at least 1� ✏

0

2 for all t 2 [0, ✏0]. Thus the second requirement
(1 � teyT ((c + 4�2)I � M)�1ey) 6= 0 also holds, which
was necessary for applying the matrix inversion formula on�
((c+ 4�2)I�M)� teyeyT

��1 to write (52).)
Since is a scalar, we have tr() = . Taking trace

in (54), and using tr(eyTAey) = tr(AeyeyT), and then taking
expectation, we get

E [] = E
h
tr
⇣�

(c+ 4�2)I�M
��1eyeyT

⌘i

+
E
h
tr
⇣�

(c+ 4�2)I�M
��2eyeyT

⌘i

�c(M)� �c+4�2(M)
. (55)

Since
�
(c+4�2)I�M

�
� 0, we also have that

�
(c+4�2)I�

M
��i � 0, for i = 1, 2. Let A =

�
(c + 4�2)I �M

��i

for any i 2 {1, 2}. Now we argue that E
h
tr
⇣
AeyeyT

⌘i


�
2tr (A), where �

2 is such that Ey⇠p[hey,vi2]  �
2 for all

unit vectors v 2 Rd. Note that the last condition is equivalent
to supv2Rd:kvk=1 v

T

⇣
Ey⇠p[eyeyT]

⌘
v  �

2, which, in view

(60), is equivalent to saying that �max

⇣
Ey⇠p[eyeyT]

⌘
 �

2.

Claim 4. E
h
tr
⇣
AeyeyT

⌘i
 �

2tr (A).

Proof. The claim follows from the following set of inequali-
ties.

E
h
tr
⇣
AeyeyT

⌘i
(a)
= E

2

4
X

i,j

Aij(eyeyT)ji

3

5

=
X

i,j

Aij

�
E[eyeyT]

�
ji

(b)
= tr

�
AE[eyeyT]

�

(c)

���E
h
eyeyT

i��� kAk
⇤

(d)
 �

2tr(A)

In (a) and (b), we used the definition of trace: tr(AB) =P
i
(AB)ii =

P
i,j

AijBji. In (c), we used tr(AB) =
tr(BA)  kBkkAk⇤, where k · k⇤ denotes the nuclear norm,
which is equal to the sum of singular values; see Claim 6
on page 21 for a proof. In (d), we used two things, first,
since A ⌫ 0, we have kAk⇤ = tr(A), and second, that���E
h
eyeyT

i���  �
2, which follows because

���E
h
eyeyT

i��� =

�max

⇣
Ey⇠p[eyeyT]

⌘
 �

2.

Using Claim 4 in (55) gives

E []  �
2tr
⇣�

(c+ 4�2)I�M
��1
⌘

+ �
2

tr
⇣�

(c+ 4�2)I�M
��2
⌘

�c(M)� �c+4�2(M)
. (56)

Claim 5. �c(M) � �c+4�2(M) �
4�2tr

⇣�
(c+ 4�2)I�M

��2
⌘

.

Proof. Since (cI � M) � 0, let its eigen-decomposition
be (cI � M) =

P
i
�iuiuT

i
, where �i’s are the eigen-

values of (cI �M) and ui’s are the corresponding eigen-
vectors. It follows that

�
(cI�M) + 4�2I

�
=

P
i
(�i +

4�2)uiuT

i
. These imply that (cI�M)�1 =

P
i

1
�i

uiuT

i
and

�
(cI�M) + 4�2I

��1
=
P

i

1
(�i+4�2)uiuT

i
.

Substituting the definition of �c(M) = tr
�
(cI�M)�1

�
, we

have

�c(M)� �c+4�2(M)

= tr
⇣
(cI�M)�1 �

�
((c+ 4�2)I�M)

��1
⌘

= tr

X

i

1

�i

uiu
T

i
�
X

i

1

(�i + 4�2)
uiu

T

i

!

= 4�2tr

X

i

1

�i(�j + 4�2)
uiu

T

i

!

(g)
= 4�2

X

i

1

�i(�j + 4�2)

(h)
� 4�2

X

i

1

(�j + 4�2)2

= 4�2tr

X

i

1

(�j + 4�2)2
uiu

T

i

!

= 4�2tr
⇣�

(cI�M) + 4�2I
��2
⌘

Here (g) follows from the fact that trace of a square matrix
is equal to the sum of its eigenvalues and (h) follows because
1
�
� 1

�+4�2 .

Substituting �c+4�2(M) = tr
⇣�

((c+ 4�2)I�M)
��1
⌘

for
the first term in (56) and the bound from Claim 5 for the
second term gives E []  �

2
�
�c+4�2(M) + 1

4�2

�
. Note

that Claim 5 trivially implies �c+4�2(M)  �c(M), where

21

�c(M) = tr
�
(cI �M)�1

�
 1

4�2
prev

(which follows from the
hypothesis of Lemma 3). So, we have

E []  �
2

1

4�2
prev

+
1

4�2

!
(h)
 �

2

✓
1

4�2
+

1

4�2

◆
 1

2
,

(57)

where (h) follows from our assumption that �prev � �.
Note that is a non-negative random variable (see (54)).

So, by the Markov’s inequality, we have Pr[� 1
✏0] 

E[]
1/✏0 

✏
0

2 , which implies that Pr[ 1
✏0] � 1 � ✏

0

2 . Substituting the
value of in (54) implies that (54) holds with probability
at least 1 � ✏

0

2 for all t 2 [0, ✏0]. Note that the condition in
(54) is equivalent to the condition that �c+4�2(M+ teyeyT) 
�c(M), where �c(M)  1

4�2
prev

. Thus, with probability at least

1� ✏
0

2 , we have that tr
✓⇣

((c+ 4�2)I� (M+ teyeyT))
⌘�1

◆
=

�c+4�2(M+ teyeyT)  1
4�2

prev
, for every t 2 [0, ✏0].

It only remains to show that
�
M + ✏

0eyeyT
�
� (c + 4�2)I,

which is equivalent to the condition that �max

�
M+✏

0eyeyT
�
<

(c+4�2). Suppose not, i.e., �max

�
M+ ✏

0eyeyT
�
� (c+4�2).

Note that we have �max(M) < c (by the hypothesis of
Lemma 3). Since �max

�
M+ teyeyT

�
is a continuous function

of t and �max(M) < c, �max

�
M+ ✏

0eyeyT
�
� (c+ 4�2), we

have from the intermediate value theorem that there exists a
t
0 2 [0, ✏0] such that �max

�
M + t

0eyeyT
�
= (c + 4�2). This

implies that the matrix
⇣
((c+ 4�2)I� (M+ t

0eyeyT))
⌘�1

is

not invertible (as
�
(c+4�2)I�(M+t

0eyeyT)
�

has a zero eigen-

value), implying that tr
✓⇣

((c+ 4�2)I� (M+ teyeyT))
⌘�1

◆

is unbounded. But, we have already shown that

tr
✓⇣

((c+ 4�2)I� (M+ teyeyT))
⌘�1

◆
 1

4�2
prev

< 1, for all

t 2 [0, ✏0]. A contradiction.
This completes the proof of Lemma 3.

Claim 6. For any two dimension compatible matrices A,B,

we have tr(AB)  kAkkBk⇤, where k · k is the matrix norm

induced by the `2-norm, and k ·k⇤ is the nuclear norm, which

is equal to the sum of singular values of B.

Proof. Let r = rank(B), and let �i, i = 1, 2, . . . , r denote
the non-zero singular values of B. By the singular value
decomposition, we have B =

P
r

i=1 �iuivT

i
, where ui,vi are

the left and right singular vectors, respectively, corresponding
to the singular value �i. Note that ui,vi for every i = 1, . . . , r
are unit norm vectors.

tr(AB) = tr(A
rX

i=1

�iuiv
T

i
)

=
rX

i=1

�itr(Auiv
T

i
)

(Since tr(A +B) = tr(A) + tr(B))

=
rX

i=1

�itr(vT

i
Aui) (Since tr(AB) = tr(BA))

=
rX

i=1

�iv
T

i
Aui (Since vT

i
Aui is a scalar)

(a)


rX

i=1

�ikvikkAkkuik

= kAk
rX

i=1

�i

(Since kuik = 1, kvik = 1, for every i = 1, . . . , r)
= kAkkBk⇤

In (a), first we used the Cauchy-Schwarz inequality to write
vT

i
Aui  kvikkAuik and then used the definition of matrix

norm to write kAuik  kAkkuik. Note that if A,B are
positive semi-definite, then equality holds in (a) above if and
only if B is a multiple of uuT , where u is the eigenvector
corresponding to the largest eigenvalue of A.

This completes the proof of Claim 6.

APPENDIX B
COMPLETE PROOF OF THEOREM 3

Let tk, tk+1 2 IT be any two consecutive synchronization
indices. For i 2 Ktk

corresponding to an honest client, let
Y

tk

i
, Y

tk+1
i

, . . . , Y
tk+1�1
i

be a sequence of (tk+1 � tk)  H

(dependent) random variables, where, for any t 2 [tk : tk+1�
1], the random variable Y

t

i
is distributed as

Y
t

i
⇠ Unif

⇣
F⌦b

i

�
xt

i

�
xtk

i
, Y

tk

i
, . . . , Y

t�1
i

��⌘
. (58)

Here, Y
t

i
corresponds to the stochastic sampling of mini-

batch gradients from the set F⌦b

i

�
xt

i

�
xtk

i
, Y

tk

i
, . . . , Y

t�1
i

��
,

which itself depends on the local parameters xtk

i
(which is a

deterministic quantity) at the last synchronization index and
the past realizations of Y

tk

i
, . . . , Y

t�1
i

. This is because the
evolution of local parameters xt

i
depends on xtk

i
and the

choice of gradients in between time indices tk and t�1. Now
define Yi :=

P
tk+1�1
t=tk

Y
t

i
; and let pi be the distribution of Yi.

