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Abstract—We study stochastic gradient descent (SGD) with
local iterations in the presence of Byzantine clients, motivated by
federated learning. The clients, instead of communicating with
the server in every iteration, maintain their local models, which
they update by taking several SGD iterations based on their own
datasets and then communicate the net update with the server,
thereby achieving communication efficiency. Furthermore, only a
subset of clients communicates with the server at synchronization
times. The Byzantine clients may collude and send arbitrary
vectors to the server to disrupt the learning process. To combat
the adversary, we employ an efficient high-dimensional robust
mean estimation algorithm at the server to filter-out corrupt
vectors; and to analyze the outlier-filtering procedure, we develop
a novel matrix concentration result that may be of independent
interest. We provide convergence analyses for both strongly-
convex and non-convex smooth objectives in the heterogeneous
data setting. We believe that ours is the first Byzantine-resilient
local SGD algorithm and analysis with non-trivial guarantees. We
corroborate our theoretical results with experiments for neural
network training.

Keywords: Federated learning; Byzantine attacks; local
iterations; robust mean estimation

I. INTRODUCTION

In the federated learning (FL) paradigm [1]-[4], several
clients (e.g., mobiles devices, organizations, etc.) collabora-
tively learn a machine learning model, where the training pro-
cess is facilitated by the data held by the participating clients
(without data centralization) and is coordinated by a central
server (e.g., the service provider). Due to its many advantages
over the traditional centralized learning [5] (e.g., training a
machine learning model without collecting the clients’ data,
which, in addition to reducing the communication load on the
network, provides a basic level of privacy to clients’ data), FL
has emerged as an active area of research recently; see [6] for a
detailed survey. Stochastic gradient descent (SGD) has become
a de facto standard in optimization for training machine
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learning models at such a large scale [3], [6], [7], where clients
iteratively communicate the gradient updates with the central
server, which aggregates the gradients, updates the learning
model, and sends the aggregated gradient back to the clients.
The promise of FL comes with its own set of challenges [6]:
(i) optimizing with heterogeneous data at different clients — the
local datasets at clients may be “non-i.i.d.”, i.e., can be thought
of as being generated from different underlying distributions;
(i) slow and unreliable network connections between server
and clients, so communication in every iteration may not be
feasible; (iii) availability of only a subset of clients for training
at a given time (maybe due to low connectivity, as clients
may be in different geographic locations); and (iv) robustness
against malicious/Byzantine clients who may send incorrect
gradient updates to the server to disrupt the training process.
In this paper, we propose and analyze an SGD algorithm that
simultaneously addresses all these challenges. First we setup
the problem, put our work in context with the related work,
and then summarize our contributions.

We consider an empirical risk minimization problem, where
data is stored at R clients, each having a different dataset
(with no probabilistic assumption on data generation); client
r € [R] has dataset D,.. Let F. : R? — R denote the local loss
function associated with the dataset D,., which is defined as
F(z) £ Eicyin, [Fri(x)], where n, = |D,|, i is uniformly
distributed over [n,] £ {1,2,...,n,}, and F,;(x) is the loss
associated with the 7’th data point at client r» with respect
to (w.r.t.) . Our goal is to solve the following minimization
problem:

12

arg min (F(ac) £ =3 Eicyinn [Fr,i(a:)]), (1)
r=1

where C C R¢ denotes the parameter space that is either equal

to R? or a compact and convex set.

In the absence of the above-mentioned FL challenges, we
can minimize (1) using distributed vanilla SGD, where in any
iteration, server broadcasts the current model parameters to all
clients, each of them then samples a stochastic gradient from
its local dataset and sends it back to the server, who aggregates
the received gradients and updates the global model. However,
this simple solution does not satisfy the FL challenges, as
every client communicates with the server (i.e., no sampling
of clients) in every SGD iteration (i.e., no local iterations),
and furthermore, this solution breaks down even with a single
malicious client [8].

Related Work. Recent work have proposed variants of the
above-described vanilla SGD that address some of the FL
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Fig. 1 In the master-worker architecture for distributed optimization, each of
the R workers (denoted by W;) stores local datasets — worker r stores D,
with an associated local loss function F.. We are in a heterogeneous data
setting, where the local datasets D;’s are arbitrary and are not necessarily
generated from the same distribution. Master (denoted by M) wants to learn a
machine learning model through SGD which minimizes the average of local
loss functions; see (1). The adversarial nodes are denoted in red color. Let
H denote the set of honest workers. In any SGD iteration, master broadcasts
the current model parameter vector « to all workers. Each honest worker
¢ computes the stochastic gradient g,(«) and sends it back to the master;
corrupt nodes may send arbitrary vectors. Master wants to compute g(x) =~
%‘ > icn 9i(x) in order to update the model parameter vector. Computing

g(x) and providing convergence analyses for strongly-convex and non-convex
objectives is the subject of this paper.

challenges. The algorithms in [9]-[16] work under different
heterogeneity assumptions but do not provide any robustness
to malicious clients. On the other hand, [8], [17]-[23] provide
robustness, but with no local iterations or sampling of clients;
furthermore, they assume homogeneous (either same or i.i.d.)
data across all clients. A different line of work [24]-[30] use
different techniques to provide robustness, and that without
local iterations or sampling of clients: [24], [25], [26], [28]
use coding across datasets, which is hard to implement in FL;
[29] change the objective function and adds a regularizer term
to combat the adversary; [30] effectively reduce the heteroge-
neous problem to a homogeneous problem by clustering, and
then learning happens within each cluster having homogeneous
data.

Lately, there have been some works [31]-[33] that studied
Byzantine robust optimization in the homogeneous data setting
(without local iterations) and did convergence analyses with
momentum updates, matching rates with that of vanilla SGD.
It is important to note that the use of momentum updates
in these papers help defend against time-coupled attacks in
which an adversary strategically constructs an attack over
time (i.e., builds the attack over the execution of gradient
descent); these attacks are very difficult to combat. The first
paper to recognize and defend time-coupled attacks (without
using momentum) was [19], that proposed a defense algorithm
in the unrealistic distributed setting where clients sample
stochastic gradients from the same dataset, and analyzed it for
convex functions using martingale-based analysis. A similar
technique was extended to the non-convex case (under the
same assumptions) in [34]. Both these papers also assume that

the stochastic gradients have bounded noise, almost surely (as
opposed to be bounded in expectation). This assumption was
removed recently in [31]-[33], [35], which recognized that
time-coupled attacks can also be handled by using momentum
updates together with simple robust aggregation method at
the server. Among these papers, the analyses in [31]-[33] are
again confined to the setting where all clients sample stochastic
gradients from the same dataset, which is orthogonal to the
inherently non-i.i.d. data setup of FL. Recently, [35] proposed
a new technique of bucketing to extend the aforementioned
momentum analysis that can be combined with existing robust
aggregators (in the homogeneous case) to the heterogeneous
case. The resulting convergence rate is qualitatively better, in
the sense that it coincides with the SGD rate in the absence
of Byzantine corruption. It is worth noting that none of these
papers incorporated local iterations into their algorithms and
analyses, which is one of the main ingredient in FL to achieve
communication efficiency.

We are only aware of one paper [36], that analyzed SGD in
FL setting (i.e., including local iterations), but the approxima-
tion error (even in the Byzantine-free setting) of their solution
could be as large as O(D? + G?), where G is the gradient
bound and D is the diameter of the parameter space that
contains the optimal parameters =* and all the local parameters
x! ever emerged at any client » € [R] in any iteration
t € [T]; this, in our opinion, makes their bound vacuous.
In optimization, one would ideally like to have convergence
rates depend on D with a factor that decays with the number
of iterations, e.g., with % or % as also in Theorem 1. In
Section VI, we also empirically demonstrate the poor learning
performance of their algorithm.

Our Contributions. In this paper, we tackle heterogeneity
assuming that the gradient dissimilarity among local datasets
is bounded (see (6), which is the same heterogeneity assump-
tion in [35]), and propose and analyze a Byzantine-resilient
SGD algorithm (Algorithm 1) with local iterations and client
sampling under the bounded variance assumption for SGD (see
(2)). We provide convergence analyses for strongly-convex and
non-convex smooth objectives. Our convergence results are
summarized below, where b is the mini-batch size for stochas-
tic gradients, o2 is the variance bound, k2 captures the gradient
dissimilarity, H is the number of local iterations in between
any two consecutive synchronization indices, K is the number
of clients sampled at synchronization times, € is the fraction
of communicating Byzantine clients at synchronization times,
and € is any constant such that e + ¢’ < 1.

For strongly-convex objectives, our algorithm can find ap-
proximate optimal parameters exponentially (in %) fast, and
for non-convex objectives, it can reach to an approximate sta-
tionary point with a speed of T/% See Theorem 1 for conver-
gence results. The approximation error I’ essentially consists

of two types of error terms: I} = O (Iigz (14 22) (e+ e’))

and I, = O(Hk?), where I} arises due to stochastic sampling
of gradients and I% arises due to dissimilarity in the local
datasets. Observe that I decreases as we increase the batch
size b of stochastic gradients and becomes zero if we take
full-batch gradients (which implies o = 0), as is the case in




Theorem 2. Note that even though the variance (and gradient
dissimilarity) of accumulation of H gradients blows up by a
factor of H2, still both I} and I have a linear dependence
on the number of local iterations H. See a detailed discussion
in Section II-B on the approximation error analysis and the
convergence rates, and also for the reason behind obtaining
rates that are off by a factor of H when compared to vanilla
SGD - looking ahead, the reason is working with weak
assumptions.

To tackle the malicious behavior of Byzantine clients, we
borrow tools from recent advances in high-dimensional robust
statistics [37]-[40]; in particular, we use the polynomial-time
outlier-filtering procedure from [39], which was developed for
robust mean estimation (RME) in high dimensions. In order to
use their algorithm (described in Algorithm 2) in our setting
that combines Byzantine resilience with local iterations, we
develop a novel matrix concentration result (see Theorem 3),
which may be of independent interest. As far as we know,
this is the first concentration result for stochastic gradients
with local iterations on heterogeneous data.

We believe that ours is the first work that combines local
iterations with Byzantine-resilience for SGD and achieves non-
trivial results under weak assumptions, while employing the
RME algorithm for filtering corrupt updates. RME algorithms
are provably superior than the existing algorithms based on
median, trimmed-mean, etc., in high-dimensions; see also Sec-
tion III for a detailed discussion on this. Unlike existing works,
we also analyze our algorithm on heterogeneous data and
allow sampling of clients. This required us to derive a nobel
matrix concentration result in the general FL setting. Note that
the earlier work that provide robustness (even without local
iterations or sampling of clients) either assume homogeneous
data across clients [8], [17]-[20], [22], [23] or require strong
assumptions, such as the bounded gradient assumption on local
functions [21].

Paper organization. We describe our algorithm and state
the convergence results in Section II. In Section III, we
describe our main technical tool, a new matrix concentration
result for analyzing the robust accumulated gradient estimation
procedure. We prove the convergence results in Section IV and
Section V. We provide empirical evaluation of our method
in Section VI. We instantiate our assumptions in the sta-
tistical heterogeneous data model in Section VII. Omitted
details/proofs are provided in the appendices.

II. PROBLEM SETUP AND OUR RESULTS

In this section, we state our assumptions, describe the
adversary model and our algorithm, and state our convergence
results followed by important remarks about them.

Assumption 1 (Bounded local variances). The stochastic
gradients sampled from any local dataset have uniformly
bounded variance over C for all clients, i.e., there exists a
finite o, such that for all x € C,r € [R], we have

Eicyn [V Fri(®) = VE ()] < 0. )

It will be helpful to formally define mini-batch stochastic
gradients, where instead of computing stochastic gradients

based on just one data point, each client samples b > 1
data points (without replacement) from its local dataset and
computes the average of b gradients. For any € R%,r €
[R],b € [n,], consider the following set

F&(x) = {2 > VFE.(x):Hy € ([TZ]) } 3)

i€Hy

Note that g,(z) €y F(x) is a mini-batch stochastic
gradient with batch size b at client r. It is not hard to see

the following, which hold for all € C,r € [R]:

Elg, ()] = VF (), )
E|g,(2) - VF,(z)|* < o®/b. (5)

Assumption 2 (Bounded gradient dissimilarity). The differ-
ence of the local gradients VF,.(x),r € [R] and the global
gradient VF(z) = + Zle VF.(x) is uniformly bounded
over R? for all clients, i.e., there exists a finite k, such that

|VE.(x) — VF(x)|> < x? VxecCreclR]. (6)

Assumption | has been standard in the SGD literature. As-
sumption 2 has also been used earlier to bound heterogeneity
in datasets; see, for example, [41], [42], which study decentral-
ized SGD (without adversaries), and more recently [35], which
study distributed SGD with adversaries, all with momentum.
Note that when clients compute full-batch gradients, we have
o = 0 in Assumption 1; similarly, when all clients have
access to the same dataset as in [8], [19], we have Kk = 0
in Assumption 2. Note that (6) can be seen as a deterministic
condition on local datasets, under which we derive our results.

A Note on Assumption 2. In the presence of Byzantine
adversaries, since we do not know which clients are corrupt,
we have to make some structural assumption on the data that
can provide relationships among gradients sampled at different
nodes for reliable decoding, and Assumption 2 is a natural way
to achieve that. There are many alternatives to establish this
relationship, e.g., by assuming homogeneous (same or i.i.d.)
data across clients [8], [17]-[20], [22], [23] or by explicitly
introducing redundancy in the system via coding-theoretic
solutions [24], [25], [28]; however, these approaches fall short
of in the FL setting.

Assuming bounded gradients of local functions (i.e.,
IVF,(z)|| < G for some finite G) is a common assumption in
literature with heterogeneous data; see, for example, [13], [15,
without adversaries] and [21, with adversaries]. Note that un-
der this assumption, we can trivially bound the heterogeneity
among local datasets by ||V F,.(x) — VFs(x)| < 2G. So, as-
suming bounded gradients not only simplifies the analysis but
also obscures the effect of heterogeneity on the convergence
bounds, which Assumption 2 clearly brings out.'

Bounds on o2 and 2 in the Statistical Heterogeneous
Model. Since all our results (matrix concentration and
convergence) are given in terms of o and k, to show a

See [12] for a detailed discussion on the inappropriateness of making
bounded gradient assumption in heterogeneous data settings and how it
obscures the effect of heterogeneity on convergence rates (even without
robustness).



clear dependence of our results on the dimensionality of the
problem, we bound these quantities in the statistical hetero-
geneous data model under different distributional assumptions
on local gradients; see Section VII for more details, where
we prove the following: For the SGD variance bound, we
show that if local gradients have sub-Gaussian distribution,
then o = O(y/dlog(d)). For the gradient dissimilarity bound,
we show that if either the local gradients have sub-exponential
distribution and each worker has at least n = Q(dlog(nd))
data points or local gradients have sub-Gaussian distribution
and n € N is arbitrary, then k£ < Kpean + O(1/d108(nd)/n),
where Kmean denotes the distance of the expected local gradi-
ents from the global gradient. Note that we make distributional
assumptions on data generation only to derive bounds on o, k;
otherwise, all our results hold for arbitrary datasets satisfying

(). (6).

Adversary Model. Throughout the paper, we assume that
e denotes the fraction of the K communicating clients that
are corrupt, i.e., at most €KX (out of K) clients that com-
municate with the server at synchronization indices may be
corrupt, where K < R is the number of clients chosen at
synchronization indices. This translates to, in the worst case,
having % fraction (i.e., a total of eK) of corrupt nodes in the
entire system, as in the worst-case, all the corrupt nodes can
be selected in a communication round; however, in practice,
due to several constraints, such as the unreliable network
connection (for which the adversary has no control over), we
cannot expect that the server will select all corrupt nodes in
all iterations. The corrupt clients may collude and arbitrarily
deviate from their pre-specified programs: at synchronization
indices, instead of sending the true stochastic gradients (or
local models), corrupt clients may send adversarially chosen
vectors to the server (they may not even send anything if they
wish, in which case, the server can treat them as erasures and
replace them with a fixed value). Note that, in the erasure
case, server knows which clients are corrupt; whereas, in the
Byzantine problem, server does not have this information.
Note that our theoretical results hold against a worst case
adversary, who is aware of the aggregation rule used by the
server and has access to local gradients/models at all clients;
with all this knowledge, such an adversary may conduct an
adaptive attack, and our proposed method safeguards against
such adaptive adversaries.

A. Main Results

Let Zr = {t1,ta2,...,tk,...}, with t; = 0, denote the set
of synchronization indices (where max;>1 |t;41 — t;| = H)
when the server arbitrarily selects a subset of K < R clients
(denoted by K C [R]) and sends the global model (denoted
by x) to them; each client r € I updates its local model x,
by taking SGD steps based on its local dataset until the next
synchronization time, when all clients in K send their local
models to the server. Note that some of these clients may be

Algorithm 1 Byzantine-Resilient SGD with Local Iterations

1: Initialize. Set ¢t := 0, ¥ := 0,Vr € [R], and = := 0.
Here, = denotes the global model and x! denotes the local
model at client r at time 0. Fix a constant step-size 1 and
a mini-batch size b.

