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Abstract—As the high dimensional data generation/storage

shifts from data centers to millions of edge devices, PCA algo-

rithms also need to adapt to federated systems to reveal insights

about the distributed data. One of the prominent challenges in

Federated Learning (FL) is that each edge device has a limited

number of samples, and therefore collaboration among clients

is necessary for learning tasks. Another challenge is hetero-

geneous distribution of data across devices, which necessitates

careful design of algorithms that enable collaboration of devices

with different data distributions. While many such federated

supervised learning algorithms were proposed in recent years,

heterogeneity for unsupervised FL algorithms (such as PCA)

has received less attention. In this work, our goal is to enable

collaborations of heterogeneous clients in learning personalized

Principal Components (PCs). To this end, we develop a hier-

archical Bayesian framework for discovering individual PCs;

and inspired by this, we formulate an optimization problem

related to maximum likelihood estimation of the PCs. To solve the

optimization problem, we propose an alternating Stiefel gradient

descent algorithm. Analytically, we prove the convergence result

for our proposed algorithm; and empirically, we show that our

method outperforms local and global estimation of PCs in various

heterogeneous settings in terms of the reconstruction error.

I. INTRODUCTION

Principal Component Analysis (PCA) is one of the most
commonly studied unsupervised learning algorithms due to
its use in dimensionality reduction and feature learning from
high-dimensional data. With the increased computational re-
sources and data generation in edge devices, there has been
an interest in federated/distributed PCA recently [1]–[5].
However, most of the proposed work in literature (with the
exception of [1]) consider a setting where data across devices
are generated from the same distribution (homogeneously);
accordingly, they try to construct global PCs that works
well for all clients, using either one-shot algorithms [2] or
multi-round algorithms [3]–[5]. In contrast, [1] considers a
heterogeneous setting where edge PCs are modeled through a
homogeneous (globally shared) part and completely indepen-
dent individual (local) parts. As far as we are aware, [1] is
the first personalized PCA work in the literature. A downside
of [1] is that the method ceases to function when data is
not generated via separation of homogeneous and independent
individual parts.

Personalization in supervised FL is well-studied [6]–[11].
In particular, [11], [12] introduced a hierarchical/empirical
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Bayes framework on personalization that unifies many of
the previously proposed ideas. The idea is to construct an
empirical Bayes MLE problem where the parameters of the
global distributions are learned together with the local (person-
alized) parameters collaboratively. Combining the technique
in [11] with the MLE view of PCA [13], we propose a
novel personalized PCA algorithm that does not require the
separability of homogeneous and independent parts as in [1].
Our contributions are as follows:

• Statistical Formulation: As far as we are aware, we are
the first to develop a hierarchical Bayes framework for
modeling data heterogeneity applied to PCA.

• Problem: We formulate an optimization problem based
on MLE of PCs in the hierarchical Bayes model.

• Algorithm: We propose an alternating Stiefel gradient
descent algorithm for our optimization problem.

• Convergence: Analytically, we show that the algorithm
converges to a stationary point with a rate of O( 1

T ),
where T is the number of iterations. Furthermore, we
give insights on the relation between the amount of
heterogeneity and convergence speed.

• Experiments: Empirically, we show that our proposed
algorithm outperforms the local and global estimation of
PCs in terms of the reconstruction error.

Outline. In Section II, we formulate our problem and
discuss the probabilistic motivation behind it. Then, we state
some preliminary mathematical tools that helps us analyze
updates on the Stiefel manifold. In Section III, we propose
an alternating Stiefel gradient descent algorithm to optimize
the formulated problem, and show its convergence properties
whose proof outline is given in Section IV (detailed are in
[14]). Lastly, in Section V, we compare our method to local
PCA and global PCA empirically and discuss our findings.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we develop the probabilistic model for per-
sonalization and preliminaries required to derive our results.

A. Preliminaries

The Stiefel manifold, St(d, r), is the set of all orthonormal
matrices embedded in a d ⇥ r Euclidean space, St(d, r) :=
{U 2 Rd⇥r

|U>U = I}. For any point U 2 St(d, r), the
tangent space at U is defined as TU := {V 2 Rd⇥r

|V >U +
U>V = 0}. Accordingly, the projection onto the tangent
space at point U can be defined as PTU (V ) := V �



1
2U(U>V + V >U). In general, a lifting is a map from the
Stiefel manifold to a tangent space at a point on the manifold
and PTU is a particular lifting also known as the orthographic
lifting, a lifting that is not unique and only defined locally.
A retraction at a point U 2 St(d, r) is a map RU : TU !
St(d, r) that induces local coordinates on the Stiefel manifold
(see [15] for more details). In this work we use polar retraction
that is defined as RU (V ) = (U+V )(I+V >V )�

1
2 . The polar

retraction is a second order retraction that approximates the
exponential mapping up to second order terms. Consequently,
it possesses the following non-expansiveness property.