This is the distribution pi we will take when using Lemma 1.

Claim 7. For any honest client i 2 Ktk
, we have EkYi �

E[Yi]k2  H
2
�
2

b
, where expectation is taken over sampling

stochastic gradients by client i between the synchronization

indices tk and tk+1.

Proof. Take an arbitrary honest client i 2 Ktk
.

EkYi � E[Yi]k2 = E
�����

tk+1�1X

t=tk

�
Y

t

i
� E[Y t

i
]
�
�����

2

(a)
 (tk+1 � tk)

tk+1�1X

t=tk

EkY t

i
� E[Y t

i
]k2

(b)
 H

2
�
2

b
,

where (a) follows from the Jensen’s inequality; in (b) we used
(tk+1 � tk)  H and that EkY t

i
� E[Y t

i
]k2  �

2

b
for all

j 2 [H], which follows from the explanation below:

EkY t

i
� E[Y t

i
]k2

22

=
X

y
t
k

i
,...,yt�1

i

Pr
h
Y

j

i
= yj

i
, j 2 [tk : t� 1]

i

⇥ E
h
kY t

i
� E[Y t

i
]k2 |Y j

i
= yj

i
, j 2 [tk : t� 1]

i

(c)


X

y
t
k

i
,...,yt�1

i

Pr
h
Y

j

i
= yj

i
, j 2 [tk : t� 1]

i
· �

2

b

=
�
2

b
.

Note that Y
t

i
⇠ Unif

⇣
F⌦b

i

�
xt

i

�
xtk

i
, Y

tk

i
, . . . , Y

t�1
i

��⌘
. So,

when we fix the values Y
tk

i
= ytk

i
, . . . , Y

t�1
i

= yt�1
i

, the
parameter vector xt

i

�
xtk

i
, Y

tk

i
. . . , Y

t�1
i

�
becomes a determin-

istic quantity. Now we can use the variance bound (5) in order
to bound
E
h
kY t

i
� E[Y t

i
]k2 |Y j

i
= yj

i
, j 2 [tk : t� 1]

i
 �

2

b
. This is

what we used in (c).

It is easy to see that the hypothesis of Lemma 1 is satisfied
with µ

i
= E[Yi],�2

pi
= H

2
�
2

b
for all honest clients i 2 Ktk

(note that pi is the distribution of Yi):

Ey
i
⇠pi

[hy
i
� E[y

i
],vi2]

(d)
 E[ky

i
� Ey

i
⇠pi

[y
i
]k2] · kvk2

(e)
 H

2
�
2

b
,

where (d) follows from the Cauchy-Schwarz inequality and
(e) follows from Claim 7 and kvk  1.

We are given K different (summations of H) gradients,
out of which at least (1 � ✏)K are according to the correct
distribution. By considering only the uncorrupted gradients
(i.e., taking m = (1 � ✏)K), we have from Lemma 1
that there exists a subset S ✓ Ktk

of K gradients of size
(1� �✏

0)(1� ✏)K � (1� (✏+ �✏
0))K that satisfies

�max

1

|S|
X

i2S

(y
i
� E[y

i
]) (y

i
� E[y

i
])T
!

 4H2
�
2

b✏0

✓
1 +

d

(1� (✏+ �✏0))K

◆
. (59)

Note that (59) bounds the deviation of the points in S from
their respective means E[y

i
]. However, in (9), we need to

bound the deviation of the points in S from their sample mean
1
|S|

P
i2S

y
i
. As it turns out, due to our use of local iterations,

this will require some technical work.
From the alternate definition of the largest eigenvalue of

symmetric matrices A 2 Rd⇥d, we have

�max(A) = sup
v2Rd,kvk=1

vTAv. (60)

Applying this with A =
1
|S|

P
i2S

(y
i
� E[y

i
]) (y

i
� E[y

i
])T , we can equivalently

write (59) as

sup
v2Rd:kvk=1

1

|S|
X

i2S

hy
i
� E[y

i
],vi2

!

 4H2
�
2

b✏0

✓
1 +

d

(1� (✏+ �✏0))K

◆

| {z }
=: b�2

0

. (61)

Define y
S
:= 1

|S|

P
i2S

y
i

to be the sample mean of the points
in S . Take an arbitrary v 2 Rd such that kvk = 1.

1

|S|
X

i2S

hy
i
� y

S
,vi2

=
1

|S|
X

i2S

[hy
i
� E[y

i
],vi+ hE[y

i
]� y

S
,vi]2

 2

|S|
X

i2S

hy
i
� E[y

i
],vi2 + 2

|S|
X

i2S

hE[y
i
]� y

S
,vi2

(using (a+ b)2  2a2 + 2b2)

Using (61) to bound the first term, we get

 2b�2
0 +

2

|S|
X

i2S

D
E[y

i
]� 1

|S|
X

j2S

y
j
,v
E2

= 2b�2
0 +

2

|S|
X

i2S

h 1

|S|
X

j2S

hy
j
� E[y

i
],vi

i2

 2b�2
0 +

2

|S|
X

i2S

1

|S|
X

j2S

hy
j
� E[y

i
],vi2

(using the Jensen’s inequality)

 2b�2
0 +

2

|S|
X

i2S

2

|S|
X

j2S

hy
j
� E[y

j
],vi2

+
2

|S|
X

i2S

2

|S|
X

j2S

hE[y
j
]� E[y

i
],vi2

(adding/subtracting E[y
j
] and using (a+ b)2  2a2 + 2b2)

 2b�2
0 +

4

|S|
X

j2S

hy
j
� E[y

j
],vi2

+
4

|S|
X

i2S

1

|S|
X

j2S

kE[y
j
]� E[y

i
]k2

(using the Cauchy-Schwarz inequality and that kvk  1)

 6b�2
0 +

4

|S|
X

i2S

1

|S|
X

j2S

kE[y
j
]� E[y

i
]k2 (62)

Claim 8. For any r, s 2 Ktk
, we have

kE[y
r
]� E[y

s
]k2  H

tk+1�1X

t=tk

�
62 + 3L2Ekxt

r
� xt

s
k2
�
,

(63)

where expectations in E[y
r
] and E[y

s
] are taken over sam-

pling stochastic gradients between the synchronization indices

tk, . . . , tk+1 by client r and client s, respectively.

Proof. Note that we can equivalently write E[y
r
] = E[Yr] and

E[y
s
] = E[Ys].

kE[Yr]� E[Ys]k2 = kE[Yr]� E[Ys]k2

=

�����

tk+1�1X

t=tk

⇣
E[Y t

r
]� E[Y t

s
]
⌘�����

2

 (tk+1 � tk)

tk+1�1X

t=tk

��E[Y t

r
]� E[Y t

s
]
��2

(64)

23

By definition of Y
t

s
from (58), we have Y

t

s
⇠

Unif
⇣
F⌦b

s

�
xt

s

�
xtk
s
, Y

tk
s

, . . . , Y
t�1
s

��⌘
, which implies using

(4) that E[Y t

s
] = E

⇥
rFs

�
xt

s

�
xtk
s
, Y

tk
s

, . . . , Y
t�1
s

��⇤
, where

on the RHS, expectation is taken over (Y tk
s

, . . . , Y
t�1
s

). To
make the notation less cluttered, in the following, for any
s 2 Ktk

, we write xt

s
to denote xt

s

�
xtk
s
, Y

tk
s

, . . . , Y
t�1
s

�
with

the understanding that expectation is always taken over the
sampling of stochastic gradients between tk and tk+1. With
these substitutions, the t’th term from (65) can be written as:
��E[Y t

r
]� E[Y t

s
]
��2 =

��E
⇥
rFr(x

t

r
)�rFs(x

t

s
)
⇤��2

(a)
 E

��rFr

�
xt

r

�
�rFs

�
xt

s

���2 (65)
(b)
 3E

��rFr

�
xt

r

�
�rF

�
xt

r

���2

+ 3E
��rFs

�
xt

s

�
�rF

�
xt

s

���2

+ 3E
��rF

�
xt

r

�
�rF

�
xt

s

���2

(c)
 62 + 3L2Ekxt

r
� xt

s
k2. (66)

Here, (a) and (b) both follow from the Jensen’s inequality. (c)
used the gradient dissimilarity bound from (6) to bound the
first two terms10 and L-Lipschitzness of rF to bound the last
term. Substituting the bound from (66) back in (65) and using
(tk+1 � tk)  H proves Claim 8.

Using the bound from (63) in (62) gives
1

|S|
X

i2S

hy
i
� y

S
,vi2  6b�2

0

+
4

|S|
X

i2S

1

|S|
X

j2S

H

tk+1�1X

t=tk

�
62 + 3L2Ekxt

r
� xt

s
k2
�

= 6b�2
0 + 24H2


2

+
12HL

2

|S|
X

i2S

1

|S|
X

j2S

tk+1�1X

t=tk

Ekxt

r
� xt

s
k2 (67)

Now we bound the last term of (67), which is the drift
in local parameters at different clients in between any two
synchronization indices.

Lemma 4. For any r, s 2 Ktk
, if ⌘  1

8HL
, we have

tk+1�1X

t=tk

E
��xt

r
� xt

s

��2  7H3
⌘
2

✓
�
2

b
+ 32

◆
, (68)

where expectation is taken over sampling stochastic gradients

at clients r, s between the synchronization indices tk and tk+1.

