
Decentralized Multi-Task Stochastic Optimization With

Compressed Communications
ı

Navjot Singh a, Xuanyu Cao b, Suhas Diggavi a, Tamer Ba�ar c

a
Department of Electrical and Computer Engineering, University of California Los Angeles, USA

b
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong

c
Coordinated Science Laboratory, University of Illinois Urbana-Champaign, USA

Abstract

We consider a multi-agent network where each node has a stochastic (local) cost function that depends on the decision variable

of that node and a random variable, and further, the decision variables of neighboring nodes are pairwise constrained. There

is an aggregated objective function for the network, composed additively of the expected values of the local cost functions

at the nodes, and the overall goal of the network is to obtain the minimizing solution to this aggregate objective function

subject to all the pairwise constraints. This is to be achieved at the level of the nodes using decentralized information and local

computation, with exchanges of only compressed information allowed by neighboring nodes. The paper develops algorithms

and obtains performance bounds for two di�erent models of local information availability at the nodes: (i) sample feedback,

where each node has direct access to samples of the local random variable to evaluate its local cost, and (ii) bandit feedback,

where samples of the random variables are not available, but only the values of the local cost functions at two random

points close to the decision are available to each node. For both models, with compressed communication between neighbors,

we have developed decentralized saddle-point algorithms that deliver performances no di�erent (in order sense) from those

without communication compression; specifically, we show that deviation from the global minimum value and violations of

the constraints are upper-bounded by O(T
≠ 1

2) and O(T
≠ 1

4), respectively, where T is the number of iterations. Numerical

examples provided in the paper corroborate these bounds.

Key words: Decentralized stochastic optimization, saddle-point algorithm, compression, sample feedback, bandit feedback

1 Introduction

The emergence of multi-agent networks and the need
to distribute computation across di�erent nodes which
have access to only piece of the network-wide data but
are allowed to exchange information under some resource
constraints, have accelerated research e�orts on decen-
tralized and distributed optimization in multiple com-
munities, particularly during the last 10-15 years. Spear-
heading this activity has been decentralized consensus
optimization in static settings, where the goal is to min-
imize the sum of local cost functions, toward which [1]
proposed a decentralized sub-gradient algorithm, whose

ı
The work of NS and SD was supported in part by NSF

grants 2007714, 2139304, and the Army Research Laboratory

(ARL) grant W911NF-17-2-0196.

Email addresses: navjotsingh@ucla.edu (Navjot Singh),

eexcao@ust.hk (Xuanyu Cao), suhas@ee.ucla.edu (Suhas

Diggavi), basar1@illinois.edu (Tamer Ba�ar).

convergence was further studied in [2]. Following this
initial work, several other consensus algorithms were in-
troduced and studied, including alternating direction
method of multipliers (ADMM) [4], exact first-order al-
gorithm [5], stochastic consensus optimization [6,7], and
online consensus optimization with time-varying cost
functions [8, 9].

Consensus modeling framework requires, in essence, all
nodes to converge to the same value. This however may
not be appropriate in many network scenarios, where dif-
ferent nodes, even neighboring ones, may ultimately end
up with di�erent decision (or action) values. Such a sce-
nario arises in, for example, distributed multitask adap-
tive signal processing, where the weight vectors at neigh-
boring nodes are not the same [10, 11]. One of the first
papers that has analyzed such departure from consen-
sus optimization is [12], where the formulation included
proximity constraints between neighboring nodes, which
were handled through construction of Lagrangians and

Preprint submitted to Automatica 30 September 2023

using saddle-point algorithms, and extended to the asyn-
chronous setting in [13].

Decentralized algorithms are built on the assumption
that there is some exchange of information among the
nodes (at least among the neighboring nodes) which
then propagates across the network towards achieving
the global optimum in the limit. Extensive and frequent
exchange of such information is generally practically im-
possible (due to bandwidth constraints on the edges of
the underlying network which constitute the communi-
cation links, and computation and storage limitations,
among many others), which inherently brings in a re-
striction on the amount and timing of the exchange
of relevant current data. In the literature several stud-
ies have addressed these limitations through quantiza-
tion of information or actions [14–18], by using only
sign information on some di�erences [19,20], by control-
ling the timing of transmissions through event trigger-
ing [21, 46, 52], or by sparsification [22, 23, 29]. Quanti-
zation in the context of decentralized optimization (and
not consensus problems) has also been studied, with
some of the algorithms leading to nonzero errors in con-
vergence (see the early work [25, 26]) and others to ex-
act convergence [27]; see also [28] for quantized stochas-
tic optimization. Some recent work has also used error-
compensated compression in decentralized optimization,
such as [29,30,51,52]. Recently, error-compensated com-
pressed decentralized training for online convex opti-
mization was considered in [53].

Most of the existing works on decentralized optimiza-
tion with quantized/compressed communications are, as
discussed above, focused on either consensus optimiza-
tion or unconstrained optimization. Research departing
from that trend was initiated in [32], which addressed
the problem of multitask learning (or distributed op-
timization with pairwise constraints) using quantized
communications. More specifically, the model adopted
in that paper (with an underlying network topology)
associated with each node a stochastic (local, individ-
ual) cost and with each pair of neighbors an inequal-
ity constraint, e.g., proximity constraint. Note that in
such a formulation, di�erent from consensus problems,
each node has its own decision variable, but these can-
not be picked independently because of the pairwise con-
straints. Further, the distribution of the random vari-
able in the stochastic local cost function of each node
is unknown and each node operates based on sequential
feedback information, rendering the formulation distinct
from deterministic optimization. The paper developed
stochastic saddle-point algorithms with quantized com-
munications between neighbors, and studied the impact
of quantization on the optimization performance. One
shortcoming of the result of [32] is that the scheme devel-
oped led to nonzero convergence error; said di�erently,
the algorithm in that work does not lead to convergence
to the exact optimal solution as the number of iterations
grow. This is precisely the issue we address in this paper,

and achieve exact convergence by employing a saddle-
point algorithm along with an approach based on error-
compensated communication compression. Before fur-
ther discussing the contents and contributions of this pa-
per, let us point out that saddle-point algorithms (a.k.a.
primal-dual algorithms) have been extensively used in
literature on constrained optimization, such as deter-
ministic centralized optimization [33, 34], decentralized
optimization [35], stochastic optimization [12, 13, 36],
and online optimization [37,38].

1.1 Contributions

In this paper, we address the problem of decentralized
multi-agent stochastic optimization on a network, where
each agent has a local stochastic convex cost function
and each pair of neighbors is associated with an inequal-
ity constraint. The overall goal is to minimize the to-
tal (additive) expected cost of all agents subject to all
the constraints on all edges, with all computation car-
ried out at the nodes and with information exchanged
among the nodes using compressed communication. We
consider two scenarios of interest based on the sample
information available locally at the nodes:

• Sample Feedback: Each node has access to the local
samples of the random variable a�ecting its local
cost function drawn from its distribution at any
time instance during the optimization process, and
can thus evaluate its cost function and its gradient.

• Bandit Feedback: Nodes do not have access to the
samples, but rather only observe values of the cor-
responding local cost functions at two points su�-
ciently close to the original node parameter. For ref-
erences on bandit feedback in context of optimiza-
tion (a.k.a. zeroth-order optimization), see [39–44].

Under both scenarios, the paper develops a decentral-
ized saddle-point algorithm which leads to zero conver-
gence error, even with a finite number of bits for each
iteration. Note that previous works in this topic [32] re-
quired the number of bits to be unbounded for the error
to diminish. Specifically, under some standard assump-
tions, we show that the expected sub-optimality and
the expected constraint violations are upper bounded by
O(T ≠ 1

2) and O(T ≠ 1
4), respectively, where T is the num-

ber of iterations, despite the proposed algorithm using
a finite number of bits. These bounds match, in order
sense, the bounds for algorithms without communication
compression. Hence, we get near optimal optimization
performance even with finite number of bits under both
scenarios. The paper also provides results of numerical
experiments, which corroborate these bounds.

Accordingly, the main contributions of this paper are:

• Using finite bit compressed sample feedback, with
T being the horizon of the optimization problem,

2

achieving O(1/
Ô

T) closeness to optimum value of
the objective function, and achieving O(T ≠ 1

4) con-
straint violation—both being the same as in the
case without compression.

• Obtaining the same order bounds with bandit feed-
back, using only two-point feedback values.

1.2 Paper Organization

The rest of the paper is organized as follows: Section 2
provides a precise formulation of the problem under con-
sideration. Section 3 develops the saddle-point algorithm
(Algorithm 1) under sample feedback, and provides con-
vergence results and performance bounds (Theorem 1)
along with essential points of the analyses and proofs.
Section 4 presents the counterpart of Section 3 for bandit
feedback, with the corresponding algorithm (Algorithm
2) and corresponding main result on convergence and
performance bounds (Theorem 2). Section 5 discusses re-
sults of some numerical experiments. Section 6 provides
some concluding remarks. Omitted technical details can
be found in the arXiv version [59].

2 Problem Formulation

We consider an undirected graph G = (V, E) with
|V| = n nodes and |E| = m connected edges. We assume
that each connected node pair (i, j) œ E allows for bi-
directional communication from i to j and j to i. The
neighbor set of the node i is denoted by Ni.

Associated with each node i œ [n] := {1, 2, . . . , n} is an
unknown data distribution which we denote by Pi. The
samples generated from the distribution are denoted by
›i ≥ Pi where ›i œ �i. Each node also has a local cost
function fi : X ◊ �i æ R+ which takes as input a sam-
ple ›i œ �i and a local parameter xi œ X µ Rd to yield
the sample cost fi(xi, ›i). Here, the set X corresponds
to the set of feasible parameters the node can choose
from, which is the same across all nodes. As an exam-
ple, for supervised image recognition tasks, the sample
›i for a node i may correspond to an image-label pair
with the set X being the set of all neural networks with
a width of 2 layers and xi a particular 2-layer neural
network. The local objective fi in this case may denote
a cross-entropy loss function evaluated using the given
image-label pair and the neural network. The expected
cost for a node i for parameter xi œ X is denoted by
Fi(xi) = E›i≥Pi [fi(xi, ›i)]. In general, we are interested
in minimizing the expected cost for all the nodes i œ [n].
That is, we are interesting in finding node parameters
{xi}n

i=1 that minimize the cost F (x) :=
qn

i=1 Fi(xi)
where Fi(xi) denotes the expected cost of the node i eval-
uated using parameter xi and x œ X n denotes stacking
of all the individual node parameters {xi}n

i=1. Further,
we assume that the node parameters are related via pair-
wise constraints on the connected nodes in the graph.