Lemma 1 (Non-expansiveness of polar retraction [16]). Let

V 2 St(d, r), for any point U 2 TV with bounded norm,

kUkF M , there exists C 2 R such that

kRV (U)� (V +U)kF  CkUk2F . (1)

B. Problem Formulation and the Probabilistic View

In a client-server configuration, suppose we have m clients
and each client has a dataset, Y i 2 Rd⇥n, containing n sam-
ples of d dimensional vectors. The sample covariance matrix
of a client is defined as Si = 1

nY iY
>
i . In contrast to the

traditional maximum variance view of PCA, the probabilistic
view of PCA [13] uses latent random variables x to model a
MLE problem that outputs the PCs. For any data point y 2 Rd

at client i, we have the following linear equation:

y = U ix+ ✏ (2)

where U i 2 Rd⇥r is the PC matrix that relates the latent space
to the observation space (r < d for dimensionality reduction),
and ✏ ⇠ N (0,�2

✏I) for some intrinsic noise value �2
✏ and in

general it is assumed that x ⇠ N (0, I). Equation (2) induces
a distribution on the observations: y ⇠ N (0,U iU

>
i + �

2
✏I).

In addition to data generation, we further make a generative
assumption on U i’s, that is, U i’s are generated according
to some population distribution P(�), which is parametrized
by a set of global/population parameters �. Note that the
hierarchical Bayes model is similar to ones in [11], [12], that
is, we have the hierarchy chain �! U i ! Y i. Also, note that
this model captures [1], where some PCs are the same across
clients (globally shared PCs) and others are uniformly sampled
(local PCs). Given this probabilistic model, we can create an
MLE problem to find the unknown personalized parameters
{U i}

m
i=1 and the global parameter �:

argmax
�,{Ui}m

i=1

p({yij}
m,n
i,j , {U i}

m
i |�)

In this paper, we focus on a particular prior distribution.
We assume that PTV (U i) ⇠ N (0,�2

UI). Effectively, there
is a latent distribution on the tangent space that induces a
distribution of U is on the Stiefel manifold which dictates that
U is are concentrated. As a result, we can extend the MLE
problem with the projected random variables:

argmax
V ,{Ui}m

i=1

p({yij}
m,n
i,j , {U i}

m
i , {PTV (U i)}

m
i |V )

= argmax
V ,{Ui}m

i=1

mY

i=1

nY

j=1

p(yij |U i)
mY

i=1

p(PTV (U i)|V ) (3)

where yij denotes j’th sample at client i. Note that in
the equation, we use the fact that yij |U i is independent
of (PTV (U i),V ) and (U i,PTV (U i)|V ) = (PTV (U i)|V )
as the projection being an invertible function in the neigh-
borhood of V makes U i|PTV (U i),V deterministic. Taking
the negative logarithm of (3) and noting that U i,V are PC
matrices, we obtain the following regularized and constrained
optimization problem:

argmin
V ,{Ui}

1

m

mX

i=1

n

2
(log(|W i|) + tr(W�1

i Si)) +
d
2(V ,U i)

2�2
U

s.t. V >V = I, U>
i U i = I 8i 2 [m]

(4)

where Wi = (U iU
>
i + �

2
✏I), d

2(V ,U i) = kPTV (U i)k2F ,
and [m] := {1, . . . ,m}. More compactly, we can define
f(V , {U i}

m
i=1) := 1

m

Pm
i=1 fi(V ,U i), where fi(V ,U i) :=

n
2 (log(|W i|) + tr(W�1

i Si)) +
d2(V ,Ui)

2�2
U

. The Bayesian view
introduces a regularization in the optimization problem and
allows collaborating through the global PC, V , while learning
personalized PCs, {U i}. Note that overall problem is non-
convex.

III. MAIN RESULTS

Algorithm 1 Alternating Stiefel Gradient Descent on the
Steifel manifold for optimizing (4)
Input: Number of iterations T , local sample covariance ma-
trices {Si}

m
i=1, and learning rates (↵,�).

1: Initialize local PCs {U i,0}
m
i=1 and global PC V 0.