Proof. For any t 2 [tk : tk+1 � 1] and r, s 2 Ktk
, define

D
t

r,s
= E kxt

r
� xt

s
k2. Note that at synchronization time tk,

all clients in the active set Ktk
have the same parameters,

i.e., xtk
r

= xtk for every r 2 Ktk
. This together with xtk

�
=

xtk
�
� ⌘

P
t�1
j=tk

g
�
(xj

�
) (which holds for � = r, s), implies

D
t

r,s
= E

��xt

r
� xt

s

��2

10Note that though xt
r’s are random quantities, we can still bound

E
��rFr(xt

r)�rFs(xt
s)
��2  

2 because the gradient dissimilarity bound
(6) holds uniformly over the entire domain.

= ⌘
2E

������

t�1X

j=tk

�
g
r
(xj

r
)� g

s
(xj

s
)
�
������

2

(Since xtk
r

= xtk , 8r 2 Ktk
)

 ⌘
2(t� tk)

t�1X

j=tk

E
��g

r
(xj

r
)� g

s
(xj

s
)
��2

 ⌘
2
H

t�1X

j=tk

⇣
3E
��g

r
(xj

r
)�rFr(x

j

r
)
��2

+3E
��g

s
(xj

s
)�rFs(x

j

s
)
��2

+3E
��rFr(x

j

r
)�rFs(x

j

s
)
��2
⌘

(69)

To bound the first and the second terms we use the variance
bound from (5).11 We can bound the third term in the same
way as we bounded it in (65) and obtained (66). This gives

D
t

r,s
 ⌘

2
H

t�1X

j=tk

✓
6�2

b
+ 182 + 9L2Ekxj

r
� xj

s
k2
◆

 6H2
�
2
⌘
2

b
+ 18H2

⌘
2

2 + 9L2

H⌘
2

t�1X

j=tk

D
j

r,s

(Since D
j

r,s
= E

��xj

r
� xj

s

��2)

Taking summation from t = tk to tk+1 � 1 gives
tk+1�1X

t=tk

D
t

r,s


tk+1�1X

t=tk

6H2
�
2
⌘
2

b
+

tk+1�1X

t=tk

18H2
⌘
2

2

+

tk+1�1X

t=tk

9L2
H⌘

2
t�1X

j=tk

D
j

r,s

 6H3
�
2
⌘
2

b
+ 18H3

⌘
2

2

+ 9L2
H

2
⌘
2

tk+1�1X

t=tk

D
t

r,s
.

After rearranging terms, we get

(1� 9L2
H

2
⌘
2)

tk+1�1X

t=tk

D
t

r,s
 6H3

�
2
⌘
2

b
+ 18H3

⌘
2

2
.

(70)

If we take ⌘  1
8HL

, we get
�
1� 9⌘2L2

H
2
�
� 6

7 . Substituting
this in the LHS of (70) yields

P
tk+1�1
t=tk

D
t

r,s
 7H3

�
2
⌘
2

b
+

21H3
⌘
2

2, which proves Lemma 4.

Substituting the bound from (68) for the last term in (67)
gives

1

|S|
X

i2S

hy
i
� y

S
,vi2  6b�2

0 + 24H2

2

+
12HL

2

|S|
X

i2S

1

|S|
X

j2S

✓
7H3

⌘
2

✓
�
2

b
+ 32

◆◆

11Note that xj
r’s are random quantities, however, since the vari-

ance bound (5) holds uniformly over the entire domain, we can bound
E
���gr(x

j
r)�rFr(x

j
r)
���
2
 �2

b .

24

= 6b�2
0 + 24H2


2 + 84H4

L
2
⌘
2

✓
�
2

b
+ 32

◆

 6b�2
0 + 28H2


2 +

21H2
�
2

16b
(Using ⌘  1

8LH
)

 24H2
�
2

b✏0

✓
1 +

d

(1� (✏+ �✏0))K

◆
+

21H2
�
2

16b
+ 28H2


2

(Since b�2
0 = 4H2

�
2

b✏0

⇣
1 + d

(1�(✏+�✏0))K

⌘
)

 25H2
�
2

b✏0

✓
1 +

d

(1� (✏+ �✏0))K

◆
+ 28H2


2
. (71)

In the last inequality we used 21
16  1

✏0 
1
✏0

⇣
1 + d

(1�(✏+�✏0))K

⌘
, where the first inequality follows

because ✏
0  1

3� <
2
3 . Note that (71) holds for

every unit vector v 2 Rd. Using this and substituting
g
tk,tk+1

i,accu = y
i
, g

tk,tk+1

S,accu = y
S

in (71), we get

sup
v2Rd:kvk=1

1

|S|
X

i2S

D
g
tk,tk+1

i,accu � g
tk,tk+1

S,accu ,v
E2

 25H2
�
2

b✏0

✓
1 +

d

(1� (✏+ �✏0))K

◆
+ 28H2


2
.

This, in view of the alternate definition of the largest eigen-
value given in (60), is equivalent to (9), which proves Theo-
rem 3.

APPENDIX C
OMITTED DETAILS FROM SECTION IV

We prove Claim 1, Claim 2, and Claim 3 below.

A. Proof of Claim 1

Expand the LHS.

E
��xti+1�1 � x⇤ � ⌘rF (xti+1�1)

��2

= E
��xti+1�1 � x⇤

��2 + ⌘
2E
��rF (xti+1�1)

��2

+ 2⌘E
⌦
x⇤ � xti+1�1

,rF (xti+1�1)
↵

(72)

We can bound the second term on the RHS using L-
smoothness of F , which implies that krF (x)k2 
2L(F (x)�F (x⇤)) holds for every x 2 Rd; see Fact 1 on page
26. We can bound the third term on the RHS using µ-strong
convexity of F as follows:

⌦
x⇤ � xti+1�1

,rF (xti+1�1)
↵


F (x⇤)�F (xti+1�1)� µ

2 kx
ti+1�1 �x⇤k2. Substituting these

back in (72) gives:

E
��xti+1�1 � x⇤ � ⌘rF (xti+1�1)

��2

 (1� µ⌘)E
��xti+1�1 � x⇤

��2

� 2⌘(1� ⌘L)E
�
F (xti+1�1)� F (x⇤)

�
(73)

Since ⌘ <
1
L

, we have (1 � ⌘L) > 0. We also have
F (xti+1�1) � F (x⇤). Using these together, we can ignore
the last term in the RHS of (73). This proves Claim 1.

B. Proof of Claim 2

By definition, we have xti+1�1 = 1
K

P
r2Kti

xti+1�1.

E

������
1

K

X

r2Kti

�
rFr(x

ti+1�1
r

)�rF (xti+1�1)
�
������

2

 1

K

X

r2Kti

E
��rFr(x

ti+1�1
r

)�rF (xti+1�1)
��2

 2

K

X

r2Kti

E
��rFr(x

ti+1�1
r

)�rF (xti+1�1
r

)
��2

+
2

K

X

r2Kti

E
��rF (xti+1�1

r
)�rF (xti+1�1)

��2

(a)
 2

K

X

r2Kti


2 +

2

K

X

r2Kti

L
2E
��xti+1�1

r
� xti+1�1

��2

= 22 +
2L2

K

X

r2Kti

E
���xti+1�1

r
� 1

K

X

s2Kti

xti+1�1
s

���
2

 22 +
2L2

K

X

r2Kti

1

K

X

s2Kti

E
��xti+1�1

r
� xti+1�1

s

��2 (74)

(b)
 22 +

2L2

K

X

r2Kti

1

K

X

s2Kti

✓
7H3

⌘
2

✓
�
2

b
+ 32

◆◆

= 22 + 14L2
H

3
⌘
2

✓
�
2

b
+ 32

◆

(c)
 22 +

7H

32

✓
�
2

b
+ 32

◆

In (a) we used the gradient dissimilarity bound from (6) to
bound the first term and L-Lipschitz gradient property of F

to bound the second term. For (b), note that we have already
bounded

P
ti+1�1
t=ti

E kxt

r
� xt

s
k2  7H3

⌘
2
⇣

�
2

b
+ 32

⌘
in

(68) in Lemma 4. Since each term in the summation is trivially
bounded by the same quantity, which we used in (b) to bound
E
���xti+1�1

r � xti+1�1
s

���
2
 7H3

⌘
2
⇣

�
2

b
+ 32

⌘
. In (c) we

used ⌘  1
8HL

.

C. Proof of Claim 3

Let S ✓ Kti
denote the subset of honest clients of size (1�

(✏+✏
0))K, whose average accumulated gradient between time

ti and ti+1 that server approximates at time ti+1 in Theorem 3.
Let the average accumulated gradient be denoted by gti,ti+1

S,accu =
1
|S|

P
r2S

gti,ti+1
r,accu , where gti,ti+1

r,accu =
P

ti+1�1
t=ti

g
r
(xt

r
), and

server approximates it by bgti,ti+1
accu . Note that S exists with

probability at least 1�exp
⇣
� (2��1)2✏02(1�✏)K

8

⌘
. To make the

notation less cluttered, for every r 2 Kti
, define rF ti,ti+1

r :=P
ti+1�1
t=ti

rFr(xt

r
).

E

������
bgti,ti+1

accu � 1

K

X

r2Kti

rF ti,ti+1
r

������

2

 3E
�����bg

ti,ti+1
accu � 1

|S|
X

r2S

gti,ti+1
r,accu

�����

2

25

+ 3E
�����

1

|S|
X

r2S

gti,ti+1
r,accu �

1

|S|
X

r2S

rF ti,ti+1
r

�����

2

+ 3E

������
1

|S|
X

r2S

rF ti,ti+1
r

� 1

K

X

s2Kti

rF ti,ti+1
s

������

2

(75)

Now we bound each term on the RHS of (75).