Specifically, for any i œ [n] and j œ Ni, there is a function
gij : X ◊X æ R such that the inequality gij(xi, xj) Æ 0
should be satisfied. This may, for example, encode a
proximity constraint on the node parameters by having
gij(xi, xj) = Îxi ≠ xjÎ2

2 ≠ cij where Î.Î2 denotes the ¸2
norm and cij Ø 0 is a constant. In this paper, we assume
that the constraint functions gij(xi, xj) are symmetric
in their parameters, i.e., gij(xi, xj) = gji(xj , xi) for all
xi, xj œ X and connected node pairs (i, j) œ E , which
leads to m number of distinct pairwise constraints for
all the parameters. With the notation now in place, we
state the learning objective for the multi-task problem
can be stated as follows:

min
xœX n

F (x) =
nÿ

i=1
E›i [fi(xi, ›i)] (1)

subject to gij(xi, xj) Æ 0, ’i œ [n], j œ Ni

To solve the problem in (1) in a decentralized manner,
the nodes need to communicate during the optimization
procedure which can be prohibitive for low bandwidth
links or when the exchanged information updates among
the nodes are large. To this end, in this paper we consider
compression of the information exchanges among the
nodes to make the communication e�cient. We employ
the notion of the compression operator proposed in [23]:

Definition 1. A (possibly randomized) function C :
Rd æ Rd is called a compression operator, if there exists
a constant Ê œ (0, 1), such that for every x œ Rd:

EÎx ≠ C(x)Î2
2 Æ (1 ≠ Ê)ÎxÎ2

2 (2)

where expectation is taken over the randomness of C.
We assume C(0) = 0.

Many important sparsifiers and quantizers in the litera-
ture satisfy the above definition, few of them being:
(i) Topk and Randk sparsifiers [23] (where only k en-
tries out of d are non-zero) with Ê = k

d , (ii) Stochastic
quantizer QSGD [28] with Ê = (1 ≠ —d,s) for —d,s :=
min

1
d
s2 ,

Ô
d

s

2
< 1 , (iii) The scaled Sign quantizer [45]

with Ê = ÎxÎ2
1

dÎxÎ2
2

for vector x œ Rd, and (iv) composed
quantization and sparsification operators in [31] with
Ê =

1
1 ≠ k

d(1+—k,s)

2
.

We consider two scenarios of interest based on the sam-
pled information available locally at the nodes:

(i) Sample Feedback: In this scenario we assume that
each node i has access to the local samples ›i drawn
from Pi at any time instance during the optimiza-
tion procedure and can thus evaluate the cost func-
tion and its derivative.

3

(ii) Bandit Feedback: In this scenario, nodes do not
have a direct access to the samples, but rather can
only observe values of the local cost function at two
perturbations from the original node parameter.

We focus on these scenarios separately in Section 3 and
Section 4 respectively, where we develop a compressed
decentralized algorithm for optimizing (1) for each, and
present our theoretical convergence results.

3 Decentralized compressed optimization with

Sample feedback

In this section we describe our approach for optimizing
the objective in (1) for the case of sample feedback. In
this setting, each node i œ [n] has access to the sampled
instance ›i at any stage of the optimization procedure,
and thus can evaluate the local objective fi(xi, ›i) based
on its local parameter xi.

3.1 Algorithm: with Sample Feedback

We develop a stochastic saddle-point algorithm for solv-
ing (1) in a decentralized manner with compressed pa-
rameter exchanges. Our proposed scheme is presented
in Algorithm 1 and is based on finding a saddle point
of the modified Lagrangian for the optimization prob-
lem in (1). For a given sample ›i, we define this modified
Lagrangian as follows:

L(x, ⁄) =
nÿ

i=1

Ë
fi(xi, ›i) +

ÿ

jœNi

1
⁄ijgij(xi, xj) ≠ ”÷

2 ⁄
2
ij

2È

(3)

On the L.H.S. of (3), x denotes the concatenation of all
the model parameters {xi}n

i=1, each of which is in Rd,
leading to x œ Rnd. For i œ [n] and j œ Ni, ⁄ij Ø 0
denotes the Lagrangian multiplier associated with the
constraint gij(xi, xj) Æ 0. Similarly, ⁄ on the L.H.S. de-
notes the concatenation of all ⁄ij for i œ [n] and j œ Ni,
thus ⁄ œ Rm, where m is twice the number of edges in
the underlying undirected graph. The last term on the
R.H.S. of (3) corresponds to a regularizer which miti-
gates the growth of the Lagrangian multiplier ⁄ during
the saddle-point algorithm updates. In this term, ÷ > 0
corresponds to the learning rate of the algorithm and
” > 0 is a control parameter.

To find the saddle point of the Lagrangian in (3), we uti-
lize alternating gradient updates of the primal variables
concatenated in x, and the dual variables in ⁄. For any
i œ [n], the gradient of the modified Lagrangian with
respect to (w.r.t.) the model parameter xi is given by:

ÒxiL(x, ⁄) =
ÿ

jœNi

[⁄ijÒxigij(xi, xj) + ⁄jiÒxigij(xj , xi)]

+ Òxifi(xi, ›i) (4)

The gradient w.r.t. the Lagrangian multiplier ⁄ij for i œ
[n], j œ Ni is similarly given by:

ˆ

ˆ⁄ij
L(x, ⁄) = gij(xi, xj) ≠ ”÷⁄ij (5)

The stochastic algorithm developed for updating the pri-
mal and dual variables via equations (4) and (5) is pre-
sented in Algorithm 1, which is described below.

Algorithm 1 Compressed Decentralized Optimization
with Sample Feedback
Initialize: Random raw parameters Âx(1)

i œ X , ⁄
(1)
ij = 0

for each i œ [n], j œ Ni, x̂
(0)
i = 0 for each i œ [n], number

of iterations T , learning rate ÷, parameter ” > 0.
(Communicate in the first iteration without compression
to ensure that Âx(1) = x̂

(1))
1: for t = 1 to T in parallel for i œ [n] do

2: Compute q
(t)
i = C(Âx(t)

i ≠ x̂
(t≠1)
i)

3: for nodes k œ Ni fi {i} do

4: Send q
(t)
i and receive q

(t)
k

5: Update x̂
(t)
k = x̂

(t≠1)
k + q

(t)
k

6: Compute x
(t)
k = �X (x̂(t)

k)
7: end for

8: Update running average for local parameter:
x

(t)
i,avg = 1

t x
(t)
i + t≠1

t x
(t≠1)
i,avg

9: Sample ›(t)
i ≥ Pi and compute Òxifi(x(t)

i , ›(t)
i)

10: For all j œ Ni compute Òxigij(x(t)
i , x

(t)
j)

11: Update the primal variable by gradient descent:

Âx(t+1)
i = �X

1
Âx(t)

i ≠ ÷Òxifi(x(t)
i , ›(t)

i)

≠2÷

ÿ

jœNi

⁄
(t)
ij Òxigij(x(t)

i , x
(t)
j)

R

b

12: For j œ Ni, update the dual variables through
gradient ascent:

⁄
(t+1)
ij =

Ë
⁄

(t)
ij + ÷

1
gij(x(t)

i , x
(t)
j) ≠ ”÷⁄

(t)
ij

2È+

13: end for

Output: Time averaged parameters x
(T)
i,avg for all i œ [n].

Our proposed scheme in Algorithm 1 is a stochastic
saddle-point algorithm to minimize the objective in (1)
by finding a saddle point of the modified Lagrangian in
(3) in a communication e�cient manner. Each node is al-
lowed to exchange with its neighboring nodes only com-
pressed parameters, via the compression operator in (2).
To realize exchange of compressed parameters between
workers, for node i œ [n] and its associated raw param-
eter Âxi, all nodes j œ Ni maintain an estimate x̂i of Âxi,

4

so, each node i œ [n] has access to x̂j for all j œ Ni. The
parameter Âxi is called raw as it corresponds to the model
parameter before any compression in our algorithm. We
refer to x̂i as the copy parameter of the node i.

We first initialize the regularization parameter ” (see
Theorem 1 for definition) and learning rate ÷. We ini-
tialize the parameter copies of all the nodes as x̂i = 0

for all i œ [n] and allow each node to communicate with
its neighbors in the first round without any compres-
sion. This is to ensure that Âx(1)

i = x̂
(1)
i for all the nodes

(this is a requirement to control the error encountered
via compression, c.f. Lemma 2). At any time step t œ [T]
of the algorithm, node i first computes the compressed
update to its copy parameter, given by q

(t)
i (line 2) and

then sends and receives these copy parameter updates
from its neighbor nodes in Ni (line 3). Importantly, these
copy parameter updates are compressed using the oper-
ator in (2), and thus the communication is e�cient. Af-
ter receiving the copy updates from its neighbors, each
node updates the locally available copy parameters of
its neighbors and its own copy parameters (line 5) and
ensures that these lie in the set X by taking a projec-
tion 1 to form the local node parameter x

(t)
i (line 6). As

the node i has access to the updated copy parameters
of its neighbors, it also has access to x

(t)
j for all j œ Ni.

With the local node parameter evaluated, the node can
update its running average of parameters (line 8).

For the stochastic saddle-point update with sample feed-
back, at time t , the node i œ [n] can sample a data
point ›(t)

i and evaluate the gradient using the previ-
ously computed node parameter x

(t)
i (line 9). Since the

node also has access to the parameters x
(t)
j for neighbors

j œ Ni, it can compute the gradient w.r.t. the pairwise
constraint function gij evaluated at x

(t)
i , x

(t)
j (line 10).

Thus, the node can evaluate the gradient of the modified
Lagrangian w.r.t. the primal local node parameters as in
(4) and take a gradient descent step to update the raw
node parameter Âx(t)

i . Similarly, the dual variables ⁄
(t)
ij

are also updated via a gradient ascent step (line 12) fol-
lowing (5) and then projected on the positive real space.

Symmetry of dual updates: Note that the derived
expression for the gradient ÒxiL(x, ⁄), consists of the
dual parameters ⁄ij and ⁄ji. Meanwhile, the update in
line 11 of Algorithm 1 considers these parameters to be
the same for all time t œ [T]. We describe the reasoning
behind this update in the following induction argument.
The dual variables are initialized to 0, that is, ⁄

(1)
ij = 0

for all i œ [n] and j œ Ni. Thus for any connected nodes

1
It can be checked that the computational complexities for

projection of all the primal node parameters and the dual

parameters are O(nd) and O(m), respectively, per iteration.

i, j, for t = 1, the condition ⁄
(t)
ij = ⁄

(t)
ji holds. Next, we

assume that for any arbitrary · œ [T], · ”= 1, it is the
case that ⁄

(·)
ij = ⁄

(·)
ji . Thus for the time step t = · + 1,

by the update given in line 12 of Algorithm 1, we have:

⁄
(·+1)
ij =

Ë
⁄

(·)
ij + ÷

1
gij(x(·)

i , x
(·)
j) ≠ ”÷⁄

(·)
ij

2È+

(a)=
Ë
⁄

(·)
ji + ÷

1
gji(x(·)

j , x
(·)
i) ≠ ”÷⁄

(·)
ji

2È+

= ⁄
(·+1)
ji

where (a) follows from the fact that ⁄
(·)
ij = ⁄

(·)
ji and the

symmetry of the pairwise constraints gij for connected
nodes i, j. Thus, as the induction step holds for arbitrary
· œ [T] and for the base case t = 1, it follows that
⁄

(t)
ij = ⁄

(t)
ji for all t œ [T] for all i œ [n], j œ Ni.

