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ABSTRACT

A distinguishing characteristic of federated learning is that the (local) client data
could have statistical heterogeneity. This heterogeneity has motivated the design of
personalized learning, where individual (personalized) models are trained, through
collaboration. There have been various personalization methods proposed in lit-
erature, with seemingly very different forms and methods ranging from use of
a single global model for local regularization and model interpolation, to use of
multiple global models for personalized clustering, etc. In this work, we begin
with a statistical framework that unifies several different algorithms as well as
suggest new algorithms. We apply our framework to personalized estimation, and
connect it to the classical empirical Bayes’ methodology. We develop novel private
personalized estimation under this framework. We then use our statistical frame-
work to propose new personalized learning algorithms, including AdaPeD based
on information-geometry regularization, which numerically outperforms several
known algorithms. We develop privacy for personalized learning methods with
guarantees for user-level privacy and composition. We numerically evaluate the
performance as well as the privacy for both the estimation and learning problems,
demonstrating the advantages of our proposed methods.

1 INTRODUCTION

The federated learning (FL) paradigm has had huge recent success both in industry and academia
(McMabhan et al.,2017; |Kairouz et al.,|2021), as it enables to leverage data available in dispersed
devices for learning while maintaining data privacy. Yet, it was recently realized that for some
applications, due to the statistical heterogeneity of local data, a single global learning model may
perform poorly for individual clients. This motivated the need for personalized learning achieved
through collaboration, and there have been a plethora of personalized models proposed in the literature
as well (Fallah et al., [2020; Dinh et al., [2020; |Deng et al.| [2020; [Mansour et al., 2020; |Acar et al.|
2021;|L1 et al.,[20215|Ozkara et al., 20215 Zhang et al.,2021; |Hu et al.,|2020). However, the proposed
approaches appear to use very different forms and methods, and there is a lack of understanding of
an underlying fundamental statistical framework. Such a statistical framework could help develop
theoretical bounds for performance, suggest new algorithms as well as perhaps give grounding to
known methods. Our work addresses this gap.

In particular, we consider the fundamental question of how one can use collaboration to help
personalized learning and estimation for users who have limited data that they want to keep private.
Our proposed framework is founded on the requirement not only of personalization but also privacy,
as maintaining local data privacy is what makes the federated learning framework attractive - and
thus any algorithm that aims to be impactful needs to also give formal privacy guarantees. The
goal of this paper is to develop a statistical framework that leads to new algorithms with provable
privacy guarantees, and performance bounds. Our main contributions are (i) Development of a
statistical framework for federated personalized estimation and learning (ii) Theoretical bounds and
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novel algorithms for private personalized estimation (iii) Design and privacy analysis of new private
personalized learning algorithms; as elaborated below. Omitted proofs/details are in appendices.

o Statistical framework: We connect this problem to the classical empirical Bayes’ method, pi-
oneered by |Stein| (1956); James & Stein| (1961); Robbins| (1956), which proposed a hierarchical
statistical model Gelman et al. (2013). This is modeled by an unknown population distribution P
from which local parameters {0, } are generated, which in turn generate the local data through the
distribution Q(6;). Despite the large literature on this topic, especially in the context of statistical
estimation, creating a framework for FL poses new challenges. In contrast to classical empirical
Bayes’ estimation, we introduce a distributed setting and develop a framework that allows information
(communication and privacy) constraintsﬂ This framework enables us to develop statistical perfor-
mance bounds as well as suggests (private) personalized federated estimation algorithms. Moreover,
we develop our framework beyond estimation, for (supervised) distributed learning, where clients
want to build /ocal predictive models with limited local (labeled) samples; we develop this framework
in Section 3| which leads to new (private) personalized learning algorithms.

e Private personalized estimation: Our goal is to estimate individual (local) parameters, when
each user has very limited (heterogeneous) data. Such a scenario motivates federated estimation of
individual parameters, privately. More precisely, the users observe data generated by an unknown
distribution parametrized by their individual (unknown) local parameters 6;, and want to estimate
their local parameters 6; leveraging very limited local data; see Section [2 for more details. For
the hierarchical statistical model, classical results have shown that one can enhance the estimate
of individual parameters based on the observations of a population of samples, despite having
independently generated parameters from an unknown population distributions. However, this has
not been studied for the distributed case, with privacy and communication constraints, which we do
(see Theorem [2 for the Gaussian case and Theorem 4 for the Bernoulli case, and also for mixture
population models in Appendix [D). We estimate the (parametrized) population distribution under
these privacy and communication constraints and use this as an empirical prior for local estimation.
The effective amplification of local samples through collaboration, in Section 2] gives us theoretical
insight about when collaboration is most useful, under privacy and/or communication constraints.
Our results suggest how to optimally balance estimates from local and population models. We
also numerically evaluate these methods, including application to polling data (see Section [ and
Appendices) to show advantages of such collaborative estimation compared to local methods.

o Private personalized learning: The goal here is to obtain individual learning models capable of
predicting labels with limited local data in a supervised learning setting. This is the use case for
federated learning with privacy guarantees. It is intimately related to the estimation problem with
distinctions including (i) to design good label predictors rather than just estimate local parameters (ii)
the focus on iterative methods for optimization, requiring strong compositional privacy guarantees.
Therefore, the statistical formulation for learning has a similar flavor to that in estimation, where
there is a population model for local (parametrized) statistics for labeled data; see Section [3]for more
details. We develop several algorithms, including AdaPeD (in Section[3.2), AdaMix (in Section[3.1),
and DP-AdaPeD (in Section [3.3), inspired by the statistical framework. AdaPeD uses information
divergence constraints along with adaptive weighting of local models and population models. By
operating in probability (rather than Euclidean) space, using information-geometry (divergence),
enables AdaPeD to operate with different local model sizes and architectures, giving it greater
flexibility than existing methods. We integrate it with user-level privacy to develop DP-AdaPeD,
with strong compositional privacy guarantees (Theorem[3)). AdaMi x is inspired by mixture population
distributions, which adaptively weighs multiple global models and combines it with local data for
personalization. We numerically evaluate these algorithms for synthetic and real data in Section 4]

Related Work. Our work can be seen in the intersection of personalized learning, estimation, and
privacy. Below we give a brief description of related work; a more detailed comparison which
connects our framework to other personalized algorithms is given in Appendix

Personalized FL: Recent work adopted different approaches for learning personalized models, which
can be explained by our statistical framework for suitable choices of population distributions as
explained in Appendix m These include, meta-learning based methods (Fallah et al., |[2020; |Acar
et al.,[2021; Khodak et al.,|2019); regularization (Deng et al., | 2020; [Mansour et al., | 2020; |Hanzely

"The homogeneous case for distributed estimation is well-studied; see (Zhang,|2016) and references.
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& Richtarik, [2020); clustered FL (Zhang et al., 2021; |Mansour et al., 2020; |Ghosh et al.| [2020;
Smith et al.l 2017) (Marfoq et al., 2021); using knowledge distillation (Lin et al., [2020; |Ozkara
et al., [2021); multi-task Learning (Dinh et al.| [2020; |Hanzely & Richtarik, [2020; [Smith et al.| 2017
'Vanhaesebrouck et al., 2017 |Zantedeschi et al., 2020); and using common representations (Du et al.}
2021; Raghu et al., 2020; [Tian et al., 2020; [Collins et al., 2021) and references therein. Our work
enables not just a unified view of these methods, but suggests new algorithms developed in this paper,
along with privacy guarantees.

After the conclusion of our work (Ozkara et al., 2022, July), we found two concurrent and independent
works (Kotelevskii et al.| 2022, June; |Chen et al., 2022) that use a hierarchical Bayes approach to
construct personalized learning algorithms, and are closest to our statistical framework. (Kotelevskii
et al., 2022, June) is based on using a MCMC metho to estimate a population distribution; such
methods could be computationally intensive (see the discussion in (Blei et al.,[2003); (Chen et al.|
2022) considers the unimodal Gaussian prior, and effectively does what the classical empirical
Bayes suggests (see also Theorem [I). None of these works consider privacy, which we do both
for estimation and learning algorithms (see Theorems [2, , Appendix [D] and for DP—AdaPeD in
Theorem[5). Note that MCMC methods could have detrimental privacy implications. Also, they do
not include information-geometric techniques (like our AdaPeD) or methods inspired by mixture
distributions (e.g., AdaMix).

Privacy for Personalized Learning. There has been a lot of work in privacy for FL. when the goal is
to learn a single global model (see (Girgis et al.| 2021b) and references therein); though there are
fewer papers that address user-level privacy (Liu et al., 2020; |Levy et al.;|2021; |Ghazi et al.,|[2021).
There has been more recent work on applying these ideas to learn personalized models (Girgis et al.,
2022; Jain et al.;, [2021b; |Geyer et al., 2017; |Hu et al.| 2020; L1 et al., 2020). These are for specific
algorithms/models, e.g., Jain et al. (2021b) focuses on the common representation model for linear
regression described earlier or on item-level privacy (Hu et al.,|[2020; |L1 et al., [2020). We believe
that DP—AdaPeD proposed in this paper is among the first user-level private personalized learning
algorithms with compositional guarantees, applicable to general deep learning architectures.

2 PERSONALIZED ESTIMATION

We consider a client-server architecture, where there are m clients. Let P(I") denote a global
population distribution that is parameterized by an unknown I" and let 6+, . .., 8,,, are sampled i.i.d.
from P(T") and are unknown to the clients. Client i is given a dataset X; := (X1, ..., X, ), where
Xij,j € [n] are sampled i.i.d. from some distribution Q(6;), parameterized by 6; € R?. Note that
heterogeneity in clients” datasets is induced through the variance in P(T"), and if the variance of P(I")
is zero, then all clients observe i.i.d. datasets sampled from the same underlying distribution.

The goal at client 4 for all ¢ € [m] is to estimate ; through the help of the server. We focus on
one-round communication schemes, where client j applies a (potentially randomized) mechanism ¢
on its dataset X; and sends ¢; := ¢(X) to the server, who aggregates the received messages, which
is denoted by Agg(qu, - . ., ¢m ), and broadcasts that to all clients. Based on (X;, Agg(q1, -, qm)),
client ¢ outputs an estimate 0; of ;. We measure the performance of 6; through the Bayesian risk for
mean squared error (MSE), as defined below (where P is the true prior distribution with associated

density 7, 8; ~ PP is the true local parameter, and 0, = a(Xi, Agg(qi, - . .,qm)) is the estimator):

Eo,~#E5, , x,.. x, 18: = 0i]* = /]Ea,.,,q,xl,...,xm||9i — 0,]|°7(6;)d8,;. (1)

The above statistical framework can model many different scenarios, and we will study in detail three
settings: Gaussian and Bernoulli models (Sections 2.1} [2.2 below), and Mixture model (Appendix D).

2.1 GAUSSIAN MODEL

In the Gaussian setting, P(T') = N(u,02l,) and Q(0;) = N(6;,021,) for all i € [m], which
implies that 01, ...,0,, ~ N(p,031,) iid. and X;1,..., Xin ~ N(0;,021,) iid. fori € [m].

Here, 09 > 0,0, > 0 are known, and p, 01, ..., 0,, are unknown. For the case of a single local

’In our understanding their numerics seem to be restricted to a unimodal Gaussian population model.
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sample this is identical to the classical James-Stein estimator (James & Stein, |1961); Theorem does
a simple extension for multiple local samples and is actually a stepping stone for the information
constrained estimation result of Theorem[2] Omitted proofs/details are provided in Appendix

Our proposed estimator. Since there is no distribution on g, and given p, we know the distribution
of 6;’s, and subsequently, of X;;’s. So, we consider the maximum likelihood estimator:

017 cee ;Onlv ﬁ’ = Bargrélax P{o;, X} (017 RS 077L7X13 s aXm|,J’) (2)
Ly Om,

Theorem 1. Solving (2) yields the following closed form expressions for p and 51, R §m

m N o 2
ZY and 0, =aX,;+ (1 —a)u, fori € [m|, wherea= 20702. 3)

do: (=0 1 q).

n

The above estimator achieves the MSE: Eg, x, ... x,,||0: — 6:]|* <

It follows that the mechanism ¢ and the aggregation function Agg for the estimators in . (as described
in (1)) are just the average functions, where client i sends ¢; = ¢(X;) :== X; = = > " =1 Xij to the

LS~ | q; back to the chents.

server, and the server sends 1t := Agg(q1,...,qm) = ;-

Remark 1 (Personalized estimate vs. local estimate). When o9 — 0, then a — 0, which implies that
0; — i and MSE — do?2/mn. Otherwise, when o is large in comparison to 02 /n or n — 0o, then

a — 1, which implies that 8; — X; and MSE — do? /n. These conform to the facts that (i) when
there is no heterogeneity, then the global average is the best estimator, and (ii) when heterogeneity is
not small, and we have a lot of local samples, then the local average is the best estimator. Observe that
the multiplicative gap between the MSE of the proposed personalized estimator and the MSE of the
local estimator (based on local data only, which gives an MSE of do2 /n) is given by ( —2¢ +q)<1
that proves the superiority of the personalized model over the local model, which is equal to1/m
when oy = 0 and equal to 0.01 when m = 10*, n = 100 and o2 = 10, o3 = 1073, for example.

Remark 2 (Optimality of our personalized estimator) In Appendix|B, we show the minimax lower

bound. infg supgee Exnr(0,02) 10(X) — 0|2 > (1 ¢ + a), which exactly matches the upper
bound on the MSE in TheOrem- thus establishes the optimality our personalized estimator in (3)).