Bounding the first term on the RHS of (75). We can
bound this using the second part of Theorem 3 as follows
(note that given the first part of Theorem 3 is satisfied, the
second part provides deterministic approximation guarantees,
which implies that it also holds in expectation):

E
�����bg

ti,ti+1
accu � 1

|S|
X

r2S

gti,ti+1
r,accu

�����

2

 ⌥
2
, (76)

where ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�

and �
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+

28H2

2.

Bounding the second term on the RHS of (75). We can
bound this using the variance bound (5).

E
�����

1

|S|
X

r2S

⇣
gti,ti+1
r,accu �rF ti,ti+1

r

⌘�����

2

= E
�����

ti+1�1X

t=ti

1

|S|
X

r2S

�
g
r
(xt

r
)�rFr(x

t

r
)
�
�����

2

(a)
 (ti+1 � ti)

ti+1�1X

t=ti

E
�����

1

|S|
X

r2S

�
g
r
(xt

r
)�rFr(x

t

r
)
�
�����

2

(b)
 H

ti+1�1X

t=ti

1

|S|2E
�����
X

r2S

�
g
r
(xt

r
)�rFr(x

t

r
)
�
�����

2

(c)
= H

ti+1�1X

t=ti

1

|S|2
X

r2S

E
��g

r
(xt

r
)�rFr(x

t

r
)
��2

(d)
 H

ti+1�1X

t=ti

1

|S|
�
2

b

(e)
 4H2

�
2

3bK
. (77)

In (a) we used the Jensen’s inequality. In (b) used |ti+1�ti| 
H . In (c) we used (4) (which states that E[g

r
(x)] = rFr(x)

holds for every honest client r 2 [R] and x 2 Rd) together
with that the stochastic gradients at different clients are sam-
pled independently, and then we used the fact that the variance
of independent random variables is equal to the sum of the
variances. Note that Var(g

r
(xt

r
)) = E kg

r
(xt

r
)�rFr(xt

r
)k2.

In (d) we used the variance bound (5). In (e) we used
|S| � (1� (✏+ �✏

0))K � 2K
3 , where the last inequality uses

(✏+ �✏
0)  1

3 .

Bounding the third term on the RHS of (75).

E

������
1

|S|
X

r2S

rF ti,ti+1
r

� 1

K

X

s2Kti

rF ti,ti+1
s

������

2

= E

������

ti+1�1X

t=ti

⇣ 1

|S|
X

r2S

rFr(x
t

r
)� 1

K

X

s2Kti

rFs(x
t

s
)
⌘
������

2

(a)
 H

ti+1�1X

t=ti

E

������
1

|S|
X

r2S

rFr(x
t

r
)� 1

K

X

s2Kti

rFs(x
t

s
)

������

2

(78)

In (a), first we used the Jensen’s inequality and then sub-
stituted |ti+1 � ti|  H . In order to bound (78), it suffices

to bound E
��� 1
|S|

P
r2S
rFr(xt

r
)� 1

K

P
s2Kti

rFs(xt

s
)
���
2

for
every t 2 [ti : ti+1� 1]. We bound this in the following. Take
an arbitrary t 2 [ti : ti+1 � 1].

E

������
1

|S|
X

r2S

rFr(x
t

r
)� 1

K

X

s2Kti

rFs(x
t

s
)

������

2

 3E
�����

1

|S|
X

r2S

�
rFr(x

t

r
)�rF (xt

r
)
�
�����

2

+ 3E

������
1

|S|
X

r2S

rF (xt

r
)� 1

K

X

s2Kti

rF (xt

s
)

������

2

+ 3E

������
1

K

X

s2Kti

�
rF (xt

s
)�rFs(x

t

s
)
�
������

2

The first and third terms can both be bounded by 32 (using
Jensen’s inequality and bounded gradient dissimilarity bound
(6)). For the second term, we can add and subtract rF (xt) =
1
|S|

P
r2S
rF (xt) = 1

K

P
s2Kti

rF (xt) and then using ka+
bk2  2kak2 + 2kbk2, we get the following

E

������
1

|S|
X

r2S

rF ti,ti+1
r

� 1

K

X

s2Kti

rF ti,ti+1
s

������

2

 32 + 32 + 6E
�����

1

|S|
X

r2S

rF (xt

r
)�rF (xt)

�����

2

+ 6E

������
1

K

X

s2Kti

�
rF (xt

s
)�rF (xt)

�
������

2

 62 +
6

|S|
X

r2S

E
��rF (xt

r
)�rF (xt)

��2

+
6

K

X

s2Kti

E
��rF (xt

s
)�rF (xt)

��2

 62 +
6

|S|
X

r2S

L
2E
��xt

r
� xt

��2

+
6

K

X

s2Kti

L
2E
��xt

s
� xt

��2

= 62 +
6L2

|S|
X

r2S

E
���xt

r
� 1

K

X

s2Kti

xt

s

���
2

+
6L2

K

X

r2Kti

E
���xt

r
� 1

K

X

s2Kti

xt

s

���
2

26

 62 +
6L2

|S|
X

r2S

1

K

X

s2Kti

E
��xt

r
� xt

s

��2

+
6L2

K

X

r2Kti

1

K

X

s2Kti

E
��xt

r
� xt

s

��2

Substituting this back in (78) gives:

E

������
1

|S|
X

r2S

rF ti,ti+1
r

� 1

K

X

s2Kti

rF ti,ti+1
s

������

2

 H

ti+1�1X

t=ti

62

+H

ti+1�1X

t=ti

6L2

|S|
X

r2S

1

K

X

s2Kti

E
��xt

r
� xt

s

��2

+H

ti+1�1X

t=ti

6L2

K

X

r2Kti

1

K

X

s2Kti

E
��xt

r
� xt

s

��2

(a)
 6H2


2 + 6HL

2

✓
7H3

⌘
2

✓
�
2

b
+ 32

◆◆

+ 6HL
2

✓
7H3

⌘
2

✓
�
2

b
+ 32

◆◆

= 6H2

2 + 84L2

H
4
⌘
2

✓
�
2

b
+ 32

◆

(b)
 10H2


2 +

21H2
�
2

16b
. (79)

In (a) we used ti+1 � ti  H and the boundP
ti+1�1
t=ti

E kxt

r
� xt

s
k2  7H3

⌘
2
⇣

�
2

b
+ 32

⌘
, which holds

when ⌘  1
8HL

; we have already shown this in (68) in
Lemma 4. In (b) we used ⌘  1

8HL
.

Substituting the bounds from (76), (77), (79) in (75) gives

E

������
bgti,ti+1

accu � 1

K

X

r2Kti

rF ti,ti+1
r

������

2

 3⌥ 2 +
4H2

�
2

bK
+ 3

✓
10H2


2 +

21H2
�
2

16b

◆

 3⌥ 2 +
4H2

�
2

bK
+ 30H2


2 +

4H2
�
2

b

= 3⌥ 2 +
8H2

�
2

b
+ 30H2


2
,

where ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�

and �
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+

28H2

2.

This completes the proof of Claim 3.

D. A Useful Fact

Fact 1. Let F : Rd ! R be an L-smooth function with a

global minimizer x⇤
. Then, for every x 2 Rd

, we have

krF (x)k2  2L(F (x)� F (x⇤)).

Proof. By definition of L-smoothness, we have F (y) 
F (x) + hrF (x),y � xi + L

2 ky � xk2 holds for every
x,y 2 Rd. Fix an arbitrary x 2 Rd and take infimum over y
on both sides:

inf
y

F (y)  inf
y

✓
F (x) + hrF (x),y � xi+ L

2
ky � xk2

◆

(a)
= inf

v:kvk=1
inf
t

✓
F (x) + thrF (x),vi+ Lt

2

2

◆

(b)
= inf

v:kvk=1

✓
F (x)� 1

2L
hrF (x),vi2

◆

(c)
=

✓
F (x)� 1

2L
krF (x)k2

◆

The value of t that minimizes the RHS of (a) is t =
� 1

L
hrF (x),vi, this implies (b); (c) follows from the Cauchy-

Schwarz inequality: hu,vi  kukkvk, where equality is
achieved whenever u = v. Now, substituting inf

y
F (y) =

F (x⇤) yields the result.

APPENDIX D
FULL-BATCH LOCAL GRADIENT DESCENT – PROOF OF

THEOREM 2

In this section, we focus on the case when in each local
iteration clients compute full-batch gradients (instead of com-
puting mini-batch stochastic gradients) in Algorithm 1 and
prove Theorem 2.

Note that the robust accumulated gradient estimation
(RAGE) result of Theorem 3 (which is for stochastic gradients)
is one of the main ingredients behind the convergence analyses
of Theorem 1. So, in order to prove Theorem 2, first we
need to show a RAGE result for full-batch gradients. Note
that we can obtain such a result by substituting � = 0 in
both the parts of Theorem 3; however, this would give a loose
bound on the approximation error in the second part. In the
following, we get a tighter bound (both for RAGE and the
convergence rates in Theorem 2) by working directly with full-
batch gradients. To get a RAGE result for full-batch gradients,
we do a much simplified analysis than what we did before to
prove Theorem 3, and the resulting result is stated and proved
below in Theorem 7.