2: for t = 1 to T do

3: On Clients:

4: for i = 1 to m: do

5: Receive V t�1

6: gi,t�1 = PTUi,t�1
(rUi,t�1fi(V t�1,U i,t�1))

7: U i,t  RUi,t�1(�↵gi,t�1)
8: hi,t�1 = PTV t�1

(rV t�1fi(V t�1,U i,t))
9: V i,t  V t�1 � �hi,t�1

10: Send V i,t to Server
11: end for

12: At the Server:

13: Receive {V i,t}
m
i=1

14: V t = RV t�1(
1
m

Pm
i=1 V i,t � V t�1) =

RV t�1(��
1
m

Pm
i=1 PTV t�1

(rV t�1fi(V t�1,U i,t)))
15: Broadcast V t

16: end for

Output: Personalized PCs {U1,T , . . . ,Um,T }.

Algorithm. The challenge in optimizing (4) is that we
need to enforce the orthogonality constraints so that U i’s and
V are valid PCs at each iteration. To that end, we designed
Algorithm 1 to optimize (4) with alternating Stiefel gradient
descent. We use Stiefel (projected) gradients to make sure that
the updates stays on the tangent space with respect to the



manifold. After the gradient updates, we retract the parameters
back to Stiefel manifold to keep feasibility.

In particular, each client receives the global PC V t�1 in
line 5. Firstly, clients compute the projected gradient with
respect to personalized PC, U i, and update it using the polar
retraction. Lastly, the local versions of global PC, V i’s, are
created through projected gradients on the received global PC
and are sent to the server.
A. Convergence Result

In this section, we analyze the first order convergence
properties of Algorithm 1. Alongside Lemma 1, we need other
intermediate results for our analysis:

Lemma 2 (Lipschitz type inequality [16]). Let U ,V 2

St(d, r). If a function  is L-Lipschitz smooth in Rd⇥r
, the

following inequality holds:

| (V )�( (U)+hPTU (r (U)),V �Ui)| 
Lg

2
kV �Uk2F

where Lg = L+G with G := maxU2St(d,r) kr (U)k2.

Lemma 2 helps us translate Euclidean analysis techniques
to Stiefel manifold. Before stating our convergence result, we
assume the following property for the sample data covariance
matrices Si’s.

Asssumption 1. For each client i, the operator and Frobenius

norms of Si are bounded by

kSikF  Gi,F and kSikop  Gi,op,

and we define Gmax,F := maxi2[m] Gi,F and Gmax,op :=
maxi2[m] Gi,op.

Assumption 1 corresponds to assuming the loss function is
Lipschitz smooth with respect to U i and V . Given Assump-
tion 1, we have the following lemmas:

Lemma 3. fi(V ,U i) is LU -Lipschitz smooth with respect to

U i and krfi(V ,U i)k2  GU for all i 2 [m] with constants

LU := n
2

⇣
1
�2
✏
+ Gmax,op

�4
✏

+
⇣
1 + 2Gmax,op

�2
✏

⌘
2
�4
✏

⌘
+ 2

�2
U

and

GU := n
2

⇣
Gmax,op

�4
✏

+ 1
�2
✏

⌘
+ 1

�2
U

.

Lemma 4. f(V , {U i}i) is LV -Lipschitz smooth with respect

to V and krf(V , {U i}i)k2  GV with constants LV := 24
�2
U

and GV := 6
�2
U

. We use the notation {U i}i to indicate that

the set is indexed over i.

We are now ready to state our main convergence result.

Theorem 1. Under Assumption 1, by choosing the learn-

ing rates as ↵ = min{ 1
2C1G1+Lgu(C2

1G
2
1+1)

, 1} and � =

min{ 1
2C2G2+Lgv(C2

2G
2
2+1)

, 1}, we have

min
t=1,...,T

(
TX

t=1

kg
t
V k

2
F +

1

m

mX

i=1

kg
t
Ui
k
2
F

)
 O

✓
2�T

min{↵,�}T

◆
,

where we define �T = f(V 0, {U i,0}i)�f(V T , {U i,T }i),
g
t
V = PTV t�1

(rV t�1f(V t�1, {U i,t}i)), g
t
Ui

=
PTUi,t�1

(rUi,t�1fi(V t�1,U i,t�1)), C1 and C2 are the

non-expansiveness constants of gradients, G1 and G2 are
the bounds on the Frobenius norm of the Stiefel gradients,
Lgu = LU + GU and Lgv = LV + GV are related to the
Lipschitz constants and bounds on the gradients in Lemma 3
and 4. Theorem 1 is comparable to convergence rate of [1],
which was developed for a different model (see Section I).