2: while (t <T) do

3. Server selects an arbitrary subset /C C [R] of |[K| = K
clients and sends « to all clients in .
4:  All clients r € K do in parallel:
5 Setxzl ==.
6:  while (true) do
7: Take a mini-batch stochastic gradient g,.(x!) €y
F®b(x!) and update the local model:
ittt —ng (xL)); t« (t+1).
8: if (t € Z7) then
x! if client r is honest,
9: Let %i = L . .
% if client r is corrupt,
where 3 is an arbitrary vector in R,
10: Send %i to the server and break the inner while
loop.
11: end if

12 end while

13: At Server:

14 Receive {Z,,r € K} from the clients in K.

15:  For every r € K, let g, yeey := (T — )/7.

16:  Apply the decoding algorithm RAGE (see Algorithm 2
on page 7) on {g, y.cs " € K}. Let

/g\accu = RAGE(ET’,&CCU7 r 6 IC)

17:  Update the global model & + Il¢(x — 7g,..,), Where
II¢ denotes the projection operator onto the set C.

18: end while

corrupt and may send arbitrary vectors.” Server employs the
decoding RAGE and update the global model  based on that.
We present our Byzantine-resilient SGD algorithm with local
iterations in Algorithm 1.

Our convergence results are for both strongly-convex and
non-convex smooth objectives, and we state them in the
following theorem. Since our main focus in this paper is on
Byzantine resilience and also combining it with local itera-
tions, to avoid the technical complications arising due to the
projection operator (in line 17), we prove our results assuming
that the parameter space C is equal to R?. The analysis
involving the projection can be done using the techniques in
[18].

Before stating the results, we need some definitions first.

o L-smoothness: A function F' : C — Ris called L-smooth

over C C RY, if for every =,y € C, we have |VF(z) —
VF(y)| < L||x—y|| (this property is also known as L-

2Note that the only disruption that the corrupt clients can cause in the
training process is during the gradient aggregation at synchronization indices
by sending adversarially chosen vectors to the server, and we give unlimited
power to the adversary for that. Because of this and for the purpose of analysis,
we can assume, without loss of generality, that in between the synchronization
indices, the corrupt clients sample stochastic gradients and update their local
parameters honestly.



Lipschitz gradients). This is also equivalent to F'(y) <
F(z)+(VFE(z),y — ) + 5|z — y|*.

o u-strong convexity: A function F : C — R is called
p-strongly convex over C C RY (for p > 0), if for every
x,y € C, we have F'(y) > F(z)+ (VF(z),y — ) +
Kl — .

Theorem 1 (Mini-Batch Local Stochastic Gradient Descent).
Let IC; denote the set of K clients that are active at any
given time t € [0 : T| and € denote the fraction of corrupt
clients in K. For a global objective function F : R* — R,
let Algorithm 1 generate a sequence of iterates {x! : t € [0 :
T),r € Ki} when running with a fixed step-size n = 81{%' Fix
any € > 0,e > 0,7 > 1/2 such that € < % — €' holds. Then
with probability 1 — % exp(—w), the sequence
of average iterates {x' = % 3 o, @b it € [0: T|} satisfy
the following convergence guarantees:

e Strongly-convex: If F' is L-smooth for L > 0, and u-
strongly convex for p > 0, we get:

2 _ H T 0 _ %
§<1 16HL) [ERE

e Non-convex: If F' is L-smooth for L > 0, we get:

EHwT—az* 2+%F.

[EF)] ~EF@)] 9,

\}

T
1 0112
TZ]EHVF(QJ )H = T/16HL
t=0
In both the bounds above, I' = (% + % + 36HI€2)
with T2 = O (0d(e + €)), where o3 = 25?::"2 (1+24) +
28H?K2, and expectation is taken over the sampling of mini-
batch stochastic gradients.

We prove the strongly-convex part of Theorem 1 in
Section IV and the non-convex part in Section V. In addition
to other complications arising due to handling Byzantine
clients together with local iterations, our proof deviates
from the standard proofs for local SGD: We need to show
two recurrences, which arise because at synchronization
indices, server performs decoding to filter-out the corrupt
clients, while at other indices there is no decoding, as there
is no communication. The proof of the first recurrence is
significantly more involved than that of the other one.

Failure Probability. The failure probability of our algorithm
is at most %exp(—wy which holds for any
¢ > 0,e > 0,7 > 1/2 such that € < § — ~¢. This bound
though scales linearly with 7', also goes down exponentially
with K. As a result, in settings such as federated learning,
where number of clients could be large (e.g., in tens/hundreds
of millions) and server samples about a thousand, we can get
a very small probability of error, even if run our algorithm for
a long time. As a concrete scenario, say, the total number of
devices is R = 10 million and the server selects K = 1250 of
them. Then, even if we want robustness against one million
malicious clients, by choosing v = 100 and ¢’ = %(% - ),
the probability of failure of our algorithm would still be less
than Ze3%, which even if 7 = 10° and H = 1, would

still be less than 10~7. Note that the bound on probability of

error in Theorem 1 is a worst-case bound, and in practice,
our algorithm succeeds with moderate parameter values; see,
for example, Section VI for our experimental setup and the
results.

Note that the error probability is due to the sfochastic sam-
pling of gradients, and if we want a “zero” probability of error,
we can run full-batch GD, for which we get the following
result (yielding the approximation error of I' = O(Hk?)).

Theorem 2 (Full-Batch Local Gradient Descent). In the same

setting as that of Theorem 1, except for that we running

Algorithm 1 with a fixed step-size n = ﬁ and in any

iteration, instead of sampling mini-batch stochastic gradients,

every honest client takes full-batch gradients from their local

datasets. If € < L, then with probability 1, the sequence of

average iterates {x' = = Y o, @b it € [0 : T|} satisfy the
following convergence guarantees:

o Strongly-convex: If F' is L-smooth for L > 0 and pu-

strongly convex for p > 0, we get:
T |2 BT o w2, 14
"~ a7 < (1= 5p) Ie” =P+ 5T
(7

o Non-convex: If F' is L-smooth for L > 0, we get:
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1 T VF ¢ 2< F 0 (2" 24['
7 IVFEOI* < B [t - ) + 5 o
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72 + 25 H K2, where Tgp = O (Hr/e).

In (7), 8), I'cp =

We provide a compete proof of Theorem 2 in Appendix D.
For this, we also give a much simplified proof for the matrix
concentration result of Theorem 3, which is required to prove
convergence.

B. Important Remarks About Theorem 1

Analysis of the Approximation Error. In Theorem 1, the
approximation error I essentially consists of two types of error
terms: [} = O I‘;‘E’,Z (14 22) (e+ e’)) and Iy = O(Hk?),
where [ arises due to stochastic sampling of gradients and
Iy arises due to dissimilarity in the local datasets. Observe
that 1] decreases as we increase the batch size b of stochastic
gradients and becomes zero if we take full-batch gradients
(which implies ¢ = 0), as is the case in Theorem 2. Note
that even though the variance (and gradient dissimilarity)
of accumulation of H gradients blows up by a factor of
H?2, still both Iy and I, have a linear dependence on the
number of local iterations H. Observe that since we are
working with heterogeneous datasets, the presence of gradient
dissimilarity bound x2 (which captures the heterogeneity) in
the approximation error is inevitable, and will always show
up when bounding the deviation of the true “global” gradient
from the decoded one in the presence of Byzantine clients,
even when H = 1; see also Figure 2 for a pictorial intuition.

Convergence Rates. In the strongly-convex case, Algorithm 1
approximately finds the optimal parameters x* (within [’

error) with (1 — 16’;1L)T speed. Note that (1 — 716*;{L)T <




exp_m%%, which implies an exponentially fast (in 7/m)
convergence rate. In the non-convex case, Algorithm 1 reaches
to a stationary point (within I" error) with a speed of T/%
Note that the convergence rates of vanilla SGD (i.e., without
local iterations and in Byzantine-free settings) are exponential
(in T') and % for strongly-convex and non-convex objectives,
respectively; whereas, our convergence rates are affected by
the number of local iterations H. The reason for this is
precisely because we need 1 < SH% to bound the drift in
local parameters across clients; see Lemma 2. Instead, if we
had assumed a stronger bounded gradient assumption (which
trivially bounds the heterogeneity, as explained on page 3),
then Lemma 2 would hold for a constant step-size (e.g.,
n = ﬁ would suffice), which would lead to vanilla SGD
like convergence rates.

III. ROBUST ACCUMULATED GRADIENT ESTIMATION

In this section, first we discuss the inadequacy of traditional
methods (such as coordinate-wise median and trimmed-mean)
for filtering corrupt gradients in our setting, and then we
motivate and describe the robust accumulated gradient esti-
mation (RAGE) procedure that we use in Algorithm 1 as a
subroutine at every synchronization index. Then we prove our
new matrix concentration result that is required to establish
the performance guarantee of RAGE.

Inadequacy of Median and Trimmed-Mean. Coordinate-
wise median (med) and trimmed-mean (trimmean) are the
two widely used robust estimation procedures that are easy to
describe and implement, and they have been employed earlier
for robust gradient aggregation in distributed optimization; see,
for example, [18], [22, i.i.d. data setting] and [36, FL setting].
Below we argue that these methods give poor performance
in FL settings for learning high-dimensional models; we also
validate this claim through experiments in Section VI.

e For the simple task of robust mean estimation with inputs
coming a unit covariance distribution, med and trimmean have
an error that scales with the dimension as v/d [37], [39];
when we apply these methods in each SGD iteration, this error
translates to a large sub-optimality gap in the convergence rate.
e The adversary may corrupt samples in a way that they
preserve the norm of the original uncorrupted samples, but
have different adversarially chosen directions (these are called
directional attacks); since the performance of these methods
are based on the magnitude of the samples, they cannot
distinguish between the corrupt and uncorrupt samples. We
also implement directional attacks in Section VI to show the
efficacy of our method empirically.

e When taking coordinate-wise median, for estimating each
coordinate, we use only a single sample and discard the rest.
This is not a good idea in large-scale settings with non-
i.i.d. data, such as FL, where there are potentially millions
of clients, and if we somehow are able to use samples from
all (or most of the) honest clients, we could get a significant
reduction in variance of stochastic gradients. In med, we do
not take advantage of this variance reduction, which leads
to a performance degradation, which may be detrimental for
performance due to heterogeneity in data. The same reason

also applies to the robust gradient aggregation method (KRUM)
adopted in [8], which also uses only one of the input gradients
and discards the rest, giving poor performance.

Robust Mean Estimation. The above limitations of tradi-
tional methods motivate us to employ modern tools from high-
dimensional robust statistics [37], [39], [40]. In particular,
we use the polynomial-time outlier-filtering procedure for
high-dimensional robust mean estimation (RME) from [39]
for robust gradient aggregation in Algorithm 1. For clear
exposition of the ideas behind their algorithm, we use a version
of their algorithm as described in Algorithm 2, which is from
[43]. The crucial observation in these RME algorithms is that
if the empirical mean of the samples is far from their true
mean, then the empirical covariance matrix has high largest
eigenvalue. So, the idea is to iteratively filter out samples
that have large projection on the principal eigenvector of the
empirical covariance matrix, and keep on doing it until the
largest eigenvalue of the empirical covariance matrix becomes
sufficiently small (line 7). This is done via a soft-removal
method, where we assign weights (confidence score) to the
samples and down-weighting those that have large projection
(line 10) — in each iteration ¢, at least one sample (whose
projection Ti(t) is the maximum) gets 0 weight. In the end,
take the weighted average of the surviving samples.?

The RME algorithms overcome most of the above-
mentioned limitations of traditional methods, except for that
their guarantees are not directly applicable to our setting. This
is because the error guarantee of RME algorithms are given
in terms of concentration of the good samples around their
sample mean, which is easy to bound if good samples come
from the same distribution. Note that our setup significantly
deviates from this, where not only the input samples (which
are accumulated gradients) come from different distributions
(as clients have heterogeneous data), but each of them is also
a sum of H stochastic gradients (due to local iterations). Since
local iterations cause local parameters to drift from each other,
bounding the concentration of good samples requires bounding
this drift.

To this end, we develop a novel matrix concentration
inequality that first shows an existence of a large subset
of uncorrupted accumulated stochastic gradients and then
bounds their concentration around the sample mean; see (9) in
Theorem 3 below. As far as we know, this is the first matrix
concentration result in an FL setting.

First we setup the notation. Let Algorithm 1 generate a
sequence of iterates {z. : t € [0 : T],r € K;} when running
with a fixed step-size n < M%L, where KC; denotes the set
of K clients that are active at time ¢ € [0 : T]. Take any
two consecutive synchronization indices tj,t;+1 € Z7. Note
that |tx41 — tg| < H. For an honest client r € K, , let

i’f;ﬁéﬁ = Ei’:ti_l g, (x!) denote the sum of local mini-
batch stochastic gradients sampled by client r between time

3Note that the outlier-filtering procedure described in Algorithm 2 is
intuitive and easy to understand. There are better algorithms that are also more
efficient and can achieve better guarantees; see, for example, [44]. All these
algorithms require the same bounded matrix concentration assumption that
we show in Theorem 3, thus making them applicable to use as a subroutine
in Algorithm 1 without requiring any modification in our analysis.



Algorithm 2 Robust Accumulated Gradient Estimation
(RAGE) [39], [43]

1: Input: K vectors g;,9,,...,gx € R? such that there is
a subset of them S C [K] with |S| > 2 having bounded

] T
covariance A ax (ﬁ ZieS (9; —9s)(9; —9gs) ) <

o2, where g5 = ﬁ Yics i
2: For any w € [0, 1]¥ with ||w]|; > 0, define
K

Z IIWII

=1

Z ||’w||1

=1

=0

— p(w))(g; — p(w))"
Let w(©® = [11(, ., =] be a length K vector.
Let C > 11 be a universal constant.
Let £ = B(w).
Let t = 0.
while A (Z(w®)) > Co?

Let v(*) be the principal elgenvector of 3 (w ®),
For i € [K], define 7" = (v, g; — p(w®))".
(

-0
10:  Fori € [K], compute w!" ") = (1 s ) "), where

o o max

R AN A

Tmax = maXi:wE”>0 T,
11: t=t+1
12: end while

~ K w(t)
. — P S
creturn g =) ", Twoy, 9ir

—_—
(5]

tr, and t,41, where g, (x!) €y F2°(xl) satisfies (4), (5).
At iteration ¢4, every honest client » € K, reports its
local model wi’““ to the server, from which server computes

fn’f;;fc";l“ (see line 15 of Algorithm 1), whereas, the corrupt
clients may report arbitrary and adversarially chosen vectors in
R?. Server does not know the identities of the corrupt clients,
and its goal is to produce an estimate g.%;”*+* of the average

accumulated gradients from honest clients as best as possible.

Theorem 3 (Matrix Concentration). Suppose an € fraction
of K clients that communicate with the server are corrupt.
In the setting described above, suppose we are given K <
R accumulated gradients gfﬁffj“l r € Ky, in R% where
9o i’;{ctcku“ if r’th client is honest, otherwise can
be arbitrary. For any € > 0,v > 1/2, with probability
(_ (27—1)258’2(1—6)K)

~tr,lk41

1 —exp , there exists a subset S C K,
of uncorrupted gradients of size (1 — (e +v€¢'))K s.t.

1
)\max (E gg (gz

—9s)(9; — QS)T)

25H252 d
< 28H?k2, (9
— be ( +(1—(e—|—'ye’))K)+ 0
Where’ fOr (S S’ g; = g:kagc}:rl’gs = ﬁ EiGS gf‘jea,ctcﬁrl’ and

Amax denotes the largest eigenvalue.

Theorem 3 establishes the concentration results required for
the RME algorithm (described in Algorithm 2) that we employ
in Algorithm 1. This RME algorithm takes a collection of
vectors as input, out of which an unknown large subset (at

Fig. 2 We have total 9 workers, out of which 2 workers (numbered 8, 9)
are Byzantine. Since different workers have different datasets, their true local
gradients (denoted by VF;(x)) are placed in different locations. The blue
dashed circles (numbered 1 to 7) are centered at the true local gradients of
honest workers, and have their radius equal to the standard deviation o/v/,
which implies that their stochastic gradient samples g, may not lie inside
the blue circles. The red dashed circles correspond to the Byzantine workers,
and we do not have any control over them. Let {g5, ..., g} be the subset
S of uncorrupted gradients ensured by the first part of Theorem 3. Let the
robust gradient estimator in the second part of Theorem 3 outputs g(x) as
an estimate of grp.7) = ézi_ g;. To bound the approximation error
E||g(z) — VF(@)]]. note that E[g(z) — VF ()| < E||g(@)—gpp.m (@)]|+
Ellg[2.7) — VF2:71 (@) || + [| V.7 (2) — VE() |, where the hrst term can
be bounded by O(ao Ve + €), the second term can be bounded by the square
root of @*/6b, which comes from the variance bound for sampling, and the
third term can be bounded by «, which is the gradient dissimilarity bound from
(6). Note that the x term is inevitable because, in the presence of a constant
number of Byzantine workers, intuitively, VF3.7) () will shift away from
VF(x) by a constant fraction of x.

least a %-fraction) is promised to be well-concentrated around
its sample mean, and outputs an estimate of the sample mean.
The formal guarantee is given as follows:

Theorem 4 (Outlier-Filtering Algorithm [39]). Under the
same setting and notation of Theorem 3, if (€ + ~ve') < %,
then we can find an estimate g of gs in polynomial-time with
pmbability ] such that g — gsll < O(coVe+€), where

02 = B (1 4 3d) 4 o8 2k2,

Note that, instead of the RME algorithm, if we use med
or trimmean, we would get an extra multiplicative factor
of v/d in the upper-bound on ||g — g|| above. This would
translate to an extra multiplicative factor of d in the error term
(@] ((Iig,{z (14 24) + H/@Qf) (e + e')) in our approximation
error of Theorem 1. Therefore, effectively, we save a factor
of d in the approximation error of our convergence results by

using RME algorithms for outlier-filtering.