Note that, in order to prove Theorem 3, we showed an
existence of a subset S of honest clients (from the set K of
clients who communicate with the server) from whom the ac-
cumulated stochastic gradients are well-concentrated, as stated
in form of a matrix concentration bound (9) in Theorem 3.
It turns out that for full-batch gradients, an analogous result
can be proven directly (as there is no randomness due to
stochastic gradients); and below we provide such a result. Note
that Theorem 3 is a probabilistic statement, where we show
that with high probability, there exists a large subset S ✓ K
of honest clients whose stochastic accumulated gradients are
well-concentrated. In contrast, in the following result, we can
deterministically take the set of all honest clients in K to be
that subset for which we can directly show the concentration.

First we setup the notation to state our main result on
RAGE for full-batch gradients. Let Kt ✓ [R] denote the
subset of clients of size K that are active at any time
t 2 [0 : T]. Let Algorithm 1 generate a sequence of iterates
{xt

r
: t 2 [0 : T], r 2 Kt} when run with a fixed step-size

⌘ satisfying ⌘  1
5HL

while minimizing a global objective
function F : Rd ! R, where in any iteration, instead of
sampling mini-batch stochastic gradients, every honest client
takes full-batch gradients from their local datasets. Take any

27

two consecutive synchronization indices tk, tk+1 2 IT . Note
that |tk+1 � tk|  H . For an honest client r 2 Ktk

, let
rF tk,tk+1

r,accu :=
P

tk+1�1
t=tk

rFr(xt

r
) denote the sum of local full-

batch gradients taken by client r between time tk and tk+1.
Note that at iteration tk+1, every honest client r 2 Ktk

reports
its local parameters x

tk+1
r to the server, from which server

can compute rF tk,tk+1
r,accu , whereas, corrupt clients may report

arbitrary and adversarially chosen vectors in Rd. The goal of
the server is to produce an estimate r bF tk,tk+1

accu of the average
accumulated gradients from honest clients as best as possible.

Theorem 7 (Robust Accumulated Gradient Estimation for
Full-Batch Gradient Descent). Suppose an ✏ fraction of clients

who communicate with the server are corrupt. In the setting

and notation described above, suppose we are given K  R

accumulated full-batch gradients r eF tk,tk+1
r,accu , r 2 Ktk

in Rd
,

where r eF tk,tk+1
r,accu = rF tk,tk+1

r,accu if the r’th client is honest,

otherwise can be arbitrary. Let S ✓ Ktk
be the subset of all

honest clients in Ktk
and rF tk,tk+1

S,accu := 1
|S|

P
i2S
rF tk,tk+1

i,accu
be the sample average of uncorrupted full-batch gradients.

If ✏  1
3 , then with probability 1, we can find an esti-

mate r bF tk,tk+1
accu of rF tk,tk+1

S,accu in polynomial-time, such that���r bF tk,tk+1
accu �rF tk,tk+1

S,accu

���  O (H
p
✏).

Proof. Let ⌅ :=
⇣
rF tk,tk+1

i,accu �rF tk,tk+1

S,accu

⌘
. First we prove

that

�max

⇣ 1

|S|
X

i2S

⌅ ⌅T

⌘
 11H2


2
. (80)

In view of the alternate characterization the largest eigenvalue
given in (60), this is equivalent to showing

sup
v2Rd:kvk=1

1

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1

S,accu ,v
E2
 11H2


2
,

(81)

which we prove below. Define F
tk,tk+1
accu :=

P
tk+1�1
t=tk

F (xt),
where xt = 1

K

P
r2Kt

k

xt

r
for any t 2 [tk : tk+1 � 1]. Take

an arbitrary unit vector v 2 Rd.

1

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1

S,accu ,v
E2

 2

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1
accu ,v

E2

+
2

|S|
X

i2S

D
rF tk,tk+1

S,accu �rF
tk,tk+1
accu ,v

E2

(Using ka+ bk2  2kak2 + 2kbk2)

=
2

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1
accu ,v

E2

+ 2
D
rF tk,tk+1

S,accu �rF
tk,tk+1
accu ,v

E2

=
2

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1
accu ,v

E2

+ 2

"
1

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1
accu ,v

E#2

 2

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1
accu ,v

E2

+
2

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1
accu ,v

E2

=
4

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1
accu ,v

E2

 4

|S|
X

i2S

���rF tk,tk+1

i,accu �rF tk,tk+1
accu

���
2

(Using hu,vi  kukkvk and that kvk = 1)

=
4

|S|
X

i2S

�����

tk+1�1X

t=tk

�
rFi(x

t

i
)�rF (xt)

�
�����

2

(Since F
tk,tk+1
accu =

P
tk+1�1
t=tk

F (xt))

 4

|S|
X

i2S

(tk+1 � tk)

tk+1�1X

t=tk

��rFi(x
t

i
)�rF (xt)

��2

(Using Jensen’s inequality)

 4H

|S|
X

i2S

tk+1�1X

t=tk

⇣
2
��rFi(x

t

i
)�rF (xt

i
)
��2

+2
��rF (xt

i
)�rF (xt)

��2
⌘

(a)
 4H

|S|
X

i2S

tk+1�1X

t=tk

⇣
22 + 2L2

��xt

i
� xt

��2
⌘

 8H2

2 + 8HL

2

tk+1�1X

t=tk

1

|S|
X

i2S

���xt

i
� 1

K

X

j2Kt
k

xt

j

���
2

(Since xt = 1
K

P
j2Kt

k

xt

j
)

 8H2

2 + 8HL

2

tk+1�1X

t=tk

1

|S|
X

i2S

1

K

X

j2Kt
k

��xt

i
� xt

j

��2

(82)

The last inequality follows from the Jensen’s inequality.
In (a) we used (6) to bound krFi(xt

i
)�rF (xt

i
)k2 


2 and L-Lipschitz gradient property of F to bound
krF (xt

i
)�rF (xt)k  Lkxt

i
� xtk.

Now we bound the last term of (82).

Lemma 5. For any r, s 2 Ktk
, if ⌘  1

5HL
, we have

tk+1�1X

t=tk

��xt

r
� xt

s

��2  7⌘2H3

2
. (83)

Proof. Note that we have shown a similar result (but, in
expectation) in Lemma 4 (on page 23), which is for stochastic
gradients. We will simplify that proof to prove Lemma 5,
which is for full-batch deterministic gradients.

Take an arbitrary t 2 [tk : tk+1 � 1]. Following the proof
of Lemma 4 until (69) and removing the factor of 3 inside
the summation (the factor of 3 appeared because we applied
the Jensen’s inequality earlier to separate the deterministic
gradient term and the stochastic gradient terms) would give

��xt

r
� xt

s

��2  ⌘
2
H

t�1X

j=tk

��rFr(x
j

r
)�rFs(x

j

s
)
��2 . (84)

28

Following the remaining proof of Lemma 4 from (69) until
the end and substituting � = 0 gives the desired result.

Substituting the bound from (83) into (82) gives
1

|S|
X

i2S

D
rF tk,tk+1

i,accu �rF tk,tk+1

S,accu ,v
E2

 8H2

2 + 56H4

L
2
⌘
2

2

 8H2

2 +

56

25
H

2

2 (Substituting ⌘  1

5HL
)

 11H2

2
. (85)

Note that (85) holds for an arbitrary unit vector v 2 Rd, im-
plying that (81) holds true. Since (81) and (80) are equivalent,
we have thus shown (80).

Now apply Theorem 4 with S being the set of all honest
clients, and g

tk,tk+1

i,accu = rF tk,tk+1

i,accu , g
tk,tk+1

S,accu = rF tk,tk+1

S,accu
bgtk,tk+1

accu = r bF tk,tk+1
accu , ✏0 = 0, and �

2
0 = 11H2


2. We would

get that we can find an estimate r bF tk,tk+1
accu of rF tk,tk+1

S,accu

in polynomial-time, such that
���r bF tk,tk+1

accu �rF tk,tk+1

S,accu

��� 
O (H

p
✏) holds with probability 1.

Theorem 2 can be proved with appropriate modifications in
the proof of Theorem 1, and for completeness, we prove it
below.

A. Convergence Proof of the Strongly-Convex Part of Theo-

rem 2

Let Kt ✓ [R] denote the subset of clients of size |Kt| = K

that are active at the t’th iteration. For any t 2 [ti : ti+1�1], let
xt = 1

K

P
k2Kti

xt

k
denote the average of the local parameters

of clients in the sampling set Kti
.

Following the proof of the strongly-convex part of Theo-
rem 1 given in Appendix C until (19) gives
��xti+1 � x⇤

��2


�
1 +

µ⌘

2

� ��xti+1�1 � ⌘rF (xti+1�1)� x⇤
��2

+ 2⌘
�
⌘ +

2

µ

�
������
1

K

X

r2Kti

�
rF (xti+1�1)�rFr(x

ti+1�1
r

)
�
������

2

+ 2⌘
�
⌘ +

2

µ

�
������
bF ti,ti+1

accu � 1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)

������

2

(86)

We have already bounded the first term in Claim 1 (on page 9)
by
��xti+1 � ⌘rF (xti+1�1)� x⇤

��2

 (1� ⌘µ)
��xti+1�1 � x⇤

��2 . (87)

In order to bound the second term, we follow the
proof of Claim 2 exactly until (74), and then to bound���xti+1�1

r � xti+1�1
s

���
2

for every r, s 2 Kti
, we use the bound

from (83) in Lemma 5 and use ⌘  1
5HL

, which gives
������
1

K

X

r2Kti

�
rFr(x

ti+1�1)�rFr(x
ti+1�1
r

)
�
������

2

 3H
2
.