Privacy and communication constraints. Observe that the scheme presented above does not protect
privacy of clients’ data and messages from the clients to the server can be made communication-
efficient. These could be achieved by employing specific mechanisms q at clients: For privacy, we
can take a differentially-private ¢, and for communication-efficiency, we can take ¢ to be a quantizer.
Inspired by the scheme presented above, here we consider g to be a function q : R? — Y, that takes
the average of n data points as its input, and the aggregator function Agg to be the average function.
Define /i, := = > | q(X;) and consider the following personalized estimator for the i-th client:

0;=aX;+(1— a)f,, for some a € [0, 1]. “)

Theorem 2. Suppose for all x € R, q satisfies E[q(x)] = « and E||q(z) — z||* < do? for some
finite o4. Then the personalized estimator in (4) has MSE:
0'3 —+ 0§/m71

do?/1—a
E 062 < = (—" +a) h = SNE
0;,q9,X1,... ‘m|| H n m a where a Og-f—”g/mfl-f—”i/n ( )

Furthermore, assuming p € [—r,]% for some constant r (but p is unknown), we have:

1. Communication efficiency: For any k € N, there is a ¢ whose output can be represented
using k-bits (i.e., q is a quantizer) that achieves the MSE in (3)) with probability at least
1 — 2/mn and with o4 = where b = r + 09+/log(m?2n) + % Vlog(m?2n).

(2’“ 1)

2. Privacy: Foranyeg € (0,1),0 > 0, there is a q that is user-level (eo, 0)-locally differentially
private, that achieves the MSE in (3) with probability at least 1 — 2/mn and with o, =

%\/SIOg(Z/é), where b =1 + oy log (m?2n) \/log (m?2n)
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2.2 BERNOULLI MODEL

For the Bernoulli model, P is supported on [0, 1], and p1, . . ., p., are sampled i.i.d. from [P, and client
i is given n i.i.d. samples X1, ..., X;, ~ Bern(p;). This setting has been studied in (Tian et al.
(2017); | Vinayak et al. (2019)) for estimating [P, whereas, our goal is to estimate individual parameter
p; at client ¢ using the information from other clients. In order to derive a closed form MSE result,
we assume that IP is the Beta dlstrlbutlonl Here I'=(e,B),p1,...,Pm are unknown, and client ¢’s
goal is to estimate p; such that the Bayesian risk E,,, .- Ep, x, . x,. (Pi — p;)? is minimized, where
7 denotes the density of the Beta distribution. Omitted proofs/details are provided in Appendix

Analogous to the Gaussian case, we can show that if v, 3 are known, then the posterior mean estimator
has a closed form expression: p; = aX; + (1 —a) o%ﬁ’ where a = "/a+8+n and @/(a+p) is the mean
of the beta distribution. When «, 3 are unknown, inspired by the above discussion, a natural approach
would be to estimate the global mean ;1 = ¢/(a+8) and the weight a = 7/(a+8+n), and use that in the
above estimator. Note that, for a we need to estimate « + /3, which is equal to #(1-1)/0* — 1, where
o? = aB/(a+B)?(a+p+1) is the variance of the beta distribution. Therefore, it is enough to estimate
and o2 for the personalized estimators {p; }. In order to make calculations simpler, instead of making
one estimate of y, o2 for all clients, we let each client make its own estimate of u, o? (without using
their own data) as: fi; = ;-7 >0, Xy and 67 = 15 50, (X) — ﬂl)QHand then define the local
weight as a; = m Now, client 7 uses the following personalized estimator:

pi = aiX' + (1 — @) ;. (6)
Theorem 3. With probability at least 1 — m, the MSE of the personalized estimator in (6) is given by:
EpinnBx,,....x,, (Di _pi)2 < E[Zi?] (warﬁﬂ)) +E[(1-a) ]((a+ﬁ)2(a+ﬁ+1) + 310%754"{ n))
Remark 3. When n — oo, then a; — 1, which implies that MSE tends to the MSE of the local
estimator X ;, which means if local samples are abundant, collaboration does not help much. When
o2 = aB/(a+B8)(a+8+1) — 0, i.e. there is very small heterogeneity in the system, then a; — 0, which
implies that MSE tends to the error due to moment estimation (the last term in the MSE in Theorem [3).

Privacy constraints. For any privacy parameter €y > 0 and input x € [0, 1], define ¢°™ : [0, 1] — R:

e e 0—1

-1

. ——  W.p. T

riv _ 0€0 —1 2€0+1 0€0 417

™ (r) = € 0 © 1+ c<o J—rl (N
eo—1 WP oot +$650+1'

The mechanism ¢P" is unbiased and satisfies user-level e)-LDP. Thus, the ith client sends
q"'i"(X ) to the server, which computes if™ = —L- 5 £ ¢°™(X) and the variance G, 2priv)
L Zl#(qp”"(Xl)) A;’”V) and sends (7™, Ef(p”v)) to client 4. Upon receiving this, client

~priv. _ Spriv.__ ~privys _ ~Privy ~priv . )
defines a; = = e ﬁp,,v)/A2(prlv)+ anduses o' =@ " X; + (1 —a"")aP™ to estimate p;.

Theorem 4. With probability at least 1 — -, the MSE of the personalized estimator p*" de-
fined above is given by: By, zEpiv x,  x,. (ﬁ?nv pi)? < E[(Agrlv)g](mwaiﬁ)) + E[(

. )(a+p+1
~priv af (e°0+1)? log(4m?n)
a; )2]((a+ﬂ)2(a+6+1) + 3(6‘0—1)2%&771—1) )

See Remark [4 (in Appendix [B)) and Remarks[6 and[7 (in Appendix [C) for a discussion on privacy,
communication efficiency, and client sampling.

3 PERSONALIZED LEARNING

Consider a client-server architecture with m clients. There is an unknown global population distribu-
tion IE”(P)E] over R from which m i.i.d. local parameters 01, ..., 8, € R? are sampled. Each client

3Beta distribution has a density Beta(a, §) = ﬁ *=1(1—1z)?~1 is defined for o, > Oand = € [0, 1],

. . af
where B(«, ) is a normalizing constant. Its mean is a+,3 and the variance is T (aT A"

*Upon receiving {X; } from all clients, the server can compute {fi;, 5; } and sends (fi;, 57 ) to the 4-th client.
SFor simplicity we will consider this unknown population distribution P to be parametrized by unknown
(arbitrary) parameters I'.
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i € |m] is provided with a dataset consisting of n data points {(X;1,Yi1), ..., (Xin, Yin)}, where
Y;;’s are generated from (XU,O ) using some distribution pg, (Y;;]|X;;). Let Y; := (Yi1,...,Yi)
and X; :=(Xi1,...,X;n) for i € [m]. The underlying statistical model for our setting is given by
o, viylixiy (01, 0, Y1, Y | X, X)) = HP(Bz‘) H Hpei(Yij\Xij)- 3
i= i=1j=1
Note that if we minimize the negative log likelihood of (8), we would get the optimal parameters:
m
6,,. = 2rg Il’élnz Z log(pe, (Yi;|Xi;)) + Z —log(p(6;)). )
1 m =1 j=1 i=1

Here, f;(6;) := Z?Zl —log(pe, (Yi;]1Xi;)) denotes the loss function at the i-th client, which only
depends on the local data, and R({6;}) := > ", —log(p(8;)) is the regularizer that depends on the
(unknown) global population distribution PP (parametrized by unknown I'). Note that when clients
have little data and we have large number of clients, i.e., n < m — the setting of federated learning,
clients may not be able to learn good personalized models from their local data alone (if they do,
it would lead to large loss). In order to learn better personalized models, clients may utilize other
clients’ data through collaboration, and the above regularizer (and estimates of the unknown prior
distribution PP, through estimating its parameters I') dictates how the collaboration might be utilized.
The above-described statistical framework @]) can model many different scenarios, as detailed below:

I. When P(I) = GM({pi}i_y, {mm}i1,{05,}1-1) is a Gaussian mixture, for I' =
{{py Ay ooty }) s o> 0,50 = 1,00, > 0,y € RYY, then R({6;}) =
—>" log (Zz 1 prexp(— M)/((Qwagyl)dm)). Here, the client models 64, .. ., 8,, are
drawn i.i.d. from P(T'), where 8; ~ N (g, 05 ,Ia) with prob. py, for I = 1,..., k. For k = 1,
R({6;}) = 2l log(2m03) + X1, % Here, unknown g can be connected to the global

model and 8;’s as local models, and the alternating iterative optimization optimizes over both.
This justifies the use of {5 regularizer in earlier personalized learning works (Dinh et al.;|2020;
Ozkara et al.| 20215 Hanzely & Richtarik, 2020; Hanzely et al.,[2020; [Li et al.| [2021).

_ m [[6;—
2. When P(I") = Laplace(p, b), forI' = {p,b > 0}, then R({6;}) = mlog(2b) + > .", %
3. When pg, (Yi;|X;;) is according to N(6;,02), then f;(0;) is the quadratic loss as in linear

(2] x

regression. When pg, (Vi;|Xi;) = o((0;, Xi;)) Y (1 — o((8;, Xi5))) 1~ Y49), where o(z) =
1/1+e= for any z € R, then f;(0;) is the cross-entropy (or logistic) loss as in logistic regression.

3.1 ApaMix: ADAPTIVE PERSONALIZATION WITH GAUSSIAN MIXTURE PRIOR

Now we write the full objective function for the Gaussian mixture prior model for a generic local
loss function f;(6;) at client i (the case of linear/logistic regression with (single) Gaussian prior and
solving using alternating gradient descent is discussed in Appendices E.[ED):
arg min ZFi‘gm(Gi) = Z ( —log Zpl exp(— Hul 0 IE: )/((27709’1)61/2)))
{0} A} Api} oo} i=1 i=1 l
(10)

A common example of f;(6;) is a generic neural network loss function with multi-class softmax
output layer and cross entropy loss, i.e., f;(0;) := Z?:l —log(pe, (Yij]1Xi;)), where pg, (Yi;|Xs5) =
({0, X))V (1 — o((0;, X45)))17Y43), where () = 1/1+e~= for any z € R. To solve (I0), we
can either use an alternating gradient descent approach, or we can use a clustering based approach
where the server runs a (soft) clustering algorithm on received personalized models. We adopt the
second approach here (described in Algorithm|[T)) as it provides an interesting point of view and can
be combined with DP clustering algorithms. Here clients receive the global parameters from the
server and do a local iteration on the personalized model (multiple local iterations can be introduced
as in FedAvg (McMabhan et al.,[2017))), later the clients send the personalized models. Receiving the
personalized models, server initiates GMM algorithm that outputs global parametersE]

SA discrete mixture model can be proposed as a special case of GM with 0 variance. With this we can recover
a similar algorithm as in Marfoq et al. (2021). Further details are presented in Appendix@
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3.2 ADAPED: ADAPTIVE PERSONALIZATION VIA DISTILLATION

It has been empirically observed that the knowl-
edge distillation (KD) regularizer (between local
and global models) results in better performance
than the /5 regularizer (Ozkara et al.,2021). In
fact, using our framework, we can define, for the

Algorithm 1 Personalized Learning with Gaussian
Mixture Prior (AdaMi x)

Input: Number of iterations 7', local datasets
(X;,Y;) for i € [m], learning rate ).

first time, a certain prior distribution that gives 1. [pitialize 950)) ...,09 and
the KD regularizer (see Appendix [H). We use p©) ,(© (0) (0) (0)
the following loss function at the i-th client: L e g T 10 T g
) 706, 1) 2: fort=1to T do
i i M 3 On Clients:
(0;) + = log(2 =S~ 11 )
£l )+20g( )+ 29 (i 4: fori=1tom:do

5 R : P(tfl) (t—1) (t—1) d
where p denotes the global model, 8; denotes eceive sH1 e py s an
the personalized model at client 7, and v can be a((fl_ 1), cee aé(f;l) from the server
viewed as controlling heterogeneity. The goal . Update the personalized parameters:
for each client is to minimize its local loss func-
tion, so individual components cannot be too Ogt) — 91(;—1) =NV ge-1) Figm(egt_l))
large. For the second term, this implies that :
1) cannot be unbounded. For the third term, if (t)
fKP(8;, ) is large, then ¢ will also increase Send ;" to the server
(implying that the local parameters are too de- - end for
viated from the global parameter), hence, it is At the Selaf)er: ® )
better to emphasize local training loss to make 10:  Receive 6, ...,8,, from the clients
the first term small. If <0 (8, 11) is small, then 11:  Update the global parameters:

1) will also decrease (implying that the local pa-
rameters are close to the global parameter), so it
is better to collaborate and learn better personal-
ized models. Such adaptive weighting quantifies
the uncertainty in population distribution during
training, balances the learning accordingly, and  12:
improves the empirical performance over non-
adaptive methods, e.g., (Ozkara et al., 2021).

PO 0 o0 )

—GmMm(6l",...,0% k)

Broadcast P®), {p{"}F_ | {a(gfz k  toall
clients
13: end for

Output: Personalized models 91T, .

To optimize we propose an alternating min- 2 6%

imization approach, which we call AdaPeD; see Algorithm lg Besides the personalized model ¢,
each client i keeps local copies of the global model w! and of the dissimilarity term 1!, and at
synchronization times, server aggregates them to obtain global versions of these p!, . In this way,
the local training of @’ also incorporates knowledge from other clients’ data through pt. In the end,

clients have learned their personalized models {07T .