A. Proof-Sketch of Theorem 3 — Matrix Concentration

In order to prove Theorem 3, first we show the following
result, which states that if we have m independent distributions



each having bounded variance, and we take one sample from
each of them, then there exists a large subset of these samples
that has bounded variance as well.

Lemma 1. Suppose there are m independent distributions
P1,D2s -y Dm in R such that By [y] = pgi € [m]
and each p; has a bounded variance in all directions, i.e.,
Eyep [y — pi,0)?] < 02 Vo € R |jv| = 1 Take
any € > 0 and v > 1/2. Then, given m independent
samples Y1,Y2: -2 Yo where Yy, ~ p;, with probability
2

1 — exp(— W), there is a subset S of (1 — v€')m
points such that

1 7 4o d
)\max . TS < Pmax 1 ,
<|5|Zy*’l)— ¢ (*(1—w>m)

€S

where §; = y; — p; and 02 = MaX;c[m) 0p, .

Pmax

Lemma 1 is proved in Appendix A.

The important thing to note here is that the m samples
come from different distributions, which makes it distinct from
existing results, such as [45, Proposition B.1], which shows
concentration of i.i.d. samples.

Now we give a proof-sketch of Theorem 3 with the help of
Lemma 1. A complete proof is provided in Appendix B.

Let tx,tx+1 € Z7 be any two consecutive synchronization
indices. For ¢ € K, corresponding to an honest client, let
vie it v T be a sequence of (tgyq — ty) < H
(dependent) random variables, where for any ¢ € [ty : tr1 —
1], the random variable Y} is distributed as

YY)

Here, Y;' corresponds to the mini-batch stochastic gradient
sampled from the set
FE (xt(x*, Y™, ..., Y,"")), which itself depends on the
local parameters xf’“ (which is a deterministic quantity) at
the last synchronization index and the past realizations of
Ylt’c Yt_1 This is because the evolution of local parame-
ters x! depends on :1: * and the choice of gradients in between
time mdlces t, and £ — 1. Now define Y = :":ﬁi 'Y Let
p; be the distribution of Y;, which we will take when using
Lemma 1.

It is not hard to show that for any honest client i € K,
we have E|Y; — E[V}]||? < H2”2 . It is also easy to see that
the hypothes1s of Lemma 1 is satlsﬁed with u; = E[Y;], 07 =

? p
H* " for all honest clients i € Ky, , i.e., we have By p, [(y; —

Efy,],v)?] < 22 vy € RY, o] = 1.

We are given K dlfferent accumulated gradients (each is a
summation of H gradients), out of which at least (1 —¢)K are
according to the correct distribution. By considering only the
uncorrupted gradients (i.e., taking m = (1 — €)K), we have
from Lemma 1 that there exists a subset & C K, of size
(1 —~€)Y(1 —e)K > (1 — (e +7€))K that satisfies (in the

v~ Unif(FE (@ (2, V5 (10)

following, ¥; = y, — E[y;])
1 ~ ~T 52
/\max Tal ) 11
(I 5] 2 U9, ) 6, (11

~2 ._ 4H%0* d
where 6§ := 257 (1 + (1_(E+,Y€/))K)~

Note that (11) bounds the deviation of the points in S from
their respective means E[y,;]. However, in (9), we need to
bound the deviation of the points in S from their sample mean
ﬁ > ics Yi- As it turns out, due to heterogeneity in data and
our use of local iterations, this extension is non-trivial and
requires some technical work, given next.

From the alternate definition of the largest eigenvalue
of symmetric matrices A € R%? we have Apax(A) =
SUPy R, [|of|=1 v’ Awv. With this, (11) is equivalent to

5w

)2 <53,
vGRd HvH 1 |S| icsS

(12)

Define y g := ﬁ Y ics Y to be the sample mean of points
in S. Take an arbitrary unit vector v € R? Using some
algebraic manipulations provided in Appendix B, we get

= ys,'v>2 < 68(2)4-

18| Z ZH ly;] -

ZGS

Ely,]||” (13)

Using the gradient dissimilarity bound and the L-smoothness
of F, we can show that for honest clients r, s € Ky, , we have
IEly,] - ElyJI° < HYH " (65 + 3Lt — at|2).
Using this bound in (13) together with some algebraic ma-
nipulations we get

~2 2 2
\S| lezs —ygs,v)? < 657 +24H?k
12HL 1 el
Z Z > Ellzl —all* (14)
zES JES t=ty,

Now we bound the last term of (14), which is the drift
in local parameters at different clients in between any two

synchronization indices.
Lemma 2. [f n < we have Zt"“ 'E ||zt — 2t

TH? 2( +31€)

8HL’

Substituting this in (14) together with some algebraic ma-
nipulations provided in Appendix B, we get

1 , _ 25H20? d
|:5|Z< —ysio)t < =0 (1—(e+~ya))K>

+ 28 H?k2.

Note that this bound holds for all unit vectors v € R<.
Now substituting gL+t = 4. gg“fc’gl = ys and using the

alternate definition of largest elgenvalue proves Theorem 3.

IV. CONVERGENCE PROOF OF THE STRONGLY-CONVEX
PART OF THEOREM 1

Let Zp := {ti1,t2,...,tk,...} with £ = 0 be the set
of synchronization indices at which server selects a subset
K C [R] of K clients and sends the current global model
parameters to them. Upon receiving that, clients in /C performs
local SGD steps based on their own local datasets until the next
synchronization index, at which they send their local model



parameters to the server. When server has received the updates
from clients, it applies the outlier-filtering procedure RAGE
(see Algorithm 1) to robustly estimate the average of the
uncorrupted accumulated gradients and then updates the global
model parameters. We assume that H = max;>1 (41 — t;).

At any iteration ¢ € [T, let K; C [R] denote the set of
clients that are active at time ¢. Let 2 := % 37, . @ denote
the average parameter vector of the clients in the active set /C;.
Note that, for any t; € Zr, the clients in K, remain active at
all time indices t such that t € [t; : t; 11 — 1].

In the following, we denote the decoded gradient at the
server at any synchronization time ¢;; by @fwcf;“ which is an
estimate of the average of the accumulated gradients between
time ¢; and ¢, of the honest clients in KC;,, as in Theorem 3.
From Algorithm 1, we can write the parameter update rule for
the global model at the synchronization indices as:

~ti,tita

tit1 —
Tt (B — NYGaccu

Note that at any synchronization index ¢; € Zp, when server
selects a subset /C;, of clients and sends the global parameter
vector x'#, all clients in IC:, set their local model parameters
to be equal to the global model parameters, i.e., xli = x'
holds for every r € KCy,.

Now we proceed with proving the strongly-convex part of
Theorem 1.

First we derive a recurrence relation for the synchronization
indices and then later we extend the proof to all indices.
Consider the (i 4 1)’st synchronization index ¢; 1 € Zy.

tiv1 ~titit
@hitt = b 777-gaccu
tig1—1
= ‘—77— E E VF.(
”"EK:t t=t;
tiy1—1
_ At tivr VF,(
77 accu
rG]Ct t=t;

For  simplicity =~ of  notation, define & =
~ti,tign 1 tig1—1 t . .
Gueas '~ K 2orek,, 2ty VF.(z!)). Substituting

i i — L ti oj
this in the above and using x"* = - ZTE,C% x,i gives

tit1—1

tit Zw—n—z ZVF n&

rE/Ct relky, t=t;
tiy1—1
z( R )—ns
TGICt
LY (e e e
reky,
= glit171 77— Z VE, (gl — €
rElCt
=gl gV F(zh+ ) —ng

+n% > (VF(@@ 1) = VE(zhi 1) (15)

reky,

Subtracting «* from both sides gives:

xlitt — g* =gl —g* —pVF(zli+ 1) &
1 anty ant
+1 5 > (VF(@@' 1) = VE(zt 1) (16)

TEKf,i

= v

This gives '+l — £* = u + n(v — £). Taking norm on both
sides and then squaring gives

e = @ |* = flul + 2o = ]2 + 200w, v — &) (A7)

Now we use a simple but powerful trick on inner-products
together with the inequality 2(a,b) < ||a? + ||b||* and get:

- -0)

< M
||u||2 < || &|I* (18)

Substituting this back in (17) gives
oot = ot < (14 2 ulP o (+ 2 ) o - €17

< (0 B pul 2 (2 ) ol +20 (n+ 2 ) ey

Substituting the values of u, v, & and taking expectation w.r.t.
the stochastic sampling of gradients by clients in IC;, between
iterations t; and ¢;;; (while conditioning on the past) gives:

E [t —
< (1+5)E[et T —gvF@te ) — o

2 1
+2n<n+u>E 7 > (V@' ™) = VE(al+ )
rely,;

2
ti+171

2 byt 1
v (0 2Bl -5 3 vAE)
rek, t=t;

19)

Now we bound each of the three terms on the RHS of (19)
separately in Claim 1, Claim 2, and Claim 3, respectively.

Claim 1. For n < 1, we have

E thi+1_1 _ UVF(:EtiJrl_l) _ .’.E*HQ

< (- B et — 2|

(20)

Claim 2. For n < we have

8HL’

1 1—
E|= g’; (VF(zl+ ™) = VF(x' 1))

TH (o2 9
< — | — .
2k% + 5 (b +3/€) 21



Claim 3. If n < then with probability at least 1 —

_1
8HL’

exp (_w) we have
t1+1 1 2
Bl - X X A
rG/Ct t=t;
2 2
<3r?+ +30H?%k2%, (22

where T2 = O (03(e +¢€')) and 03 =

25H2 2 (1+ dd)
28 H?K2.

Claim 1, Claim 2, and Claim 3 are proved in Appendix C.
Using the bounds from (20), (21), (22) in (19) and using
(1+52) (1 — pn) < (1 — &) for the first term gives

E H:cti“ |

< (1- M) aten=t |

2 TH
2 2 (2n2 4+ 22 3k
EIGHICEE ICaE)
2 SH?%o?
o (n+u> (3T2+ 7 +30H2,‘<2)

< (1)l o

H2 2
L+ <3tr2 o™ | 33H2n2) , (23)
u b
where 72 = O (03(e+¢')) and 02 = 207 (1—|— 23[’1(2 +
28H 252 In the last inequality (23) we used n < g7 < 1 <

;, which implies (1 + u) < 2 Note that (23) holds with

probability at least 1 — exp <fw .

Note that above recurrence in (23) holds only at the syn-
chronization indices t; € Zp for i = 1,2,3,.... However,
in order to establish a recurrence that we can use to prove
convergence, we need to show a recurrence relation for all t.
Now we give a recurrence at non-synchronization indices.

Take an arbitrary ¢ € [T] and let ¢; € Zp be such that
t € [t; : tip1 — 1]; when H > 2, such t’s exist. Note that
xt = % ZTG]Cti ;

1
+1 _ .t t
=z’ = Y g

rely,
=at - n% Z VE,(x!
rely;
1 1
—n(? IR HCHESIDY VFr(wi))
rely; reER:;
= 2! — VF(a!) + % g; (VF(z') - VF,(z"))
— > (9.(al) ~ VE(al) 24)
Ty,

Now, subtracting * from both sides and following the same
steps as in from (16) to (19), we get (in the following,

expectation is taken w.r.t. the stochastic sampling of gradients
at the t’th iteration while conditioning on the past):

Bl —a*|” < (1+5]) El|a* —2* — 5V F(")’
2
2 1 ' .
+2n(n+= E||= > (VF(@') - VF.(2}))
® KTEICt,
2
2 1 . '
H KT'EKIt.
We can bound the first two terms on the RHS
of (25) using (20) and (21), respectively, as

w12

Elz! —nVF(z') — || < (1—w7)1E||w — 2|
B Soex,, (VFG) - VA <
2s2+ 2 "Tf + 3x? ). To bound the third term on the RHS of
(25), we use the fact that variance of the sum of independent
random variables is equal to the sum of the variances and

that clients sample stochastic gradients g, (z%) independent
of each other; using this fact and (5), we can bound

E| & 5o, (9.) - VEED)|| < 7

and

Substituting

these in (25) and using (1 + 1) (1—pn) < (1—42) for
the ﬁrst term and (n + ) g % (which follows because
< gp <1< 1)g1ve

E | — 2 ?

<(1-F)E[e' -2
L0 (e TH( g0} T
T3\ DK
61 2Ho?
<(1-FEfat 2|+ ; (SH + = ) (26)

Note that (26) holds with probability 1.

Now we have a recurrence at the synchronization indices
given in (23) and at non-synchronization indices given in (26).
Let a = (1-4), B = (372 + 252 4 330%42), and

By = (3H K2+ #) Substituting these and using (23) for
the synchronization indices and (26) for the rest of the indices,
we get:

Bl o

6 T/H H—1 T/H
<a”||z° — " | + a8, + 3"l
i=0 j=1 i=0
(27)
6 (o] o]
<a”[|a® —a|*+ =] (Z o'fa +Zamﬁl>
H\izo i=0
6m 1 1
:aTH;BO,q:*H +M<1_a52+1—aH61) (28)
g @
Since a = (1 %) we have off = (17%) <
2
exp(—1) 21— ety ()" Ly ey ot
15 pnH

15 4~ In (a) we used the inequality (1 — =



—z) <1—xz+2?
- and
<3 1 . Substituting these in

holds for any > 0; in (b) we used exp(
which holds for any > 0; in (c) we used n <

BHL
1 < L, which together imply ‘“7H

(28) gives
E e’ - 2|
_@ T 0 * 2 32
§<1 2) |l —="]" + ( Pz + 15m;HB>
u\ T ) 6><32
§<1_7) " ="+ 1542 (16*32+H51>
2 2
< (1—%)T!|w°— . 2+2;(3}§+11}b]0 +36HI<;2>
(29)

Note that the last term on the RHS of (29) is independent of
7, which together with the dependence of 7 on the first term
implies that bigger the 7, faster the convergence. Since we
need n < 3 H + for Claim 2 and Claim 3 to hold, we choose
n= SH% Substituting this in (29) yields the convergence rate
in the strongly-convex part of Theorem 1.

Error Probability Analysis. Note that (23) holds with
probability at least 1 — exp (—w and (26)
holds with probability 1. Since to arrive at (27) (which leads to
our final bound (29)), we used (23) - times and (26) (T — %)
times; as a consequence, by union bound, we have that (29)
holds with probability at least 1 — Z ex (—M)
p y " XP 3 ’
which is at least (1 — ¢), for any 6 > 0, provided we run
our algorithm for at most 7" < d H exp (—W)
iterations.
This concludes the proof of the strongly-convex part of
Theorem 1.

V. CONVERGENCE PROOF OF THE NON-CONVEX PART OF
THEOREM 1

Let K; C [R] denote the subset of clients of size |[K;| = K
sampled at the tth iteration. For any ¢ € [t; : t;41 — 1], let
! = 7 Ly ek, x! denote the average of the local parameters
of clients in the sampling set K,

Similar to the proof given in Section IV for the strongly-
convex part of Theorem 1, here also, first we derive a
recurrence for the synchronization indices and then for non-
synchronization indices.

For the synchronization indices t1,%s,...,tk,... € Zp,
from (15), we have

glitt = gl VR ) 490 (30)

where
1 ir1—1 1
C=— > (VF(@' ) = VE(xhi+™h)
reky,
tit1—1
(o -2 XY VREGED). 6

TE/Ct t=t;
Now, using the definition of L-smoothness in (30), we have

F(z'+)

< F(at=l) 4 (TF(zh 1) ghin — glin=l)

ot =t
=F(z'* ) —n(VF(" "), VF(g"+ 1) - O)
2
+ PE wratn ) - off
= F(a' 1) — | VF( || + (V1) 0)
772L 1 2
+7||VF( bit1 )*CH
< Pt = g [VR@ )
VE (gt~ 1))
+7 <||(4)H + ||C2>
2
+ E |VE@ ) - |
< Pt - TR el
+772L (va )|+ o))
= rate =g (3on) e
+n(1+nL)[|C]* (32)
In (a), we used the inequality 2(a,b) < |al® + 1|b|?,

which holds for every 7 > 0, and we used 7 = % in (a). In
(b), we used the inequality |la + b||* < 2(||a||® + ||b]?). For
n < gt < gr. we have (3/a—nL) > 1/2and (1+nL) < 2
Substituting these in (32) and taking expectation w.r.t. the
stochastic sampling of gradients at clients in X;, between

iterations t; and ¢;,; (while conditioning on the past) gives:

E[F(z'+)] < E[F(z'+ )] I

- g]EHVF(wt"“_l)
9
+£EHC||2. (33)

Now we bound E||C||?. Substituting the value of C' from
(31) gives:

1
2 it1—1 t; 1
E|C|* < 2E| = > (VE@@'+ 1) = VE (ak 7))
rele,;
tiy1—1 2
+ 2R |[glitier — Z > VE(
rGlCt t=t;

O )

H2 2
2<3T2 8 — + 30H?k 2)

2 <3tzf2 +

Here, the first inequality used ||a+b]||? < 2(||a||?+||b]|?) and
the second inequality used the bounds from (21) and (22).
Substituting the bound from (34) into (33) gives

2 2
9Hb o (34)

+ 33H2/$2)

E[F(a"+)] < E[F (@' )] - TE ||V Rt )|



9In 5  9H%0?
— | 3T
5 (a4 2

where 72 = O (03(e+¢')) and 02 = 20 (14 3d) 4
28H?k2. Note that (35) holds with probability at least 1 —
(2v—1)2e?(1—e)K

e

+ 33H%2) (35)

exp (—

Note that the above recurrence in (35) holds only at the
synchronization indices ¢; € Zr for i+ = 1,2,3,.... Now we
give a recurrence at non-synchronization indices.