Justification for raw parameter updates: Note
that in the steps given in lines (9-11) in Algorithm 1,
the gradients are evaluated at the node parameters
{x

(t)
i }n

i=1, while the updates are made to the raw pa-
rameters {Âx(t)

i }n
i=1 via gradient descent. The reason for

this is that in our scheme, the raw parameters e�ectively
play the role of a virtual parameter, which mimic SGD-
like updates (c.f. line 11), with the gradients evaluated
at a di�erent (perturbed) parameter. The notion of such
virtual parameters to analyze convergence has been
promising lately in stochastic optimization within the
perturbed iterate analysis framework, see [23,31,46,47].
The key idea to analyze convergence in such settings is
to control the di�erence of the iterates Îx

(t)
i ≠ Âx(t)

i Î2
for all i œ [n]. Controlling this di�erence is one key
contribution of our work, c.f. Lemma 2.

3.2 Main Result: Sample Feedback

We now present our theoretical result on the convergence
rate of Algorithm 1 for decentralized optimization for the
case with sample feedback. We first present and discuss
the set of assumptions our result is based on.

A. 1. The set of admissible model parameters X , is
closed, convex and bounded, i.e., there exists a constant
R > 0 such that ÎÂxÎ2 Æ RÔ

n
, for all Âx œ X .

A. 2. For any i œ [n], the local objective fi(xi, ›i) is
convex in xi for any ›i œ �i. The pairwise constraint
function gij(xi, xj) is (jointly) convex in xi and xj , for
any pair i œ [n], j œ Ni.

A.3. For i œ [n] and xi œ X , ÷Gi > 0 such that:

E›i≥Pi

#
ÎÒxifi(xi, ›i)Î2

2
$

Æ G
2
i . (6)

5

To simplify the notation, we also define G :=
qn

i=1 G2
i .

Additionally, for any i œ [n], j œ Ni, we assume that
there exists a constant Gij > 0 such that ’xi, xj œ X :

...
#
Òxigij(xi, xj)T

, Òxj gij(xi, xj)T$T...
2

Æ Gij . (7)

We define G̃ := maxiœ[n],jœNi
Gij .

A. 4. For any i œ [n], j œ Ni, the pairwise constraint
function gij is bounded. That is, there exists a constant
Cij > 0 such that |gij(xi, xj)| Æ Cij , ’xi, xj œ X . We
define C

2 :=
Òqn

i=1
q

jœNi
C2

ij .

Assumptions A.1-A.4 are frequently used in convergence
rate analysis of convex optimization algorithms, even
without compression. The assumption on a bounded pa-
rameter space X and the bounded constraint functions
have been made earlier in [32, 48]. The assumption on
boundedness of the gradient of the objectives (Equation
(6)) has also been made earlier in [1, 32, 48] and bound-
edness of gradients of the constraint functions (Equation
(7)) have been assumed in [32,49,50] 2 .

With these assumptions in place, we now present our
main theoretical result in Theorem 1 below for the con-
vergence rate of Algorithm 1. The result is stated in
terms of the stacked vector x, which corresponds to the
concatenation of the parameters {xi}n

i=1, and thus is
n ◊ d dimensional. The vector x

ú represents the stacked
optimal parameters which is the solution of the opti-
mization problem (1). The proof details for Theorem 1
are presented in Section 3.3.

Theorem 1. Consider running Algorithm 1 for T iter-
ations with fixed step size ÷ = aÔ

T
for positive constant

a and regularization parameter ” =
1≠

Ò
1≠ 64÷2(1+m)G̃2

Ê2

4÷2

where Ê œ (0, 1) is the compression factor. Then, un-
der assumptions A.1 - A.4, for T Ø 64a2(1+m)G̃2

Ê2 , the ex-
pected value of F evaluated at the stacked time-averaged
vector x

(T)
avg := 1

T

qT
t=1 x

(t) satisfies:

E[F (x(T)
avg)]≠F (xú) Æ 2R

2

a
Ô

T
+ aÔ

T

3
4

Ê2 (1+m)G2+2C
2
4

(8)

2
Assumption A.3 for compressed decentralized optimiza-

tion has been relaxed in one of our previous works [46]. The

arguments for relaxing this assumption can similarly be ex-

tended to the analysis in this paper, a technicality which we

omit in interest of keeping the analysis relatively cleaner,

and to focus on the main novelty of analyzing compressed

communication in the pairwise multi-task setting.

For i œ [n], j œ Ni, the constraint function gij satisfies:

E
Ë
gij(x(T)

i,avg, x
(T)
j,avg)

È
Æ 1

T
1
4

AÚ
8GR

a
+

Ô
8”aGR

B

+ 1Ô
T

Û

2
3

2R2” + 4
Ê2 (1 + m)G2 + C2

4

+ 1Ô
T

Û

2”a2
3

4
Ê2 (1 + m)G2 + C2

4
+ 2R

a
Ô

T
(9)

where the d-dimensional vector x
(T)
k,avg denotes the time

averaged parameter for node k œ [n] in x
(T)
avg.

Theorem 1 establishes that for any given compression
requirement Ê œ (0, 1), the sub-optimality of the objec-
tive, E[F (x(T))] ≠ F (xú), is O

1
1

T 1/2

2
, and the expected

constraint violation E[gij(x(T)
i , x

(T)
j)] for any connected

node pair (i, j) is O
1

1
T 1/4

2
. Thus, the di�erence between

the attained objective and the global minimum of (1),
as well as the constraint violations can be made arbi-
trarily small by increasing the number of iterations the
algorithm is run for.

3.3 Convergence analysis

We first introduce a compact vector notation which we
will use throughout the proof. Consider the stacked (con-
catenated) vector of the node parameter vectors {xi}n

i=1
which we denote by x, and thus is nd-dimensional. Sim-
ilarly, we define the vector ⁄ of size m which stacks to-
gether the dual variables ⁄ij for i œ [n] and j œ Ni.
The vector g(x) represents the the stacked vector of
constraint values gij(xj , xj), and is also m-dimensional.
Finally, › denotes the concatenated vector of samples
across the nodes. The projection �X n(x) refers to pro-
jection of x on the space X n where each individual node
parameter comprising x is projected onto X . Under this
compact notation, the modified Lagrangian presented in
(3) can be re-written as:

L(x, ⁄) = f(x, ›) + ⁄T
g(x) ≠ ”÷

2 Î⁄Î2 (10)

We now present a few auxiliary results which we use
through the course of the proof. Some of these can be
derived from the assumptions made in A.1-A.4.

Fact 1. Suppose A µ Rl is closed and convex. Then, for
any y œ Rl and x œ A, we have:

Îx ≠ �A(y)Î2 Æ Îx ≠ yÎ2

where �A(y) denotes the projection of y on the set A.

6

Fact 2. (Bound on gradients of the Lagrangian) Con-
sider the Lagrangian function over the primal and dual
variables defined in (10). We have the following bounds:

(a) EÎÒ⁄L(x(t)
, ⁄(t))Î2 Æ 2C

2 + 2”
2
÷

2EÎ⁄(t)Î2

(b) EÎÒxL(x(t)
, ⁄(t))Î2 Æ (1 + m)

1
G

2 + ÂG2EÎ⁄Î2
2

where C
2
, G̃ and G are as defined in Assumptions A.3

and A.4. Proof of this fact can be found in [59].

Fact 3. For all x œ X n
, we have:

E[F (x)] ≠ F (xú) > ≠4GR

where x
ú is an optimal solution of (1), and R, G are as

defined in Assumptions A.1 and A.4, respectively. We
provide a proof for Fact 3 in [59].

3.3.1 Proof of Theorem 1

We first consider the following lemma which establishes
a relationship between the Lagrangian function and the
primal, dual variables in Algorithm 1. The proof for the
lemma, provided in the [59], relies on considering the
update steps of the primal and dual variables in Algo-
rithm 1 and invoking convexity/concavity arguments for
the Lagrangian function.

Lemma 1. Consider the update steps in Algorithm 1
with learning rate ÷ and parameter ” Ø 0. Under as-
sumptions A.1-A.4, for x œ X n and ⁄ œ Rm with ⁄ ≤ 0,
the summation of the Lagrangian function satisfies:

Tÿ

t=1
E

1
L(x(t)

, ⁄) ≠ L(x, ⁄(t))
2

Æ 1
2÷

!
Î⁄Î2 + 4R

2"

+ ÷T
!
(1 + m)G2 + C

2"
+ 1

2÷

Tÿ

t=1
EÎx

(t) ≠ x̃
(t)Î2

+ ÷
!
(1 + m)G̃2 + ”

2
÷

2" Tÿ

t=1
E[Î⁄(t)Î2]

where G, C, G̃, R are defined in assumptions A.1-A.4.

Using the definition of Lagrangian from (10) and
E[f(x(t)

, ›(t))] = F (x(t)), the L.H.S. of the result in
Lemma 1 can also be written as following for any ⁄ ≤ 0:

E
C

Tÿ

t=1

1
L(x(t)

, ⁄) ≠ L(x, ⁄(t))
2D

=
Tÿ

t=1
(E[F (x(t))]≠F (xú))+

K
⁄,

Tÿ

t=1
E[g(x(t))]

L
≠”÷T

2 Î⁄Î2

≠ E
C

Tÿ

t=1
È⁄(t)

, g(xú)Í
D

+ ”÷

2 E
C

Tÿ

t=1
Î⁄(t)Î2

D

Rearranging the terms and employing the bound from
Lemma 1, for any ⁄ ≤ 0, we thus have:

Tÿ

t=1

1
E[F (x(t))]≠F (xú)

2
+

K
⁄,

Tÿ

t=1
E[g(x(t))]

L

≠ ”÷T

2 Î⁄Î2 ≠ E
C

Tÿ

t=1
È⁄(t)

, g(xú)Í
D

Æ 1
2÷

!
Î⁄Î2+4R

2"
+ 1

2÷

Tÿ

t=1
EÎe

(t)Î2+÷T
!
(1+m)G2+C

2"

+ ÷

3
(1 + m)G̃2 + ”

2
÷

2 ≠ ”

2

4 Tÿ

t=1
E[Î⁄(t)Î2] (11)

where we have defined EÎe
(t)Î2 := EÎÂx(t) ≠x

(t)Î2 on the
R.H.S. of (11). This term relates to the error between
the copies of the parameters at time t (denoted by Âx(t))
and the true parameters of the nodes (given by x

(t)). We
provide a bound for this term in Lemma 2 stated below,
the proof of which is provided in the arXiv version of the
paper [59].