(88)

To bound the third term in the RHS of (86), we can sim-
plify the proof of Claim 3: Firstly, note that with full-batch
gradients, the variance �

2 becomes zero; secondly, as shown
in Theorem 7, the robust estimation of accumulated gradients
holds with probability 1. Following the proof of Claim 3 with
these changes and using ⌘  1

5HL
, we get

������
bF ti,ti+1

accu � 1

K

X

r2Kti

ti+1�1X

t=ti

rFr(x
t

r
)

������

2

 2⌥ 2
GD + 20H2


2
,

(89)

where ⌥GD = O (H
p
✏). Substituting all these bounds

from (87)-(89) into (86) and simplifying further using�
1 + µ⌘

2

�
(1� µ⌘) 

�
1� µ⌘

2

�
and

⇣
⌘ + 2

µ

⌘
 3

µ
gives

��xti+1 � x⇤
��2 

⇣
1� µ⌘

2

⌘��xti+1�1 � x⇤
��2

+
6⌘

µ

�
2⌥ 2

GD + 23H2

2
�

(90)

Note that (90) gives a recurrence at the synchronization
indices. Now we give a recurrence at non-synchronization
indices. Take an arbitrary t 2 [T] and let ti 2 IT be such
that t 2 [ti : ti+1 � 1]; when H � 2, such t’s exist.
Following the steps that we used to arrive at (25), we get the
following (note that the last term on the RHS of (25) is zero,
as g

r
(xt

r
) = rFr(xt

r
) holds for every r 2 [R] and t 2 [T];

this will also save us the factor of 2 in the previous term as
we don’t have to use the Jensen’s inequality to get to (25)):
��xt+1 � x⇤

��2 
⇣
1 +

µ⌘

2

⌘��xt � x⇤ � ⌘rF (xt)
��2

+ ⌘

✓
⌘ +

2

µ

◆�����
1

K

X

r2Kt

�
rF (xt)�rFr(x

t

r
)
�
�����

2

(91)

Substituting the bounds from (87) and (88) into (91) and
simplifying the coefficients as above, we get
��xt+1 � x⇤

��2 
⇣
1� µ⌘

2

⌘��xt � x⇤
��2 + 3⌘

µ
(3H

2) (92)

Now we have a recurrence at the synchronization indices given
in (90) and at non-synchronization indices given in (92). Let
↵ =

�
1� µ⌘

2

�
, �1 =

�
2⌥ 2

GD + 23H2

2
�
, and �2 =

�
3
2H

2
�
.

Following the same steps that we used to arrive at (28) gives:
��xT � x⇤

��2  ↵
T
��x0 � x⇤

��2

+
6⌘

µ

✓
1

1� ↵
�2 +

1

1� ↵H
�1

◆
(93)

Since ↵ =
�
1� µ⌘

2

�
, we have ↵

H =
�
1� µ⌘

2

�H (a)


exp(�µ⌘H

2)
(b)
 1 � µ⌘H

2 +
⇣

µ⌘H

2

⌘2 (c)
 1 � µ⌘H

2 + 1
10

µ⌘H

2 =

1� 9
10

µ⌘H

2 . In (a) we used the inequality (1� 1
x
)x  1

e
which

holds for any x > 0; in (b) we used exp(�x)  1 � x + x
2

which holds for any x � 0; in (c) we used ⌘  1
5HL

and
µ  L, which imply µ⌘H

2  1
10 . Substituting these in (93)

gives
��xT � x⇤

��2

29


⇣
1� µ⌘

2

⌘T ��x0 � x⇤
��2 + 6⌘

µ

✓
2

µ⌘
�2 +

20

9µ⌘H
�1

◆


⇣
1� µ⌘

2

⌘T ��x0 � x⇤
��2 + 6⇥ 20

9µ2

✓
9

10
�2 +

1

H
�1

◆


⇣
1� µ⌘

2

⌘T ��x0 � x⇤
��2 + 14

µ2

✓
2⌥ 2

GD
H

+ 25H
2

◆
,

(94)

where ⌥GD = O (H
p
✏). Substituting the value of ⌘ = 1

5HL

yields the convergence rate (7) in the strongly-convex part of
Theorem 2. Note that (94) holds with probability 1.

B. Convergence Proof of the Non-Convex Part of Theorem 2

Following the proof of the non-convex part of Theorem 1
given in Section V until (33) and using ⌘  1

5HL
gives:

F (xti+1)  F (xti+1�1)� ⌘

2

��rF (xti+1�1)
��2 + 6⌘

5
kCk2,

(95)

where C = 1
K

P
r2Kti

⇣
rF (xti+1�1)�rFr(x

ti+1�1
r)

⌘
�

⇣
bF ti,ti+1

accu � 1
K

P
r2Kti

P
ti+1�1
t=ti

rFr(xt

r
)
⌘

.
Using the bounds from (88) and (89), together with the

Jensen’s inequality, we can bound kCk2 as follows:

kCk2  2(3H
2) + 2(2⌥ 2

GD + 20H2

2)

 2(2⌥ 2
GD + 23H2


2) (96)

Substituting the bound from (96) into (95) gives:

F (xti+1)  F (xti+1�1)� ⌘

2

��rF (xti+1�1)
��2

+
12⌘

5

�
2⌥ 2

GD + 23H2

2
�
, (97)

where ⌥GD = O (H
p
✏).

Note that above recurrence in (97) holds only at the
synchronization indices. Now we give a recurrence at non-
synchronization indices.

We have done a similar calculations in the non-convex part
of Theorem 1 in Section V.

Take an arbitrary t 2 [T] and let ti 2 IT be such that
t 2 [ti : ti+1 � 1]; when H � 2, such t’s exist. Following the
same steps until (36) and using ⌘  1

5HL
gives:

F (xt+1)  F (xt)� ⌘

2

��rF (xt)
��2 + 6⌘

5
kDk2, (98)

where D = 1
K

P
r2Kti

(rF (xt)�rFr(xt

r
)).

Using the bound from (88), we have kDk2  3H
2.

Substituting this in (98) gives:

F (xt+1)  F (xt)� ⌘

2

��rF (xt)
��2 + 6⌘

5
(3H

2) (99)

Now we have a recurrence at the synchronization indices
given in (97) and at non-synchronization indices given in (99).
Adding (97) and (99) from t = 0 to T (use (97) for the
synchronization indices and (99) for the rest of the indices)
gives:

TX

t=0

F (xt+1) 
TX

t=0

F (xt)� ⌘

2

TX

t=0

��rF (xt)
��2

+
12⌘

5


T

H

�
2⌥ 2

GD + 23H2

2
�
+

✓
T � T

H

◆✓
3

2
H

2

◆�

(100)

After rearranging and simplifying the last constant terms, we
get:

1

T

TX

t=0

��rF (xt)
��2  2

⌘T

⇥
F (x0)� F (xT+1)

⇤

+
24

5

✓
2⌥ 2

GD
H

+ 25H
2

◆
(101)

Note that the last term in (101) is a constant. So, it would be
best to take the step-size ⌘ to be as large as possible such that
it satisfies ⌘  1

5HL
. We take ⌘ = 1

5HL
. Substituting this in

(101) and using F (xT+1) � F (x⇤) gives

1

T

TX

t=0

��rF (xt)
��2  10HL

T

⇥
F (x0)� F (x⇤)

⇤

+
24

5

✓
2⌥ 2

GD
H

+ 25H
2

◆
, (102)

where ⌥GD = O (H
p
✏). This yields the convergence rate (8)

in the non-convex part of Theorem 2. Note that (102) holds
with probability 1.

This concludes the proof of Theorem 2.

APPENDIX E
OMITTED DETAILS FROM SECTION VII

In this section, we bound
��rf̄r(x)�rµr(x)

�� under both
the sub-exponential and sub-Gaussian gradient distributional
assumptions. First we give some definitions.

Definition 1 (Sub-exponential distribution). A random vari-

able Z with mean µ = E[Z] is sub-exponential if there are

non-negative parameters (⌫,↵) such that

E [exp (�(Z � µ))]  exp
�
�
2
⌫
2
/2
�
, 8|�| < 1

↵
.

A random vector Z with mean µ = E[Z] is sub-exponential
if its projection on every unit vector is sub-exponential, i.e.,

there are non-negative parameters (⌫,↵) such that

sup
v2Rd:kvk=1

E [exp (�hZ � µ,vi)]  exp
�
�
2
⌫
2
/2
�
, 8|�| < 1

↵
.

Now we state a concentration inequality for sums of inde-
pendent sub-exponential random variables.

Fact 2 (Sub-exponential concentration inequality). Suppose

X1, X2, . . . , Xn are independent random variables, where for

every i 2 [n], Xi is sub-exponential with parameters (⌫i,↵i)
and mean µi. Then

P
n

i=1 Xi is sub-exponential with param-

eters (⌫,↵), where ⌫
2 =

P
n

i=1 ⌫
2
i

and ↵ = max1in ↵i.

Moreover, we have

Pr

"
nX

i=1

(Xi � µi) � t

#
 exp

✓
�1

2
min

⇢
t
2

⌫2
,
t

↵

�◆
, 8t � 0

(103)

30

Definition 2 (Sub-Gaussian distribution). A random variable

Z with mean µ = E[Z] is sub-Gaussian if there is a non-

negative parameter �g such that

E [exp (�(Z � µ))]  exp
�
�
2
�
2
g
/2
�
, 8� 2 R.