We have done a similar calculation in the proof of the
strongly-convex part of Theorem 1. Take an arbitrary ¢ € [T
and let t; € Zr be such that ¢ € [t; : ;41 — 1]; when H > 2,
such t’s exist. Note that @' = & > . .

From (24), we have z!t! = a2t — nVlF(act

D= % > (VF(z') - VF,(xl))
rek:,

i

) +nD, where

—fz g,(x}) — VF.(xl)) .

rele,

Using L-smoothness of F', and then performing similar
algebraic manipulations that we used in order to arrive at (33),
we get:

E[F(2")] < E[F(z")] - 1 |VF(@)||’ + LE|D|?
(36)
Now we bound E||D||?:
2
1
E|ID|* <2E| <= (VF(z') - VE(x}))
rel:;
2
1
+2E|= > (g,(x) - V()
reky,
TH 2
<2(2 — —
< </¢ +32 (b—i—S >+bK)
2
2 (3Hm2 + 2172“ ) (37)

Here, the second inequality used the same bounds on both the
quantities on the RHS of the first inequality that we used to
go from (25) to (26).

Substituting the bound on E||D||? from (37) into (36) gives

ﬂIEHVF(a:t)HQ
2
L9 (3Hn T ﬂi" ) (38)

Note that (38) holds with probability 1.

Now we have a recurrence at synchronization indices given
in (35) and at non-synchronization indices given in (38).
Adding (35) and (38) from ¢ = 0 to T (use (35) for the
synchronization indices and (38) for the rest of the indices)
gives:

ZE

E[F(z1)] <E[F(2")] -

t+1

In | T 5  9H?0? 9 9
+4[H(3T+ A +33H"k

T 9 2Ho?
—|—<T—H> (3H/@ + b )] 39)
T

Since (T — ﬁ) < T, we can upper-bound the last term by

o (822 4 L2 4 36H ). Substituting this in (39) and

then rearranging, we get:

lZE IVPE)|? < = [E[F()] - E[F(27)]
T T
t=0
9 (372  11Ho?
+5 (H+ ;

Note that the last term in (40) is a constant. So, it would be
best to take the step size 1 to be as large as possible such that
it satisfies n < We take n = Substituting this in

+ 36 H K>
(40)

[\)

SIT- SHL
(40) and using F(zT*!) > F(x*) gives
T
1 s 16HL .
7 BNV P < S [BlFa)] - BlF )]
t=
9 /3r? 11Ho?
B i H 2
+ 5 ( i + b + 36Hk > ,
(4D

where 72 = O (0(e +¢)) and of = 23MLc” (1+ 343 4+
28 H2k2. Note that (41) is the convergence rate in the non-
convex part of Theorem 1.

Error Probability Analysis. Note that (35) holds with
probability at least 1 — exp <fw and (38)
holds with probability 1. Since to arrive at (39) (which leads to
our final bound (41)), we used (35) £ times and (38) (T — %)
times; as a consequence, by union bound, we have that (41)

holds with probability at least 1 % exp (— 21=1- 2 =0k ),

which is at least (1 — ¢), for any 6 > 0, provided we run
our algorithm for at most 7' < d H exp (—W)
iterations.

This concludes the proof of the non-convex part of Theo-

rem 1.

VI. EXPERIMENTS

In this section, we present numerical results on a non-convex
objective. Additional implementation details can be found in
Appendix F.

Setup. We train a single layer neural network for image
classification on the MNIST handwritten digit (from 0-9)
dataset. The hidden layer has 25 nodes with ReLU activation
function and the output has softmax function. The dimension
of the model parameter vector is 19, 885.* All clients compute
stochastic gradients on a batch-size of 128 in each iteration and
communicate the local parameter vectors with the server after

4784 x 25 = 19,600 weights between the input and the first layer, 25
bias terms (one for each node in the hidden layer), 25 x 10 = 250 weights
between the first layer and the output layer, and 10 bias terms (one for each
node in the output layer).
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Fig. 3 We compare the performance of our method (red) against three methods for robust gradient aggregation, namely, coordinate-wise trimmed-mean (black),
coordinate-wise median (green), and Krum (magenta) under three adversarial attacks (A.1, A.2, A.3), and plot training loss, test accuracy, and wall clock time
against number of epochs. The plot in blue corresponds to running Algorithm 1 with no adversaries and no decoding. In the legends, 7L denotes that we are

taking H = 7 local iterations. See also Footnotes 6, 7, 8.

taking H = 7 local iterations. For all the defense mechanisms,
we start with a step-size 7 = 0.08 and decrease its learning rate
by a factor of 0.96 when the difference in the corresponding
test accuracies in the last 2 consecutive epochs is less than
0.001.

Heterogeneous Datasets. The MNIST dataset has 60,000
training images (with 6000 images of each label) and 10, 000
test images (each having 28 x 28 784 pixels), and is
distributed among the 200 clients in the following hetero-
geneous manner: Each client takes a random permutation of
the probability vector [0.8,0.1,0.1,0,0,0,0,0,0,0]. Suppose
it obtains a vector p such that p; = 0.8,p; = 0.1,pr = 0.1
for some distinct 4,j,k € [0 : 9] and p; = O for the rest of
the indices, then it selects uniformly at random 800, 100, 100
training images with label ¢, j, k, respectively.

Adversarial Attacks. We have 12.5% adversarial clients, i.e.,
25 out of 200 clients are corrupt, and the corrupt set of clients
may change in every iteration. We implement six adversarial
attacks:

A.1 the ‘random gradient attack’, where local gradients at
clients are replaced by independent Gaussian random
vectors having the same norm® as the corresponding
gradients;

A.2 the ‘reverse average gradient attack’, where corrupt
clients send -ve of their average local gradients;

A.3 the ‘gradient shift attack’, where local gradients of corrupt
clients are shifted by a scaled (by factor of 50) Gaussian

5Note that changing the direction while keeping the norm same is among
the worst attacks as the corrupt gradients cannot be filtered out just based on
their norms.
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Fig. 4 We compare the performance of our method (red) against four methods for robust gradient aggregation, namely, coordinate-wise trimmed-mean (black),
coordinate-wise median (green), Krum (magenta), and Bulyan (cyan) under three adversarial attacks (A.4, A.5, A.6), and plot training loss, test accuracy, and
wall clock time against number of epochs. The plot in blue corresponds to running Algorithm 1 with no adversaries and no decoding. In the legends, 7L
denotes that we are taking H = 7 local iterations. See also Footnotes 6, 7, 8.

random vector (same for all);
A4

A5

the ‘all ones attack’, where gradients of the corrupt clients
are replaced by the all ones vector;

the ‘Baruch attack’, which was designed in [46] specifi-
cally for coordinate-wise trimmed mean (trimmean) [18],

Krum [8], and Bulyan [47] defenses; and

A.6

We train our neural network under all the above-described
adversarial attacks, and demonstrate in Figure 3 and Figure 4
the performance of our method (red color) against four other
methods for robust gradient aggregation, namely, coordinate-

the ‘reverse scaled average gradient attack’, where corrupt
clients compute the -ve of their average local gradients,
scale it by the factor of 50, and then send it.

wise trimmed-mean (black color) and coordinate-wise median

(green color), which were used in [18], [22], [36], Krum

(magenta color), which was proposed in [8], and Bulyan (cyan

color), which was proposed in [47]. For reference, we also plot
(in blue color) the performance of Algorithm 1 with the same

setup as above but without adversaries and with no decoding.

For each attack, we plot three curves, one for number of
epochs vs. training loss, one for number of epochs vs. test

accuracy, and one for number of epochs vs. wall clock time.

of epochs).

Performance (training loss and test accuracy vs. number
In Figures 3a, 3d, 3g, and Figures 4a, 4d,
4g we compare training loss vs. number of epochs and in
Figures 3b, 3e, 3h, and Figures 4b, 4e, 4h we compare test



accuracy vs. number of epochs of our method against the
previously mentioned methods under all six adversarial attacks
that we have implemented.® In particular, for attacks A.l,
A.3, A4, A.6, our method (with adversaries) achieves similar
performance for both training loss and test accuracy as that of
running SGD with local iterations but without any adversaries
and defense mechanism at the server; and for attacks A.2,
A.5, the performance difference (test accuracy) is around 0.1
at epoch 40, which is still significantly better than all other
methods.” This conforms to the inadequacy of using these
methods in our setting, as described in Section III. Note that
the experiments presented in [18], [36] only implemented a
benign ‘label-flipping’ attack, which is a data poisoning attack.
This is not a dynamic attack as, unlike gradient attacks, it does
not adapt to the learning process over iterations. In contrast,
in all our attacks, corrupt clients send adversarial gradients
in every iteration, making them significantly more malicious
than just flipping the labels. As we have mentioned in the
related work (on page 2), and we want to emphasize again,
that though [36] also studied the same problem as ours, but
employed ‘coordinate-wise trimmed mean’ for robust gradient
aggregation, their convergence bound, in our opinion, are
vacuous, as the sub-optimality gap in their bounds always
scales linearly with the diameter of the parameter space.
As far as we know, ours is the first theoretical result that
combines Byzantine-resilience with local iterations for high-
dimensional distributed training on heterogeneous datasets
with good empirical performance.

Performance (wall clock time vs. number of epochs). In
Figures 3c, 3f, 3i, and Figures 4c, 4f, 4i, we compare wall
clock time (i.e., the total time taken by each algorithm over
40 epochs) vs. number of epochs of our method against the
previously mentioned methods under all adversarial attacks
that we have implemented.® It can be seen that, unlike all other
methods, the time taken by our method (red in color) changes
depending on the attack. This is because our filtering is an
iterative method, and in some attacks, it filters out bad updates
in much fewer iterations than other attacks. For example, in
A4, A.6, our filtering method takes about 7-8x [less time than
Krum, whereas, in A.1, A.2, A.3, A.5, our method takes about
3% more time than Krum.

As mentioned in Appendix F and we would like to em-
phasize that here, that since we run SVD on the matrix
formed by the same 1024 randomly chosen coordinates from

6We found out that the Bulyan defense mechanism is significantly slower
than all other mechanisms. Due to this, we only implemented this for
the Baruch-attack, which was specifically designed against Krum/Bulyan
algorithms. Since a basic building block of Bulyan is Krum, and Krum
performs the worst among all the mechanisms that we implemented, we do
not expect Bulyan to perform significantly better than Krum in other attacks
as well — note that both Krum and Bulyan are the worst performing defense
mechanisms against the Baruch-attack.

7We plot the Krum performance in the training loss vs. number of epochs
figures only for the attacks A.2, A.5; because in all other attacks, the Krum
training loss became very high (above 100) even before epoch 40 and would
have prevented observing other methods’ performance if we had plotted it.

8The wall clock time of Bulyan was significantly higher in comparison to
all other methods, hence we skipped plotting the wall clock time of Bulyan,
as otherwise it would have prevented observing other methods’ performance
if we had plotted it.

all update vectors, our decoding algorithm’s run-time still has
linear dependence on d, because SVD run time is fixed and is
independent of d. In contrast, any coordinate-wise decoding
algorithm (such as, median or trimmed-mean) do necessarily
have to run the algorithm in all d coordinates. Therefore, in
large-scale problems, our modified decoding algorithm would
be on par with coordinate-wise trimmed-mean and coordinate-
wise median, and significantly better than Krum and Bulyan.

VII. BOUNDING THE LOCAL VARIANCES AND GRADIENT
DISSIMILARITY IN THE STATISTICAL HETEROGENEOUS
MODEL

In this section, we bound the gradient dissimilarity 2 (from
(6)) and local variance o2 (from (2)) in the statistical model
in heterogeneous setting, where different workers may have
local data generated from potentially different distributions.
The purpose of this section is to provide upper bounds on
and o in the statistical model.

Let ¢i1,q2,...,q9r denote the R probability distributions
from which the local data samples at the workers are drawn.
Specifically, the data samples at any worker r are drawn from
gr in an i.i.d. fashion and independently from other workers.
For r € [R], let Q, denote the alphabet over which g, is
distributed. For » € [R], let f. : Q, x C — R denote
the local loss function at worker r, where f.(z,x) is the
loss associated with the sample z € Q, w.rt. the model
parameters * € C C R? Linear regression is a classic

example of this, where, if z = (w,y) denote the pair of
a feature vector w € R? and the response y € R, then
fr(z,x) = $({w,x) — y)?. For each worker r € [R], we

assume that for any fixed z € Q,, the local loss function
fr(z,2) is L-smooth w.r.t. x, i.e., for any z € Q,, we have
IV, (z.2) = Vi(z )l < Lljz - y|, Ve, y € C.

Let p,(x) := E,q, [fr(z, z)] denote the expected value of
fr(z,2), when z is sampled from Q, according to g,. For
any « € C, let p(z) == & Zf’:l pr(z) denote the average
value of u,(x),r € [R].

We are given n, ii.d. samples z,1,2,2,..., 2y, at the
r’th worker from g¢,.. Fix an arbitrary parameter vector « € C.
Let f.(z) := i o fr(zpi, @) denote the average loss
at worker 7 on the n, samples z,1,...,2,,, WILL x. Let
f(x) == £>7_, fr(x) denote the average loss across all
workers. The analogues of (6) and (2) in this statistical
heterogeneous model are the following:

V(@) - Vi@ <2 vozec, @2

E IV fo(zrin2) = V(@) <o? vVezec. 43)

iEU[’Vlr]

We need to find good upper bounds on « and o that hold
for all » € [R],x € C with high probability. We provide
two bounds on x, one when the local gradients at workers
are assumed to be sub-exponential random vectors, and other
when they are sub-Gaussian random vectors. We provide a
bound on o assuming that the local gradients are sub-Gaussian
random vectors. These are standard assumptions on gradients
in statistical models, where data at all workers are sampled
from the same distribution in an i.i.d. fashion [17], [20],
[22], which is in contrast to our heterogeneous data setting,



where data at different workers may be sampled from different
distributions. Note that these works minimize the population
risk with full batch gradient descent, whereas, we minimize the
empirical risk with stochastic gradient descent. In particular,
[17] and [20] make sub-exponential gradient assumption and
give convergence guarantees only for strong-convex objectives.
On the other hand, [22] gives convergence guarantees for
non-convex objectives, but under a stricter condition of sub-
Gaussian distribution on gradients. In this paper, we provide
convergence guarantees for both strongly-convex and non-
convex objectives. Moreover, as opposed to [17], [20], [22],
our results are in a more general heterogeneous data model.
Note that we need sub-Gaussian assumption only to bound
the variance, which occurs because workers sample stochastic
gradients. In case of full batch gradient descent, we only need
sub-exponential assumption, as the variance is zero.

Now we state the distributional assumptions on local gradi-
ents.

Assumption 3 (Sub-exponential local gradients). For every
x € C, the local gradient vectors at any worker r € [R] are
sub-exponential random vectors, i.e., there exist non-negative
parameters (v, ) such that

sup  Bzng, [exp (A (V/r(2, @) — Vi (2),0))]

weR: v]|=1

1
< exp (\*?/2), VIAl< = (44)
@
Assumption 4 (Sub-Gaussian local gradients). For every
x € C, the local gradient vectors at any worker v € [R] are
sub-Gaussian random vectors, i.e., there exists a non-negative
parameter o, such that

sup  E.y, [exp A (Vfr(2z,2) — Vi (x),v))]

veR:||v||=1

< exp (N07/2), YA eR. (45)

Though, as stated above in both the assumptions, local
gradients at all workers have the same parameters ((v, )
for sub-exponential and o, for sub-Gaussian), this is without
loss of generality. In case they have different parameters
((vp, o), € [R] for sub-exponential and o, € [R] for sub-
Gaussian), we can take the final parameters to be the maximum
of the respective local parameters — for sub-exponential, we
can take v = max,c(g) ¥ and a = max,¢[g) @, and for
sub-Gaussian, we can take oy = max,c[g] Or-

A. Bounding the gradient dissimilarity k
In this section,
IV fr(z) = V()]
[V fr(x) - Vi)
< ||Vir(@) = Vi (@)|| + Vi () = V()|
+ |V f(@) = Vu(z)]
<|[Vfr(@) = V()| + IV (z) = V()|

we provide an upper bound on

R
1 _
) - Vi) o

where for the third term, we used f(z) = + 3% fi(z)
and p(x) = %Zle,ur(w), and applied the triangle
inequality. It follows from (46) that in order to bound
|V fr(z) = Vf(z)| uniformly over & € C, it suffices to
bound ||V, (x) — V()| and ||V [, () — Vi, ()|, Vr €
[R] uniformly over x € C.