3.3 DP-ApaPED: DIFFERENTIALLY PRIVATE ADAPTIVE PERSONALIZATION VIA DISTILL.

Note that client : communicates !, 9! (which are updated by accessing the dataset for computing

the gradients h!, k%) to the server. So, to privatize p!, !, client i adds appropriate noise to k¥, k!. In

order to obtain DP-AdaPeD, we replace lines 13 and 15, respectively, by the update rules:
h; ¢

: +v ) and it =l — (—Z

max(l/cr 1y ) T e

where v1 ~ N(0,07 14) and v5 ~ N(0,02,), for some o4, ,0,4, > 0 that depend on the desired

privacy level and C7, Cs, which are some predefined constants.

t+1
122

— ut + 1),

The theorem below (proved in Appendix |I) states the Rényi Differential Privacy (RDP) guarantees.
Theorem 5. After T iterations, DP—AdaPeD satisfies (o, €(a))-RDP for o« > 1, where €(a) =

K\26T,, (-C1 o3
(m) 6Ta(K0'31 + K0'22

), where & denotes the sampling ratio of clients at each global iteration.
m

We bound the RDP, as it gives better privacy composition than using the strong composition (Mironov,
et al., 2019). We can also convert our results to user-level (¢, §)-DP by using the standard conversion
from RDP to (e, §)-DP (Canonne et al.,[2020). See Appendix A for background on privacy.
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=—4— Local Estimator
—— Personalized Estimator
—— DP Personalized Estimator

Figure 1: In Fig.|la| we plot MSE
vs. € for personalized estimation.
In Fig. ll_b, we plot Test Accuracy
vs. e on FEMNIST with client sam-
pling 0.33, for DP-AdaPeD with

—+ Local training
—— DP-AdaPeD

£o

(a) Private Estimation (Sec. [Z)

4 EXPERIMENTS

Personalized Estimation. We run one experi-
ment for Bernoulli setting with real political data
and the other for Gaussian setting with synthetic
data. The latter one is differentially private.

e Political tendencies on county level. One
natural application of Bernoulli setting is mod-
eling bipartisan elections (Tian et al.,[2017). We
did a case study by using US presidential elec-
tions on county level between 2000-2020, with
m = 3112 counties in our dataset. For each
county the goal is to determine the political ten-
dency parameter p;. Given 6 election data we
did 6-fold cross validation, with 5 elections for
training and 1 election for test data. Local es-
timator takes an average of 5 training samples
and personalized estimator is the posterior mean.
To simulate a Bernoulli setting we set the data
equal to 1 if Republican party won the election
and O otherwise. We observe the personalized
estimator provides MSE (averaged over 6 runs)
gain of 10.7 & 1.9% against local estimator.

e DP personalized estimation. To measure
the performance tradeoff of the DP mechanism
described in Section we create a synthetic
experiment for Gaussian setting. We let m =
10000,n = 15 and 09 = 0.1,0, = 0.5, and
create a dataset at each client as described in
Gaussian setting. Applying the DP mechanism
we obtain the following result in Figure[Ta, Here,
as expected, when privacy is low (eq is high) the
private personalized estimator recovers the reg-
ular personalized estimator. For higher privacy

(b) Private Learning (Sec. @)

unsampled client iterations. Since
local training is private, both plots
remain constant against e.

Algorithm 2 Adaptive Personalization via Distilla-
tion (AdaPeD)
Parameters: local variances {¢?}, personalized
models {6"}, local copies of the global model
{u}, learning rates 71, 12,73, synchronization
gap 7

1: fort =0toT — 1do

2:  if 7 divides ¢ then

3: On Server do:

4: Choose a subset K C [n] of K clients
5: Broadcast pf and ¢

6: On Clients i € K (in parallel) do:

7: Receive pt, 9t set pt = pt, b =
8: endif

9:  On Clients i € K* (in parallel) do:

Vot F2(0} 1)

10:  Compute gt := Vg: f;(07) + BT

11:  Update: 87! = ! — g
12:  Compute b} := V. f{(67"" 1) /2yt
13:  Update: pi ™" = pl — noh!

14: Compute kf := 57 — FO7 0D a2

15:  Update: i ™! = ot — skt
16:  if 7 divides ¢ + 1 then

17: Clients send p! and 9! to Server

18: Server receives {p! }icice and {¢f }iexcr

19: Server computes p!t! = L3 . pul
and ' = % Diekt Ui

20:  endif

21: end for

m

Output: Personalized models (87 )™,

the private estimator’s performance starts to become worse than the non-private estimator.

Personalized Learning. First we describe the experiment setting and then the results.

o Experiment setting. We consider image classification on MNIST, FEMNIST (Caldas et al.,|2018),
CIFAR-10, CIFAR-100 (experimental details for CIFAR-100 is given in Appendix [K); and train a
CNN, similar to the one considered in (McMahan et al.|[2017), that has 2 convolutional and 3 fully
connected layers. We set m = 66 for FEMNIST and m = 50 for MNIST, CIFAR-10, CIFAR-100.
For FEMNIST, we use a subset of 198 writers so that each client has access to data from 3 authors,
which results in a natural type of data heterogeneity due to writing styles of authors. On MNIST,
CIFAR-10 we introduce pathological heterogeneity by letting each client sample data from 3 and
4 randomly selected classes only, respectively. We set 7 = 10 and vary the batch size so that each
epoch consists of 60 iterations. On MNIST we train for 50 epochs, on CIFAR-10 for 250 epochs, on
FEMNIST for 40 and 80 epochs, for 0.33 and 0.15 client sampling ratio, respectively. We discuss
further details in Appendix K.
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Table 1: Test accuracy (in %) for CNN model. The CIFAR-10, MNIST, and FEMNIST columns have client
sampling ratios % of 0.2, 0.1, and 0.15, respectively.

Method CIFAR-10 CIFAR-100 FEMNIST
FedAvg 60.86 £0.94  30.48+0.33 92.18 +0.13
FedAvg+fine tuning (Jiang et al.,2019)  63.12£0.31  39.98 +£0.26 94.12+0.26
AdaPeD (Ours) 72.49+042 53.11+0.34 96.55+0.32
pFedMe (Dinh et al.},|2020) 69.53 £0.16  43.65+0.18 94.95 4+ 0.55
Per-FedAvg (Fallah et al.[|2020) 59.95+0.79 34.78 £0.41 93.51 £0.31
QuPeD (FP) (Ozkara et al.,[2021) 71.61 £0.70 51.94+0.21 95.99+0.08
Federated ML (Shen et al.| |2020) 71.09 +£0.67 50.42+0.26 95.124+0.18
Method € =3.35 e=13.16 €=27.30 Table 2:  (DP-AdaPeD) Test
Accuracy (in %) vs. e on MNIST
DP-FedAvg 11.734+£0.85 29.91 +1.28 55.79 £ 0.29 without client sampling.

DP-AdaPeD (Ours) 93.32£1.18 98.51+0.90 99.01 +£0.65

Method n—=10 n = 20 n =30 Table 3: Mean squared error of our

AdaMix algorithm and the local train-
Local Training 39.93 +£0.13 30.02+0.08 19.97 +0.07 ing for linear regression.

AdaMix 10.42+£0.15 3.12+£0.04 2.55+0.04

e Results. In Table[T]we compare AdaPeD against FedAvg (McMahan et al., [2017), FedAvg+ (Jiang
et al.,[2019) and various personalized FL algorithms: pFedMe (Dinh et al.,[2020), Per-FedAvg (Fallah
et al.,[2020), QuPeD (Ozkara et al., 2021) without model compression, and Federated ML (Shen
et al.,[2020). We report further results in Appendix [K. We observe AdaPeD consistently outperforms
other methods. It can be seen that methods that use knowledge distillation perform better; on top
of this, AdaPeD enables us adjust the dependence on collaboration according to the compatibility
of global and local decisions/scores. For instance, we set o7 to a certain value initially, and observe
it progressively decrease, which implies clients start to rely on the collaboration more and more.
Interestingly, this is not always the case: for DP—AdaPeD, we first observe a decrease in o and later
it increases. This suggests: while there is not much accumulated noise, clients prefer to collaborate,
and as the noise accumulation on the global model increases due to DP noise, clients prefer not to
collaborate. This is exactly the type of autonomous behavior we aimed with adaptive regularization.

e DP—AdaPeD. In Figure[Ib|and Table[2] we observe performance of DP-AdaPeD under different
€ values. DP-AdaPeD outperforms DP-FedAvg because personalized models do not need to be
privatized by DP mechanism, whereas the global model needs to be. Our experiments provide
user-level privacy (more stringent, but appropriate in FL), as opposed to the item-level privacy.

e DP-AdaPeD with unsampled client iterations. When we let unsampled clients to do local
iterations (free in terms of privacy cost and a realistic scenario in cross-silo settings) described in
Appendix [H, we can increase DP—AdaPeD’s performance under more aggressive privacy constants e.
For instance, for FEMNIST with 1/3 client sampling we obtain the result reported in Figure[1b]

e AdaMix. We consider linear regression on synthetic data, with m = 1000 clients and each
client has n € {10,20, 30} local samples. Each local model 8; € R? is drawn from a mixture of
two Gaussian distributions N (u, ) and N'(—p, X), where ¥ = 0.001 x Iz and d = 50. Each
client sample (X;,Y;;) is distributed as X;; ~ N(0,1;) and Y;; = (X}, 0;) + w;;, where w;; ~
N(0,0.1). Table 3| demonstrates the superior performance of AdaMi x against the local estimator.

5 CONCLUSION

We proposed a statistical framework leading to new personalized federated estimation and learning al-
gorithms (e.g., AdaMix, AdaPeD); we also incorporated privacy (and communication) constraints into
our algorithms and analyzed them. Open questions include information theoretic lower bounds and
its comparison to proposed methods; examination of how far the proposed alternating minimization
methods (such as in AdaMix, AdaPeD) are from global optima]]

The work in this paper was partially supported by NSF grants 2139304, 2007714 and gift funding by Meta
and Amazon.
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A PRELIMINARIES

We give standard privacy definitions that we use in Section[A.T] some existing results on RDP to DP
conversion and RDP composition in Section[A.2] and user-level differential privacy in Section[A.3]

A.1 PRIVACY DEFINITIONS

In this subsection, we define different privacy notions that we will use in this paper: local differential
privacy (LDP), central different privacy (DP), and Renyi differential privacy (RDP), and their user-
level counterparts.

Definition 1 (Local Differential Privacy - LDP (Kasiviswanathan et al., 2011)). Forey > 0, a
randomized mechanism R : X — ) is said to be €y-local differentially private (in short, €o-LDP), if
for every pair of inputs d,d’ € X, we have

Pr[R(d) € S] < e Pr[R(d) € S], VS C . (12)

Let D = {x1,...,2,} denote a dataset comprising n points from X'. We say that two datasets
D={zy,...,zp}and D' = {z}, ..., } are neighboring (and denoted by D ~ D) if they differ
in one data point, i.e., there exists an 4 € [n] such that z; # = and for every j € [n], j # i, we have
T = .
Definition 2 (Central Differential Privacy - DP (Dwork et al., 2006; Dwork & Roth,[2014)). For
€,0 > 0, a randomized mechanism M : X™ — Y is said to be (¢, ¢)-differentially private (in short,
(e,9)-DP), if for all neighboring datasets D ~ D' € X™ and every subset S C Y, we have
Pr[(M(D) € S] < e Pr[M(D’') € S] +6. (13)
If 6 = 0, then the privacy is referred to as pure DP.
Definition 3 ((\, ¢(\))-RDP (Renyi Differential Privacy) (Mironov, 2017)). A randomized mech-
anism M : X™ — Y is said to have €(\)-Renyi differential privacy of order A € (1, 00) (in short,
(X, €(X))-RDP), if for any neighboring datasets D ~ D' € X™, the Renyi divergence between M(D)
and M(D") is upper-bounded by €¢(\), i.e.,

A
DAMI(D)|[M(D) = 5 log (E0~M<D'> Km ) D

< e(N),
where M(D)(0) denotes the probability that M on input D generates the output 0. For convenience,
instead of €(\) being an upper bound, we define it as €(\) = supp,.,p Dy (M(D)||M(D’)).

A.2 RDP 10 DP CONVERSION AND RDP COMPOSITION

As mentioned after Theorem [5, we can convert the RDP guarantees of DP-AdaPeD to its DP
guarantees using existing conversion results from literature. To the best of our knowledge, the
following gives the best conversion.

Lemma 1 (From RDP to DP (Canonne et al.,2020; Balle et al., [2020)). Suppose for any A > 1, a
mechanism M is (X, € (\))-RDP. Then, the mechanism M is (¢, 0)-DP, where €, 0 are define below:

For a given 6 € (0,1) :

N log (1/6) + (A —1)log (1 — 1/X) — log (A)
A—1

€=mine (N

For a given e > 0 :

exp (A= 1) (e(\) —¢)) 1\*
A—1 <1/\) '

6 = min
hy

The main strength of RDP in comparison to other privacy notions comes from composition. The
following result states that if we adaptively compose two RDP mechanisms with the same order, their
privacy parameters add up in the resulting mechanism.

Lemma 2 (Adaptive composition of RDP (Mironov, 2017, Proposition 1)). For any A > 1, let
My X = Y1 be a (N €1(N)-RDP mechanism and Ms : Y1 x X — Y be a (), e2(\))-RDP
mechanism. Then, the mechanism defined by (M, Ms) satisfies (X, €1(\) + e2(\))-RDP.

14



Published as a conference paper at ICLR 2023

A.3 USER-LEVEL DIFFERENTIAL PRIVACY LEVY ET AL. (2021)

Consider a set of m users, each having a local dataset of n samples. Let D; = {x;1,...,%in}
denote the local dataset at the i-th user for i € [m], where x;; € X and X C R%. We define
D= (Dy,...,Dp) € (X™)™ as the entire dataset.