Lemma 2. For the update steps in Algorithm 1, the
norm of expected error EÎe

(t)Î for t œ [T] is bounded as:

EÎe
(t)Î2 Æ

2÷
2

Ê

t≠2ÿ

k=0

1
1≠Ê

2

2k
EÎÒxLt≠1≠k(x(t≠1≠k)

, ⁄(t≠1≠k))Î2

Plugging the bound forEÎe
(t)Î2 from Lemma 2 into (11):

Tÿ

t=1

1
E[F (x(t))]≠F (xú)

2
+

K
⁄,

Tÿ

t=1
E[g(x(t))]

L

≠ ”÷T

2 Î⁄Î2 ≠ E
C

Tÿ

t=1
È⁄(t)

, g(xú)Í
D

Æ 1
2÷

!
Î⁄Î2 + 4R

2"
+ ÷T

!
(1 + m)G2 + C

2"

+ ÷

Ê

Tÿ

t=1

t≠2ÿ

k=0

1
1≠Ê

2

2k
EÎÒxLt≠1≠k(x(t≠1≠k)

, ⁄(t≠1≠k))Î2

+ ÷

3
(1 + m)G̃2 + ”

2
÷

2 ≠ ”

2

4 Tÿ

t=1
E[Î⁄(t)Î2] (12)

= 1
2÷

!
Î⁄Î2 + 4R

2"
+ ÷T

!
(1 + m)G2 + C

2"

+ ÷

3
(1 + m)G̃2 + ”

2
÷

2 ≠ ”

2

4 Tÿ

t=1
E[Î⁄(t)Î2]

7

+ ÷

Ê

T ≠1ÿ

k=1

Tÿ

t=k+1

1
1 ≠ Ê

2

2(t≠1≠k)
EÎÒxLk(x(k)

, ⁄(k))Î2

where the equality follows from rewriting the double-
sum of the second term. Using

qT
t=k+1

!
1≠ Ê

2
"(t≠1≠k) Æ

qŒ
t=0

!
1≠ Ê

2
"(t) = 2

Ê , we get:

Tÿ

t=1
(E[F (x(t))]≠F (xú)) +

K
⁄,

Tÿ

t=1
E[g(x(t))]

L

≠ ”÷T

2 Î⁄Î2 ≠ E
C

Tÿ

t=1
È⁄(t)

, g(xú)Í
D

Æ 1
2÷

!
Î⁄Î2 + 4R

2"
+ ÷T

!
(1 + m)G2 + C

2"

+ ÷

3
(1 + m)G̃2 + ”

2
÷

2 ≠ ”

2

4 Tÿ

t=1
E[Î⁄(t)Î2]

+ 2÷

Ê2

T ≠1ÿ

t=1
EÎÒxLt(x(t)

, ⁄(t))Î2 (13)

Using the bound from (b) in Fact 2 for the last term in
above, and noting that 2

Ê2 > 1 gives us:

Tÿ

t=1
(E[F (x(t))]≠F (xú)) +

K
⁄,

Tÿ

t=1
E[g(x(t))]

L

≠ ”÷T

2 Î⁄Î2 ≠ E
C

Tÿ

t=1
È⁄(t)

, g(xú)Í
D

Æ 1
2÷

!
Î⁄Î2 + 4R

2"
+ ÷T

3
4

Ê2 (1 + m)G2 + C
2
4

+ ÷

3
4

Ê2 (1 + m)G̃2 + ”
2
÷

2 ≠ ”

2

4 Tÿ

t=1
E[Î⁄(t)Î2] (14)

We now focus on the last term in the above equation,
which has a coe�cient of

! 4
Ê2 (1 + m)G̃2 + ”

2
÷

2 ≠ ”
2
"
. To

get rid of the last term in the upper bound, we choose
the value of ” such that this coe�cient is negative. It can
be easily checked that the following value of ” satisfies
this requirement:

” =
1 ≠

Ò
1 ≠ 64÷2(1+m)G̃2

Ê2

4÷2

Note that we require running the algorithm for T Ø
64a2(1+m)G̃2

Ê2 for the choice ÷ = aÔ
T

. For T æ Œ (i.e.,
÷ æ 0), it can be verified that the value of ” converges
to a positive constant. Using the above value of ”, the
fact E

ËqT
t=1È⁄(t)

, g(xú)Í
È

Æ 0 since ⁄(t) ≤ 0 for t œ [T]

and g(xú) ∞ 0 and rearranging the terms, we get:

Tÿ

t=1

1
E[F (x(t))] ≠ F (xú)

2
+

K
⁄,

Tÿ

t=1
E[g(x(t))]

L

≠
3

”÷T

2 + 1
2÷

4
Î⁄Î2

Æ 2R
2

÷
+ ÷T

3
4

Ê2 (1 + m)G2 + C
2
4

(15)

Recall that ⁄ can be any non-negative vector. We set it

as ⁄ =
#
E
#qT

t=1
g(x(t))

$$+

”÷T + 1
÷

. Plugging this in (15) yields:

Tÿ

t=1

1
E[F (x(t))] ≠ F (xú)

2

+
nÿ

i=1

ÿ

jœNi

3Ë
E

ËqT
t=1 gij(x(t)

i , x
(t)
j)

ÈÈ+42

2
1

”÷T + 1
÷

2

Æ 2R
2

÷
+ ÷T

3
4

Ê2 (1 + m)G2 + C
2
4

(16)

Dividing both sides of (16) by T and noting that the
second term on the L.H.S. of (16) is positive, we can
bound the time-average sub-optimality of F as:

Tÿ

t=1

!
E[F (x(t))]≠F (xú)

"

T
Æ 2R

2

÷T
+ ÷

3
4

Ê2 (1+m)G2+C
2
4

Using the convexity of F and setting ÷ = aÔ
T

for some
positive constant a, concludes the proof of the conver-
gence rate for the objective sub-optimality given in (8)
in Theorem 1. We now prove our result for the pairwise
constraint functions. From Fact 3, ’x œ X n

, we have
E[F (x)]≠F (xú) > ≠4GR. Using this inequality in (16):

nÿ

i=1

ÿ

jœNi

Q

a
C
E

C
Tÿ

t=1
gij(x(t)

i , x
(t)
j)

DD+R

b
2

Æ 4R
2

÷2 + T

3
4R

2
” + 8

Ê2 (1 + m)G2 + 2C
2 + 8GR

÷

4

+ T
2

3
2”÷

2
3

4
Ê2 (1 + m)G2 + C

2
4

+ 8”÷GR

4

Note that the above bound also holds for a given i œ [n]
and j œ Ni, that is, the R.H.S. of the above equation is

also a bound for the term
3Ë

E
ËqT

t=1 gij(x(t)
i , x

(t)
j)

ÈÈ+42
.

Taking square root on both sides and using the fact that

8

qn
i=1 pi Æ

qn
i=1

Ô
pi for positive p1, . . . , pn yields:

E
C

Tÿ

t=1
gij(x(t)

i , x
(t)
j)

D
Æ 2R

÷

+
Ô

2T

Û3
2R2” + 4

Ê2 (1 + m)G2 + C2 + 4GR

÷

4

+
Ô

2T

Û3
”÷2

3
4

Ê2 (1 + m)G2 + C2
4

+4”÷GR

4

Dividing both sides of above by T , using the convexity
of constraint function gij and substituting ÷ = aÔ

T
con-

cludes the proof of (9) in Theorem 1. ⇤

4 Decentralized compressed optimization with

Bandit feedback

In this section, we focus on the bandit feedback scenario
where the nodes do not have direct access to samples
drawn from their local data distributions. This could, for
example, arise in situations where the samples are high
dimensional and thus can be hard to observe or mea-
sure. For the model we work with in this paper, we now
assume that the nodes instead can query the value of
the local objective function fi(xi, ›i) for some particular
choices of the parameter xi. We first formally define the
objective query process for the nodes and then describe
how this model can be used to develop a stochastic gra-
dient method for optimizing the overall objective (1).

Let S := {u œ Rd|ÎuÎ2 = 1} and B := {u œ Rd|ÎuÎ2 Æ
1} be the unit sphere, ball in d-dimensions, respectively.
For each node i œ [n], and at any stage in the optimiza-
tion process, we assume access to two local objective
values fi(xi ± ’ui, ›i) where ui is sampled uniformly at
random over the unit sphere S (independent of xi or ›i),
’ is a small positive constant, and xi is the local model
parameter. To evaluate the gradient using these objec-
tive values, we make use of the following fact from [39]:

Fact 4. Consider a function „ : Rd æ R, and let ’ > 0.
Define „̃(x) = Eu≥U(B)[„(x + ’u)] where U(B) denotes
uniform distribution over the unit ball B µ Rd. Then:

(i) If „ is convex, then „̃ is also convex.
(ii) For any x œ Rd, Òx„̃(x) = d

’Eu≥U(S)[„(x + ’u)u]
where U(S) denotes the uniform distribution over
the unit sphere S µ Rd.

For the node i œ [n], the above fact can be used to es-
timate the gradient of the local objective function using
the values fi(xi ± ’ui, ›i) where ui ≥ U(S). For a given
›i, we define f̃i(xi, ›i) = Evi≥U(B)[fi(xi +’vi, ›i)]. From
the above fact, f̃(xi, ›i) is convex in xi for a given ›i.

Note that as stated, the parameter vector xi ± ’ui may
not lie in the feasible set X for all range of values of ’.
Thus, we need some restriction on the range of values ’

can take. In the following, we make this argument pre-
cise. We first introduce an additional mild assumption
on the topology of the set X :

A.5. The set X has a non-empty interior, that is, ÷y0 œ
X , r > 0, s.t. B(y0, r) µ X . Here, B(y0, r) denotes the
open ball of radius r centered at y0, i.e., B(y0, r) =
{x|Îx ≠ y0Î2 Æ r}.

From the above assumption, by the convexity of X , it can
also be concluded that for any – œ (0, 1) and x œ X , we
have B((1 ≠ –)x + –y0, –r) µ X . We further define the
set ÂX = {(1 ≠ ’

r)x + ’
r y0|x œ X }. It can now be readily

checked that if xi œ ÂX for the node i, then xi ±’ui œ X ,
where ui is any point on the unit sphere S. Thus in
the development of the algorithm below, we project the
parameters onto the space ÂX to ensure that during the
bandit feedback, the evaluated parameter xi ± ’ui for
any node i lies in the space X .