Remark 1. We can obtain some insights by examining the

constant terms that scale the convergence rate. Note that Lgu

and Lgv are inversely dependent on �
2
U (see Lemma 3 and 4.

Hence, more heterogeneity implies faster convergence of the

algorithm in terms of training error. This can be seen in

Figure 2(a). However, while less heterogeneity implies slower

convergence, the convergence is to better local minimas (in

terms of testing error) as seen in Figure 2(b).

IV. PROOF OUTLINE OF THEOREM 1
In this section, we discuss the proof outline for Theorem 1

and preceding lemmas. First, we provide some useful facts in
linear algebra and prove Lemma 3 and 4, which essentially
shows that the optimization problem has nice first order
properties. Then, we show the sufficient decrease properties.

Lemma 5 (Sufficient Decrease). At any iteration t, we have

f(V t, {U i,t}i)� f(V t�1, {U i,t�1}i)

 (�↵+C↵↵
2)

1

m

mX

i=1

kPTUi,t�1
(rUi,t�1fi(V t�1,U i,t�1))k

2
F

+ (�� + C��
2)kPTV t�1

(rV t�1f(V t�1, {U i,t}i))k
2
F

for learning rates ↵,� and some cosntants C↵, C� that are

defined in the upcoming proofs.

The challenge in proving sufficient decrease on the Stiefel
manifold compared to the Euclidean counterpart is that we
need to ensure the projected and retracted updates are pre-
serving the descent in the loss function, Lemma 1 is used for
showing this.

A. Useful Relations and Lemmas

Before moving on with the proof outlines of the lemmas,
we state some of the facts to be used in the proofs.

Fact 1. The gradients of the local loss function with respect

to the local and global PC’s are given as

rUifi(V ,U i) = �
n

2
(W�1

i SiW
�1
i U i�W

�1
i U i)+

PTV (U i)

�2
U

,

rV fi(V ,U i) = �
PTV (U i)(U

>
i V + V >U i)

2�2
U

.

Fact 2. For two matrices A 2 Ra⇥b
and B 2 Rb⇥c

, we have

kABkF  kAkopkBkF and kABkF  kAkF kBkop.

Fact 3. For matrix to matrix functions, {gi}
k
i=1, with bounded

output operator norms, maxX kgi(X)kop Mi, we have

k

kY

i=1

gi(X)�
kY

i=1

gi(Y )kF 
kY

j=1

Mj

 
kX

i=1

kgi(X)� gi(Y )kF

!



Proof of Lemma 3. For the bound on the gradient,

k �
n

2
(W�1

i SiW
�1
i U i �W�1

i U i)+
PTV (U i)

�2
U

kop

 k �
n

2
(W�1

i SiW
�1
i U i �W�1

i U i)kop +
2

�2
U


n

2
(kW�1

i SiW
�1
i U ikop + kW

�1
i U ikop) +

2

�2
U


n

2

✓
Gmax,op

�4
✏

+
1

�2
✏

◆
+

2

�2
U

,

where in the last inequality we use kW�1
i kop 

1
�2
✏

.
Therefore, we find that norm of the gradient is bounded by
GU := n

2 (
Gmax,op

�4
✏

+ 1
�2
✏
)+ 1

�2
U

. For the Lipschitz continuity of
the gradient, we omit the client index i and use U1 and U2

to denote two arbitrary points on St(d, r) for simplicity. For
any client i, we focus on the first term of the gradient,

kW�1
1 SiW

�1
1 U1�W

�1
1 U1�W

�1
2 SiW

�1
2 U2+W�1

2 U2kF



⇣ 1

�2
✏

+
Gmax,op

�4
✏

+
⇣
1 +

2Gmax,op

�2
✏

⌘ 2

�4
✏

⌘
kU2 �U1kF ,

(5)
where we defer the algebra to [14]. For the second part of the
gradient we have

1

�2
U

kPTV (U1)� PTV (U2)kF

=
1

�2
U

kU1�U2�
1

2
V (V >(U1�U2)+(U>

1 �U
>
2 )V )kF


2

�2
U

kU1 �U2kF ,

where in the last inequality we use Fact 2. As a result, we find
that the gradient is Lipschitz continuous with LU := n