We have already defined DP, LDP, and RDP in Section w.r.t. the item-level privacy. Here,
we extend those definition w.r.t. the user-level privacy. In order to do that, we need a generic
neighborhood relation between datasets: We say that two datasets D, D’ are neighboring with respect
to distance metric dis if we have dis(D,D’) < 1.

Item-level DP/RDP vs. User-level DP/RDP. By choosing dis(D,D’) = 33" >0 1{zy; # x;
we recover the standard definition of the DP/RDP from Definitions [2, [3;, which we call item- level
DP/RDP. In the item-level DP/RDP, two datasets D, D’ are neighboring if they differ in a single item.
On the other hand, by choosing dis(D,D’) = Z’Ll 1{D; # D.}, we call it user-level DP/RDP,
where two datasets D, D’ € (X™)™ are neighboring when they differ in a local dataset of any single
user. Observe that when each user has a single item (n = 1), then both item-level and user-level
privacy are equivalent.

User-level Local Differential Privacy (LDP). When we have a single user (i.e., m = 1and D = &™),
by choosing dis (D, D’) = 1{D # D’} for D, D’ € X™, we call it user-level LDP. In this case each
user privatize her own local dataset using a private mechanism.

We can define user-level LDP/DP/RDP analogously to their item-level counterparts using the neigh-
borhood relation dis defined above.

B PERSONALIZED ESTIMATION — GAUSSIAN MODEL

B.1 PROOF OF THEOREM/[I]

We will derive the optimal estimator and prove the MSE for one dimensional case, i.e., for d = 1; the
final result can be obtained by applying these to each of the d coordinates separately.

The posterior estimators of the local means 61, . .., 8,,, and the global mean  are obtained by solving
the following optimization problem:

917"'597717[1/ = arginax px|e (Xla" '7Xm‘917"'70m)p0\,u(017"'79’m|u)

91)“'7977”“
= eargrenin _log (pX\G (X17"'7Xm|917"'79m)) _log (pe\u(elyaam“’(‘))
1yeesUm b
2
m n ( ) m (9‘—,&)2
= argmin C+ZZ Z L,
01, ,0m i=1 j=1 i=1 %9

where the second equality is obtained from the fact that the log function is a monotonic function, and
C is a constant independent of the variables 0= (91, ...,0,,). Observe that the objective function

FO,p)=>" 5" =1 (20) -z —0:)’ + 3" 1 22l is jointly convex in (6, u). Thus, the optimal is
x 9
obtained by settlng the derivative to zero as it is an unbounded optimization problem.

OF " 200, - X7) 92(6, — i
EpYEL ) X 2“)=0, Vi € [m]
90; =10 =0 o2 oy
oF _ Y20 - 0;) _
6/“‘[’ /L:ﬂﬂi:éi O'g

By solving these m + 1 equations in m + 1 unknowns, we get:

bi=al S x7)+0-0) ZZX7 , (14)

Jj=1 11_]1
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where o = . By letting X, = 1 D , X7 for all i € [m], we can write §; = aX; + (1 —

2‘+

) 20ty X

Observe that E {9 |9} = af,; + =2 —a N " 60, where 0 = (1, ...,0p,). Thus, the estimator (14) is
an unbiased estimate of {0 }. Substltutmg the HZ- in the MSE, we get that

EXI ..... Xm |:<éz - 91)2:| = ]E@ _Exl 77777 X _(él — ei)z 9:|:|

— o |Ex...x. | (6 B [616] + 2 [d16] - ) 1o]

e v [ (5~ 006])" )] <2 [ (2 [500] -0 ]

n

(15)
Claim 1.
Egy |:EX1 ,,,,, X {(91—15[919})29” :0‘2%2+(1— )QTZi—F?a(l—a)m—i
) —(1—a)? im _Z2 _ao(m—l)
Eq {Exl ,,,,, . {(E{&ZG} 91) 9” (1— a)?E, [(m;ek 9) ] < (1- a2 %

Proof. For the first equation:

Ey {Exl ,,,,, X [(9 ~E[06])’ 9” — Ky [IEXI ..... X
=a’E[E[(X;—6;)*]0]] + (1 - a)’E [E [(; f:(m - ak)>2 | 9”

k=1
1 m
20(1 —a)E |E | — X;—0;)( Xk —
+ a( O() mkz:l( i et)( k 9k>|6]]
2 2 2
—a2&+(1—a)2&+2a(1—a)&
n mn mn

For the second equation, first note that E 9,|0] —0;, = ab; + 1’7“ S0 —0; = (1 —

@) (E D e O — Z)

Eo []EXMXW [( e|9 —e |9” =(1—a)’E [( Zek—9> ]
= (I*S)QE ( (O — 0:) )
m £

1—a)?
| 2 ) ZE(ak —0:)% + Z E(0) — 0:)(01 — 0:)
m | ki ki l£i kAl
(1 — Oé>2 2 2
< | DG — ) FEG - ) D E(6k 66— 6))
| ki st 1, kAL
1—a)?
= ( 2 ) 2(m — 1)og + Z E(0r — 0:)(0; — 6;)
m i ki 21kl
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1—a)? .
- (m72) 2(m — 1)os + Z E(p — 6;)* (Since E[0;] = p for all k € [m])
ki I, kL
(1-a)
=5 [2(m — l)ag +(m—1)(m-— 2)03]
_ (1 _ Q)ZUg(m — 1)
m
This concludes the proof of Claim [I] O

Substituting the result of Claim [T]into (I5)), we get

. 9 2 2 2 20 — 1
Ex,, . .x,. {(07 — 91) ] < azﬂ +(1- a)Q& +2a(1 — a)& +(1- oz)2m (16)
n mn mn m
2 02 1—a)?+2a(1 — 1
(:) & (a2 + ( Oé) + Oé( Oé) + O[(l . Oé) )
n m m

where in (a) we used o =

for the last term to write (1 —

m

)2 03(7::;1) _ %O{(l B a)m—l

o2
g 9+TL
Observe that the estimator in (14) is a weighted summation between two estimators: the local
estimator X; = 1 >j—1 X, and the global estimator i = L5 X;. Thus, the MSE in (a)

consists of four terms: 1) The variance of the local estimator (%i). 2) The variance of the global

estimator (%). 3) The correlation between the local estimator and the global estimator (Zz‘ ). 4) The

. 2
bias term Eg [E X1 X [(E {9i|9} — Gi) |9} } . This completes the proof of Theorem

B.2 PROOF OF THEOREM 2] EQUATION

Similar to the proof of Theorem |1} here also we will derive the optimal estimator and prove the MSE
for the one dimensional case, and the final result can be obtained by applying these to each of the d
coordinates separately.

Let 6 = (64, ...,0,,) denote the personalized models vector. For given a constraint function ¢, we
set the personalized model as follows:

Iy va-a (;qu)) vi € [m], a7

i=1

where X; = % 2;21 X f . From the second condition on the function g, we get that
~ o lis
E |d:l0] = >, (18)
1=1
Thus, by following similar steps as the proof of Theorem [T}, we get that:
. 2 T T 2
E {(9 - 01«) ] ~E|E (ei - ei) 9”

=EE (éi— [é\

Il
-
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1
m
=1 k=1
1—a)? (2= + 02 m 2
(b) 502 ( (n q) 2a(1 — a)o
:042;14— - — 4+ (1-a)’E —Zok—ez
k=1
2
2 (1—a)? %—FUQ) 2 2(m — 1
<a?Ze 4 ! Jr204(lfoz)&+(1foz)2M
n m mn m
o) 02 1—a)? +20(1 — —1
()O-z<a2+( Oé)+0(( a)+0é(1*01)m )
n m m
2 1—
—if(cw mo‘>, (19)

where step (a) follows by substituting the expectation of the personalized model from (18)). Step
(b) follows from the first and third conditions of the function g. Step (c) follows by choosing

2 94
_ O+ m—1
o= Tl
q

- —. This derives the result stated in (5)) in Theorem [2
2 o
o3+ i+ E

m—1 n

B.2.1 PROOF OF THEOREM [2] PART 1

The proof consists of two steps. First, we use the concentration property of the Gaussian distribution
to show that the local sample means {X;} are bounded within a small range with high probability.
Second, we apply an unbiased stochastic quantizer on the projected sample mean.

The local samples X}, ..., X are drawn i.i.d. from a Gaussian distribution with mean 6, and
—_ 2
variance Ug, and hence, we have that X; ~ AN (6;, %f) Thus, from the concentration property

— 2
of the Gaussian distribution, we get that Pr[|X; — 6;] > 1] < exp (—%) for all i € [m].
Similarly, the models 64, ...,6,, are drawn i.i.d. from a Gaussian distribution with mean p €

[—7,7] and variance o3, hence,, we get Pr[|0; — u| > c2] < exp (—;—%) for all i € [m]. Let
0

& ={X; €[-a,a] : Vi€ [m]}, where a = r + ¢1 + c2. Thus, from the union bound, we get that

2 c%

_nef g .
Prl] >1—m(e % +e °3). Bysetting c; = 1/ % log(m?n) and c; = /03 log(m?n), we get
thata = r + %\/log(m%) + 0gy/log(m2n), and Pr[€] = 1 — -~

mn’

Let g, : [—a, a] — Y be a quantization function with k-bits, where )y is a discrete set of cardinality
|Yx| = 2. For given x € [—a, a], the output of the function g, is given by:

2a - ~ -
qr(z) = 1 (lz] + Bern (2 — |2])) — a, (20)
where Bern(p) is a Bernoulli random variable with bias p, and & = % (x+a) € [0,2F —1].

Observe that the output of the function g requires only k-bits for transmission. Furthermore, the
function g, satisfies the following conditions:

E g (x)] = , 21

02 =E[(gr(2) — 2)?] < =

Let each client applies the function g on the projected local mean X; = Proji_q.q WZ] and sends

the output to the server for all ¢ € [m]. Conditioned on the event £, i.e., X; € [—a,a] Vi € [m],
and using (19), we get that

2 _
MSE = Eox [(9 - ei)Q] <Zx (1& + a) : (23)

n m
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2
o5+

where a = — @t a;> =D anda=r+ 2 TE /log(m?n) + ogp+/log(m?n). Note that the event

Tt GF 2oy T

& happens with probability at least 1 — %

B.2.2 PROOF OF THEOREM 2] PART 2

We define the (random) mechanism g, : [—a, a] — R that takes an input « € [—a, a] and generates a
user-level (g, d)-LDP output y € R, where y = ¢, () is given by:
4p(r) =z +v, (24)

where v ~ N'(0,02) is a Gaussian noise. By setting o2, w we get that the output of the

function ¢, () is (€g, §)-LDP from|Dwork & Roth (2014) Furthermore the function g, satisfies the
following conditions:
E [gp(2z)] = =, (25)

o5, =E[(gp(2) — 2)*] < &Lloei@/&)

(26)

Similar to the proof of Theoreml 2] Part 1, let each client applies the function g, on the projected local

mean X; = Proji_q.q) [X;] and sends the output to the server for all i € [m]. Conditioned on the
event &, ie., X; € [~a,a] Vi € [m], and using (19), we get that
R 2 2 /71—
MSE = Ey x {(9 ~0:) } <Z < a +a) : 27)
n m
GZ+SQ2 log(2/6)
where o = 4m—1) —randa=r+ & \/log m2n) + ag+/log(m?2n). Note that the event £

o2 8a210g<2/6)
ot eZ(m—1) +

happens with probability at least 1 — ml

n
Remark 4 (Privacy with communication efficiency). Note that our private estimation algorithm
for the Gaussian case adds Gaussian noise (which is a real number) but that can also be made
communication-efficient by alternatively adding a discrete Gaussian noise (Canonne et al.,|2020).

B.3 LOWER BOUND

Here we discuss the lower bound using Fisher information technique similar to|Barnes et al.| (2020).
In particular we use a Bayesian version of Cramer-Rao lower bound and van Trees inequality (Gill
& Levit](1995). Let us denote f(X|6) as the data generating conditional density function and 7(6)
as the prior distribution that generates 6. Let us denote [Eg as the expectation with respect to the
randomness of # and E as the expectation with respect to randomness of X and 6. First we define
two types of Fisher information:

Ix(0) = EgVlog(f(X10))Vglog(f(X|0))"
I(m) = EVg log(m(0)) Vg log(m(0))"

namely Fisher information of estimating # from samples X and Fisher information of prior 7. Here
the logarithm is elementwise. For van Trees inequality we need the following regularity conditions:

f(X]-) and 7(-) are absolutely continuous and 7(-) vanishes at the end points of ©.
* EgViolog(f(X]0)) =
* We also assume both density functions are continuously differentiable.
These assumptions are satisfied for the Gaussian setting for any finite mean p, they are satisfied for

Bernoulli setting as long as parameters « and S are larger than 1. Assuming local samples X are
generated i.i.d with f(z|0), the van Trees inequality for one dimension is as follows:
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EO(X) =07 > e oy Tt

where Ix () = Eglog(f(X|6))"? and I(7) = Elog(n(#))"?. Assuming # € R and each dimension
is independent from each other, by (Gill & Levit (1995) we have:

d2
nETr(1,(6)) + Tr(I(m))

E[l§(X) — 6] > (28)

~

Note, the lower bound on the average risk directly translates as a lower bound on supycq Ex||6(X) —
6|2. Before our proof we have a useful fact:

Fact 1. Given some random variable X ~ N(Y,02) where Y ~ N(Z,02) we have X ~ N(z,02 +

05).