Bounding ||Vu,(x) — Vu(z)|. Note that Vu.(x) =
Ezg. [Vfr(z,2)] is a property of the distribution g, from
which the data samples have been drawn and so is Vu(x) =
LS Vu.(z) the property of qi,...,qr. Note that
IVur(x) — Vu(x)|| captures heterogeneity among distribu-
tions through their expected values, and is equal to zero in
the i.i.d. homogeneous data setting of [17], [18], [20], [22].
In order to get a meaningful bound for k, it is reasonable
to assume that this heterogeneity is bounded. We assume a

uniform bound on the ||V, (z) — Vu(z)| for every = € C.

Assumption 5. For every worker r € [R), the population
mean of the local gradients has a uniformly bounded deviation
from the population mean of the global gradient, i.e.,

IV (x) — V()] < Kmean, vz € C. 47
Bounding ||V f,.(z) — Vi, (x)||. Now we bound the differ-
ence between the sample mean and the true mean under both
sub-exponential and sub-Gaussian distributional assumptions
on local gradients. For that we use standard tools, such as con-
centration results for sum of independent sub-Gaussian/sub-
exponential random variables and e-net arguments. We prove
in Lemma 6 and Lemma 7, respectively, in Appendix E
that under both the assumptions, with high probability, our

bounds are ||Vf,(x) — Vu.(z)| < O (W§ for

every « € C. Note that under the sub-exponential assumption,
the bound holds only for sufficiently large n, such that n, =
Q (dlog(n,d)), whereas, under the sub-Gaussian assumption,
the bound holds for every n,..

Substituting these bounds in (46) yields the following result,
which, for notational convenience, we state for the case when
all workers have the same number of data samples. Let
D = max{||x — «'|| : ,&’ € C} be the diameter of C. Note
that D = Q(+/d), and we assume that D can grow at most
polynomially in d.

Theorem 5 (Gradient dissimilarity). Suppose n := n,.,Vr €
[R], and Assumption 5 holds. Then, the gradient dissimilarity
bound under different distributional assumptions is as follows:

1) [Sub-exponential] Suppose Assumption 3 holds. Let n €
N be sufficiently large such that n = Q (dlog(nd)). Then,
with probability at least 1 — ﬁ, the following
bound holds for all r € [R] and x € C:

HVﬁ(w)VﬂwusHmaﬁo( dlogrd)).

(48)

2) [Sub-Gaussian] Suppose Assumption 4 holds. For every

n € N, with probability at least 1 — w, the



following bound holds for all r € [R] and x € C:

dlog(nd)
n

’|vfr(w) - 33)“ < Kmean + O

(49)
Remark 1. Note that under Assumption 3 (sub-exponential),
the gradient dissimilarity bound (48) holds only when each
worker has sufficiently large number of samples n =
0 (dlog(nd)). On the other hand, under Assumption 4 (sub-
Gaussian), the gradient dissimilarity bound (49) holds for
every n € N.

B. Bounding the local variances

The local variance boynd 221t the 7’th worker is
Eicyin |Vr(zri,®) = V()| < o? (from (43)). We
simplify the LHS:

Eieu[n,,.] ||vfr(zr,27 vfr ||
< Wiey ) |V Fr(Zri @) — Vi ()|
- 2
+ 2Ei€y[m~] var(m) - V,UT(SC)H

( ) R 2

22|V S (21, @) = Vi (@) + 2|V (@) — Vi (@)

24V (21, @) — Vi ()| (50)

For the first term on the RHS of (a), we used that z,;,% €
[n,] are ii.d., and the second term follows because it is
independent of i € [nr] Inequality (b) follows because
||Vfr(w = Ve (z H IVfr(zr1,2) — Vﬂr(fﬂ)HQs since
the average of i.i.d. samples gives tighter concentration in
comparison to if we use just one sample.

Note that bounding ||V f. (21, x) — V. (x)|| is equivalent
to bounding ||V f,.(z,x) — Vu,(x)|| for a random z ~ g,.
We provide a uniform bound on |V f,.(z,x) — Vu,(x)]| for
a random 2z ~ ¢, in Appendix E-C using the sub-Gaussian
gradient assumption. Below we state our final bound on the
local variances.

Theorem 6 (Variance bound). Suppose n := n,,Vr € [R],
and Assumption 4 holds. Then, with probability at least 1 —

m, the following bound holds for all r € [R]:

IV fr(zri®) = Vn(@)|)? < O (dlog(d)) ,Va € C.

(51

Remark 2 (Sub-Gaussian vs. sub-exponential assumption).
Note that, we needed sub-Gaussian assumption on lo-
cal gradients because we wanted to uniformly bound
Eicin,) IV fr(zri,®) — Vi ()] ®, which is the case when
we use only one data sample in each SGD iteration. In this
paper, we use mini-batch SGD with a variable batch size b.
So, when the batch-size b is sufficiently large and satisfies
b = Q(dlog(bd)), we can work with the sub-exponential
gradient assumption because the large batch size gives a
concentration similar to sub-Gaussian. This would give a

bound of O (dl%(bd)) on variance.
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APPENDIX A
PROOF OF LEMMA 1

As mentioned in Section III-A, Lemma 1 generalizes [45,
Proposition B.1], where the m samples y,, ..., y,, are drawn
independently from a single distribution p with mean p
and variance bound of ap, whereas, in our setting, different
y,’s may come from different distributions, which may have
different means and variances. Lemma 1 can be proved using
similar arguments given in the proof of [45, Proposition B.1],
and we provide a complete proof of this in this section.

Proof of Lemma 1 relies on the following lemma, which
we prove in Appendix A-A.

Lemma 3. Let p be a distribution on R? such that By, [y] =
w and By [(y — p,v)?] < 02 for all unit vectors v € RY.
Let M be a symmetric matrix such that 0 < M < cI for some
constant ¢ > 0 and tr((cI M)~ 1) < i L where Oprev > 0.
Take an arbitrary € € (0,1]. Then, for y ~ 9 p, with probability
at least 17%/, we have (M+¢€ (y—p)(y—p)') < (c+40?)1

and te( ((c+40?) T~ (M+-¢/(y— )y~ ")) ) < i

prev

Now we continue to prove Lemma 1 with the help of
Lemma 3.

Initialize a matrix M := 0, a set S := (), and ¢ := 4072 __ d.
Note that the preconditioning of Lemma 3 (i.e., 0 < M < cI
and tr((cI — M)™1) < ) is satisfied with oprey = 05,
Go through the stream of ngfvsamples from y, to y,,,. Note that
Opuax = Op,; holds for all 4 € [m]. For notational convenience,

let g, =y, —p; fori =1,2,...,m. If (M+€y,y; ) satisfies
the conclusion of Lemma 3, i.e., (M+e’§z§?) (c+402 )1
and tr(((c + 402 )T — (M + e’ﬂj?)) ) < 55— (which

we know holds with probability at least 1 — 5), then update
S+ SU{i}, M+ M+ €%y, , and ¢ + c+402,.°

Note that, in the next iteration, when we consider the
sample y, 1, the preconditioning of Lemma 3 is automatically
satisfied: If the conclusion in the 7’th step did not hold and we
did not update S, M, c, then the preconditioning of Lemma 3
in the (i + 1)’st iteration trivially holds, as it used to hold in
the ¢’th iteration. If the conclusion in the i’th step held and
we updated S, M, ¢, then the preconditioning of Lemma 3 in
the (i + 1)’st iteration holds, as it is the same condition that
we checked in the conclusion of the ¢’th iteration for updating
S, M, c.

When we have gone through the stream of m samples, in
the end, we have ¢ = 402 d+ Y, gdon < doa  (d+
|S]) and M < (402 (d+|S]))I, which implies that

Pmax
Amax(M) < dop | (d + |S]). Since M = 37, 6/%@?, we

~ ~ 40
have Anlax (IS% Zies y?,sz) = ﬁAmax (M) S Pmax (1 +
| S\) It only remains to show that |S| > (1—~e")m holds with
high probability.

Note that we only observe y,’s, not (y; — ;). In the context of distributed
SGD, the y;’s correspond to the stochastic gradients that the server receives
from clients, and there, the server does not know the true local gradients at
any client — the true local gradient at client ¢ corresponds to the mean ”’f;
here. Yet, in each iteration 4, we probabilistically add ¢/ (y; — ;) (y; — 1;)
to M. We can do that, because we just want to show an existence of a set S
that satisfies the required properties stated in Lemma 1. This is just for the
purpose of analysis, and we are not giving an algorithm to construct S.

By the above discussion, note that for each element ¢, we
add i to S with probability at least 1 — % Since the m
samples y;,i € [m] are independent of each other, we have
that the distribution of |S| is lower-bounded by the sum of m
independent indicator random Varlables where each of them
is equal to 1 with probability 1 — %. So, by Chernoff bound,

we have Pr[|S| < (1 — y€')m] < exp( M), which
. . 2v—1)e“m
implies that Pr[|S| > (1 — v€¢')m] > 1 — exp(— %)
This holds for any v > 1/2.

We have shown that with probability 1—exp(— %),
there exists a subset S of y;,...,y,, such that
S|z (1= ehm and A (i Ties B0 ) <

for

2
40‘2‘,’“‘* (1 + (kyda)m)' Substituting y, = y, — u;
1=1,2,...,m concludes the proof of Lemma 1.

A. Proof of Lemma 3

A version of this lemma has appeared in [45, Lemma B.2],
which, in turn, is essentially the same as [48, Lemma 3.3].
Our proof is along the lines of the proof of [45, Lemma B.2].

For simplicity of notation, let y = y — . Instead of (M —
€yy ) it will be helpful later to consider (M - tyy
arbitrary ¢ € [0, €'].

By the Sherman-Morrison matrix inversion formula, we
have that if a square matrix A € R™™ is invertible and
u,v € R™ are column vectors such that (1 +vTA~1u) # 0,
then (A + uwvT) is invertible and its inverse is equal to
(A+uv?)"l =A-1 %.

We Want to apply this formula on (((c + 402)I — M) —

gy’ )" with A = ((c+ 4021 — M), u = V/fg, and v =
—/ty. For that, we need to show two things: first, that ((c +
402)I — M) is invertible, and second, that (1 — tg” ((c +
402)I-M)~1gy) + 0. For the first requirement, note that M <
(¢ + 40?)1, which follows because M < cI (by assumption),
and o > 0. This implies that ((c+40%)I—M) is invertible. It
follows from the analysis below (see the paragraph after (54))
that the second requirement also holds for every ¢ € [0, €]
with probability at least 1 — %, Now, applying the Sherman-
Morrison matrix inversion formula on (((c + 402)I — M) —

tyg') "

for

(((c—|—402)I—M)—t§§T)_1:((c—|—4a —M)"!

t((c+402)1— ) 7" ((c+40?) M)
1—ty ((c+402) )

(52)

Taking trace on both sides gives

tr <<((c—|— 401 — M) — @T) 1)

=tr (((c + 40%)I — M)_l)
tr (((c +40%) - M) gy ((c + 4021 — M)fl)

L_g"((c+40)1-M) 'y

+



Let ®.(M) = tr((cI — M)~!). Using tr(AB) = tr(BA) on
the last term and using the fact that trace of a scalar is the
scalar itself, we get

Peraor(M+1GY") = Peysor (M)
2~

)
@T(( +40*)I-M) Ty

1"

((c +402)I-M) gy

(53)

1_
t

y
We are given &.(M) < and we want to show

(I)c+402(M +tgy ) < 4(.,12

prev
Dygo2(M + tf/@T) < ®.(M). This, in light of (53), is
equivalent to the condition

_1
2
40’pr o

So, it suffices to prove that

% > g7 ((c+40)I-M) 'y
~T 2 . —2
+y ((c+4o ) M) y7 (54)
D.(M) — Dy y,2(M)
=:U

which, as we show in the analysis below, will hold with
probability at least 1 — 52/ for all t € [0,€']. (Assume that
(54) holds with probability at least 1 — 62—, for all ¢t € [0,¢€].
Note that ®.(M) > &, 4,2(M) (from Claim 5 below) and
((c + 40%)I — M) = 0 hold. Using these in (54) imply
that § > g ((c + 40?1 — M) ' holds with probability
at least 1 — & for all ¢ € [0, €']. Thus the second requirement
(1 —t§" ((c + 402)I — M)~'g) # 0 also holds, which
was necessary for applymg the matrix inversion formula on
(((c+40)I-M) — tyy ) to write (52).)

Since W is a scalar, we have tr(¥) = U. Taking trace
in (54), and using tr(y” Agy) = tr(Agy”), and then taking
expectation, we get

E[V] =E [tr (((c+ 4071 — M)’lgngﬂ

E [tr (((c +402)I — M)‘Q’fggTﬂ

(M) — D y452(M)
Since ((¢+40%)I—M) > 0, we also have that ((c+40%)I—
M) = 0, fori = 1,2. Let A = ((c+40%)I - M)
for any ¢ € {1,2}. Now we argue that E {tr (Aﬂ@T)} <

o?tr (A), where o2 is such that Ey,[(g,v)?] < o? for all
unit vectors v € R%. Note that the last condition is equivalent

T
t0 SUPyepd;fufj=1 V" (Ey~p[yy ]) v < o2,

(55)

which, in view

(60), is equivalent to saying that Ay ax (Ey,vp [ﬂﬂT]) < o2,

Claim 4. E {tr (AQQT)] < o2t (A).
Proof. The claim follows from the following set of inequali-
ties.
E|r(Agy")| 2E ZAU @ );i
o Z AZJ ~~T L

© tr(A]E[g]g]T])
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<557 1an.
g) o?tr(A)

In (a) and (b), we used the definition of trace: tr(AB) =
>i(AB)i = >, AyBj. In (c), we used r(AB) =
tr(BA) < ||BJ|||A]|«, where || - ||« denotes the nuclear norm,
which is equal to the sum of singular values; see Claim 6
on page 21 for a proof. In (d), we used two things, first,
since A > 0, we have ||Al. = tr(A), and second, that

H]E [yy }H < 02, which follows because HIE [yy }H
N (Eynp 5371 < 0% =

Using Claim 4 in (55) gives
E[¥] < o?tr (((c + 40T — M)_l)

tr (((c +402)I — M)_z)
(M) — Boyypz (M)
d.(M) - Peta02 (M) z

2) N
Proof. Since (I — M) > 0, let its eigen-decomposition
be (I — M) = > . Nuul, where \;’s are the eigen-
values of (cI — M) and wu,;’s are the corresponding eigen-
vectors. It follows that ((cI—M)+402I) = >, (N +
40?)u;ul’. These imply that (cI —M)~! =Y, Luu] and
(L= M) +4021) " = %, oA Wit

Substituting the definition of ®.(M) = tr
have

+0? (56)
Claim 5.
10% (((+ 40%)1 - M)

((I-M)71), we

(M) — D, 452(M)

— ((CI - M)*1 — (((c+40™)1 - M))_l)

w;ul
22

1
_ 2
_ 4o (Z e
— 4o ( (e = M) + 40°1) ?)

Here (g) follows from the fact that trace of a square matrix

is equal to the sum of its eigenvalues and (h) follows because

1 1
BN Z A+4o02 O

Substituting @, 4,2 (M) = tr ((((c +402)T—M)) ") for

the first term in (56) and the bound from Claim 5 for the
second term gives E[¥] < 0% (®.y4,2(M)+ 123). Note
that Claim 5 trivially implies ®.4,2(M) < ®.(M), where



P, (M) = tr((cl = M)~') < 15— (which follows from the

hypothesis of Lemma 3). So, we have

1 1\ ® 11 1
E[¥] < o2 — | <= <=
()< o (402 +402> =7 (402+402> 2’

prev
(57

where (h) follows from our assumption that opey > 0.
Note that ¥ is a non-negative random variable (see (54)).

So by the Markov’s inequality, we have Pr[\IJ > 1 ) < ]Elyl’,} <
, which implies that Pr[¥ < ] >1-% Substltutlng the

Value of U in (54) implies that 54 holds with probability
at least 1 — % for all ¢ € [0,€']. Note that the condition in
(54) is equivalent to the condition that ®, 452 (M + tyy’) <
®.(M), where ®.(M) < . Thus, with probability at least

1
2
4(7prev

((<<c+402>1 ) ) =

Doygo2(M + @@T) < 402 , for every t € [0, €].

1— %', we have that tr

It only remains to show that (M + €'yy ) < (c+ 40?1,
which is equivalent to the condition that Ay.x (M + €' gy ) <
(c+40?). Suppose not, i.e., Amax (M + Gy~ ) > (c+40?).
Note that we have Apax(M) < ¢ (by the hypothe51s of
Lemma 3). Since Amax (M + t@@T) is a continuous function
of ¢ and Apax (M) < ¢, Amax (M + e’~~T) > (c+40?), we
have from the intermediate value theorem that there exists a

' € [0,¢] such that Ao (M + 5y ) = (c + 402). This
implies that the matrix (((c +40)I — (M + t’~~T))> ' is

not invertible (as ((c+40%)I— (M+t’~~T)) has a zero eigen-
value), implying that tr (((c +40)I — (M + @@T))) 1)
is unbounded. But, we have already shown that
o (a0 - 5™) ) < e

t €[0,€]. A contradiction.
This completes the proof of Lemma 3.