A random vector Z with mean µ = E[Z] is sub-Gaussian if

its projection on every unit vector is sub-Gaussian, i.e., there

is a non-negative parameter �g such that

sup
v2Rd:kvk=1

E [exp (�hZ � µ,vi)]  exp
�
�
2
�
2
g
/2
�
, 8� 2 R.

Now we state a concentration inequality for sums of inde-
pendent sub-Gaussian random variables.

Fact 3 (Sub-Gaussian concentration inequality). Suppose

X1, X2, . . . , Xn are independent random variables, where for

every i 2 [n], Xi is sub-Gaussian with parameter �i > 0
and mean µi. Then

P
n

i=1 Xi is sub-Gaussian with parameter

�g =
pP

n

i=1 �
2
i
. Moreover, we have

Pr

"
nX

i=1

(Xi � µi) � t

#
 exp

�
�t2/2�2

g

�
, 8t � 0. (104)

Let D = max{kx� x0k : x,x0 2 C} be the diameter of C.
Note that C is contained in Bd

D/2, which is the Euclidean ball
of radius D

2 in d dimensions that contains C. Note that D =
⌦(
p
d), and we assume that D can grow at most polynomially

in d.
Now we state two lemmas (which will be used to

prove Theorem 5), each of which uniformly bounds��rf̄r(x)�rµr(x)
�� over all x 2 C under different distribu-

tional assumptions on gradients. We prove these one by one
in subsequent subsections.

Lemma 6 (Sub-exponential gradients). Suppose Assumption 3

holds. Take an arbitrary r 2 [R]. Let nr 2 N be sufficiently

large such that nr = ⌦ (d log(nrd)). Then, with probability

at least 1� 1
(1+nrLD)d , we have

��rf̄r(x)�rµr(x)
��  3⌫

s
8d log(1 + nrLD)

nr

, 8x 2 C.

(105)

Lemma 7 (Sub-Gaussian gradients). Suppose Assumption 4

holds. Take an arbitrary r 2 [R]. For any nr 2 N, with

probability at least 1� 1
(1+nrLD)d , we have

��rf̄r(x)�rµr(x)
��  3�g

s
8d log(1 + nrLD)

nr

, 8x 2 C.

(106)

Proof of Theorem 5. In order to prove Theorem 5, we need
to show two bounds, one (stated in (48)) under the sub-
exponential gradient assumption, and the other (stated in (49))
under the sub-Gaussian assumption. We can show (48) using
Lemma 6 and (49) using Lemma 7. Here we only show (48);
and (49) can be shown similarly.

Using Assumption 5 (i.e., krµr(x)�rµ(x)k 
mean, 8x 2 C) in (46) gives
��rf̄r(x)�rf̄(x)

�� 
��rf̄r(x)�rµr(x)

��+ mean

+
1

R

RX

r=1

��rf̄r(x)�rµr(x)
�� . (107)

Note that (105) holds for any fixed worker r 2 [R].
By the union bound, we have that with probability at
least 1 � R

(1+nrLD)d , for every r 2 [R], we have
��rf̄r(x)�rµr(x)

��  3⌫
q

8d log(1+nrLD)
nr

, 8x 2 C.
Let nr = n, 8r 2 [R]. Using these in (107), we get

that with probability at least 1 � R

(1+nrLD)d , for every
worker r 2 [R], we have

��rf̄r(x)�rf̄(x)
��  mean +

O
✓q

d log(nd)
n

◆
, 8x 2 C, which proves (48). This completes

the proof of Theorem 5.

A. Proof of Lemma 6 (sub-exponential gradients)

We prove Lemma 6 with the help of the following result,
which holds for any fixed x 2 C. Then we extend this bound
to all x 2 C using an ✏-net argument. These are standard
calculations and have appeared in literature [17], [22].

Lemma 8. Suppose Assumption 3 holds. Take an arbitrary

r 2 [R]. For any � 2 (0, 1) and nr 2 N, define � =p
2⌫
q

d log 5+log(1/�)
nr

. If nr is such that �  ⌫
2

↵
, then, for

any fixed x 2 C, with probability at least 1� �, we have

��rf̄r(x)�rµr(x)
��  2

p
2⌫

s
d log 5 + log(1/�)

nr

, (108)

where randomness is due to the sub-exponential distribution

of local gradients.

Proof. Let Bd = {v 2 Rd : kvk  1}. Let V =
{v1,v2, . . . ,vN1/2

} denote an 1
2 -net of Bd, which implies that

for every v 2 Bd, there exists a v0 2 V such that kv�v0k  1
2 .

We have from [49, Lemma 5.2] that N1/2 = |V|  5d.
Fix an arbitrary x 2 C. Note that there exists a

v⇤ 2 Bd (namely, v⇤ = rf̄r(x)�rµr(x)
krf̄r(x)�rµr(x)k

) such that��rf̄r(x)�rµr(x)
�� =

⌦
rf̄r(x)�rµr(x),v⇤

↵
. By the

property of V , there exists an index i
⇤ 2 [N1/2] such that

kv⇤ � vi⇤k  1
2 . Now we bound

��rf̄r(x)�rµr(x)
��.

��rf̄r(x)�rµr(x)
��

=
⌦
rf̄r(x)�rµr(x),v

⇤
↵

=
⌦
rf̄r(x)�rµr(x),vi⇤

↵

+
⌦
rf̄r(x)�rµr(x),v

⇤ � vi⇤
↵


⌦
rf̄r(x)�rµr(x),vi⇤

↵

+
��rf̄r(x)�rµr(x)

�� kv⇤ � vi⇤k


⌦
rf̄r(x)�rµr(x),vi⇤

↵
+

1

2

��rf̄r(x)�rµr(x)
��

 max
v2V

⌦
rf̄r(x)�rµr(x),v

↵
+

1

2

��rf̄r(x)�rµr(x)
��

By collecting similar terms together, we get
��rf̄r(x)�rµr(x)

��  2max
v2V

⌦
rf̄r(x)�rµr(x),v

↵

(109)

Note that the RHS of (109) is a non-negative
number (because LHS is). Note also that, since

31

V ⇢ Bd, for every v 2 V , we have kvk  1.
This implies that maxv2V

⌦
rf̄r(x)�rµr(x),v

↵


maxv2V

D
rf̄r(x)�rµr(x),

v
kvk

E
. Using this in (109), we

get
��rf̄r(x)�rµr(x)

��  2max
v2V

⌧
rf̄r(x)�rµr(x),

v

kvk

�
.

(110)

Fix any v 2 V . It follows from Assumption 3 thatD
rfr(z,x)�rµr(x),

v
kvk

E
, where z ⇠ qr, is a sub-

exponential random variable (with mean zero) with param-
eters (⌫,↵). From Fact 2 (stated on page 29), we have thatP

nr

i=1

D
rfr(zr,i,x)�rµr(x),

v
kvk

E
(where zr,i ⇠ qr, i 2

[nr] are i.i.d.) is a sub-exponential random variable with
parameters (

p
nr⌫,↵).

Now, apply the concentration bound from (103) with t =
nr�. Substituting this and the parameters (

p
nr⌫,↵), the

bound becomes exp(� 1
2 min{n

2
r
�2

nr⌫
2 ,

nr�
↵

}) (a)
= exp(� 1

2
nr�

2

⌫2),
where (a) follows because �  ⌫

2

↵
. This gives

Pr

"
nrX

i=1

⌧
rfr(zr,i,x)�rµr(x),

v

kvk

�
� nr�

#

 exp

✓
�nr�2

2⌫2

◆
. (111)

Note that
P

nr

i=1

D
rfr(zr,i,x)�rµr(x),

v
kvk

E
=

nr

D
rf̄r(x)�rµr(x),

v
kvk

E
. Using this in (111) yields

Pr

⌧
rf̄r(x)�rµr(x),

v

kvk

�
� �

�
 exp

✓
�nr�2

2⌫2

◆

(112)

This implies that

Pr


max
v2V

⌧
rf̄r(x)�rµr(x),

v

kvk

�
� �

�


X

v2V

Pr

⌧
rf̄r(x)�rµr(x),

v

kvk

�
� �

�

 |V| exp
✓
�nr�2

2⌫2

◆
 5d exp

✓
�nr�2

2⌫2

◆

= exp

✓
�nr�2

2⌫2
+ d log 5

◆
(113)

Together with (110), which implies that

Pr
⇥��rf̄r(x)�rµr(x)

�� � t
⇤

 Pr


2max

v2V

⌧
rf̄r(x)�rµr(x),

v

kvk

�
� t

�

holds for every t > 0, (113) gives

Pr
⇥��rf̄r(x)�rµr(x)

�� � 2�
⇤
 exp

✓
�nr�2

2⌫2
+ d log 5

◆

 �, (114)

where in the last inequality we used � =p
2⌫
q

d log 5+log(1/�)
nr

.
This completes the proof of Lemma 8.

Proof of Lemma 6. We have from Lemma 8 that for each
fixed x 2 C, with probability at least 1� �, we have

��rf̄r(x)�rµr(x)
��  2⌫

s
2d log 5 + 2 log(1/�)

nr

. (115)

To extend this argument uniformly over the entire set C, we
use another covering argument. Recall that D is the diameter
of C. Note that C is contained in Bd

D/2, which is the Euclidean
ball of radius D

2 in d dimensions that contains C. For some
�0 > 0, let C�0 = {x0,x2, . . . ,xN�0

} be the �0-net of C. It

follows from [49, Lemma 5.2] that N�0 
⇣
1 + D

�0

⌘d
.

Applying the union bound in (115), we get that with
probability at least 1� �, we have for all xi 2 C�0 ,

��rf̄r(xi)�rµr(xi)
��  2⌫

vuut2d log 5 + 2 log
⇣

N�0
�

⌘

nr

.