Proof. We will give the proof in one dimension, however, it can easily be extended to multidimen-
sional case where each dimension is independent. For all £ € R we have,

0.2 2
Ex[exp(itX)] = EyEx[exp(itX)|Y] = Ey [exp(itY — f;t )

o2t?
= exp(——%—)Ey[exp(itY)]

2
2t2 0’2t2
L Yexp(itz — yT)

= exp(—
(03 +o))t?

exp(itz 5 )

where the last line is the characteristic function of a Gaussian with mean z and variance o2 + 05. 0

Gaussian case with perfect knowledge of prior. In this setting we know that §; ~ N (u1,0214),
hence, I(r) = 214, similarly Ix (6) = Z;14. Then,

2
%%

~ d? do2o?

E[0;(X) — 6;]]* > = § = 29

Slelip H ( ) H _HE%'F(% no_§+0% (29)
x )

Gaussian case with estimated population mean. In this setting instead of a true prior we have a
prior whose mean is the average of all data spread across clients, i.e., we assume 6; ~ N (i, 0214)
where i = —- 3" X7, We additionally know that there is a Markov relation such that X7 |6; ~
vl 2 K2
N(0;,0314) and 0; ~ N(u,05ly). While the true prior is parameterized with mean f, 6; in this
form is not parameterized by p but by i which itself has randomness due X7 . However, using Factll'
2 2
twice we can write 6; ~ N (y, (05 + 22 4+ 22 )I;). Then using the van Trees inequality similar to
the lower bound in perfect case we can obtain:

R 0202 4+ T
Ex|0;(X) — 6;||? > d-2-% ~ mn 30
sup x[10:(X) = 0;]7 > noZ ¥ o2 (30)
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C PERSONALIZED ESTIMATION — BERNOULLI MODEL

C.1 WHEN q, 5 ARE KNOWN

Analogous to the Gaussian case, we can show that if o, 5 are known, then the posterior mean estimator
has a closed form expression: p; = aX; + (1 — a) =2 (where a = »/a+8+n) and achieves the MSE:

a+p
o~ 2 //3 .
EpnrEs x1..x,, (Pi — pi)° < n(a+B)‘1(a+ﬁ+l) (H_g_m. We show this below.

For a client 7, let 7(p; ) be distributed as Beta(«, ). In this setting, we model that each client generates
local samples according to Bern(p;). Consequently, each client has a Binomial distribution regarding
the sum of local data samples. Estimating Bernoulli parameter p; is related to Binomial distribution
Bin(n, p;) (the sum of data samples) Z; since it is the sufficient statistic of Bernoulli distribution.
The distribution for Binomial variable Z; given p; is P(Z; = z;|p;) = (Z")pf (1—p)"~=.Itisa
known fact that for any prior, the Bayesian MSE risk minimizer is the posterior mean E [p;|Z; = z;].

When p; ~ Beta(a, 8), we have posterior

fWilZi = zi) = Imw(pi)
_ (:,)Pfl(l —p)" T e (1 — )Pt
P(z) B(a, 8)
() Bla+ 2z, B+n—z)pis (1 — p;)ftn—=-1
~ P(z) B(a, ) Blatz,ftn—z)
where B(a, 3) = FF(EXOE(;))’ and

P() = / P(zilps)(pi)dps

o n 24 nfzip?_l(l 7pi)ﬁ71
- [ (E)mopr g

n\ B(zi +a,n—z + ) [ pdTH (1 — p;)ftn-zicl
Zi B(a76) B(Oz-i-zl,ﬁ-i-n—zl)

integral of a Beta distribution

dp;

(n) B(zi +a,n—z; + B)
i B(w, B)

p?+z,i71(17pi)[3+n—zi—l

Thus, we get that the posterior distribution f(p;|Z; = z;) = Blatzfin—z) — is a beta
distribution Beta(z; + «,n — z; + ). As a result, the posterior mean is given by:
A a+ Z; Z; o
=8 a(E )+ 1—a) ), 31
DPi OZ+5+TL a(n +( Cl) 0[+6 3D
where a = #ﬁﬁz Observe that £, geta(a,8)[Pi] = %Hf’ i.e., the estimator is a weighted summa-

tion between the local estimator 2 and the global estimator 1 = ﬁ
We have R, (p;) = E-E(p; — p;)?. The MSE of the posterior mean is given by:

MSE = E[(5; — pi)?]
=E {(a (% *Pv:) + (1 =a)(u pi))2:|
= |(% )|+ 0 wE -]

[19(1—?)] a

(a+B)2(a+p+1)

= GZEPiNW(Pi) + (1 - CL>2
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_ 2 ap 2
=a n(a+5)(a+6+1)+(1—a)

af
(a+B)2*(a+pB+1)

B af n
Cala+B)at+ B+ \a+pf+n)’
. . . n

The last equality is obtained by setting a = 5=+ -
Remark 5. Note that X; = % is the estimator based only on the local data and ¢/(a+8) is the
true global mean, and p; = aX; + (1 — a)a%_ﬁ, where a = "/a+B+n (see (31)) is the estimator
based on all the data. Observe that when n — oo, then a — 1, which implies that p; — X,
Otherwise, when o + 3 is large (i.e., the variance of the beta distribution is small), then a — 0,
which implies that p; — ¢/(a+8). Both these conclusions conform to ihe conventional wisdom as
mentioned in the Gaussian case. It can be shown that the local estimate X ; achieves the Bayesian risk
of Ep, wBeta(a,)Ex, [(Xi — pi)?] = Evinetata.s Pi(1=P))/n = @B/n(a+p)(a+p+1), which implies
that the personalized estimation with perfect prior always outperforms the local estimate with a
multiplicative gain a = "/(n+a+8) < 1.

C.2 WHEN «, 8 ARE UNKNOWN: PROOF OF THEOREM 3]

The personalized model of the th client with unknown parameters «, [ is given by:
pi =@ X + (1=a) (fu), (32)

— _ n .. N 1 ~ .. .
where a; = EReETnEw the empirical mean fi; = = >, ,; X;, and the empirical variance

62 = ﬁ Zl# (X, — j1;)%. From (Tian et al., 2017, Lemma 1), with probability 1 — ——, we get

% m2n’

that

. 3log(4m?n)

PR PN Bt =2t

02 — 52| < 3log(4m?3n)
v m-—1 "

— _a 2 _ _ ap . C o .
where u = at8 7 T aIhi(asATD) Ae the true mean and variance of the beta distribution,

respectively. Let ¢ = 4/ %. Conditioned on the event £ = {|u — fi;| < ¢, |0? — 62| < c:

Vi € [m]} that happens with probability at least 1 — -1, we get that:
7 2
E|(pi —pi)* 17-] = a°E K“ —pi) + (1= 0)°E (1 — p)* 124
_2 af —\2 2 A N2
= 1- E|(p—pi — f
“ <n(a+5)(a+ﬁ+l)>+( %) ( [(/i p)]—i—(,u ,u))

) af _ )2 af
<n(a+3)(a+ﬁ+1)> +(1-2) <(a+6)2(a+6+1

2 (n(a+5)((f+ﬁ+1)> ta-ay ((a+ﬁ)2ﬁf+ﬁ+l) “2)’

where the expectation is with respect to z; ~ Binom(p;,n) and p; ~ Beta(a, ) and Z_; =
{z1,...,2i—1, Zi+1,- - -, 2m } denotes the entire dataset except the ith client data (z;). By taking the
expectation with respect to the datasets Z_;, we get that the MSE is bounded by:

af 9 af 3log(4m?n)
n(a+6)(a+ﬁ+1)>+E (1 -a)7] ((a+6)2(a+6+1) L— )

I
S

7t (n— ﬂi)2>

IN
Q|

MSE < E [a°] (
with probability at least 1 — % This completes the proof of Theorem
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C.3  WITH PRIVACY CONSTRAINTS: PROOF OF THEOREM [4]

First, we prove some properties of the private mechanism ¢,. Observe that for any two inputs
x,2" € [0,1], we have that:

€0 €0 _1
Pr[QP('r):y] _ 623-‘1-1 _x2€0+1 < o 33
Prlgp(@) =y] ~ oy — oot = Gy
p Y e€0+1 e€0+1

fory = ﬁ Similarly, we can prove for the output y = % Thus, the mechanism g, is
user-level ey-LDP. Furthermore, for given « € [0, 1], we have that
E [gp(2)] = =. (34)

Thus, the output of the mechanism g, is an unbiased estimate of the input z. From the Hoeffding’s
inequality for bounded random variables, we get that:

—3(e% — 1)2(m — 1)t2)

(e + 17

—3(e —1)2(m — 1)t2)
GO

PellAl — ul > 4 < 2exp (
(35)

Pr[|62%) — oy > ] < 2exp (

< ¢p, |&i2(p) — 02| < ¢, : Vi € [m]} happens with
W. By following the same steps as the

non-private estimator, we get the fact that the MSE of the private model is bounded by:

_ of
MSE < E [a°] <n(a+6)(a+/3+1)>

Thus, we have that the event £ = {|i{") — 4

probability at least 1 — -1, where ¢, =

_ af (e + 1)%log(4m?3n)
E[(1-a)? . (36
+E[1-ay] ((a+ﬂ)2(a+ﬂ+1) e —Em-1) ) ©Y
where a® = W and the expectation is with respect to the clients data
1y ey Zi1,%i41,---52mrand the randomness of the private mechanism ¢,. This completes
+ p p p
the proof of Theorem 4]

Remark 6 (Privacy with communication efficiency). Note that our private estimation algorithm for
the Bernoulli case is already communication-efficient as each client sends only one bit to the server.
Remark 7 (Client sampling). For simplicity, in the theoretical analysis in Gaussian and Bernoulli
models, we assume that all clients participate in the estimation process. However, a simple modifi-
cation to our analysis also handles the case where only K out of m clients participate: in all our
theorem statements we would have to modify to have K instead m. Note that we do client sampling
for our experiments in Table

D PERSONALIZED ESTIMATION — MIXTURE MODEL

Consider a set of m clients, where the i-th client has a local dataset X; = (X;1,...,X;,) of n
samples for i € [m], where X;; € R?. The local samples X; of the i-th client are drawn i.i.d. from a
Gaussian distribution A/ (0;, 021 ;) with unknown mean 8; and known variance o21,.

In this section, we assume that the personalized models 6+, . .., 0., are drawn i.i.d. from a discrete
distribution P = [py,...,py] for given k candidates py,. .., p, € R9 In other works, Pr[@; =
;] = pi for I € [k] and i € [m]. The goal of each client is to estimate her personalized model {8;}
that minimizes the mean square error defined as follows:

MSE = Eqo,,x,}110: — 6%, (37)

where the expectation is taken with respect to the personalized models 6; and the local samples

{Xij ~ N(8:,021,)}. Furthermore, ; denotes the estimate of the personalized model ; for
i€ [ml.
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First, we start with a simple case when the clients have perfect knowledge of the prior distribution,
i.e., the i-th client knows the k& Gaussian distributions N (p11,03) , ..., N (g, 03) and the prior
distribution &« = [avq, . .., . This will serve as a stepping stone to handle the more general case
when the prior distribution is unknown.

D.1 WHEN THE PRIOR DISTRIBUTION IS KNOWN

In this case, the -th client does not need the data of the other clients as she has a perfect knowledge
about the prior distribution.

Theorem 6. For given a perfect knowledge o = oy, ..., cp) and N (py,03) ... . N (g, 03).
the optimal personalized estimator that minimizes the MSE is given by:

k
0= a’m, (38)
=1

T Xy —my )
(1) P1 exp (—7203
where o =

X0 X5 —hs

7~ denotes the weight associated to the prior model
k _ Zj= .
2o5=1 Ps Cxp ( 202 )

forl € [K].

Proof. Let §; ~ P, where P = [p1,...,pg] and p; = Pr[0; = p;] for I € [k]. The goal is to design
an estimator 8; that minimizes the MSE given by:
MSE = Eg,sE{x, <n(6,.02)) {Héi - 0i||2} . (39)
Let X; = (X;1,...,X;in). By following the standard proof of the minimum MSE, we get that:
Eo,Ex, {Héi - 9i\|2] =Ex;Eo,x; [Héi — E[0;]X;] + E[6:] X;] — 0i||2’ Xz}
= Ex,Eo,px, [IEI6:|X:] - 04l1°] Xi] + Ex, o, x, | IE[0:1X:] - 6:]2| Xi]
> Ex,Eo, x; [IIE[6:X:] — 6:]*| Xi] ,
(40)

where the last inequality is achieved with equality when 0, = E[6;|X;]. The distribution on 6; given
the local dataset X is given by:

f(Xi]0; = py) Pr[0; = p]
f(Xy)
[(Xi|0; = p)) Pr[0; = p]

Y F(X0s = 1) Pr(6; = p] @1

S0y 11X
i exp ( e >
_ : NG
_ ] (

; S X2
Sy poexp (- =il Tt

As a result, the optimal estimator is given by:

Pr[0; = p | Xi] =

0; = E[0;|X;] Z ol . (42)
This completes the proof of Theorem 6] [

The optimal personalized estimation in is a weighted summation over all possible candidates
vectors fq, . .., pby,, where the weight al(l) increases if the prior p; increases and/or the local samples
{X;;} are close to the model p; for [ € [k]. Observe that the optimal estimator 6, in Theorem@that

minimizes the MSE is completely different from the local estimator (% 2?21 X; j>. Furthermore,

2
it is easy to see that the local estimator has the MSE (do’” ) which increases linearly with the data

dimension d. On the other hand, the MSE of the optimal estimator in Theorem UIS a functlon of the
prior distribution P = [p1, ..., p], the prior vectors g, . . ., pty, and the local variance o2
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D.2 WHEN THE PRIOR DISTRIBUTION IS UNKNOWN

Now, we consider a more practical case when the prior distribution P = [py,...,pi] and the
candidates p, . . ., ;, are unknown to the clients. In this case, the clients collaborate with each other
by their local data to estimate the priors P and 1, . . ., i, and then, each client uses the estimated
priors to design her personalized model as in (38]).