< 00, for all

Claim 6. For any two dimension compatible matrices A, B,
we have tr(AB) < ||A||||B||., where || - || is the matrix norm
induced by the {s-norm, and || - || is the nuclear norm, which
is equal to the sum of singular values of B.

Proof. Let r = rank(B), and let 0,7 = 1,2,...,r denote
the non-zero singular values of B. By the singular value
decomposition, we have B = ZZ 1 Ulul'v , where u;, v; are
the left and right singular vectors, respectlvely, corresponding
to the singular value o;. Note that u;, v; forevery i =1,...,r
are unit norm vectors.

T
= tr(A Z aiuiviT)
i=1
T
= Z oitr(Au;v))
i=1

(Since tr(A +B) =

T
= Z oitr(v] Auy)
i=1

tr(A) + tr(B))

(Since tr(AB) = tr(BA))

21

(Since vI Aw; is a scalar)

i
= ZO’{U?A’U;Z‘
i=1
@) —
< Zoillvi\lllAIIIIUill
= [|A] Zm

(Since Hul|| =1,||v;i|| =1, forevery i =1,...,r)
= [|A[lIBI[

In (a), first we used the Cauchy-Schwarz inequality to write
vl Au; < ||lv;|||Aw;|| and then used the definition of matrix
norm to write ||Aw;| < [JA||||u;||. Note that if A, B are
positive semi-definite, then equality holds in (a) above if and
only if B is a multiple of uu”, where u is the eigenvector
corresponding to the largest eigenvalue of A.

This completes the proof of Claim 6. [

APPENDIX B
COMPLETE PROOF OF THEOREM 3

Let tx,tk+1 € Zr be any two consecutive synchronization

indices. For i € Ky, correspondlng to an honest client, let
t

vie vt v T be a sequence of (tgiq — ty) < H

(dependent) random variables, where, for any ¢ € [ty : tx11 —
1], the random variable Yit is distributed as

).

Here, Y;' corresponds to the stochastic sampling of mini-
batch gradients from the set F°° (zt(x}*, V'™, ..., Y/ ™)),
which itself depends on the local parameters wf’f (which is a
deterministic quantity) at the last synchronization index and
the past realizations of Yit’“,...,Yf*l. This is because the
evolution of local parameters x! depends on sr:f" and the
choice of gradients in between time indices t; and ¢ — 1. Now
define Y; := i’ﬁ; ! Y}; and let p; be the distribution of Y;.
This is the distribution p; we will take when using Lemma 1.

Yt~ Unif(f?b (! (l*, Y. . (58)

Claim 7. For any honest client i € K,,, we have E|Y; —

E[Y;]|? < B b" , where expectation is taken over sampling
stochastic gradients by client © between the synchronization
indices ty, and tj4.

Proof. Take an arbitrary honest client ¢ € ICy, .

tk+1—1

S (v -EYY)

t=ty

E|lY; —E[Y]|? = E

t -1
(@ k41

< (b —te) > EY

t=ty

—E[Y/]|?

(b) H2 0_2

< )

)
where (a) follows from the Jensen’s inequality; in (b) we used
(tke1 — tr) < H and that E|Y! — E[YV}]||* < U for all
j € [H], which follows from the explanation below

E[Y]|?

E||Y; —



= Y Pr[Y —yl,je [ty t—l]}

L t—1

Y; Y,
X E IV B2 1YY =g € [t ¢~ 1]]
© . . o2
< ), Pr {Yf =yij € [tk:t—lﬂ T
Yk Lyt Tt
_z
b
Note that Y} ~ Unif(]-'f@b(mg(mzkﬂf;t’“,.‘.,Y,.tfl))> So,
when we fix the values Y,* = y'* ... V™! = ¢! the

parameter vector x} (acf’“ YR Yt 1) becomes a determin-

istic quantity. Now we can use the variance bound (5) in order

to bound ‘ A ,

B[V~ BYVAIP |Y7 = ylj€ [t t—1]] < 5. This is

what we used in (c). O]
It is easy to see that the hyPothe31s of Lemma 1 is satisfied

with p, = E[Y;], 05 = H 7~ for all honest clients i € Ky,
(note that p; is the dlstributlon of Y;):

()
v)’] < Elly; = Ey,op[w:ll°] - v]1?
(e) H20'2
<

— )

Eywpv: [(y; — Ely,],

where (d) follows from the Cauchy-Schwarz inequality and
(e) follows from Claim 7 and ||v|| < 1.

We are given K different (summations of H) gradients,
out of which at least (1 — €)K are according to the correct
distribution. By considering only the uncorrupted gradients
(i.e., taking m = (1 — ¢)K), we have from Lemma 1
that there exists a subset S C K, of K gradients of size
(I1—~€)(1—€)K > (1 —(e+~€))K that satisfies

T
Inax <|S| ; y _E[yl}) >
4H?5? d
= "he (” o)

Note that (59) bounds the deviation of the points in S from
their respective means E[y,]. However, in (9), we need to
bound the deviation of the points in S from their sample mean
%‘ Zie s Y;- As it turns out, due to our use of local iterations,
this will require some technical work.

From the alternate definition of the largest eigenvalue of
symmetric matrices A € R4*?, we have

Amax(A) = sup vl Aw. (60)

veRd [lv]|=1
Applying this with . A =
Fl\ >ics (Wi — Elyy]) (y; — Ely,])”, we can equivalently

write (59) as

Z 2
vertiuj—1 \IS] =

4H?52

22

Define yg := ﬁ Y ics Y. to be the sample mean of the points
in S. Take an arbitrary v € R such that |v|| = 1.

|S| lezs yS7
|S| Z ,v) + (Ely] - ySav>]2
€S
<580 2; g Zg s o)’

(using (a + b)? < 2a? + 2b°)

Using (61) to bound the first term, we get

7+ 57 2 (Bl |8|ny’>

€S

|S|§[|S|Z v
|5|§ Zj’ . w)”

(using the Jensen’s inequality)

5] 2 ] 2 Elwl o)

z€$ ]GS

13 2 e

i€S JES
(adding/subtracting E[y;] and using (a + b)* < 2a” + 2b%)

g .'7 >
|S|jezs Yi
\Gp Z ZH ly;] — Ely.]|”

(using the Cauchy Schwarz mequallty and that [jv|| < 1)

yil,v)’

165 jGS
Claim 8. For any r,s € K;,, we have
try1—1
Ely,] —ElyJII° <H Y (65 +3L%E|z! —z!]?),
t=ty,
(63)

where expectations in Ely,| and Ely,] are taken over sam-
pling stochastic gradients between the synchronization indices
tk,...,tkr1 by client v and client s, respectively.

Proof. Note that we can equivalently write E[y,.] = E|
Ely,] = E[Y].

Y,] and

IE[Y;] — E[Y]|* = |E[Y;] - E[Y;]|?
= > (Evi-ENY)
tpp1—1
< (e —te) Y B —E])

(64)



By definition of Y! from (58),
Unif(}";@b(:cg (mg’“,Y;t’“,...,Yst_l))), which implies using
(4) that E[Y!] = E [VF,(a! (2, Y}, ..., YI71))], where
on the RHS, expectation is taken over (Y% ..., YI=1). To
make the notation less cluttered, in the following, for any
s € Ky,, we write x} to denote o’ (z', Y%, ..., Y!™!) with
the understanding that expectation is always taken over the
sampling of stochastic gradients between t; and tj4;. With
these substitutions, the ¢’th term from (65) can be written as:

we have Y! ~

[EY) BRI = ||E [VE () z)]|’
<E||VF (z) =V s(wt)H (65)
<38 ||VF, (at) - VF ()|

+3E HVFs (a}) = VF ()|
+3E||VF (xi) —VF ()|
2 6k2 + 3L7E|x! — |2 (66)

Here, (a) and (b) both follow from the Jensen’s inequality. (c)
used the gradient dissimilarity bound from (6) to bound the
first two terms'® and L-Lipschitzness of VF to bound the last
term. Substituting the bound from (66) back in (65) and using
(tg+1 — tr) < H proves Claim 8. O

Using the bound from (63) in (62) gives

2 ~2
i ySav> < 60-0

1€S
tk+1 1
IS\Z ZH > (6% + 3L7E||z — L)
i€S t=tg
= 605 + 24H*k?
try1—1
12HL 1
Z Z > Elal — 2l (67)
168 jES t=ty

Now we bound the last term of (67), which is the drift
in local parameters at different clients in between any two
synchronization indices.

Lemma 4. For any r,s € Ky,, if n < SHL, we have
et 2 o?
> Ellal -2l < 7H (b + 3;@2) , o (68)
t=ty

where expectation is taken over sampling stochastic gradients
at clients r, s between the synchronization indices ty, and ty4 .

Proof. For any t € [ty : tp41 — 1] and 7,8 € K4, define
D}, = E|x} — z!||". Note that at synchronization time ,
all clients in the active set K;, have the same parameters,
ie., ¢lr = mtk for every r € K¢, . This together with x!+ =

v
xll — nzj +, 9 () (which holds for v = r, s), implies
D}, =E |z} — |

10Note that though cct s are random quantities, we can still bound
E ||VFT ) VFs(x || < K2 because the gradient dissimilarity bound
(6) holds uniformly over the entire domain.
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2
t—1

Jj=tk
(Since xfx = xt* Vr e Ky,)

t—tk ZEng :cj —g,( *’BJ)H2
J=tk
t—1 . o
<n*H Y (3E|lg,(@)) - VE (@)
J=tk
+3E ||g, (@) — VFy ()]

+3E | VE,(2}) - VE(@)]*) (©9)

To bound the first and the second terms we use the variance
bound from (5).!' We can bound the third term in the same
way as we bounded it in (65) and obtained (66). This gives

t—1
602 ) )
Dl <n’HY (Z +18k2 4+ 9L2E||x! — mg|2>

J=tk
6H2 t—1
< T”" +18H )’k + OL*Hy® Y DI,
J=tk

(Since DJ , = E ||z — mgHQ)
Taking summation from ¢ = ¢ to t541 — 1 gives

tp41—1 try1—1

2. D<)

t=ty t=ty

trpy1—1
6H?202n? 9
0 + E 18H*n
t=ty
trpy1—1

+ > 9LHp? Z Di,
t=ty J=tg
6H302n2

< TJ F1SH 22

try1—1
+9L*H* > Y DL,

t=ty
After rearranging terms, we get

try1—1

(1-9L*H?y?) Y Di, <

t=ty

6H3 2,2
# + 18H3n*K?

(70)

we get (1 — 9n?L?H?) > S. Substituting
t 1 7H3 2,2
DL, < I

, which proves Lemma 4. O

If we take n < SHL,

this in the LHS of (70) yields
21H3n?K?

Substituting the bound from (68) for the last term in (67)
gives

i — Ys,)? < 605 + 24H?kK?
12HL2
AL S S (e (5 owe
zGS ]GS
"Note that :ci s are random quantities, however, since the vari-

ance bound (5) holds umformly over the entire domain, we can bound
E gr(wT‘) VFT(wT) < d




2
= 662 + 24H2K2 + S4AH* L% ("b + 352)

- 21H?%0? ,
< 605 + 28H*K? + T (Using n < ﬁ)
24H?0? d 21H?0?
< 1 28H?K?
=" be ( Tz (6-1—76 ))K) T e
4H?o? d
(Since 7% = o (1 + (17(&%,))1{))
25H?0? d
< I+ ) + 28H?% 71
e T =TT R
In the last inequality we used % < 5 <

5 (1 + W), where the first inequality follows
because ¢ < L < 2 Note that (71) holds for

eve unit vector 3'7; € Rg. Using this and substituting
y acc’;“ = yl,gg“;i’zf = yg in (71), we get
2
vertzlul=1 9] Z< e _g‘t;ml’”>
< 25H2 - (1 + d > + 28H?K?
- b (1—(e+~€¢)K '

This, in view of the alternate definition of the largest eigen-
value given in (60), is equivalent to (9), which proves Theo-
rem 3.

APPENDIX C
OMITTED DETAILS FROM SECTION IV

We prove Claim 1, Claim 2, and Claim 3 below.

A. Proof of Claim 1
Expand the LHS.
E H:ct”l_l —x* - r]VF(a:ti“_l)H2

—E |z -2 |* + 9’E | VF(z
+ 29K (@ — ' V(2 )

2

o)

(72)

We can bound the second term on the RHS using L-
smoothness of F, which implies that |[VF(z)|> <
2L(F(x)—F(z*)) holds for every & € R%; see Fact 1 on page
26. We can bound the third term on the RHS using p-strong
convexity of F as follows: (x* — zfi+1 =1 VF(z'+1 1)) <
F(x*) — F(a'+ 1) — &'+~ — 2*||?. Substituting these
back in (72) gives:

E ||:c“+1_1 —x* - nVF(:Bt"“_l)‘ 2
< —p)Eljz’ 7 -2t
—2n(1 —nL)E (F(mt”l_l) —

2

F(x*)) (73)
Since n < %, we have (1 — nL) > 0. We also have
F(zt+1~1) > F(x*). Using these together, we can ignore
the last term in the RHS of (73). This proves Claim 1.
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B. Proof of Claim 2

By definition, we have x!+1~! = tit1 1

% ZT‘EKti T

L 5 @R - vreey)
TER:,
B L I
TEK:t
<2 S B[R - TR
'I"E)Cf
2 S B [vREtnt - vRE)?
TE/Cti
g) 2 2 L2 || gti+r—1 tir1—1]||2
rely; rely;
S gt LS e
reky, SE’Cti
2L? 1 o —1y2
D S
rekle, sER,
2
(22“+£Z Z(H“( +35)>
reE:; SG’Ct

2
— 2k2 4 14L2H3p? (‘Tb n 3;@2)

© TH
<224+ — 3K
5 (5 )
In (a) we used the gradient dissimilarity bound from (6) to
bound the first term and L-Lipschitz gradient property of F
to bound the second term. For (b), note that we have already

bounded Zt’“ YElxt — 2t ||? < 7TH3p? +3/<; in
(68) in Lemma 4. Since each term in the summatlon is trivially

bounded by the same quantlty, which we used in (b) to bound
ghitt ™t gl 1H < 7H3 2( +3I<L) In (¢) we

used n < g7

C. Proof of Claim 3

Let S C K, denote the subset of honest clients of size (1 —
(e+€')) K, whose average accumulated gradient between time
t; and t; 11 that server approximates at time ¢, in Theorem 3.

Let the average accumulated gradient be denoted by gia’t+! =

1 ti,tita tistitr tigt1—1 t

EZTES Graccu » Where graccn = t=t; gr(mr)’ and
it . .

server approximates it by g,..,"'. Note that S exists with

probability at least 1 —exp (—W). To make the

notation less cluttered, for every r € K;,, define VET =

tiy1—1
i VE (7).

2
Atlatl+1 1 ti,t +1
E Gaccu - E VFTL ‘
rele,;
2
~titig1 1 titit1
< 3E gaécuL - |3| Zgr,accu




2
+ 3E

R

reS

tistiv1 2 : it
raclcu ‘S| VF Pl

resS

2

1
3E || — VEbtivr _ — V Fliti+y 75
+38|| LS R - LSS Rt
resS sER,
Now we bound each term on the RHS of (75).
Bounding the first term on the RHS of (75). We can

bound this using the second part of Theorem 3 as follows
(note that given the first part of Theorem 3 is satisfied, the
second part provides deterministic approximation guarantees,
which implies that it also holds in expectation):

2
1

"tw i+1

gd(.(.l] |S|

tistig1
graccu

resS

E <7? (76)

where T2 = O (08(e+¢€')) and of = 25H2 : (14+34) +

28 H? k2.

Bounding the second term on the RHS of (75). We can
bound this using the variance bound (5).
) 2
- ti‘7ti+1 _ VFt,-,tHl)
|S‘ Z (gr,dccu r
tiy1—1 2
= Z Z g.(z Fy(2}))
t=t; res
m> bl . 2
2+1 Z E ‘ Z g'r ”‘(wr»
res
® ety ?
<H Y @E > (g.(x}) = VE (a}))
t=t; resS
t1+1 1
( ) £ (]2
° Z ZE lg. (x7) = V()]
res

@ e 1 o

<H

=2 5

(e) 4H2 2

< . 77

= 3K (77
In (a) we used the Jensen’s inequality. In (b) used |t;41 —t;| <
H. In (c) we used (4) (which states that E[g,.(z)] = VF,.(x)

holds for every honest client r € [R] and € RY) together
with that the stochastic gradients at different clients are sam-
pled independently, and then we used the fact that the variance
of independent random variables is equal to the sum of the
variances. Note that Var(g,.(z!)) = E g, (x!) — VF,.(z )||
In (d) we used the variance bound (5). In (e) we used
S| > (1= (e+~€¢))K > 25, where the last inequality uses
(e+7€) <3

Bounding the third term on the RHS of (75).

2

% Z VF;i,tiH

SEK:,

S FCPIAZEE

res

25

2

tir1—1 1
t

5| 3 (G vheh - X vReED)
t=t; rGS sGlCti

@ et 1 ’

<H E Fo(xl) — — F (2!