4.1 Algorithm: Bandit Feedback

We develop an algorithm for the bandit feedback sce-
nario to find a saddle-point of the modified Lagrangian:

L̃(x, ⁄) =
nÿ

i=1

Ë
f̃i(xi, ›i) +

ÿ

jœNi

1
⁄ijgij(xi, xj) ≠ ”÷

2 ⁄
2
ij

2È

(17)

The vector x œ ÂX n represents the stacked node param-
eters and ⁄ represents the stacked dual variables. Here,
the main di�erence from the modified Lagrangian in
sample feedback case presented in (3) is that the objec-
tives {fi}n

i=1 of the nodes are now replaced by the func-
tions {f̃i}n

i=1. Importantly, the gradient of these func-
tions can be computed via the result of Fact 4 which
enables us to develop a primal-dual gradient algorithm
to find the saddle point of (17). The gradient w.r.t. the
primal variable x is given by:

ÒxiL̃(x, ⁄) =
ÿ

jœNi

[⁄ijÒxigij(xi, xj) + ⁄jiÒxigij(xj , xi)]

+ Òxi f̃i(xi, ›i) (18)

Using the result from Fact 4, for any i œ [n] we have:

Òxf̃i(xi, ›i) = d

2’
Eui≥U(S)[f(xi+’ui, ›i)≠f(xi≠’ui, ›i)]ui

As the node has access to the values of the local objective
function in the bandit feedback scenario, the quantity
d
2’ [f(xi +’ui, ›i)≠f(xi ≠’ui, ›i)] for a given ui ≥ U(S),

9

xi, ›i, serves as an unbiased estimate of Òxf̃i(xi, ›i). We
note that such an approximation for the gradient is com-
mon in the stochastic optimization literature, e.g. [54,
55]. In contrast to the uniform perturbation we consider
in Fact 4, one can possibly use perturbations arising from
distributions such as Gaussian, symmetric Bernoulli dis-
tributions as in [56,58]. Using this, we can construct the
following estimate for the primal gradient ÒxiL̃(x, ⁄):

p
(t)
i := d

2›

Ë
fi(x(t)

i +’u
(t)
i , ›(t)

i)≠fi(x(t)
i ≠’u

(t)
i , ›(t)

i)
È

u
(t)
i

+ 2
ÿ

jœNi

⁄
(t)
ij Òxigij(x(t)

i , x
(t)
j) (19)

The gradient of the Lagrangian in (17) w.r.t. the dual
parameter ⁄ij for i œ [n] and j œ Ni is the same as in
the sample feedback scenario and is given in (4).

The development of Algorithm 2 is similar to that of
Algorithm 1. The main di�erence is that we now find
the saddle point of (17) via alternating primal and dual
variable gradient updates given in equations (19) and
(5) and project onto the space ÂX to ensure that the
perturbed parameters lie in X . As before, for a node
i œ [n], Âxi refers to its raw parameter, xi as its local
parameter, and x̂i is the copy parameter.

We initialize the raw parameters {Âx(1)
i }n

i=1 inside the set
ÂX . During the first round, we assume the communica-

tion without compression to ensure that Âx(1)
i = x̂

(1)
i for

all i œ [n]. At time step t œ [T], the node i œ [n] com-
putes and exchanges its copy parameters and constructs
the local node parameter x

(t)
i for which we track the run-

ning average (lines 2-8). As samples from the underly-
ing distribution Pi are not directly revealed to the node
in case of bandit feedback; instead it queries the value
of the local objective fi(., ›i) at parameters x

(t)
i + ’u

(t)
i

and x
(t)
i ≠ ’u

(t)
i where u

(t)
i is uniformly sampled over

the d-dimensional unit sphere S (lines 9-10). These val-
ues are then used to construct an unbiased estimate of
ÒxiL̃(x, ⁄) using (19), and then to update the raw pa-
rameter Âx(t)

i along with a projection operation back to
the set ÂX (lines 11-13). Finally, the dual variables are also
updated via gradient descent along with the projection
to the positive real space to ensure feasibility (line 13).
As in the case of sample feedback, the update of the dual
steps in line 13 and the initialization ⁄

(1)
ij = 0 ensures

that ⁄
(t)
ij = ⁄

(t)
ji for all t œ [T], and for all i œ [n], j œ Ni.

4.2 Main Result: Bandit Feedback

We now present the convergence result rate for Algo-
rithm 2 which optimizes (1) in the bandit feedback sce-
nario. The proof details are provided in Section 4.3.

Algorithm 2 Compressed Decentralized Optimization
with Bandit Feedback
Initialize: Random Âx(1)

i œ ÂX individually for each i œ
[n] and ⁄

(1)
ij = 0 for each j œ Ni. x̂

(0)
i = 0 for each i œ

[n], number of iterations T , learning rate ÷, parameters
’, ” > 0.
(Communicate in the first iteration without compression
to ensure that Âx(1) = x̂

(1).)
1: for t = 1 to T in parallel for i œ [n] do

2: Compute q
(t)
i = C(Âx(t)

i ≠ x̂
(t≠1)
i)

3: for nodes k œ Ni fi {i} do

4: Send q
(t)
i and receive q

(t)
k

5: Update x̂
(t)
k = x̂

(t≠1)
k + q

(t)
k

6: Compute x
(t)
k = � ÂX (x̂(t)

k)
7: end for

8: Update running average for local parameter:
x

(t)
i,avg = 1

t x
(t)
i + t≠1

t x
(t≠1)
i,avg

9: Sample u
(t)
i ≥ U(S)

10: Query the two values: fi(x(t)
i ± ’u

(t)
i , ›(t)

i)
11: Compute the Lagrangian primal gradient esti-

mate:

p
(t)
i := 2

ÿ

jœNi

⁄
(t)
ij Òxigij(x(t)

i , x
(t)
j)

+ d

2›

Ë
fi(x(t)

i +’u
(t)
i , ›(t)

i)≠fi(x(t)
i ≠’u

(t)
i , ›(t)

i)
È

u
(t)
i

12: Update the primal variable via gradient descent:

Âx(t+1)
i = � ÂX

1
Âx(t)

i ≠ ÷p
(t)
i

2

13: For all j œ Ni, update the dual variables via gra-
dient ascent:

⁄
(t+1)
ij =

Ë
⁄

(t)
ij + ÷

1
gij(x(t)

i , x
(t)
j) ≠ ”÷⁄

(t)
ij

2È+

14: end for

Output: Time averaged parameters x
(T)
i,avg for all i œ [n].

Theorem 2. Consider running Algorithm 2 for T iter-
ations with fixed step size ÷ = aÔ

T
for positive constant

a, with perturbation constant ’ = 1
T , and regularization

parameter ” =
1≠

Ò
1≠ 256÷2(1+m)G̃2

Ê2

4÷2 , where Ê œ (0, 1) is
the compression factor. Under Assumptions A.1-A.5, for
T Ø 256a2(1+m)G̃2

Ê2 , the expected value of F evaluated at
the time averaged vector x

(T)
avg := 1

T

qT
t=1 x

(t) satisfies:

E[F (x(T)
avg)]≠F (xú) Æ 2R

2

a
Ô

T
+ aÔ

T

5
16
Ê2 d

2(1+m)G2 + C
2
6

10

+ 2
Ô

mG̃RC

”ar
Ô

T
+ 4RG

rT
+ 4

Ô
nG

T
(20)

where r Æ RÔ
n

. For any i œ [n], j œ Ni, we have:

E
Ë
gij(x(T)

i,avg, x
(T)
j,avg)

È

Æ 1
T

1/4

CÚ
8GR

a
+

Ú
8”a(R + r

Ô
n)G

r
+ 8GR”a

D

+ 1Ô
T

Û3
32
Ê2 d2(1+m)G2+2C2

4
+4

Ô
mG̃RC

r”a2 +4R2”

+ 1Ô
T

Û

”a2
3

32
Ê2 d2(1 + m)G2 + 2C2

4
+ 4

Ô
mG̃RC

r

+ 1
T

3/4

Ú
8(R + r

Ô
n)G

ra
(21)

where x
(T)
k,avg is time averaged parameter of node k.

The above result establishes that for a given compression
requirement Ê œ (0, 1), the sub-optimality of the objec-
tive E[F (x(T)

avg)] ≠ F (xú) is O
1

1
T 1/2

2
. Similarly, the ex-

pected constraint violation for i œ [n] and j œ Ni given
by E

Ë
gij(x(T)

i,avg, x
(T)
j,avg)

È
is O

1
1

T 1/4

2
. Thus, in e�ect by

choosing a large enough value of T , the number of itera-
tions Algorithm 2 is run for, the obtained stacked param-
eter x

(T)
avg is a good estimate of the optimal solution of

the overall objective (1). Moreover, the result obtained
matches the rate that was obtained for the sample feed-
back case in Theorem 1, where the nodes had access to
the samples at every stage. Theorem 2 thus establishes
that even when node access to samples is not assumed,
but rather only to a pair of values of the local objectives,
the derived convergence rate su�ers no degradation.

4.3 Convergence analysis

As done earlier for proof of bandit feedback, we use a
compact notation by stacking together the parameters
across the nodes. The modified Lagrangian in (17) for a
time step t œ [T] in this notation is given as:

L̃(x(t)
, ⁄(t)) = f̃(x(t)

, ›(t)) + È⁄(t)
, g(x(t))Í ≠ ”÷

2 Î⁄(t)Î2

(22)

where x
(t), is of size nd, ⁄(t) is of size m, and ›(t) is

collection of samples across all the nodes at time t. We
construct another quantity of interest:

H(x(t)
, ⁄(t)) = ÂL(x(t)

, ⁄(t)) + Èp(t) ≠ ÂL(x(t)
, ⁄(t)), x

(t)Í
(23)

It can be seen that H(x(t)), ⁄(t) is convex in the param-
eter x

(t) and concave in ⁄(t) for any t. Further, the gra-
dients of the function H(x(t)), ⁄(t) satisfy:

ÒxH(x(t)
, ⁄(t)) = p

(t)
, Ò⁄H(x(t)

, ⁄(t)) = Ò⁄
ÂL(x(t)

, ⁄(t))

To derive our results, we consider another auxiliary re-
sult along the ones stated earlier in Section 3.3.

Fact 5. Under Assumptions A.2 and A.3, for all t œ [T],
i œ [n] and any u, v œ X , we have:

E
›(t)

i
[fi(u, ›(t)

i) ≠ fi(v, ›(t)
i)]2 Æ 4G

2
i Îu ≠ vÎ2

whereE
›(t)

i
[.] denotes expectation w.r.t. sampling at time-

step t for the node i. See [59] for proof.

4.3.1 Proof of Theorem 2

We first establish a relationship between the primal, dual
variables in Algorithm 2 and the function H defined in
(23). This following lemma can be seen as a counterpart
of Lemma 1 in the bandit feedback case.

Lemma 3. Consider the update steps in Algorithm 2
with learning rate ÷. Under assumptions A.1-A.4, for
any x œ ÂX n and ⁄ œ Rm with ⁄ ≤ 0, the summation of
the function H (defined in (23)) satisfies:

Tÿ

t=1
E

Ë
H(x(t)

, ⁄) ≠ H(x, ⁄(t))
È

Æ ÷

2

Tÿ

t=1
E

1
2Îp

(t)Î2 + ÎÒ⁄
ÂLt(x(t)

, ⁄(t))Î2
2

+ 1
2÷

Tÿ

t=1
Îx

(t)≠Âx(t)Î2 + 1
2÷

Tÿ

t=1

!
Î⁄Î2 + 4R

2"

Now consider x
ú œ X n, then by definition of ÂX , we

have (1 ≠ –)xú + –ỹ0 œ ÂX n for – = ’
r where ỹ0 and

r are defined in Assumption A.5 3 . Substituting x =
(1 ≠ –)xú + –ỹ0 in the result from Lemma 3 gives us:

Tÿ

t=1
E

Ë
H(x(t)

, ⁄) ≠ H((1 ≠ –)xú + –ỹ0, ⁄(t))
È

Æ ÷

2

Tÿ

t=1
E

1
2Îp

(t)Î2 + ÎÒ⁄
ÂLt(x(t)

, ⁄(t))Î2
2

3
Here, ỹ0 œ Rnd

denotes the stacking of the d dimensional

vector y0 defined in Assumption A.5

11

+ 1
2÷

Tÿ

t=1
Îx

(t)≠Âx(t)Î2 + 1
2÷

Tÿ

t=1

!
Î⁄Î2 + 4R

2"
(24)

The following result bounds the error EÎe
(t)Î2 :=

EÎx
(t) ≠ Âx(t)Î2 for any time t in terms of the summation

of EÎp
(t)Î; see [59] for proof.