We present AlgorithmEbased on alternating minimization. The algorithm starts by initializing the

local models {0 0.1 & >_j—1 Xij}. Then, the algorithm works in rounds alternating between esti-

[py ¢+ (t+1)] (tH) (tH) for given local models {O(t)}and

-
estimating the personalized models {0 (t+1) } for given global priors P(+1) and u(t+1), e y,(tH)

Observe that for given the prior information P(*), {p t3, each client updates her personalized model in
Step[6 which is the optimal estimator for given priors according to Theorem[6] On the other hand, for

given personalized models {0( )} we estimate the priors P(Y), {14!} using clustering algorithm with &
sets in Step|_} The algorithm Cluster takes m vectors a1, . . . , a,, and an integer k as its input, and

its goal is to generate a set of k cluster centers ft1, . .., ft; that minimizes S mingey, [la; — w2

Furthermore, these clustering algorithms can also return the prior distribution P, by setting p; := I‘:il ,

where S; C {ay,...,a;} denotes the set of vectors that are belongs to the I-th cluster. There are
lots of algorithms that do clustering, but perhaps, Lloyd’s algorithm |Lloyd|(1982) and Ahmadian |Ah-
madian et al. (2019) are the most common algorithms for k-means clustering. Our Algorithm [3|can
work with any clustering algorithm.

mating the priors ]P(t+1)

Algorithm 3 Alternating Minimization for Personalized Estimation
Input: Number of iterations 7', local datasets (X1, ..., X;,) fori € [m].
1: Initialize 67 = 1 37| X;; fori € [m].
2: fort =1toT do
3:  On Clients:
for i = 1tom:do

4
5: Receive P(*) u(t) . ,u,(f) from the server
6 Update the personallzed model:

n o, ()2
pl(t) exp (_ Zj:l H‘;{;J% My [ )

k(¢ S X el
S exp (_20“

- Z al (t) and ozl(i) =

7 Send 6! to the server
8: end for
9: At the Server:
10:  Receive 0(1”, ...,0% from the clients
11:  Update the global parameters: P(*) ugt), e ,p,ff <+ Cluster (0?), . 05,?, k:)
12:  Broadcast P(*) ug e u,(f) to all clients
13: end for
Output: Personalized models HlT, NN 6%.

D.3 PRIVACY/COMMUNICATION CONSTRAINTS

In the personalized estimation Algorithm E, each client shares her personalized estimator 05-0 to
the server at each iteration which is not communication-efficient and violates the privacy. In this
section we present ideas on how to design communication-efficient and/or private Algorithms for
personalized estimation.

Lemma 3. Let p1y,... ), € R? be unknown means such that ||p;||2 < r for each i € [k]. Let
01,...,0,, ~P where P = [p1,...,px] and p; = Pr[0; = ). Fori € [m], let X;1,..., X ~
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N(0;,02), i.i.d. Then, with probability at least 1 — -1, the following bound holds for all i € [m):
1 — o2 o2
— Xiill <4y/d—2Z +24/1 2p)-=L . 43
n;,g_\/n+w%mmn+r 43)
= 2

Proof. Observe that the vector (Yi —0;) = % Z?:l Xi;j — 0, is a sub-Gaussian random vector with

2
proxy %’ As a result, we have that:

— o2 o2
[ X — Oill2 §4\/dﬁ+2 log(l/n)f, (44)

with probability at least 1 — 7 from Wainwright (2019). Since j1,...,u, € R? are such that
le¢;]]2 < r for each i € [k], we have:

— o2 o2
Xl §4\/dnw+2\/10g(1/77)n$+7“, (45)
1

with probability 1 — n from the triangular inequality. Thus, by choosing 7 = = and using the
union bound, this completes the proof of Lemma 3] O

Lemma E shows that the average of the local samples {X;} has a bounded /» norm with high
probability. Thus, we can design a communication-efficient estimation Algorithm as follows: Each

client clips her personal model O,Et) within radius 44/ d% + 24/ log(mZn)%i + r. Then, each client
applies a vector-quantization scheme (e.g.,Bernstein et al. (2018); |Alistarh et al. (2017); |Girgis et al.
(2021a)) to the clipped vector before sending it to the server.

To design a private estimation algorithm with discrete priors, each client clips her personalized

estimator 01@ within radius 44/ d% +24/log(m?n) % + 7. Then, we can use a differentially private
algorithm for clustering (see e.g.,|Stemmer|(2020) for clustering under LDP constraints and |Ghazi
et al. (2020) for clustering under central DP constraints.). Since, we run 7 iterations in Algorithm

we can obtain the final privacy analysis (¢, d) using the strong composition theorem |Dwork & Roth
(2014).

E PERSONALIZED LEARNING — LINEAR REGRESSION

In this section, we present the personalized linear regression problem. Consider A set of m clients,
where the i-th client has a local dataset consisting of n samples (X;1,Yi1), ..., (Xin, Yin), where
Xi; € R? denotes the feature vector and Y;; € R denotes the corresponding response. Let Y; =
(Yi1,..., Y1) € R"and X; = (X;1,. .., X;,) € R"*? denote the response vector and the feature
matrix at the ¢-th client, respectively. Following the standard regression, we assume that the response
vector Y; is obtained from a linear model as follows:

Y, = X;0; + w;, (46)
where 6; denotes personalized model of the i-th client and w; ~ N (O, J%]In) is a noise vector.
The clients’ parameters 6, ...,0,, are drawn i.i.d. from a Gaussian distribution 84,...,8,, ~

N(p,021y), iid.

Our goal is to solve the optimization problem stated in (9) (for the linear regression setup) and learn
the optimal personalized parameters {6, }. The following theorem characterizes the exact form of the
optimal {6;} and computes their minimum mean squared error w.r.t. the true parameters {6, }.
Theorem 7. The optimal personalized parameters at client i with known p, O'g, o2 is given by:

- T x7'x;\ '/ XTy,
m(2+l2) (%2+i) @7
oy o2 oz oy

The mean squared error (MSE) of the above 51 is given by:
2 I XTx\
Tr<<2+ l2 > >, (48)
op o2
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Proof. The personalized model with perfect prior is obtained by solving the optimization problem
stated in (9), which is given below for convenience. Note that for linear regression with Gaussian
prior, we have P(I") = N (s, 0314) and pe, (Y;;|X;;) according to N'(0;,02).

0, = arg mmz log(po, (Yi| Xij)) — log(p(6:)).

7’, ] 1
— Xi60:)" | 116; —
argrinmz 202 + 203 .
- X.0.? 0. — ull?
— arg min [|Y; 21 ill [0; 2/"“ .
0, 20z 205

By taking the derivative with respect to 8;, we get
o X! (Xi0; -Y) n 0 —p
00; o2 o3

(49)

Equating the above partial derivative to zero, we get that the optimal personalized parameters @ is

given by:
- T x7x;\ ' /X7y,
0,;<2+ 12) ( +“>. (50)

2 2
oy oz op op

Taking the expectation w.r.t. w;, we get:

. I X'x\ ' /XTX,0,
Ew;[0i] = | = s e R 51
Wi (G 550) (R ) ey
Thus, we can bound the MSE as following:
~ 2 ~ ~ 2
12 ~ 2 —~ ~ —~
=B, |05~ B [0+ Euw, 0, [Eus[0:] = 05|+ 2Euw, 0, (B: — B, [01], Eur, 03] - 6:)
~ 2 - 2
= E'wiﬂi Ewi [01] + ]Ewi-,ei i [91]

In the last equality, we used E,, 0, <6 — Ew, [0:],E =
<Ewi [6,] — Ev, [6:], Ew, [0:] — 0 > = 0, where the first equality holds because E [5 ;| — 6 is

independent of w;,.

Ee,

i

Ty . .
Letting M = % XUZX *, and Tr denoting the trace operation, we get

(52 (22 )
o2 o2
T
+Tr (M—llEei l(e’ _2“> (01 ;”)
Tp Ty

XX, I
=Tr <M1’2M1) +Tr <M12M1>
%9

T

~

0: -0

2
Euw; .0 =Tr (M—llei

2

=Tr(M™).
This completes the proof of Theorem O
Observe that the local model of the i-th client, i.e., estimating 6, only from the local data (Y;, X;), is

given by:

8 — (xIx,)"" X7, (52)
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Algorithm 4 Linear Regression GD

Input: Number of iterations 7', local datasets (Y;, X;) for i € [m], learning rate 7.

1: Initialize 87 for i € [m], u°, 020, 03°°.
2: fort=1toT do
3: On Clients:
4:  fori=1tom:do
5: Receive and set pf = pf, agf = 03 t70'i§ =02
t—1 t—1
6: Update the personalized model: 8} « %~ Yy (Z -1 Xig (g ,tXﬁ]e B + ”"'Uz;f{? )
z i 0,1
. =1 —-1_ t 1
7: Update local version of mean: p! < ;" — 17 8 px f
6,1
t—1\2
8: Update local variance: O’ <—a2t ! N\ 3 u T — Z;l 1 %)
1 t—1)2
9: Update global variance: 09 P agt o <202‘?;1 HM21(U2 191)2” )
10:  end for

11: At the Server:
12:  Aggregate mean: p! P Zlm 1 l%
13:  Aggregate global variance: ‘73 b= 7}L Z:" 1 agf

. 2t 1 m 2.t
14: Aggregate local variance: 0" = ;- > /" 0,

15:  Broadcast !, 0, o2t
16: end for
Output: Personalized models 0{, RN 0%.

where we assume the matrix X 3“ X; has a full rank (otherwise, we take the pseudo inverse). This
local estimate achieves the MSE given by:

5,

K2

g ((x7x)) ") o (53)

E -0, s

we can prove it by followmg similar steps as the proof of Theoreml When o3 — 0o, we can easily
see that the local estimate (52) matches the personalized estimate in (47).

To make the regression problem more practical, we assume that the mean g, the local variance
o2, and the global variance o are unknown. Hence, we estimate the personalized parameters by
minimizing the negative log likelihood:

m n m

01,....0,, = argmin > Y —log(pe, (Yi;|Xij) + > —log(p(6:))
{9}/—"‘717‘791 15=1 i=1
- (Vi — X360, md 0 — p)?
= argmln—log 27rcr ZZ J 5 2] log 27m Z ! MH
== oz

(54)

Instead of solving the above optimization problem explicitly, we can optimize it through gradient
descent (GD) and the resulting algorithm is presented in AlgorlthmE In addltlon to keeping the
personalized models {6"}, each client also maintains local copies of { u“ 74 ;0% ;+ and updates all
these parameters by taking appropriate gradients of the objective in (54]) and synchronize them with
the server to update the global copy of these parameters {u’, o, oL }.

F PERSONALIZED LEARNING — LOGISTIC REGRESSION
As described in Section E, by taking P(I") = N (p, 021,) and py, (Y] Xi5) = 0((6;, X)) (1 —

o((0;,X;;))) 1Y) where o(z) = 1/1+e~= for any 2 € R, then the overall optimization problem
becomes:
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m n

. 1 1
arg min ZZ {Yij log <1 " e_<9i7Xij>) +(1-Y;;)log <1 LX) ﬂ

{ei}vll'vo'b) i=1 j=1

0:13

md
7 gm0 Z lle — 0113
209

(55)

When p and 03 are unknown, we would like to learn them by gradient descent, as in the linear
regression case. The corresponding algorithm is described in Algorithm 3]

Algorithm 5 Logistic Regression SGD

Input: Number of iterations 7', local datasets (Y, X;) for i € [m], learning rate 7.

: Tnitialize 8" for i € [m], u°, o;°.

1
2: fort =1toT do

3:  On Clients:

4:  fori=1tom: d0

5 Receive (u?, 09 ") from the server and set p! := !, o'gf = ag *
6 Update the personalized model:

t t—1 () gt-1 Ht_lfeﬁ_l
0! — 071 — Zvef A0 (X Y) + P |
00,%
where l(p ) denotes the cross-entropy loss.
t—1 t—1
7: Update local version of mean: p! < p!™t — 17 (’“02795)
0,4
t—1 t—12
8: Update global variance: 09 <—o§t 1 -7 (2 2¢ft_1 Hu2 “91 2|| )
0‘9 3 ( gﬂ/ )

9: Send (p!, ‘70,’1') to the server
10:  end for

11: At the Server:

12:  Receive {(p!, 0'2 ")} from the clients

13:  Aggregate mean: p' = - > !

14:  Aggregate global variance: o' = Ly aﬁf
15:  Broadcast (!, o) to all clients

16: end for

Output: Personalized models 07 ..., 07 .

G PERSONALIZED LEARNING — MIXTURE MODEL

In this section, we present the linear regression problem as a generalization to the estimation problem
with discrete priors. This model falls into the framework studied in Marfoq et al. (2021) and is
illustrated to show how our framework also captures it.