= IS ZV K Z VE(x
t=t; res s€Ky,

(78)

In (a), first we used the Jensen’s inequality and then sub-
stituted |t;+1 — t;| < H. In order to bound (78), it suffices

2
o bound E | & 3, e VF(@h) — 4 S,ex,, VE(@L)| for
every t € [t; : t;11 — 1]. We bound this in the following. Take
an arbitrary ¢ € [t; : t;11 — 1].

|8|ZVF

res

2

1

- > VE(ah)
SEK:,

2

VF(z,))

|S|Z (VE,(

res

2

% > V(!

SEK:,

+3E ‘S|ZVF

resS

1

+3E % Z (VF(xl) — VFy())

SER,

The first and third terms can both be bounded by 3x? (using
Jensen’s inequality and bounded gradient dissimilarity bound
(6)). For the second term we can add and subtract VF (zt) =
Iél Yoes VE(x') = % ZseK VF(x') and then using ||a+
b||2 < 2[|al| + 2||b||2, we get the following

1 -
% Z VFst“t”l

2

Blis G S VE

res sElCti
2
< 3k% + 3k + 6 5 ZVF VF(x!)
‘ |r€$
2
+ 6K % > (VF(=!) - VF(z"))
SER:,
< 6r2 +—ZE||VF VF (')
|8| res
6 2
+ % > E||VF(a!) - VF(z')|
SEK:,
< 6K2 —|——ZL2E||:C —x H
|S| res
6 2
+E Z LQ]EHwi—actH
SEK:,
2
_ 2 i t
= 6K + S| Z a:s
6L2 1 2
+— E‘ b — x!
K rek: Ksele:t




< 6K> +EZ ZEHQ:?—:B@Hz

resS S’EK:t
+*Z 1 &
reER:; SGICf

Substituting this back in (78) gives:

% Z sttl stit1

2
tit1—1

<H Z 612

B | g S VR -

res sER, t=t;
tiv1— 1
+H Z |S| Z > Ela] -
TES SEK:,
"ot er?
+H Z > S Bt - alf
reky, sEICt

(a)
< 6H2K2 + 6H L (7H3 2 < — +3x )>

+6HL2< TH? 2<b + 3k ))

2
=6H?k% + 84L2H'n? (Ob + 3K2>

(b) 21H?¢?

< 10H?k? + ——. 79

< K+ 166 (79)
In (@ we used t41 — t; < H and the bound

LAV gt — gt |? < TH? (% —&—3/-@2), which holds

when n < o7 we have already shown this in (68) in
Lemma 4. In (b) we used n < g7

Substituting the bounds from (76), (77), (79) in (75) gives
2

E ’g\tzatH»l o Z VFt“tLJrl
TEICt
2 2 2 2
<gr2 MO o (o222
16b

H2 2 4H2 2
<3r?+ 9 L 30H%K2 + g

8H2 2
=312+ 227 L 30H2K2,

where 17 = O e ) and of = S (14 5) +

This completes the proof of Claim 3.

D. A Useful Fact

Fact 1. Let F : R® — R be an L-smooth function with a
global minimizer x*. Then, for every x € R, we have

IVF(x)|* < 2L(F(x) — F(z")).

Proof. By definition of L-smoothness, we have F(y) <
F(z) + (VF(z),y — ) + |y — «/* holds for every
x,y € R?. Fix an arbitrary € R? and take infimum over y
on both sides:

y Yy

inf F(y) < inf (F(ac) + (VF(x),y —x) + %Hy - :L'||2>

26

2
@ .Hian_lirgf (F(w) +t(VF(x),v) + L;)

© g (F(:Jc)—21L(VF(5'3)7”>2)

vil|v]=1

© 1 2

O (F(z)— —|VF

(F@) - 5zIvF@I?)
The value of ¢ that minimizes the RHS of (a) is ¢t =
—+(VF(x),v), this implies (b); (c) follows from the Cauchy-
Schwarz inequality: (u,v) |u||||v]|, where equality is
achieved whenever u = wv. Now, substituting inf F(y) =
Y

F(x*) yields the result. O

APPENDIX D
FULL-BATCH LOCAL GRADIENT DESCENT — PROOF OF
THEOREM 2

In this section, we focus on the case when in each local
iteration clients compute full-batch gradients (instead of com-
puting mini-batch stochastic gradients) in Algorithm 1 and
prove Theorem 2.

Note that the robust accumulated gradient estimation
(RAGE) result of Theorem 3 (which is for stochastic gradients)
is one of the main ingredients behind the convergence analyses
of Theorem 1. So, in order to prove Theorem 2, first we
need to show a RAGE result for full-batch gradients. Note
that we can obtain such a result by substituting o = 0 in
both the parts of Theorem 3; however, this would give a loose
bound on the approximation error in the second part. In the
following, we get a tighter bound (both for RAGE and the
convergence rates in Theorem 2) by working directly with full-
batch gradients. To get a RAGE result for full-batch gradients,
we do a much simplified analysis than what we did before to
prove Theorem 3, and the resulting result is stated and proved
below in Theorem 7.

Note that, in order to prove Theorem 3, we showed an
existence of a subset S of honest clients (from the set K of
clients who communicate with the server) from whom the ac-
cumulated stochastic gradients are well-concentrated, as stated
in form of a matrix concentration bound (9) in Theorem 3.
It turns out that for full-batch gradients, an analogous result
can be proven directly (as there is no randomness due to
stochastic gradients); and below we provide such a result. Note
that Theorem 3 is a probabilistic statement, where we show
that with high probability, there exists a large subset S C K
of honest clients whose stochastic accumulated gradients are
well-concentrated. In contrast, in the following result, we can
deterministically take the set of all honest clients in K to be
that subset for which we can directly show the concentration.

First we setup the notation to state our main result on
RAGE for full-batch gradients. Let IC; C [R] denote the
subset of clients of size K that are active at any time

€ [0 : T]. Let Algorithm 1 generate a sequence of iterates
{zl : t € [0: T],r € K;} when run with a fixed step-size
n satisfying 7 < =3+ while minimizing a global objective
function F : R? — R, where in any iteration, instead of
sampling mini-batch stochastic gradients, every honest client
takes full-batch gradients from their local datasets. Take any



two consecutive synchronization indices tj,t;+1 € Z7. Note
that |tx+1 — tg| < H. For an honest client r € K;,, let
VFTt”;’ctc’f',“ = i’:ti_l VF,(x) denote the sum of local full-
batch gradients taken by client r between time ¢; and tj1.
Note that at iteration ¢4 1, every honest client r € KC;, reports
its local parameters wf’k“ to the server, from which server
can compute VFZ’;&?&“, whereas, corrupt clients may report
arbitrary and adversarially chosen vectors in R?. The goal of
the server is to produce an estimate VIR of the average
accumulated gradients from honest clients as best as possible.

Theorem 7 (Robust Accumulated Gradient Estimation for
Full-Batch Gradient Descent). Suppose an € fraction of clients
who communicate with the server are corrupt. In the setting
and notation described above, suppose we are given K < R
accumulated full-batch gradients Vﬁf,’;’ctcﬁﬂ,r € Ky, in RY,
where Vﬁf};&iﬁ“ = VF;’;;?&“ if the r’th client is honest,
otherwise can be arbitrary. Let S C Ky, be the subset of all
honest clients in Ky, and VF;’“dszl = %I Y ies VFz’;i’;“
be the sample average of uncorrupted full-batch gradients.
If € < L then with probability 1, we can find an esti-

mate Vﬁ?c’“cf’““ of VR iy polynomial-time, such that
< O (Hkn/e).

S.accu

At st tr,th
“VFac]::ﬁkJrl _ VF ks k+l‘

S,accu

Proof. Let = := (VFZ't,I:léiﬁ+1 — VF;";ZT 1). First we prove
that

1 —
)\max(ﬁ ;: :T) < 11H2K2. (80)

In view of the alternate characterization the largest eigenvalue
given in (60), this is equivalent to showing

R [v]|=1 |S| 2,accu S,accu
v L vl||= ;
K3

1 2
sup S (VELST - VEEE v) < 11H2,
€S

81)

Ftk7tk+1 o

accu A

t -1
s, P,

x! for any t € [ty : tpr1 — 1]. Take

which we prove below. Define

t— 1
where z* = & reks,

an arbitrary unit vector v € R a
1 Z th,t bt )
E <VFiszCﬁ+1 - VFSITacéJl s 'U>
€S
2 | | 2
< E § <VF£’;&';;+1 _ VF;C"é’lfk+1’v>
€S
2 thotht1 bt )
TS 2 <VF37aCCu _ vk ’U>
€S
(Using fla +]1* < 2]all? + 2(b]%

2 tr,t tr,t 2
_ kslk+4+1 kslk+1
=52 (VELGr = VRGN v)
i€S

S,accu

2 tr,t Ttk 2
=S > <VFi,§écﬁ+l — V", v>
ics

+2 (VEgis = VRS, v>2

2
1ol L <VF.t’“tk“ - vﬁgg;fkﬂ,@}

1<l i,accu
Sl "
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2 tat tat 2
kslk+1 kstk+41
< o > (VE - VRGN v)
2 thot thot 2
kslk+4+1 kylk+1
gD (VELGS — VRGP 0)
ics
2
trte+1 tr llt1
F, —VFea",v

7,accu

VFtk,tk+1 VFtk7tk+1 2
i - accu

i,accu

(Using (u,v) < ||lul|||v]| and that ||v]] = 1)

2
try1—1
4

> (VE(=x) - VF(z"))

t=ty

thylle+1
Foceu

o Fat)

(Since =D i,

tpy1—1
4

2
< S Z(tk+1 —tr) Z ||VF7;(a:§) - VF(mt)H
i€S t=ty,
(Using Jensen’s inequality)

thy1—1

<SS (AvREh - vRE)

€S t=tg
+2||VF(2) - VF(")|)

thy1—1

SET D (22t et - atP)

€S t=tg
bt g 1 2
<8HAESHLE Y = [el - = Y
t=t, | |z‘eS jERL,
(Since @' = % Ejelctk )
Tt g 1 )
2. .2 2 t t
SSHPW S 8HL? ) o) & D et -4
t=ty i€S JEK,

(82)

The last inequality follows from the Jensen’s inequality.
In (a) we used (6) to bound ||VF;(z!)— VF(z!)|> <
k2 and L-Lipschitz gradient property of F to bound
|VF(x!) ~ VF(a")| < Ll — '],

Now we bound the last term of (82).

Lemma 5. For any r,s € Ky,, if n < ﬁ we have
try1—1 )
2 2
Z Hwi —:ciH < Tn*H3kK>. (83)
t=ty

Proof. Note that we have shown a similar result (but, in
expectation) in Lemma 4 (on page 23), which is for stochastic
gradients. We will simplify that proof to prove Lemma 5,
which is for full-batch deterministic gradients.

Take an arbitrary ¢ € [t : tx+1 — 1]. Following the proof
of Lemma 4 until (69) and removing the factor of 3 inside
the summation (the factor of 3 appeared because we applied
the Jensen’s inequality earlier to separate the deterministic
gradient term and the stochastic gradient terms) would give

t—1
|zt — at||* <n?H Y |VE(2l) — V()]

J=tk

(84)



Following the remaining proof of Lemma 4 from (69) until
the end and substituting o = 0 gives the desired result. O

Substituting the bound from (83) into (82) gives
1 2
5] 2 (VELL" - VRS o)
i€S

< 8H?K% + 56 H*L*n? K>

56
< 8H’k* + —H?K?
= K+ o5 1T
<11H%k%.

(Substituting 7 < =+7)
(85)

Note that (85) holds for an arbitrary unit vector v € R, im-
plying that (81) holds true. Since (81) and (80) are equivalent,
we have thus shown (80).

Now apply Theorem 4 with S being the set of all honest
clients, and gitin™ = VELGT, gdiel’ = VS
Gttt = VE&G™, ¢ = 0, and 0 = 11H?x%. We would
get that we can find an estimate VFyky,**' of VFékazé‘j !
in polynomial-time, such that VBRI g pleball o

S,accu
O (Hk+/€) holds with probability 1.

Theorem 2 can be proved with appropriate modifications in
the proof of Theorem 1, and for completeness, we prove it
below.

A. Convergence Proof of the Strongly-Convex Part of Theo-
rem 2

Let K; C [R] denote the subset of clients of size |[K;| = K
that are active at the ¢’th iteration. For any ¢ € [t; : t;41—1], let
! = % Dok K., ), denote the average of the local parameters
of clients in the sampling set /Cy,.

Following the proof of the strongly-convex part of Theo-
rem 1 given in Appendix C until (19) gives

Jater — o

< (1 1) et Ot ) o

2

2401 L o
oy M)HKE (VF(@"+ ) = V(i)

€Ky,
2 1 it i
otistig t
+2n(n+;) Fll —ggcj t; VF.(x!)|| (86)

We have already bounded the first term in Claim 1 (on page 9)
by

||a:ti+1 —VE (') — > ||
< (1 —np) [zt -2

2

| 2

87)

In order to bound the second term, we follow the
proof of Claim 2 egactly until (74), and then to bound
Hazii“_l — 2l for every 1, s € Ky,, we use the bound

1

from (83) in Lemma 5 and use < 777,

which gives
2
1
% > (VE(z'7!) = VE.(zli+™h)|| <3Hk.
reER:,

(88)

28

To bound the third term in the RHS of (86), we can sim-
plify the proof of Claim 3: Firstly, note that with full-batch
gradients, the variance o2 becomes zero; secondly, as shown
in Theorem 7, the robust estimation of accumulated gradients
holds with probability 1. Following the proof of Claim 3 with

these changes and using n < =777 é 7, wWe get
1 ti+171 2
Pt — e GZ}C tzt VF,(z')|| <202, + 20H%k2,
T t; =14

(89)
where Tgp = O (Hk+/€). Substituting all these bounds
from (87)-(89) into (86) and simplifying further using
(1+E8)(1—pn) < (1— L) and (n—l—%) < % gives

st =l < (1= ) o =

- %’7 (2738 + 23H?K?)

(90)

Note that (90) gives a recurrence at the synchronization
indices. Now we give a recurrence at non-synchronization
indices. Take an arbitrary ¢ € [T] and let t; € Zp be such
that ¢ € [t; : t;41 — 1]; when H > 2, such t’s exist.
Following the steps that we used to arrive at (25), we get the
following (note that the last term on the RHS of (25) is zero,
as g, (xl) = VF,(x%) holds for every r € [R] and ¢ € [T];
this will also save us the factor of 2 in the previous term as
we don’t have to use the Jensen’s inequality to get to (25)):

Hwt-u ot

< (1 + %) |of — z* — nVF(a:t)H2

2
+n(n+)
7

Substituting the bounds from (87) and (88) into (91) and
simplifying the coefficients as above, we get

2 ﬂ t_ *
<(1-73)le" -

Now we have a recurrence at the synchronization indices given
in (90) and at non-synchronization indices given in (92). Let
a = ( — %) B = (2T§D + 23H2/$2), and 3> = (%H/&).
Following the same steps that we used to arrive at (28) gives:

2
oD

1 t t
’K > (VF(a') — VF.(2}))

reky

2
Hwt-u .

+ %(3H K%) (92)

2" —a|" < o |l2” 2"

+€Z7<1ia52+1_1a1{51> (93)

H @

Since a = (1-42), we have o = (1-41)7 <
exp(—441) 21— pl g (%)2 21 el Ll
1- %# In (a) we used the inequality (1—1)* < 1 which

holds for any > 0; in (b) we used exp(—z) <1 -z +x
which holds for any x > 0; in (c) we used n < 77 and
p < L. which imply 4% < 5. Substituting these in (93)
gives



un)T 0 20
<(1-= - —
_( 5 |= wHJFM( R 9/u7H1
T ) 6 x 20
<(1-ED) |l2® 2|+ % 5 Bz B
2 9u?
PNT o2, ] 2TGD 2
<(L-) et - oI 4 33 (T2 4 25t
%94)
where Ygp = O (Hrk+/€). Substituting the value of n = 5L bl[ 7

yields the convergence rate (7) in the strongly-convex part of
Theorem 2. Note that (94) holds with probability 1.

B. Convergence Proof of the Non-Convex Part of Theorem 2

Following the proof of the non-convex part of Theorem 1

given in Section V until (33) and using n < ¢ H T gives:

tiy1— 1

— 5 [VR@ ]+

6n
F(x'+) < F(x gIICIIQ,

95)
where C = %ZTEIC,, ( (wti+1—1) _VFr(wiHlfl)) _

~tisti ti 1
chcu o % TE’Ct :1 VF ( )
Using the bounds from (88) and (89), together with the

Jensen’s inequality, we can bound ||C/||? as follows:

ICII? < 2(3HK?) + 2(202, + 20H2K?)

< 2(203, + 23H?k?) (96)
Substituting the bound from (96) into (95) gives:
F(xti+) < F(xhiv 1) — 1 ||VF(:ctz‘+1*1)H2
12
+ T" (202, + 23H2K2),  (97)
where Ygp = O (Hk/¢).

Note that above recurrence in (97) holds only at the
synchronization indices. Now we give a recurrence at non-
synchronization indices.

We have done a similar calculations in the non-convex part
of Theorem 1 in Section V.