Lemma 4. Consider the error e
(t) := x

(t) ≠ Âx(t) for any
t œ [T]. We have:

EÎe
(t)Î2 Æ 2÷

2

Ê

t≠2ÿ

k=0

1
1 ≠ Ê

2

2k
EÎp

(t≠k≠1)Î2

Using the result from Lemma 4 in (24) and the double
sum trick similar to the updates from (12) to (13) yields:

Tÿ

t=1
E

Ë
H(x(t)

, ⁄) ≠ H((1 ≠ –)xú + –ỹ0, ⁄(t))
È

Æ ÷

2

Tÿ

t=1

33
2+ 4

Ê2

4
Îp

(t)Î2 + ÎÒ⁄
ÂLt(x(t)

, ⁄(t))Î2
4

+ 1
2÷

E
!
4R

2 + Î⁄Î2"
(25)

We now provide bounds for the first and second terms
on the R.H.S. of (25) in Proposition 6 below. The proof
of this proposition is provided in [59].

Proposition 6. For the update steps given in Algorithm
2, under Assumptions A.2-A.4, for any t œ [T], we have:

(i) EÎp
(t)Î2 Æ 4d

2(1 + m)G2 + 4(1 + m)G̃2EÎ⁄(t)Î2

(ii) EÎÒ⁄
ÂLt(x(t)

, ⁄(t))Î2 Æ 2C
2 + 2”

2
÷

2EÎ⁄(t)Î2

Substituting the bounds from Proposition 6 in (25) and
using that fact 2

Ê2 > 1, we have:

Tÿ

t=1
E

Ë
H(x(t)

, ⁄) ≠ H((1 ≠ –)xú + –ỹ0, ⁄(t))
È

Æ 1
2÷

!
4R

2 + Î⁄Î2"
+ ÷T

5
16
Ê2 d

2(1 + m)G2 + C
2
6

+ ÷

5
16
Ê2 (1 + m)G̃2 + ”

2
÷

2
6 Tÿ

t=1
EÎ⁄(t)Î2 (26)

We now express the L.H.S. of (26) in terms of the La-
grangian ÂL. This relation is provided in Proposition 7
below, which is proved in [59].

Proposition 7. For any ⁄ œ Rm with ⁄ ≤ 0, the up-
dates of Algorithm 2 satisfy:

Tÿ

t=1
E

Ë
H(x(t)

, ⁄) ≠ H((1 ≠ –)xú + –ỹ0, ⁄(t))
È

=
Tÿ

t=1
E

Ë
ÂLt(x(t)

, ⁄) ≠ ÂLt((1 ≠ –)xú + –ỹ0, ⁄(t))
È

where x
ú is the optimal parameter value for the objective

(1), and H, ÂL are defined in (23) and (22), respectively.

Proposition 7 implies the following for (26):

Tÿ

t=1
E

Ë
ÂLt(x(t)

, ⁄) ≠ ÂLt((1 ≠ –)xú + –ỹ0, ⁄(t))
È

Æ 1
2÷

!
4R

2 + Î⁄Î2"
+ ÷T

5
16
Ê2 d

2(1 + m)G2 + C
2
6

+ ÷

5
16
Ê2 (1 + m)G̃2 + ”

2
÷

2
6 Tÿ

t=1
EÎ⁄(t)Î2

Using the definition of ÂL from (22) on the L.H.S. of the
above, and rearranging the terms, we have:

Tÿ

t=1
E

Ë
Âf(x(t)

, ›(t))≠ Âf((1≠–)xú + –ỹ0, ›(t))
È

≠”÷T

2 Î⁄Î2

+
K

⁄,E
Tÿ

t=1
g(x(t))

L
≠E

Tÿ

t=1

e
⁄(t)

, g((1≠–)xú+–ỹ0)
f

Æ 1
2÷

!
4R

2 + Î⁄Î2"
+ ÷T

5
16
Ê2 d

2(1 + m)G2 + C
2
6

+ ÷

5
16
Ê2 (1 + m)G̃2 + ”

2
÷

2 ≠ ”

2

6 Tÿ

t=1
EÎ⁄(t)Î2 (27)

Similar to what we did for the sample feedback case in
(14), we choose the following value of ” to make the
coe�cient of the last term in (27) negative:

” =
1 ≠

Ò
1 ≠ 256÷2(1+m)G̃2

Ê2

4÷2

As before, we require running the algorithm for T Ø
256a2(1+m)G̃2

Ê2 for the choice ÷ = aÔ
T

, and for T æ Œ
(i.e., ÷ æ 0), the above value of ” converges to a positive
constant. Plugging the value of ” in (27) yields:

Tÿ

t=1
E

Ë
Âf(x(t)

, ›(t))≠ Âf((1≠–)xú+–ỹ0, ›(t))
È

≠”÷T

2 Î⁄Î2

+
K

⁄,E
Tÿ

t=1
g(x(t))

L
≠E

C
Tÿ

t=1

e
⁄(t)

, g((1≠–)xú+–ỹ0)
fD

12

Æ 1
2÷

!
4R

2+Î⁄Î2"
+ ÷T

5
16
Ê2 d

2(1+m)G2 + C
2
6

(28)

Our goal is to derive a bound for the sub-optimality of
the function F (x(t)). To this end, we will now bound the
terms on the L.H.S. of (28) in terms of the function F .
We first consider the first term on the L.H.S. of (28).
From the definitions of f and Âf provided in Fact 4:

E
Ë
| Âf(x(t)

, ›(t)) ≠ f(x(t)
, ›(t))|

È

(a)= E
C-----

nÿ

i=1
fi(x(t)

i + ’u
(t)
i , ›(t)

i) ≠ fi(x(t)
i , ›(t)

i)

D

(b)
Æ E

C
nÿ

i=1

---fi(x(t)
i + ’u

(t)
i , ›(t)

i) ≠ fi(x(t)
i , ›(t)

i)

D

(c)
Æ E

C
nÿ

i=1

Ú
E

›(t)
i

Ë
fi(x(t)

i + ’u
(t)
i , ›(t)

i) ≠ fi(x(t)
i , ›(t)

i)
È2

D

(29)

where in (a), {u
(t)
i }n

i=1 denote random vectors uniformly
distributed over B, (b) uses the triangle inequality, (c)
uses the fact E[A] Æ


E[A2] via Jensen’s inequality.

From Proposition 5 and the fact Îu
(t)
i Î2 = 1 for all i œ [n]

(as they lie on the unit sphere S), we have:

E
›(t)

i
[fi(x(t)

i +’u
(t)
i , ›(t)

i)≠fi(x(t)
i , ›(t)

i)]2 Æ 4G
2
i ’

2 (30)

Plugging the bound from (30) in (29) and noting thatqn
i=1 Gi Æ

Ô
nG (using the fact that G

2 =
qn

i=1 G
2
i):

E
Ë
| Âf(x(t)

, ›(t)) ≠ f(x(t)
, ›(t))|

È
Æ 2’

Ô
nG

Using Jensen’s inequality for the L.H.S. of above equa-
tion and rearranging the terms finally yields:

E[Âf(x(t)
, ›(t))] Ø E[F (x(t))] ≠ 2’

Ô
nG (31)

The steps to bound the second term on the L.H.S. of
(28) are similar. We note that:

E
Ë
| Âf((1 ≠ –)xú + –ỹ0, ›(t)) ≠ f(xú

, ›(t))|
È

Æ E
nÿ

i=1

1
E

›(t)
i

Ë
fi((1 ≠ –)xú

i + –y0 + ’u
(t)
i , ›(t))

≠fi(xú
i , ›(t)

i)
È241/2

(32)

where the inequality follows the same arguments we used
for arriving at (29). Further using Proposition 5, we have:

E
›(t)

i

Ë
fi((1 ≠ –)xú

i + –y0 + ’u
(t)
i , ›(t)) ≠ fi(xú

i , ›(t)
i)

È2

Æ 4G
2
i Î ≠ –x

ú
i + –y0 + ’u

(t)
i Î2 (33)

Plugging in the bound from (33) into (32), using Fact 1
for x

ú
i , y0 œ X along with Îu

(t)
i Î = 1 for all i œ [n], and

Jensen’s inequality, we have:

E[Âf((1 ≠ –)xú + –ỹ0, ›(t))] Æ F (xú) + 4G–R + 2’G
Ô

n

(34)

Further, we can also simplify other terms on the L.H.S.
of (28). We note that:

Tÿ

t=1

e
⁄(t)

, g((1≠–)xú+–ỹ0)
f

=
Tÿ

t=1

e
⁄(t)

, g(xú)
f

+
Tÿ

t=1

e
⁄(t)

, g((1≠–)xú+–ỹ0) ≠ g(xú)
f

Æ
Tÿ

t=1
Î⁄(t)ÎÎg((1≠–)xú+–ỹ0) ≠ g(xú)Î (35)

where to obtain the last inequality we have used the fact
that È⁄(t)

, g(xú)Í Æ 0 for all t œ [T] and the Cauchy-
Schwarz inequality. For the second term in the product
on the R.H.S. in (35), using (7) in Assumption 3 g(xi, xj)
are Gij-Lipschitz for all i, j œ [n], we have:

Îg((1≠–)xú+–ỹ0) ≠ g(xú)Î2

Æ
nÿ

i=1

nÿ

jœNi

G
2
ijÎ≠–x

ú+–ỹ0Î2 Æ 4–
2
R

2
mG̃

2 (36)

where G̃ := maxiœ[n],jœNi
Gij and the last inequality

follows from noting that x
ú
, ỹ0 œ X n and using Fact

1. We now bound the first term in the product on the
R.H.S. in (35). From the update equation of ⁄(t) in line
13 of Algorithm 2, we have:

Î⁄(t+1)Î Æ Î⁄(t) + ÷Ò⁄
ÂLt(x(t)

, ⁄(t))Î
Æ (1 ≠ ”÷

2)Î⁄(t)Î + ÷C

where the second inequality follows from the gradient
update for the dual variable (5), the triangle inequality,
the fact that ”÷

2 Æ 1 (since an upper bound for ” is 1
4÷2)

and Assumption 4 to bound Îg(x(t))Î2. Continuing the
recursion till t = 1, it can be shown that Î⁄(t)Î Æ C

”÷ ,
’t œ [T]. Using this bound, and (36) in (35) leads to:

Tÿ

t=1

e
⁄(t)

, g((1≠–)xú+–ỹ0)
f

Æ 2–RC
Ô

mG̃T

”÷
(37)

13

Finally, using bounds from (31), (34), (37) in (28) yields:

Tÿ

t=1
E

Ë
F (x(t)) ≠ F (xú)