Consider a set of m clients, where the i-th client has a local dataset (X;1, Y;1),. .., (Xin, Yin) of m
samples, where X;; € R? denotes the feature vector and Y;; € R denotes the corresponding response.
LetY; = (Yi1,..., Y1) € R"and X; = (Xi1, ..., Xin) € R"*? denote the response vector and the
feature matrix at the i-th client, respectively. Following the standard regression, we assume that the
response vector Y; is obtained from a linear model as follows:

Y, = X;0; + w;, (56)
where 6; denotes personalized model of the i-th client and w; ~ N (0, 02L,) is a noise vector. The
clients models are drawn i.i.d. from a discrete distribution 01, ..., 8,, ~ P, where P = [p1,.. ., pi]

such that p; = Pr[@; = p;] fori € [m] and [ € [k].
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Our goal is to solve the optimization problem stated in (9 (for the linear regression with the above
discrete prior) and learn the optimal personalized parameters {8, }.

We assume that the discrete distribution P and the prior candidates {g,}¥_; are unknown to the
clients. Inspired from Algorithm [3] for estimation with discrete priors, we obtain Algorithm [6/for
learning with discrete prior. Note that this is not a new algorithm, and is essentially the algorithm
proposed inMarfoq et al.|(2021) applied to linear regression. We wanted to show how our framework
captures mixture model in Marfoq et al.|(2021) through this example.

Description of Algorithmlgl Client ¢ initializes its personalized parameters 01(-0) = (XI'X)' X!y,
which is the optimal as a function of the local dataset at the ¢-th client without any prior knowledge.
In any iteration ¢, for a glven prior information P(®), { T 1t)} the ¢-th client updates the personalized

() () (1) CIXap? —vi|?

model as 0t Zz 1 al Nz , where the weights o, o< p;”’ exp and sends its

202
current estimate of the personalized parameter 9§ to the server. Upon receiving 05, ey an, server
will run Cluster algorithm to update the global parameters PP, ug ), ceey ,u,(:), and broadcasts them to

the clients.

Algorithm 6 Alternating Minimization for Personalized Learning
Input: Number of iterations 7', local datasets (X, Y;) for i € [m].
1: Initialize 0 = (X7 X;)~' XY fori € [m] (if X} X; is not full-rank, take the pseudo-inverse).

2: fort =1toT do

3 On Clients:

4:  fori=1tom:do

5 Receive P(*) u(t) . ,/,L,(:) from the server

6 Update the personahzed parameters and the coefficients:

(1) 2
(t) 1 Xip,” =Yl
ppexp i — : éo’fa l

() a® =
% Z A “ and 4 . (t)
S, p) exp (Xl Y7

7 Send Oz(t) to the server

8: end for

9: At the Seryer:
10:  Receive Ogt), . 05,? from the clients
11:  Update the global parameters: P(*) u(t) .. ,,u,(:) < Cluster (9?), o ,07(7?, k)

12:  Broadcast P(), ug ) p,,i) to all clients

13: end for

Output: Personalized models 9{, e 07

m:*

H PERSONALIZED LEARNING — ADAPED

H.1 KNOWLEDGE DISTILLATION POPULATION DISTRIBUTION

In this section we discuss what type of a population distribution can give rise to algorithms/problems
that include a knowledge distillation (KD) (or KL divergence) penalty term between local and global
models. From Section Equation (9), consider pg, (y|x) as a randomized mapping from input space
X to output class ), parameterized by 6;. For simplicity, consider the case where |X| is finite, e.g.
for MNIST it could be all possible 28 x 28 black and white images. Every pg, (y|z) corresponds
to a probability matrix (parameterized by 8,) of size || x |X|, where the (y, z)’th represents the
probability of the class y (row) given the data sample x (column). Therefore, each column is a
probability vector. Since we want to sample the probability matrix, it suffices to restrict our attention
to any set of || — 1 rows, as the remaining row can be determined by these |)| — 1 rows.
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Similarly, for a global parameter g, let p,,(y|«) define a randomized mapping from X to Y, parame-
terized by the global parameter p. Note that for a fixed global parameter p, the randomized map
pu(ylx) is fixed, whereas, our goal is to sample pg, (y|z) fori = 1,...,m, one for each client. For
simplicity of notation, define pg, := pe, (y|z) and p,, := p,(y|z) to be the corresponding probability
matrices, and let the distribution for sampling pg, (y|z) be denoted by p,,, (pe,). Note that different
mappings pg, (y|z) correspond to different 6;’s, so we define p(0;) (in Equatlon ©) as py,, (pe,)-
which is the density of sampling the probability matrix pg, (y|x).

For the KD population distribution, we define this density p, , (pe, ) as

Do (pe,) = C(w)e—wDKL(Pu(ylx)Hpej (ylx)) (57)

where ¢ is an ‘inverse variance’ type of parameter, ¢(1)) is a normalizing function that depends

on (1, pu). and Dict (9 (y12) [po, (412)) = e (%) ey P (yl) log (2022) ) is the condii
tional KL divergence, where p(x) denotes the probability of sampling a data sample x € X. Now all
we need is to find ¢(¢)) given a fixed p (and therefore fixed p,, (y|x)). Here we consider Dk (pu|pe; ).
but our analysis can be extended to Dy ( ) or ||pe, — ppll2 as well.

For simplicity and to make the calculations easier, we consider a binary classification task with
Y = {0, 1} and define p,, (z) := pp(y = 1|X = z) and ¢;(z) := pg, (y = 1|/X = x). We have:

Dic(ule) o, (412)) = 3 pte ) (u(@) (108 Py (@) ~ log gi(x)

+ (1= pu(@))(log(1 — pu(a)) — log(1 — 4i(2)))-
Hence, after some algebra we have,

Py (Pe,) = c(¥)e? > p(@)H(pu (@) o 22, p(2) (pu (2) log(ai (2))+(1—pu (2)) log(1-g:(2))))
I k3

Then,

1
() [ [ / ewm)H(m(w))ewmx)(m(x)1og<q,-(x>>+(1—pp<x>>1og<1—qi<x))))dqi(x)} —1.

- 0
Note that
/ " P (1 2) log(ar () (i) 1800 @) g () = B (1 NG —Pu(ff))
0 Yp(z) ¥p(x)

—% Xy p(2)H(pp(2))

7@ 1, Ira®
IL B(mem) T

Accordingly, after some algebra, we can obtain c()) =

) where H is binary
Shannon entropy. Substituting this in (57), we get
o~ X, p@) H(p (@)

) T @
ILBO+ 5 L+ )

e~ ¥ Dri(pu(yl)lpe; (y|2))

ppp.(pew) =

which is the population distribution that can result in a KD type regularizer. Note that when we take
the negative logarithm of the population distribution we obtain KL divergence loss and an additional
term that depends on v and p,,. This is the form seen in Section Equation for AdaPeD
— g p(x)H(pu(z))
T i)
be simple % log(21)). As mentioned in Section [ﬁ, this serves the purpose of regularizing . This is
in contrast to the objective considered in|Ozkara et al.|(2021), which only has the KL divergence loss

as the regularizer, without the additional term.

algorithm. For numerical purpose, we take the additional term — log

H.2 ADAPED WITH UNSAMPLED CLIENT ITERATIONS
When there is a flexibility in computational resources for doing local iterations, unsampled clients

can do local training on their personalized models to speed-up convergence at no cost to privacy. This
can be used in cross-silo settings, such as cross-institutional training for hospitals, where privacy is
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crucial and there are available computing resources most of the time. We propose the algorithm for
AdaPeD with with unsampled client iterations in Algorithm

Algorithm 7 Adaptive Personalization via Distillation (AdaPeD) with unsampled client iterations

Parameters: local variances {1}, personalized models {0?}, local copies of the global
model {uY}, synchronization gap 7, learning rates 7;,72,73, number of sampled clients

1: fort=0to7T — 1 do

2 if 7 divides ¢ then

3 On Server do:

4: Choose a subset ! C [n] of K clients

5: Broadcast u! and ¢

6: On Clients i € X! (in parallel) do:

7 Receive p! and 9°; set pl = pt, f = ¢t
8 end if

9:  On Clients i ¢ K (in parallel) do:

Vor 1000 11;")

10:  Compute g} := Vit £:(0%) + 7 where ¢ is the last time index where client ¢

received global parameters from the seirver
11:  Update: /7' = % — gt

12: On Clients i € K (in parallel) do:
Vo f1°(0}, i
13:  Compute gE = mei(gf) + &

24}
14:  Update: /7' = ! — 1, gt
KD t+1 t

15 Compute h} := W
16:  Update: pi™* = pt — nohl

/‘KD ot‘+l, 1:+1
17 Compute k! := ﬁ A6 ) (221&2)2‘1 )
18:  Update: /™! = ot — skt
19:  if 7 divides ¢ 4 1 then
20: Clients send p! and 1! to Server
21: Server receives {p! }icice and {¢f }icxcr
22: Server computes 't = £ 3. o pland T = L 30t
23:  endif
24: end for

Output: Personalized models (87 )™,

Of course, when a client is not sampled for a long period of rounds this approach can become similar
to a local training; hence, it might be reasonable to put an upper limit on the successive number of
local iterations for each client.

I PERSONALIZED LEARNING — DP-ADAPED

Proof of Theorem
Theorem (Restating Theorem[S). After T iterations, DP—AdaPeD satisfies (v, €(cr))-RDP for a > 1,

2 2 2 . . .
where (@) = (%) 6 (%) o ( Kcalgl + KC;‘;Q ) where % denotes the sampling ratio of the clients at

each global iteration.

Proof. In this section, we provide the privacy analysis of DP—AdaPeD. We first analyze the RDP
of a single global round ¢ € [T'] and then, we obtain the results from the composition of the RDP
over total 7" global rounds. Recall that privacy leakage can happen through communicating {, } and
{1t} and we privatize both of these. In the following, we do the privacy analysis of privatizing {u, }
and a similar analysis could be done for {1/} as well.
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At each synchronization round ¢ € [T, the server updates the global model p!*! as follows:

1
t+1 __ t
W= E s (58)
i€t

where p! is the update of the global model at the i-th client that is obtained by running 7 local
iterations at the i-th client. At each of the local iterations, the client clips the gradient h! with
threshold C; and adds a zero-mean Gaussian noise vector with variance 021 I;. When neglecting the

noise added at the local iterations, the norm-2 sensitivity of updating the global model uﬁ“ at the
synchronization round ¢ is bounded by:

t41 14112 TC12
A“:,é??éi”“ —1 e = (59

where K', K'* C [m] are neighboring sets that differ in only one client. Additionally, p!*! =

i t nt+1 i t . .. . . . . 2

7o D ikt pi and p/' = & Zie)@t p;. Since we add i.i.d. Gaussian noises with variance o, at

each local iteration at each client, and then, we take the average of theses vectors over K clients,
2

TO'ql

it is equivalent to adding a single Gaussian vector to the aggregated vectors with variance
Thus, from the RDP of the sub-sampled Gaussian mechanism in (Mironov et al.| 2019, Table 1),
Bun et al.[(2018), we get that the global model p!*! of a single global iteration of DP~AdaPeD is

(o, egl) («))-RDP, where €;(c) is bounded by:

2 2
eV (a) = <K> facy (60)

2
m Kaql

Similarly, we can show that the global parameter 1)+ at any synchronization round of DP—AdaPeD
is (v, eEQ) (r))-RDP, where €;(«) is bounded by:

2 2
e (a) = <K> facs. (61)

2
m K0q2

Using adaptive RDP composition (Mironov, |[2017, Proposition 1), we get that each synchronization

round of DP-AdaPeD is (a, egl)(a) + e@(a))—RDP. Thus, by running DP-AdaPeD over T/7

synchronization rounds and from the composition of the RDP, we get that DP—AdaPeD is («, €(a))-
RDP, where (o) = (L) (e (a) + €? (a)). This completes the proof of Theorem O

J  EXPANDED RELATED WORK AND CONNECTIONS TO EXISTING METHODS

In Section [T, we mentioned that the our framework has connections to several personalized FL
methods. In this appendix we provide a few more details related to these connections.

Regularization: As noted earlier using (9) with the Gaussian population prior connects to the use of
{5 regularizer in earlier personalized learning works Dinh et al. (2020);|Ozkara et al.|(2021); Hanzely
& Richtarik (2020); |[Hanzely et al.|(2020); L1 et al.| (2021), which also iterates between local and
global model estimates. This form can be explicitly seen in Appendix [E, where in Algorithm[d, we
see that the Gaussian prior along with iterative optimization yields the regularized form seen in these
methods. In these casesﬂ, P(T) = N(p,0214) for unknown parameters I' = {u}. Note that since
the parameters of the population distribution are unknown, these need to be estimated during the
iterative learning process. In the algorithm, [4]it is seen the p plays the role of the global model (and
is truly so for the linear regression problem studied in Appendix [E).

Clustered FL: If one uses a discrete mixture model for the population distribution then the iterative
algorithm suggested by our framework connects to (Zhang et al.l 2021} Mansour et al., 2020; |(Ghosh
et al.,2020; Smith et al.,2017; Marfoq et al., 2021). In particular, consider a population model with
parameters in the m-dimensional probability simplex {a : o = [a1, ..., agl, 0 > 0,Vi, Y. o =
1} which describing a distribution. If there are m (unknown) discrete distributions {Dy, ..., Dy, },
one can consider these as the unknown description of the population model in addition to ce. Therefore,

80ne can generalize these by including o3 in the unknown parameters.
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each local data are generated either as a mixture as in (Marfoq et al.|[2021) or by choosing one of the
unknown discrete distributions with probability o dictating the probability of choosing D;, when
hard clustering is used (e.g., (Mansour et al.,[2020)). Each node j chooses a mixture probability
oY) uniformly from the m-dimensional probability simplex. In the former case, it uses this mixture
probability to generate a local mixture distribution. In the latter it chooses D; with probability 0‘1('] ),
As mentioned earlier, not all parametrized distributions can be written as a mixture of finite number
distributions, which is the assumption for discrete mixtures. Consider a unimodal Gaussian population

distribution (as also studied in Appendix E). Since P(I") = N (p,021,), for node i, we sample

6; ~ P(I'). We see that the actual data distribution for this node is pe, (y|z) = N(8; x,0?).
Clearly the set of such distributions {pe, (y|x)} cannot be written as any finite mixture as 8; € R?
and pg, (y|x) is a unimodal Gaussian distribution, with same parameter 8; for all data generated in
node 7. Essentially the generative framework of finite mixtures (as in (Marfoq et al.,[2021)) could be
restrictive as it does not capture such parametric models.