Take an arbitrary ¢ € [T] and let ¢; € Zp be such that
t € [t : tix1 — 1]; when H > 2, such t s exist. Following the
same steps until (36) and using n < = H T gives:

F@) < Fa') - Dvr@)| + ZIo)?
where D = KZTE,Q (VF( Yy — VE,.(z)).

Using the bound from (88), we have |D|? < 3HkK.
Substituting this in (98) gives:

(98)

6
F(z'*!) < F(a') - g |VF@!)|| + 3”(31%2) (99)
Now we have a recurrence at the synchronization indices
given in (97) and at non-synchronization indices given in (99).
Adding (97) and (99) from ¢ = 0 to 7T (use (97) for the
synchronization indices and (99) for the rest of the indices)

gives:

ZF t+1 S

Me

29

20T oy 2,2 TN (3,2
+ 5 [H(QTGD+23H/1)+ T 7 2H/€

(100)

After rearranging and simplifying the last constant terms, we
get:

*ZHVF I <

iT [F(:BO) o F($T+l)]

24 (273, 9
— 25H 101
+ 5 < I7 +25HkK (101)
Note that the last term in (101) is a constant. So, it would be
best to take the step-size 7 to be as large as possible such that

it satisfies n < 51{% We take n = Substituting this in

m
(101) and using F(x?+!) > F(x*

) gives

1 < w2 10HL .
TZ%HVF@)H < —5— [F@) ~ F(z")]

24 (202, )
+5( 2+ 25HR ) (102)

where Tgp = O (Hrk+/€). This yields the convergence rate (8)
in the non-convex part of Theorem 2. Note that (102) holds
with probability 1.

This concludes the proof of Theorem 2.

APPENDIX E
OMITTED DETAILS FROM SECTION VII

In this section, we bound ||V f.(x) — Vi, ()| under both
the sub-exponential and sub-Gaussian gradient distributional
assumptions. First we give some definitions.

Definition 1 (Sub-exponential distribution). A random vari-
able Z with mean p = E[Z] is sub-exponential if there are
non-negative parameters (v, ) such that

1
VAl < —.
«

E[exp (M(Z — p))] < exp (A*12/2),
A random vector Z with mean p = E[Z] is sub-exponential
if its projection on every unit vector is sub-exponential, i.e.,
there are non-negative parameters (v, ) such that

sup  E[exp (MZ — p,v))] < exp (A*1?/2) ,V|)| < é.

vERY:||v]|=1

Now we state a concentration inequality for sums of inde-
pendent sub-exponential random variables.

Fact 2 (Sub-exponential concentration inequality). Suppose
X1, Xo, ..., X, are independent random variables, where for
every i € [n], X; is sub-exponential with parameters (v;, a;)
and mean ;. Then Z;;l X, is sub-exponential with param-

2= 3" v and o = maxi<i<, Q.

eters (v,«), where v =
Moreover, we have
t
}) V>0
«
(103)

Pr

i(X-— ) >t <e —lmin ﬁ
i) 2t <exp (-3 R

i=1



Definition 2 (Sub-Gaussian distribution). A random variable
Z with mean p = E[Z] is sub-Gaussian if there is a non-
negative parameter o, such that

E[exp (A(Z — p))] < exp ()\203/2) , YA eR.

A random vector Z with mean p = E[Z] is sub-Gaussian if
its projection on every unit vector is sub-Gaussian, i.e., there
is a non-negative parameter o, such that

sup  Elexp (AMZ — p,v))] < exp ()\205/2) , YA eR.

veR:||v||=1
Now we state a concentration inequality for sums of inde-
pendent sub-Gaussian random variables.

Fact 3 (Sub-Gaussian concentration inequality). Suppose
X1, Xo, ..., X, are independent random variables, where for
every i € [n], X; is sub-Gaussian with parameter o; > 0
and mean ;. Then Y | X; is sub-Gaussian with parameter

_ 3
0g =\/Y .y 0;. Moreover, we have

Pr [Z(Xi — ) > t] < exp (—t?/207), Vt > 0. (104)
i=1

Let D = max{||x — «'| : @, € C} be the diameter of C.
Note that C is contained in B% /20 which is the Euclidean ball

of radius % in d dimensions that contains C. Note that D =
Q(\/&) and we assume that D can grow at most polynomially
in d.

Now we state two lemmas (which will be used to
prove Theorem 5), each of which uniformly bounds
|V fr(2) = V()| over all @ € C under different distribu-
tional assumptions on gradients. We prove these one by one

in subsequent subsections.

Lemma 6 (Sub-exponential gradients). Suppose Assumption 3
holds. Take an arbitrary v € [R]. Let n, € N be sufficiently
large such that n, = Q(dlog(n,d)). Then, with probability

at least 1 — m, we have

8dlog(1l + n,LD)

V(@) = Vi (@) < 31/\/ 7

oy

Vx € C.

(105)

Lemma 7 (Sub-Gaussian gradients). Suppose Assumption 4
holds. Take an arbitrary r € [R]. For any n, € N, with

probability at least 1 — m, we have
F 8dlog(1 rLD
V] (@) - Vi ()] < 3%\/ Bl yee.
(106)

Proof of Theorem 5. In order to prove Theorem 5, we need
to show two bounds, one (stated in (48)) under the sub-
exponential gradient assumption, and the other (stated in (49))
under the sub-Gaussian assumption. We can show (48) using
Lemma 6 and (49) using Lemma 7. Here we only show (48);
and (49) can be shown similarly.
Using Assumption 5 (i.e.,
Kmean; V€ € C) in (46) gives

IVF:(@) = Vi@ < ||V (@)

V() = Vu(z)| <

- V,LLT(.’B)H + Kmean

30

Vir(@)|| . (107)

1SN

Note that (105) holds for any fixed worker r € [R].
By the union bound, we have that with probability at
least 1 — ﬁ’ for every » € [R], we have

IV (@) — Vi ()| < 3vy/2dloelinelD) vy ¢ c,
Let n, = n,¥r € [R]. Using these in (107), we get

that with probability at least 1 — ﬁ, for every
worker r € [R], we have ||V fr(z H < Kmean +
O/ dl%("d) ,Vx € C, which proves (48). This completes
the proof of Theorem 5. O

A. Proof of Lemma 6 (sub-exponential gradients)

We prove Lemma 6 with the help of the following result,
which holds for any fixed € C. Then we extend this bound
to all € C using an e-net argument. These are standard
calculations and have appeared in literature [17], [22].

Lemma 8. Suppose Assumption 3 holds. Take an arbitrary
r € [R]. For any § € (0,1) and n, € N, define A =
V2v w If n, is such that A < %2 then, for
any fixed x € C with probability at least 1 — 6, we have

V(@) — Fpip(a)]| < 2x/§u\/ togB - 108 l1/0) (105,

where randomness is due to the sub-exponential distribution
of local gradients.

Proof. Let B* = {v € R? : |v|| < 1}. Let V =
{v1,v2,...,vn, .} denote an 3-net of BY, which implies that
for every v € BY, there exists a v’ € V such that [[v—v'|| < 1.
We have from [49, Lemma 5.2] that Ny = [V| < 5%

Fix an arbitrary & € C. Note that there exists a

v* € B¢ (namely, v* = W) such that
V(@) = V(@) = (Vir(x) - Vur ),v*). By the

property of V), there exists an index 7* E [Ny /2] such that

[v* — v;-|| < 4. Now we bound ||V f.(x) — V()]
var(il:) _vﬂr H
= <vf7‘( )*Vﬂr< )v 1*2
. +(V fr(®) = Ve (x), v — v;+)
< <Vfr(w) - v/-h'(:‘c)vvi*k
+ ||V fr(®) = V(2 H [v* — v;-
< V(@) = Vir(x), v >+ ||Vf, — V()|
< max (V@) = Vi (@), v) + 5 IIVfr ~ Vir(a)]|
By collecting similar terms together, we get
var(a: - VMT(’CB)H < leg§<vfr(x) - v:ur(w)av>
(109)
Note that the RHS of (109) is a non-negative
number (because LHS is). Note also that, since



V C BY for every v € V we have |v|| < 1.

This implies that max,ecy (Vf — Vi (z),v) <

maxyey <Vﬁ(w) — Vi (), \L\I> Usmg this in (109), we

get

_ _ v

var<m) - V/LT(SB)H < 2%16&\3( <vfr($) - vur<w)7”v”>-
(110)

Fix any v € V. It follows from Assumption 3 that

<Vfr(z,:c)fVur(m),Hz—H>, where z ~ ¢, is a sub-

exponential random variable (with mean zero) with param-
eters (v, ). From Fact 2 (stated on page 29), we have that
Sy (Vinlzri @) = Ve (@), g27)
[n,] are i.i.d.) is a sub-exponential random variable with
parameters (\/7,V, ).

Now, apply the concentration bound from (103) with ¢ =
n,A. Substituting this and the parameters (v/nrv, ar), the

, (a) 2
szngéA}) ie p(_ln,A )’

where (a) follows because A < ’; . This gives

Pr [ZT <Vfr(ZT’i,£L') — V//,T(gg)’ :J)||> > n, A

=1
2
< exp <"7“A ) a1

(where z,; ~ qr,i €

bound becomes exp(— 3 min{ >

202

Note that > ©7, <Vfr(z”',zc) —V,u,(w),ﬁ>
Ny <Vﬁ(az) — Viur(x), HUH> Using this in (111) yields

PrKVﬂ@ﬂ—Vm@%ﬁm>ZA]S@m(—gﬁj

(112)
WM@WZ>24

< S [(vho- oo i) =

2 nAZ
< 54 -
) <sten (-%55)

This implies that

Pr [maX<Vf,( ) —

veV

n,A
< [V]exp (— %

np A2
= — 113
exp ( 5 ) (113)
Together with (110), which implies that
Pr[||Vf,(x) — V()| > t]

< Pr {2mea><<vfr( ) = Vi (), ZH> > t]

holds for every ¢ > 0, (113) gives

- 2
Pr[||Vf(x) = Ve ()| = 2A] < exp (—2 + dlog5)

<9, (114)
where in the last inequality we wused A =
\@I/ dlog 5+log(1/6) )

zs
This completes the proof of Lemma 8. O
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Proof of Lemma 6. We have from Lemma 8 that for each
fixed « € C, with probability at least 1 — d, we have

9601 St <20

To extend this argument uniformly over the entire set C, we
use another covering argument. Recall that D is the diameter
of C. Note that C is contained in BdD /20 which is the Euclidean

2d1log 5 + 2log(1/5)

Ny

(115)

ball of radius £ in d dimensions that contains C. For some

2
6o > 0, let Cs, = {xo,x2,..., @ N, } be the dp-net of C. It
d

follows from [49, Lemma 5.2] that N5, < (1 + %
Applying the union bound in (115), we get that with
probability at least 1 — §, we have for all x; € Cs,,

(116)

2dlog5 + 2log (Ngﬂ

[V fr(2:) = V()| < 2v

Ty

We want to bound ||V f,(z) — V. ()| for all ¢ € C. Take
any z € C. Since Cs, is a dp-net of C, there exists an «’ € Cs,
such that ||z — 2’| < do.

"vfr(w) - vlur( )H
< var( vfr || + |V (x) - vﬂr(m/)”
=T =: T»
+|| V(@) = Vi) (117)
Now we bound each term on the RHS of (117).
1 Uz
Tl == nir ; (Vfr(zr,iam) - Vfr(zr,ia w/))H

S 72 ||vf'r Zri, L )_ vfr(zr,iam/)”

i
< Lz -2/ < Lo

Ty = [[Ezng, [Vfr(z,2) = Vi (2, 2;)]||
< EZN% ”Vfr(sz) - vfr(z7w§ )”
< B,y Lz — 2| < L6

Substituting the above bounds on 77,75 in (117) and bounding
the third term of (117) using (116) gives

2dlog5 + 2log (%32)

oy

|V fr(x) — Vi ()| < 2L60 + 2v

(118)

d d
(1+%) . Take § = 1/(14—%) . If we
which implies § =

Note that N5, <

take dp = we would get

1
[ (I+n,.LD)2>
2dlog 5+2log ( ) < 4d+4dlog(1+n,LD) < 8dlog(1+
n,LD). Substituting these in above gives

V(@) = Vi ()| < nz + j%\/Sdlog(l T LD).

(119)



When n, > m (which is a very small number

less than 1), with probability at least 1 — we have

1
(14n.LD)4>

8dlog(1 + n,LD)

HV]FT(:B)*V;LT(JZ)H §3V\/ )

ny

Vx € C.
(120)

2
Lower bound on n,.. Note that Lemma 8 requires A < %

where A = ﬂyw/w Substituting the value of

0= m gives n, > 2“ (dlogb + dlog(1l + n,.LD)),
which is Q(dlog(n,.LD)) for constant «,v. Treating the
smoothness parameter L a constant, we get n, =
Q(dlog(n,d)) to be requirement on the sample size at the
r’th worker for the bound in Lemma 6 to hold.

This completes the proof of Lemma 6. O

B. Proof of Lemma 7 (sub-Gaussian gradients)

We prove Lemma 7 with the help of the following result,
which holds for any fixed « € C.

Lemma 9. Suppose Assumption 4 holds. Take an arbitrary
r € [R]. For any § € (0,1) and n, € N, with probability at
least 1 — 0, we have for any fixed x € C:

|97 (@) — Vo) < 2120, [ L8O TIBA0) 1y

T

where randomness is due to the sub-Gaussian distribution of
local gradients.

Proof. Follow the proof of Lemma 8 exactly until (110).
Then instead of the sub-exponential assumption, use the sub-
Gaussian assumption (Assumption 4) on local gradients. Then
apply the concentration bound from (104) with ¢t = n,-A. This
gives that for any fixed v € V and any A > 0, we have

; KVﬁ(w) V() ;‘j”> > A} < exp ( ’;f) |

(122)
Now following the proof of Lemma 8 from (112) to (114)

gives
npA?
202

<9, (123)

Pr[[[V /(@) — Vi ()]| = 24] < exp (

where in the last inequality we wused A =
\/iO'g /dlogS-:Ll(?g(l/6)' ]

We can extend the bound from Lemma 9 to all € C (and
prove Lemma 7) using an e-net argument exactly in the same
way as used in the proof of Lemma 6. So, to avoid repetition,
we do not show this extension here.
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C. Bounding the local variances

In Section VII-B, we showed that in order to bound
Eicyin, |Vfr zriyx) — Ve (x || uniformly over all x € C,
it suffices to bound |V f,.(z,x) — Vu,(x)| for a random
z ~ ¢, uniformly over all € C.

Bounding ||V f,.(z,x) — Vu,(z)||. To bound this, we need
sub-Gaussian assumption on local gradients (we can also
bound this using sub-exponential assumption, but that will give
a bound that scales as (d) as opposed to Q(v/d)). Note that
Lemma 7 holds for any n, € N. In particular, it also holds
for n,, = 1. So, under Assumption 4, with probability at least
1— ya» we have

1
(14n,LD
)| < 30¢1/8dlog(1 + LD),

HVf,,.(Z,.’B) -

V(2 Yz e C,

(124)

where z ~ ¢,, and probability is over the randomness due
to the sub-Gaussian distribution of local gradients. So, with

probability at least 1 — m, we have

IV fr (20, ) — V()|
< 28807dlog(1+ LD), Ve eC. (125)

Note that (125) holds for a fixed worker r € [R]. By taking
the union bound over all workers r € [R] proves Theorem 6.

]EiEU["r]

APPENDIX F
ADDITIONAL EXPERIMENTAL DETAILS

There are some implementation issues about the decoding
algorithm (as described in Algorithm 2) that could be impor-
tant in the deployment of the algorithm. In the following, we
describe these issues and also explain our approach in the
implementation to address them.

« Note that the stopping criterion (see line 7) in our
decoding algorithm described in Algorithm 2 requires
the matrix concentration bound o2 that we show in
Theorem 3 in terms of the SGD variance bound o2 (see
(2)) and the bounded gradient dissimilarity x2 (see (6)).
Since these are properties of the local datasets stored at
clients, which is challenging to determine in a adversarial
federated learning setting. In order to mitigate this, we
observe two things:

1) the only place where Algorithm 2 uses this matrix
concentration bound is in the stopping criterion (in line
7); and

2) in each iteration of the while loop, at least one sample
gets its weight reduced to zero.

Since we know an upper bound on the fraction of corrupt
samples, these two observations suggest replacing the
stopping condition in line 7 with the condition that
break the while loop when the number of samples whose
weights become zero is more than the number of corrupt
samples. This is what we used as a stopping criterion (in
line 7) in our implementation of Algorithm 2.

« Note that each iteration of the while loop (line 7) of
Algorithm 2 requires computing the principal eigenvector
of the covariance matrix (line 8), which can be done
using the singular value decomposition (SVD) algorithm.



This, however, could be computationally expensive. To
mitigate this, we choose uniformly at random 1024 coor-
dinates from the all gradient vectors (same 1024 random
coordinates from all the gradients), and run the decoding
algorithm only on them. Suppose A denotes the set of
indices of the surviving gradients (i.e., whose weight are
not zero when the filtering algorithm terminates), then
we will discard all those full gradients whose indices are
outside the set A.

Furthermore, we observed performance boost Wh(egl replacing
the line 13 of Algorithm 2 (i.e., § = Yo Tt 90) with

9= i ﬁgi, where A contains the identities of the
surviving samples; in other words, we replaced the weighted

average with the uniform average.
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