È
≠ ”÷T

2 Î⁄Î2

+
K

⁄,E
Tÿ

t=1
g(x(t))

L
≠ E

C
Tÿ

t=1

e
⁄(t)

, g((1≠–)xú+–ỹ0)
fD

Æ 1
2÷

!
4R

2 + Î⁄Î2"
+ ÷T

5
16
Ê2 d

2(1 + m)G2 + C
2
6

+ 4G–RT + 4’G
Ô

nT + 2–RC
Ô

mG̃T

”÷
(38)

Setting ⁄ =
#
E
#qT

t=1
g(x(t))

$$+

”÷T + 1
÷

in (38) gives:

Tÿ

t=1

1
E

Ë
F (x(t))

È
≠ F (xú)

2

+
nÿ

i=1

ÿ

jœNi

3Ë
E

ËqT
t=1 gij(x(t)

i , x
(t)
j)

ÈÈ+42

2
1

”÷T + 1
÷

2

Æ 2R
2

÷
+ ÷T

5
16
Ê2 d

2(1 + m)G2 + C
2
6

+ CT2
Ô

mG̃–R

”÷

+ 4–RGT + 4’
Ô

nGT (39)

Dividing both sides of (39) by T and noting that the
second term on the L.H.S. of (39) is positive, we can
bound the time-average sub-optimality of F as:

Tÿ

t=1

!
E

#
F (x(t))

$
≠ F (xú)

"

T
Æ 2R

2

÷T
+ ÷

5
16
Ê2 d

2(1 + m)G2
6

+ C
2
÷ + 2

Ô
mG̃–R

C

”÷
+ 4–RG + 4’

Ô
nG

Using the convexity of F and setting the values ÷ =
aÔ
T

, ’ = 1
T and – = 1

rT for some positive constant
a, r, concludes the proof for the suboptimality of the
function F given in (20) of Theorem 2. We now consider
the expected constraint violations. From Fact 3, we have
that ’x œ X n

, E[F (x)] ≠ F (xú) > ≠4GR. Using this
relation in (39) gives:

nÿ

i=1

ÿ

jœNi

Q

a
C
E

C
Tÿ

t=1
gij(x(t)

i , x
(t)
j)

DD+R

b
2

Æ 4R
2

÷2 + T

53
32
Ê2 d

2(1 + m)G2 + 2C
2
4

+ 4
Ô

mG̃–RC

”÷2

+8(–R + ’
Ô

n)G
÷

+ 4R
2
” + 8GR

÷

6

+ T
2

5
”÷

2
3

32
Ê2 d

2(1 + m)G2 + 2C
2
4

+ 4
Ô

mG̃–RC

+8”÷(–R + ’
Ô

n)G + 8GR”÷
$

Note that the above bound also holds for a given i œ [n]
and j œ Ni, that is, the R.H.S. of the above equation is

also a bound for the term
3Ë

E
ËqT

t=1 gij(x(t)
i , x

(t)
j)

ÈÈ+42
.

Taking the square root of both sides and using the factqn
i=1 ci Æ

qn
i=1

Ô
ci for positive c1, . . . , cn, we get:

E
C

Tÿ

t=1
gij(x(t)

i , x
(t)
j)

D
Æ 2R

÷

+
Ô

T

53
32
Ê2 d

2(1 + m)G2 + 2C
2
4

+ 4
Ô

mG̃–R
C

”÷2

+8(–R + ’
Ô

n)G
÷

+ 4R
2
” + 8GR

÷

61/2

+ T

5
”÷

2
3

32
Ê2 d

2(1 + m)G2 + 2C
2
4

+ 4
Ô

mG̃–RC

+8”÷(–R + ’
Ô

n)G + 8GR”÷
$1/2

Dividing both sides of the above by T , using the convex-
ity of constraint function gij , and substituting the values
÷ = aÔ

T
, ’ = 1

T and – = 1
rT concludes proof of (21). ⇤

5 Experiments

5.1 QCQP Objective

5.1.1 Setup and Hyperparameters

We consider decentralized optimization on a ran-
domly generated Erdos-Renyi graph of n = 30 nodes
with an edge probability of 0.15. For each node
i œ [n], we consider a quadratic objective given by
fi(xi, ›) = x

T
i Aixi + b

T
i xi where xi denotes the node

model parameter and ›i = (Ai, bi) denotes the sample.
For each node, Ai œ R10◊10 is sampled from a Wishart
distribution with 10 degrees of freedom identity scaling
matrix, and vector bi is sampled from a Gaussian dis-
tribution with mean and variance drawn uniformly at
random from the interval [0,1] in each iteration.

We consider the feasible parameter space X to be the
Euclidean ball of radius 40Ô

30 centered at the origin. For
each i œ [n], j œ Ni, we model the constraints on the
node parameters as gij(xi, xj) = Îxi ≠ xjÎ2 + cij where
cij is independently drawn uniformly at random from
[≠5, ≠3]. The overall objective is thus given by:

min
{x1,...,xn}œX

F (x) =
nÿ

i=1
E›i [xT

i Aixi + b
T
i xi] (40)

s.t. Îxi ≠ xjÎ2
2 + cij Æ 0, ’i œ [n], j œ Ni

14

(a) Comparison of relative
cost gap F (x̄(t))≠F (xú)

F (x̄(1))≠F (xú) at it-
eration t.

(b) Comparison of relative pa-
rameter error Îx̄(t)≠xúÎ

ÎxúÎ at it-
eration t.

(c) Comparison of relative
cost gap comparison for num-
ber of bits communicated for
di�erent schemes.

(d) Constraint value
gij(x̄(t)

i , x̄(t)
j) for a randomly

chosen edge (i, j).

Fig. 1. Performance comparison for various schemes on a decentralized QCQP objective in (40)

where x denotes concatenation of {xi, . . . , xn}. Note
that choosing cij Æ 0 for all i œ [n], j œ Ni implies that
the above QCQP has a non-empty feasible set. We set
÷ = 0.001, and choose ” = 100, and run all considered
schemes for a total of 5 ◊ 104 iterations. For gradient
estimation in case of bandit feedback, we take ’ = 10≠4.

5.1.2 Results

The simulation results for optimizing objective (40) are
presented in Figure 1, where we compare vanilla de-
centralized (no compression) algorithm with our pro-
posed compressed optimization procedure using Sign

[45], TopK [23] and composed Sign + TopK [31] com-
pression operators. Schemes with ‘Bandit’ in parenthe-
sis indicate those implemented via Algorithm 2 for the
case of gradient estimation in bandit feedback, and via
Algorithm 1 with sample feedback otherwise. Figure 1a
shows the relative cost gap for the objective given by
F (x̄(t))≠F (xú)
F (x̄(1))≠F (xú) , and Figure 1b shows the di�erence of the
parameter from the optimal value normalized to the lat-
ter, given by Îx̄(t)≠xúÎ

ÎxúÎ for iteration t. We conclude that
schemes with compression, including the ones imple-
mented via bandit feedback, e�ectively perform the same
as uncompressed vanilla training to minimize the objec-
tive. The benefit of our proposed scheme can be seen in
Figure 1c, where we plot the relative cost gap with the
number of bits communicated among the nodes, assum-
ing precision of 32bit floats. To achieve a target relative
cost gap of around 10≠3, compressed schemes use sig-
nificantly fewer bits than vanilla decentralized training,
saving a factor of about 7◊ with TopK compression, fac-
tor of 30◊ when using Sign compression operation, and
a factor of around 50◊ for the composed Sign + TopK

compression operator. Figure 1d shows the constraint
gij(x̄(t)

i , x̄
(t)
j) for a randomly chosen i œ [n] and j œ [n].

The constraint value settles to a negative value, which
implies that each scheme arrives at an objective value
lying in the feasible space of the problem (40).

In conclusion, our proposed schemes in Algorithms 1 and

2 for communication e�cient decentralized optimization
provide performance similar to that in the full precision
vanilla decentralized method, while saving substantially
in the total number of bits communicated among the
nodes during the optimization process.

5.2 Logistic Regression Objective

5.2.1 Setup and Hyperparameters

We again work with an Erdos-Renyi graph of n = 30
nodes with an edge probability of 0.3. We consider a lo-
gistic regression setting where feature vectors pi œ Rd

(d=10) for each node are generated from a standard nor-
mal distribution. The corresponding output yi œ {1, ≠1}
is sampled under the probability: p(yi = 1) = 1

1+e
≠x€

i
pi

where xi denotes the underlying node model parameter.
We generate the underlying model parameters such that
they are close (in norm sense) for adjacent nodes. We
denote by ›i the pair (pi, yi) for each node, which are
data samples generated for each iteration of the algo-
rithm. The objective of the nodes is to maximize the log-
likelihood of the generated data, which can equivalently
be expressed by the following optimization problem:

min
{x1,...,xn}œX

F (x) =
nÿ

i=1
E›i [log(1 + e

≠yix€
i pi)] (41)

s.t. Îxi ≠ xjÎ2
2 + cij Æ 0, ’i œ [n], j œ Ni

As in the earlier QCQP formulation, we consider R =
40 and the constraints on the node parameters to be
gij(xi, xj) = Îxi ≠ xjÎ2 + cij where cij are indepen-
dently drawn uniformly at random from [≠10, ≠7]. We
set ÷ = 0.001, and choose ” = 100, and run all consid-
ered schemes for a total of 103 iterations. For gradient
estimation in case of bandit feedback, we take ’ = 10≠4.
To evaluate the models for their generalization capabili-
ties, we also evaluate their classification performance on
a test set (comprising of 500 samples per node).

15

(a) Comparison of relative
cost gap F (x̄(t))≠F (xú)

F (x̄(1))≠F (xú) at it-
eration t.

(b) Comparison of test ac-
curacy performance at itera-
tion t.

(c) Comparison of relative
cost gap comparison for num-
ber of bits communicated for
di�erent schemes.

(d) Constraint value
gij(x̄(t)

i , x̄(t)
j) for a randomly

chosen edge (i, j).

Fig. 2. Performance comparison for various schemes on logistic regression training in (41)

5.2.2 Results

We compare the performance of vanilla decentral-
ized training for optimizing (41) against our proposed
method using compression in Figure 2. Figure 2a shows
the relative sub-optimality of the di�erent model pa-
rameters against the true model 4 . Figure 2b shows the
test accuracy performance of the datasets, where we
observe all compression schemes achieving similar accu-
racy as uncompressed vanilla training. To see the gain in
using compression, we plot the relative sub-optimality
against the total numbers of bits communicated in Fig-
ure 2c, where we observe that to achieve a similar level
of sub-optimality of around 10≠2, compared to vanilla
decentralized training, SignTopK compression saves a
factor of about 50◊, Sign compression saves a factor
of 20◊ and TopK compression saves a factor of around
7◊. This, in conclusion, demonstrates the advantage of
using our proposed communication e�cient scheme for
a logistic regression based classification scenario. The
constraint values for all the schemes for a randomly
chosen edge are shown in Figure 2d, where we observe
that all schemes settle to a negative value, and thus end
up in the feasible space of the problem (41).