Knowledge distillation: The population distribution related to a regularizer based on Kullback-
Leibler divergence (knowledge distillation) has been shown in Appendix [H. Therefore this can be cast
in terms of information geometry where the probability falls of exponentially with in this geometry.
Hence these connect to methods such as |Lin et al.| (2020); |Li & Wang|(2019); Shen et al. (2020);
Ozkara et al.|(2021), but the exact regularizer used does not take into account the full parametrization,
and one can therefore improve upon these methods.

FL with Multi-task Learning (MTL): In this framework, a fixed relationship between tasks is
usually assumed (Smith et al.,[2017). Therefore one can model this as a Gaussian model with known
parameters relating the individual models. The individual models are chosen from a joint Gaussian
with particular (known) covariance dictating the different models, and therefore giving the quadratic
regularization used in FL-MTL (Smith et al.,2017). In this the parameters of the Gaussian model are
known and fixed.

Common representations: The works in|Du et al. (2021); Jain et al. (2021b) use a linear model where
y ~ N(x"8;,0?) can be considered a local generative model for node i. The common representation
approach assumes that 8; = 2?21 ng-l), for some k < d, where ; € R®. Therefore, one can
parametrize a population by this (unknown) common basis B, and under a mild assumption that the
weights are bounded, we can choose a uniform measure in this bounded cube to choose w(® for each
node 7. The alternating optimization iteratively discovers the global common representation and the
local weights as done in|Du et al. (2021); Jain et al.|(2021b) (and references therein). This common
linear representation approach was generalized in Du et al. (2021); |Collins et al. (2021) to neural
networks, where a set of parameters to obtain a common representation (“head”) at each client was
obtained and each local client appendd it with a “tail” combining the representation to obtain the
final model. This also fits into our statistical framework, where the common representation (head)
parameters are chosen from a population model (like the common subspace in the linear case) and
the tail parameters are independently chosen (again as in the linear case).

Empirical and Hierarchical Bayes: As mentioned in Section|l, our work is inspired by empirical
Bayes framework, introduced in (Stein, [1956; Robbins, [1956; James & Stein, [1961), which is
the origin of hierarchical Bayes methods; see also (Gelman et al., 2013, pp. 132). (Stein, |1956;
James & Stein, [1961) studied jointly estimating Gaussian individual parameters, generated by an
unknown (parametrized) Gaussian population distribution. They showed a surprising result that
one can enhance the estimate of individual parameters based on the observations of a population of
Gaussian random variables with independently generated parameters from an unknown (parametrized)
Gaussian population distribution. Effectively, this methodology advocated estimating the unknown
population distribution using the individual independent samples, and then using it effectively
as an empirical prior for individual estimatesﬂ This was studied for Bernoulli variables with
heterogeneously generated individual parameters by [Lord| (1967) and the optimal error bounds for
maximum likelihood estimates for population distributions were recently developed in (Vinayak et al.|
2019). Hierarchical Bayes, builds on empirical Bayes framework and is sometimes associated with a
fully Bayes method. Our choice to use empirical Bayes framework as the foundation is also because

This was shown to uniformly improve the mean-squared error averaged over the population, compared to an
estimate using just the single local sample.
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it is more computationally feasible than a fully Bayes method. The subtle difference between the
two is that empirical Bayes uses a point estimate of a (parametrized) prior, whereas, the terminology
hierarchical Bayes often refers to a fully Bayes method where the (non-parametric) prior is estimated
by computationally intensive methods like MCMC (see the discussion in (Blei et al., 2003)). As
mentioned in Section[l] a contribution of our work is to connect a well studied statistical framework
of empirical (hierarchical) Bayes to model heterogeneity in personalized federated learning. This
statistical model yields a framework for personalized FL and leads to new algorithms and bounds
especially in the local data starved regime.

K ADDITIONAL DETAILS AND RESULTS FOR EXPERIMENTS

K.1 IMPLEMENTATION DETAILS

In this section we give further details on implementation and setting of the experiments that were
used in Section [

CIFAR-100 Experiment Setting. We do additional experiments on CIFAR-100. CIFAR-100 is a
dataset consisting of 100 classes and 20 superclasses. Each superclass corresponds to a category
of 5 classes (e.g. superclass flowers correspond to orchids, poppies, roses, sunflowers, tulips). To
introduce heterogeneity we let each client sample data samples from 2 super classes (the classification
task is still to classify among 100 classes). For classification on CIFAR-100 dataset we consider a
5-layer CNN with 2 convolutional layers of 64 filters and 5x5 filter size, following that we have 2
fully connected layers with activation sizes of 384,192 and finally an output layer of dimension 100.
We set number of local epochs to be 2, batch size to be 25 per client; number of clients is 50, client
participation % = 0.2, and number of epochs 200 (100 communication rounds). In this new dataset
the classification task is more complex given the increased number of labels.

Hyperparameters. We implemented Per-FedAvg and pFedMe based on the code from GitHub
Other implementations were not available online, so we implemented ourselves. For each of the
methods we tuned learning rate in the set {0.3,0.2,0.15,0.125,0.1,0.075,0.05} and have a decaying
learning schedule such that learning rate is multiplied by 0.99 at each epoch. We use weight decay of
le — 4. For MNIST and FEMNIST experiments for both personalized and global models we used
a 5-layer CNN, the first two layers consist of convolutional layers of filter size 5 x 5 with 6 and
16 filters respectively. Then we have 3 fully connected layers of dimension 256 x 120, 120 x 84,
84 x 10 and lastly a softmax operation. For CIFAR-10 experiments we use a similar CNN, the only
difference is the first fully connected layer is of dimension 400 x 120.

« AdaPe''} We fine-tuned 1 in between 0.5 — 5 with 0.5 increments and set it to 3.5. We set
13 = He — 2. We manually prevent ) becoming smaller than 0.5 so that local loss does not become
dominated by the KD loss. We use 772 = 0.1 and n; = 0.1. |'7| When taking the derivative with
respect to ¢ we observed sometimes multiplying the right term (consist of KD loss function) by
some constant (5 in our experiments) gives better performance.

* Per-FedAvg Fallah et al.| (2020) and pFedMe Dinh et al. (2020): For Per-FedAvg, we used 0.075 as
the learning rate and o« = 0.001. For pFedMe we used the same learning rate schedule for main
learning rate, K = 3 for the number of local iterations; and we used A = 0.5, n = 0.2.

* QuPeD |Ozkara et al.| (2021): We choose A, = 0.25, 7 = 0.1 and n3 = 0.1 as stated.

* Federated Mutual Learning Shen et al. (2020): Since authors do not discuss the hyperparameters in
the paper, we used o« = 5 = 0.25, global model has the same learning schedule as the personalized
models.

K.2 ADDITIONAL EXPERIMENTS

Convergence plots for AdaPeD. We put the experimental convergence plots (test accuracy vs no.
of iteration) for AdaPeD in Figure

Ohttps://github.com/CharlieDinh/pFedMe
"For federated experiments we have used PyTorch’s Data Distributed Parallel package.
2We use https://github.com/tao-shen/FEMNIST_pytorch/to import FEMNIST dataset.
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(a) AdaPeD Test Accuracy (in %) vs iteration on (b) AdaPeD Test Accuracy (in %) vs iteration on
MNIST with 0.1 sampling ratio. FEMNIST with 0.33 sampling ratio.

Figure 2: Convergence plots (test accuracy vs no. of iteration) for AdaPeD.

Personalized estimation: synthetic experiments in Bernoulli setting. For this setting, for P
we consider three distributions that (Tian et al., 2017) considered: normal, uniform and ‘3-spike’
which have equal weight at 1/4, 1/2, 3/4. Additionally, we consider a Beta prior. We compute
squared error of personalized estimators and local estimators (%) w.r.t. the true p; and report the
average over all clients. We use m = 10000 clients and 14 local samples similar to (Tian et al.|
2017). Personalized estimator provides a decrease in MSE by 37.1 & 3.9%,12.0 & 1.6%,24.3 +
2.8%, 34.0 & 3.7%, respectively, for each aforementioned population distribution compared to their
corresponding local estimators. Furthermore, as theoretically noted, less spread out prior distributions
(low data heterogeneity) results in higher MSE gap between personalized and local estimators.

Linear regression. For this, we create a setting similar to (Jain et al.,|2021a). We set m = 10, 000,
n = 10; and sample client true models according to a Gaussian centered at some randomly chosen g
with variance 0. We randomly generate design matrices X; and create Y; at each client by adding a
zero mean Gaussian noise with true variance o2 to X;6;. We set true values o3 = 0.01, 02 = 0.05
and we sample each component of x from a Gaussian with 0 mean and 0.1 standard deviation and
each component of X from a Gaussian with 0 mean and variance 0.05, both i.i.d. We measure
the average MSE over all clients with and compare personalized and local methods. When d =
50, personalized regression has an MSE gain of 8.0 + 0.8%, 14.8 + 1.2%, and when d = 100,
9.24+1.1%, 12.34+2.0% compared to local and FedAvg regression, respectively. Moreover, compared
to personalized regression where i, oy, o, are known, alternating algorithm only results in 1% and
4.7% increase in MSE respectively for d = 50 and d = 100.

Estimation Experiments. We provide more results for the estimation setting discussed in Figure|la.
In Figure[3a we have a setting with 1000 clients and 5 local samples and in Figure[3b]500 clients and 5
local samples per client. We observe with as the number of clients increase DP-Personalized Estimator
can converge to Personalized Estimator with less privacy budget. We also observe compared to
FigureIa, less number of local samples increases the performance discrepancy between personalized
and local estimator.
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Figure 3: In Figure we plot

MSE vs. €q for personalized esti-
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clients, this is the same setting as

(a) Private Estimation with m=1000, (b) Private Estimation with m=500, Figure [E] except the number of
n=5 n=5 clients and local samples.
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Additional Learning Experiments with Different Number of Clients. We do additional experi-
ments with different number of clients. On FEMNIST we use the same model and same data sample
per client as in Sectiond, number of clients is 30, total number of epochs is 30 and we fix the local
iteration to be 40 per epoch, we do full client sampling to simulate a cross-silo environment. As seen
in Table ] AdaPeD continues to outperform the competing methods following the trend in Section

Table 4: Test accuracy (in %) for FEMNIST with m = 30 clients.

Method FEMNIST

FedAvg 95.91 +£0.78
FedAvg+fine tuning Jiang et al.[(2019)  96.22 £ 0.57
AdaPeD (Ours) 98.10 4+ 0.09
pFedMe (Dinh et al., [2020) 96.03 = 0.50
Per-FedAvg (Fallah et al.,2020) 96.71 +£0.14
QuPeD (FP) (Ozkara et al.,[2021)) 97.72 +£0.16
Federated ML (Shen et al., [2020) 96.80 + 0.13

On CIFAR-10 we use the same model as in Section4] and divide the dataset to 30 clients where
each client has access to data samples from 4 classes. Total number of epochs is 250 and we fix the
local iteration to be 40 per epoch; we set % = 0.2 and number of local epochs to be 2. AdaPeD
outperforms the competing methods in parallel to the experiments in Sectiord, as can be seen in
Table

Table 5: Test accuracy (in %) for CIFAR-10 with m = 30 clients.

Method CIFAR-10

FedAvg 53.92 £ 0.94
FedAvg+fine tuning Jiang et al.|(2019) 67.44 £ 1.11
AdaPeD (Ours) 73.86 +0.39
pFedMe (Dinh et al., [2020) 71.97 +0.09
Per-FedAvg (Fallah et al.|[2020) 64.09 + 0.46
QuPeD (FP) (Ozkara et al.| [2021) 73.21+0.44
Federated ML (Shen et al.,[2020) 72.53 £ 0.36

Additional Experiment Implementation Details.

We use the same strategy as in Appendix to tune the main learning rates. We use le-4 weight
decay.

* AdaPeD: We fine-tuned v in between 0.5 — 5 with 0.5 increments and set it to 4 for CIFAR-10/100
and to 3 for FEMNIST. We manually prevent ¢ becoming smaller than 1 so that local loss does
not become dominated by the KD loss. We use 12 = 0.075 and n; = 0.075 for CIFAR-10 and
CIFAR-100 and 772 = 0.1 and n; = 0.1 for FEMNIST.

* Per-FedAvg (Fallah et al., |2020) and pFedMe (Dinh et al.;, 2020): For Per-FedAvg, we used 0.1
as the learning rate and o = 0.0001. For pFedMe we used the same learning rate schedule for
main learning rate, . = 3 for the number of local approximation iterations; and we used A = 0.1,
n=0.1

* QuPeD|Ozkara et al. (2021): We set A\, = 0.25, n; = 0.1 for local learning rate and 1, = 0.1 for
global learning rate.

* Federated Mutual Learning Shen et al. (2020): Since authors do not discuss the hyperparameters in
the paper, we used o = § = 0.25.
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