(116)

We want to bound
��rf̄r(x)�rµr(x)

�� for all x 2 C. Take
any x 2 C. Since C�0 is a �0-net of C, there exists an x0 2 C�0
such that kx� x0k  �0.
��rf̄r(x)�rµr(x)

��


��rf̄r(x)�rf̄r(x0)

��
| {z }

=: T1

+ krµr(x)�rµr(x
0)k| {z }

=: T2

+
��rf̄r(x0)�rµr(x

0)
�� (117)

Now we bound each term on the RHS of (117).

T1 =

�����
1

nr

nrX

i=1

(rfr(zr,i,x)�rfr(zr,i,x
0))

�����

 1

nr

nrX

i=1

krfr(zr,i,x)�rfr(zr,i,x
0)k

 Lkx� x0k  L�0

T2 = kEz⇠qr
[rfr(z,x)�rfr(z,x;)]k

 Ez⇠qr
krfr(z,x)�rfr(z,x;)k

 Ez⇠qr
Lkx� x0k  L�0

Substituting the above bounds on T1, T2 in (117) and bounding
the third term of (117) using (116) gives

��rf̄r(x)�rµr(x)
��  2L�0 + 2⌫

vuut2d log 5 + 2 log
⇣

N�0
�

⌘

nr

.

(118)

Note that N�0 
⇣
1 + D

�0

⌘d
. Take � = 1/

⇣
1 + D

�0

⌘d
. If we

take �0 = 1
nrL

, which implies � = 1
(1+nrLD)d , we would get

2d log 5+2 log
⇣

N�0
�

⌘
 4d+4d log(1+nrLD)  8d log(1+

nrLD). Substituting these in above gives
��rf̄r(x)�rµr(x)

��  2

nr

+
2⌫
p
nr

p
8d log(1 + nrLD).

(119)

32

When nr � 1
2⌫2d log(1+nrLD) (which is a very small number

less than 1), with probability at least 1� 1
(1+nrLD)d , we have

��rf̄r(x)�rµr(x)
��  3⌫

s
8d log(1 + nrLD)

nr

, 8x 2 C.

(120)

Lower bound on nr. Note that Lemma 8 requires �  ⌫
2

↵
,

where � =
p
2⌫
q

d log 5+log(1/�)
nr

. Substituting the value of

� = 1
(1+nrLD)d gives nr � 2↵2

⌫2 (d log 5 + d log(1 + nrLD)),
which is ⌦(d log(nrLD)) for constant ↵, ⌫. Treating the
smoothness parameter L a constant, we get nr =
⌦(d log(nrd)) to be requirement on the sample size at the
r’th worker for the bound in Lemma 6 to hold.

This completes the proof of Lemma 6.

B. Proof of Lemma 7 (sub-Gaussian gradients)

We prove Lemma 7 with the help of the following result,
which holds for any fixed x 2 C.

Lemma 9. Suppose Assumption 4 holds. Take an arbitrary

r 2 [R]. For any � 2 (0, 1) and nr 2 N, with probability at

least 1� �, we have for any fixed x 2 C:

��rf̄r(x)�rµr(x)
��  2

p
2�g

s
d log 5 + log(1/�)

nr

, (121)

where randomness is due to the sub-Gaussian distribution of

local gradients.

Proof. Follow the proof of Lemma 8 exactly until (110).
Then instead of the sub-exponential assumption, use the sub-
Gaussian assumption (Assumption 4) on local gradients. Then
apply the concentration bound from (104) with t = nr�. This
gives that for any fixed v 2 V and any � � 0, we have

Pr

⌧
rf̄r(x)�rµr(x),

v

kvk

�
� �

�
 exp

�nr�2

2�2
g

!
.

(122)

Now following the proof of Lemma 8 from (112) to (114)
gives

Pr
⇥��rf̄r(x)�rµr(x)

�� � 2�
⇤
 exp

�nr�2

2�2
g

+ d log 5

!

 �, (123)

where in the last inequality we used � =p
2�g

q
d log 5+log(1/�)

nr

.

We can extend the bound from Lemma 9 to all x 2 C (and
prove Lemma 7) using an ✏-net argument exactly in the same
way as used in the proof of Lemma 6. So, to avoid repetition,
we do not show this extension here.

C. Bounding the local variances

In Section VII-B, we showed that in order to bound
Ei2U [nr]

��rfr(zr,i,x)�rf̄r(x)
��2 uniformly over all x 2 C,

it suffices to bound krfr(z,x)�rµr(x)k for a random
z ⇠ qr uniformly over all x 2 C.
Bounding krfr(z,x)�rµr(x)k. To bound this, we need
sub-Gaussian assumption on local gradients (we can also
bound this using sub-exponential assumption, but that will give
a bound that scales as e⌦(d) as opposed to e⌦(

p
d)). Note that

Lemma 7 holds for any nr 2 N. In particular, it also holds
for nr = 1. So, under Assumption 4, with probability at least
1� 1

(1+nrLD)d , we have

krfr(z,x)�rµr(x)k  3�g
p
8d log(1 + LD), 8x 2 C,

(124)

where z ⇠ qr, and probability is over the randomness due
to the sub-Gaussian distribution of local gradients. So, with
probability at least 1� 1

(1+nrLD)d , we have

Ei2U [nr]

��rfr(zr,i,x)�rf̄r(x)
��2

 288�2
gd log(1 + LD), 8x 2 C. (125)

Note that (125) holds for a fixed worker r 2 [R]. By taking
the union bound over all workers r 2 [R] proves Theorem 6.

APPENDIX F
ADDITIONAL EXPERIMENTAL DETAILS

There are some implementation issues about the decoding
algorithm (as described in Algorithm 2) that could be impor-
tant in the deployment of the algorithm. In the following, we
describe these issues and also explain our approach in the
implementation to address them.

• Note that the stopping criterion (see line 7) in our
decoding algorithm described in Algorithm 2 requires
the matrix concentration bound �

2
0 that we show in

Theorem 3 in terms of the SGD variance bound �
2 (see

(2)) and the bounded gradient dissimilarity 
2 (see (6)).

Since these are properties of the local datasets stored at
clients, which is challenging to determine in a adversarial
federated learning setting. In order to mitigate this, we
observe two things:
1) the only place where Algorithm 2 uses this matrix

concentration bound is in the stopping criterion (in line
7); and

2) in each iteration of the while loop, at least one sample
gets its weight reduced to zero.

Since we know an upper bound on the fraction of corrupt
samples, these two observations suggest replacing the
stopping condition in line 7 with the condition that
break the while loop when the number of samples whose
weights become zero is more than the number of corrupt
samples. This is what we used as a stopping criterion (in
line 7) in our implementation of Algorithm 2.

• Note that each iteration of the while loop (line 7) of
Algorithm 2 requires computing the principal eigenvector
of the covariance matrix (line 8), which can be done
using the singular value decomposition (SVD) algorithm.

33

This, however, could be computationally expensive. To
mitigate this, we choose uniformly at random 1024 coor-
dinates from the all gradient vectors (same 1024 random
coordinates from all the gradients), and run the decoding
algorithm only on them. Suppose A denotes the set of
indices of the surviving gradients (i.e., whose weight are
not zero when the filtering algorithm terminates), then
we will discard all those full gradients whose indices are
outside the set A.

Furthermore, we observed performance boost when replacing
the line 13 of Algorithm 2 (i.e., bg =

P
K

i=1
w

(t)
i

kw(t)k1
g
i
) with

bg =
P

i2A

1
|A|

g
i
, where A contains the identities of the

surviving samples; in other words, we replaced the weighted
average with the uniform average.

	Introduction
	Problem Setup and Our Results
	Main Results
	Important Remarks About [thm:LocalSGDconvergence]Theorem 1

	Robust Accumulated Gradient Estimation
	Proof-Sketch of [thm:gradient-estimator]Theorem 3 – Matrix Concentration

	Convergence Proof of the Strongly-Convex Part of [thm:LocalSGDconvergence]Theorem 1
	Convergence Proof of the Non-Convex Part of [thm:LocalSGDconvergence]Theorem 1
	Experiments
	Bounding the Local Variances and Gradient Dissimilarity in the Statistical Heterogeneous Model
	Bounding the gradient dissimilarity
	Bounding the local variances

	References
	Biographies
	Deepesh Data
	Suhas N. Diggavi

	Appendix A: Proof of [lem:subsetvariance]Lemma 1
	Proof of [lem:subsetvarianceinterim-lemma]Lemma 3

	Appendix B: Complete Proof of [thm:gradient-estimator]Theorem 3
	Appendix C: Omitted Details from [sec:convexconvergence]Section IV
	Proof of [claim:convexfirst-term]Claim 1
	Proof of [claim:convexsecond-term]Claim 2
	Proof of [claim:convexthird-term]Claim 3
	A Useful Fact

	Appendix D: Full-Batch Local Gradient Descent – Proof of [thm:full-batch-GD]Theorem 2
	Convergence Proof of the Strongly-Convex Part of [thm:full-batch-GD]Theorem 2
	Convergence Proof of the Non-Convex Part of [thm:full-batch-GD]Theorem 2

	Appendix E: Omitted Details from [sec:statistical-model]Section VII
	Proof of [lem:kappa-boundsub-expall-x]Lemma 6 (sub-exponential gradients)
	Proof of [lem:kappa-boundsub-gaussall-x]Lemma 7 (sub-Gaussian gradients)
	Bounding the local variances

	Appendix F: Additional Experimental Details