2

⇣
1
�2
✏
+

Gmax,op

�4
✏

+
⇣
1 + 2Gmax,op

�2
✏

⌘
2
�4
✏

⌘
+ 2

�2
U

Proof of Lemma 4. In this case, it is straightforward to see
that GV = 4

�2
U

. For the Lipschitz constant,
2

�2
U

kPTV 1
(U i)sym(U>

i V 1)�PTV2
(U i)sym(U>

i V 2)kF

=
2

�2
U

kU iU
>
i (V 1 � V 2) +U i(V 1 � V 2)U

>
i

�
1

2
(V 1(V

>
1 U i +U>

i V 1)� V 2(V
>
2 U i +U>

i V 2))kF


24

�2
U

kV 1 � V 2kF ,

where sym(U>
i V ) = U>

i V +V >U i and we used Fact 3,
hence LV = 24

�2
U

.

B. Proof of Lemma 5, Sufficient Decrease

For a given iteration, we can obtain sufficient decrease in the
loss function by using the previous lemmas. For the sufficient
decrease with respect to {U i}, we have

f(V t�1, {U i,t}i)� f(V t�1, {U i,t�1}i) (6)


(�↵+C↵↵

2)

m

mX

i=1

kPTUi,t�1
(rUi,t�1fi(V t�1,U i,t�1))k

2
F

where C↵ = (C1G1 +
Lgu(C

2
1G

2
1+1)

2 ). For V ,

f(V t, {U i,t}i)� f(V t�1, {U i,t}i) (7)
 (�� + C��

2)kPTV t�1
(rV t�1f(V t�1, {U i,t}i))k

2
F

where C� = (C2G2+
Lgv(C

2
2G

2
2+1)

2 ). By summing (6) and (7),
we obtain the overall sufficient decrease:

f(V t, {U i,t}i)� f(V t�1, {U i,t�1}i)

 (�↵+C↵↵
2)

1

m

mX

i=1

kPTUi,t�1
(rUi,t�1fi(V t�1,U i,t�1))k

2
F

+ (�� + C��
2)kPTV t�1

(rV t�1f(V t�1, {U i,t}i))k
2
F .

C. Final Bound

By choosing ↵  min{ 1
2C↵

, 1}, �  min{ 1
2C�

, 1} and
telescoping across iterations, we obtain

1

T

h TX

t=1

kPTV t�1
(rV t�1f(V t�1, {U i,t}i))k

2
F

+
1

m

mX

i=1

kPTUi,t�1
(rUi,t�1fi(V t�1,U i,t�1))k

2
F

i


2(f(V 0, {U i,0}i)� f(V T , {U i,T }i))

T min{↵,�}
.

Taking the minimum of all iterations directly gives Theorem 1.

V. EXPERIMENTS

In this section, we compare the reconstruction error of
our algorithm, local training, and global averaging through
synthetic datasets, where in global averaging, the gradients
were gathered before performing projection and retraction. We
will see that our algorithm acts like an interpolation between
the global averaging and local training, and performs the best
in terms of reconstruction error in different scenarios.

First, we show the generation of our synthetic datasets.
For any given V 2 Rd⇥r, we generate { eU i}

m
i=1 such that

each entries of eU i 2 Rd⇥r is sampled as i.i.d. Gaussian,
( eU i)jk

i.i.d.
⇠ N (V jk,�

2
U ) for all i 2 [m]

def
= {1, 2, . . . ,m}.

Then, the eU i’s are projected onto the tangent space of V
and retracted onto the Stiefel manifold through polar retrac-
tion to generate the underlying PC matrices, U i’s, that is
U i = RV (PTV ( eU i)) for all i 2 [m]. Then, we generate
the data Y i 2 Rd⇥n as we stated in Section II.

We apply our algorithm, global averaging, and local training
on synthetic datasets and compare their reconstruction error
defined as 1

mn

Pm
i=1kY i � U i,tU

>
i,tY ik

2
F . In the following

numerical results, we will show the ratio of the reconstruction
error to the true reconstruction error, where the true reconstruc-
tion error is defined as 1

m

Pm
i=1 Eyi

h
kyi �U iU

>
i yik

2
F

i
.

Convergence. First, we show the convergence result of our
algorithms, global averaging, and local training. In Figure 1(a),
local training converges the fastest while attaining the worst
performance. On the other hand, our algorithm performs the
best while yielding a longer convergence time. In general,
global averaging does not always outperform local training.



Fig. 1. The y-axis shows the ratio of the reconstruction error to the true reconstruction error defined earlier in this section. (a) Ratio of error to the number
of iterations. The parameters are (d, r) = (30, 10), m = 200, n = 10, �2

U = 0.2, �2
X = 1, and �2

✏ = 0.5. The initial PCs are generated uniformly
on the Stiefel manifold and the reconstruction error is averaged over 10 different datasets. (b) Ratio of error to �2

U . The parameters are (d, r) = (30, 10),
m = 200, n = 20, �2

X = 1, and �2
✏ = 0.5. The reconstruction error is averaged over 10 different datasets. (c) Ratio of error to the number of samples, n.

The parameters are (d, r) = (100, 20), m = 100, �2
U = 0.1, �2

X = 1, and �2
✏ = 0.5. The reconstruction error is averaged over 20 different datasets. (d)

Ratio of error to the number of clients, m. The parameters are (d, r) = (100, 20), n = 10, �2
U = 0.1, �2

X = 1, and �2
✏ = 0.5.

As we will see in the following results, global averaging and
local training have their own preferable regimes whereas our
algorithm always attains the smallest reconstruction error.

Dependence on �
2
U . Figure 1(b) shows the relation between

the reconstruction error and the heterogeneity factor, �2
U .

When �2
U is small, the U i’s are close to V . The datasets are

highly homogeneous and thus both our algorithm and global
averaging hugely benefit from the collaboration between the
clients and attain low reconstruction error. When �2

U is large,
the level of heterogeneity between the datasets is high and
naively applying global averaging leads to a poor result.
Meanwhile, in our algorithm, the effect of regularization
becomes smaller as �2

U increases. Thus, our algorithm per-
forms like local training and attains a similar error to pure
local training. This shows that our algorithm acts like an
interpolation of global averaging and pure local training. Our
algorithm performs similarly to one of them in extreme cases
and outperforms them for a medium level of heterogeneity.

Dependence on the number of local samples. Figure 1(c)
shows the relation between the reconstruction error and the
number of samples on each client, n. For global averaging,
the reconstruction error does not converge to the true error as
the number of samples increases since more samples overcome
the effect of noise but not heterogeneity. On the other hand,
the local training is not affected by heterogeneity. The error
decreases as n increases and eventually outperforms global
averaging. Our algorithm plays as an interpolation between
the two. When each client has a small amount of samples, the
regularization term enforces collaboration between the clients
to attain a smaller reconstruction error. When each client has
a sufficient amount of samples, we can see from the gradients
that the regularization has a much smaller impact and our
algorithm acts like local training.

Dependence on the number of clients. Figure 1(d) shows
the relation between the reconstruction error and the number of
clients, m. The reconstruction error for local training remains
the same, while for both our algorithm and global averaging,
the error decreases as the number of clients increases.

Convergence rate as a function of �
2
U . In Remark 1, we

mentioned that more heterogeneity implies faster convergence

Fig. 2. Comparing the convergence rate of training error for different �2
U ’s.

The parameters are (d, r) = (30, 10), m = 50, n = 20, �2
U = 0.2, �2

X = 1,
and �2

✏ = 0.5. The learning rate are tuned to be (0.02, 0.04, 0.04). The error
is averaged over 20 different datasets.

of the algorithm in terms of training error. In Figure 2, we
show the convergence performance for different �2

U ’s. Note
that we plot training and testing error in Figure 2(a) and
Figure 2(b), respectively. For each �2

U , we tuned the learning
rate so that larger learning rates lead to worse training error
and smaller learning rates lead to slower convergence in
training error. We can see that a larger �2

U indeed leads to a
faster training convergence in Figure 2(a). It attains a smaller
training error since our algorithm is essentially doing local
training for larger �

2
U and thus is more likely to overfit.

However, Figure 2(b) shows that larger �2
U still leads to a

larger testing error despite its training performance.

VI. CONCLUSION

In this work, we proposed a hierarchical Bayes statistical
formulation to model personalized PCA algorithms. Our for-
mulation lead to an optimization problem that we proposed
an alternating Stiefel gradient descent algorithm to solve. We
analyzed the convergence properties of the resulting algorithm
and deduced a relationship between convergence and hetero-
geneity of the federated ecosystem. Finally, we have shown
the effectiveness of our proposed algorithm by comparing to
competing methods on synthetic datasets.

For future work, we are planning to explore different prior
distributions that is suitable for diverse applications. Moreover,
we are planning to extend our experiments to real world data
and explore the role multiple local iterations in the algorithm.
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