6 Conclusion

We proposed and analyzed a communication-e�cient
saddle-point algorithm for multi-task decentralized
learning under sample feedback and bandit feedback
data access scenarios. Our theoretical results demon-
strated order-wise same performance as un-compressed
training for convex objectives while saving significantly
on the number of bits transmitted, which is also corrob-
orated by our numerical experiments.

As many learning paradigms consider non-convex ob-
jectives, e.g. Deep Learning, it would be of interest to

4
We remark that for a large enough values of cij such that

g(xi, xj) Æ 0 for all xi, xj (where xi denotes the optimal

model parameter for node i that generates the data), the

optimal solution xú
is the stacking of all xi, i œ [n].

extend the analysis of our proposed algorithm to such
settings as part of future work. It is also of interest to
incorporate additional mechanisms for communication
reduction along with compression in our proposed algo-
rithm for greater communication e�ciency such as local
gradient iterations or triggered-communication [31, 52],
and theoretically analyze the resulting procedure.

References

[1] A. Nedic and A. Ozdaglar, “Distributed subgradient
methods for multiagent optimization," IEEE Trans. Autom.

Control, vol. 54, no. 1, pp. 48-61, Jan. 2009.
[2] K. Yuan, Q. Ling, and W. Yin, “On the convergence of

decentralized gradient descent,” SIAM J. Optim., vol. 26,
no. 3, pp. 1835-1854, 2016.

[3] J. C. Duchi, A. Agarwal, and M. J. Wainwright,
“Dual averaging for distributed optimization: Convergence
analysis and network scaling,” IEEE Trans. Autom. Control,
vol. 57, no. 3, pp. 592-606, March 2012.

[4] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the
linear convergence of the ADMM in decentralized consensus
optimization,” IEEE Trans. Signal Process., vol. 62, no. 7,
pp. 1750-1761, April 2014.

[5] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An
exact first-order algorithm for decentralized consensus
optimization,” SIAM J. Optim., vol. 25, no. 2, pp. 944-966,
2015.

[6] M.O. Sayin, N.D. Vanli, S.S.
Kozat, and T. Ba�ar, “Stochastic subgradient algorithms
for strongly convex optimization over distributed networks,”
IEEE Transactions on Network Science and Engineering,
4(4):248-260, October-December 2017.

[7] G. Lan, S. Lee, and Y. Zhou, “Communication-e�cient
algorithms for decentralized and stochastic optimization,”
Math. Program., vol. 180, pp. 237-284, 2020.

[8] D. Mateos-Nunez and J. Cortés, “Distributed online convex
optimization over jointly connected digraphs,” IEEE Trans.

Netw. Sci. Eng., vol. 1, no. 1, pp. 23-37, January–June 2014.
[9] M. Akbari, B. Gharesifard, and T. Linder, “Distributed

online convex optimization on time-varying directed
graphs,” IEEE Trans. Control Netw. Syst., vol. 4, no. 3, pp.
417-428, September 2017.

16

[10] J. Chen, C. Richard, and A. H. Sayed, “Multitask di�usion
adaptation over networks,” IEEE Trans. Signal Process.,
vol. 62, no. 16, pp. 4129-4144, August 2014.

[11] R. Nassif, C. Richard, A. Ferrari, and A. H.
Sayed, “Multitask di�usion adaptation over asynchronous
networks,” IEEE Trans. Signal Process., vol. 64, no. 11, pp.
2835-2850, June 2016.

[12] A. Koppel, B. M. Sadler, and A. Ribeiro, “Proximity
without consensus in online multiagent optimization,” IEEE

Trans. Signal Process., vol. 65, no. 12, pp. 3062-3077, June
2017.

[13] A. S. Bedi, A. Koppel, and K. Rajawat, “Asynchronous
saddle point algorithm for stochastic optimization in
heterogeneous networks,” IEEE Trans. Signal Process., vol.
67, no. 7, pp. 1742-1757, April 2019.

[14] A. Kashyap, T. Ba�ar, and R. Srikant, “Quantized
consensus,” Automatica, 43(7):1192-1203, July 2007.

[15] S.R. Etesami and T. Ba�ar, “Convergence time for unbiased
quantized consensus over static and dynamic networks,”
IEEE Transactions on Automatic Control, 61(2):443-455,
February 2016.

[16] T. Ba�ar, S.R. Etesami, and A. Olshevsky, “Convergence
time of quantized Metropolis consensus over time-varying
networks,” IEEE Transactions on Automatic Control,
61(12):4048-4054, December 2016.

[17] M. El Chamie, J. Liu, and T. Ba�ar, “Design and analysis
of distributed averaging with quantized communication,”
IEEE Transactions on Automatic Control, 61(12):3870-
3884, December 2016.

[18] S. Zhu and B. Chen, “Quantized consensus by the ADMM:
Probabilistic versus deterministic quantizers,” IEEE Trans.

Signal Processing, vol. 64, no. 7, pp. 1700-1713, April 2016
[19] J. Zhang, K. You, and T. Ba�ar, “Distributed discrete-

time optimization in multi-agent networks using only sign
of relative state,” IEEE Trans. Autom. Control, vol. 64, no.
6, pp. 2352-2367, June 2019.

[20] X. Cao and T. Ba�ar, “Decentralized online convex
optimization based on signs of relative states,” Automatica,
129:109676, July 2021.

[21] X. Cao and T. Ba�ar, “Decentralized online convex
optimization with event-triggered communications,” IEEE

Transactions on Signal Processing, 69:284-299, 2021.
[22] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat,

N. Konstantinov, and C. Renggli, “The convergence
of sparsified gradient methods,” Advances in Neural

Information Processing Systems, vol. 31, 2018.
[23] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD

with memory,” Advances in Neural Information Processing

Systems, vol. 31, 2018, pp. 4452-4463.
[24] J. Wangni, J. Wang, J. Liu, and T.

Zhang, “Gradient sparsification for communication-e�cient
distributed optimization,” Advances in Neural Information

Processing Systems, vol. 31, 2018.
[25] M. G. Rabbat and R. D. Nowak, “Quantized incremental

algorithms for distributed optimization,” IEEE J. Sel. Areas

Commun., vol. 23, no. 4, pp. 798-808, April 2005.
[26] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis,

“Distributed subgradient methods and quantization e�ects,”
in Proc. 47th IEEE Conf. Decision & Control, 2008, pp.
4177-4184.

[27] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani,
“An exact quantized decentralized gradient descent

algorithm,” IEEE Trans. Signal Process., vol. 67, no. 19,
pp. 4934-4947, October 2019.

[28] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and
M. Vojnovic, “QSGD: Communication-e�cient SGD via
gradient quantization and encoding,” in Proc. Adv. Neural

Inf. Process. Syst., 2017, pp. 1709-1720.
[29] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized

stochastic optimization and gossip algorithms with
compressed communication,” in Proc. Int. Conf. Mach.

Learn., 2019, pp. 3478-3487.
[30] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error

compensated quantized SGD and its applications to large-
scale distributed optimization,” in International Conference
on Machine Learning, pp. 5325-5333, 2018.

[31] D. Basu, D. Data, C. Karakus, and S. N. Diggavi,
“Qsparse-local-SGD: Distributed SGD with quantization,
sparsification, and local computations,” Advances in Neural

Information Processing Systems, vol. 32, 2019.
[32] X. Cao and T. Ba�ar, “Decentralized multi-agent stochastic

optimization with pairwise constraints and quantized
communications,” IEEE Trans. on Signal Processing, vol.
68, pp. 3296-3311, 2020.

[33] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in

Linear and Non-linear Programming, New York, NY, USA:
Cambridge Univ. Press, 1958.

[34] A. NediÊ and A. Ozdaglar, “Subgradient methods for saddle-
point problems,” J. Optim. Theory Appl., vol. 142, no. 1,
pp. 205-228, 2009.

[35] T.-H. Chang, A. NediÊ, and A. Scaglione, “Distributed
constrained optimization by consensus-based primal-dual
perturbation method,” IEEE Trans. Autom. Control, vol.
59, no. 6, pp. 1524-1538, June 2014.

[36] M. Eisen, C. Zhang, L. F. Chamon, D. D. Lee, and A.
Ribeiro, “Learning optimal resource allocations in wireless
systems,” IEEE Trans. Signal Process., vol. 67, no. 10, pp.
2775-2790, May 2019.

[37] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for
e�ciency: Online convex optimization with long term
constraints,” J. Mach. Learn. Res., vol. 13, pp. 2503-2528,
2012.

[38] X. Cao and K. J. R. Liu, “Online convex optimization with
time-varying constraints and bandit feedback,” IEEE Trans.

Autom. Control, vol. 64, no. 7, pp. 2665-2680, July 2019.
[39] A.D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online

convex optimization in the bandit setting: Gradient descent
without a gradient,” in Proc. 16th Annu. ACM-SIAM Symp.

Discrete Algorithms, 2005, pp. 385-394.
[40] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms

for online convex optimization with multi-point bandit
feedback,” in Proc. 23rd Annu. Conf. Learn. Theory, 2010,
pp. 28-40.

[41] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and
A. Wibisono, “Optimal rates for zero-order convex
optimization: The power of two function evaluations,” IEEE

Trans. Inf. Theory, vol. 61, no. 5, pp. 2788-2806, May 2015.
[42] O. Shamir, “An optimal algorithm for bandit and zero-order

convex optimization with two-point feedback,” J. Mach.

Learn. Res., vol. 18, no. 52, pp. 1-11, 2017.
[43] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and

L. Amini, “Zeroth-order stochastic variance reduction for
nonconvex optimization,” in Proc. Conf. Workshop Neural

Inf. Process. Syst., 2018, pp. 3727-3737.

17

[44] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth
order nonconvex multi-agent optimization over networks,”
IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 3995-4010,
October 2019.

[45] S. P. Karimireddy , Q. Rebjock, S. Stich, and M.
Jaggi, “Error feedback fixes signsgd and other gradient
compression schemes," in International Conference on

Machine Learning, pp. 3252-3261. PMLR, 2019.
[46] N. Singh, D. Data, J. George and S. Diggavi, “SQuARM-

SGD: Communication-E�cient Momentum SGD for
Decentralized Optimization.", IEEE Journal on Selected

Areas in Information Theory, 2021, 2(3), pp.954-969.
[47] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K.

Ramchandran and M. Jordan, “Perturbed iterate analysis
for asynchronous stochastic optimization", SIAM Journal

on Optimization, vol. 27, np. 4, pp. 2202-2229, 2017.
[48] T. Chen, Q. Ling and G. Giannakis, “An online convex

optimization approach to proactive network resource
allocation", in IEEE Transactions on Signal Processing, vol.
65, no. 24, pp. 6350-6364, 2017.

[49] I. Necoara and V. Nedelcu, “Rate analysis of inexact dual
first-order methods application to dual decomposition", in
IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1232-1243, 2013.

[50] H. Yu and MJ. Neely, “A simple parallel algorithm with
an O(1/t) convergence rate for general convex programs" in
SIAM Journal on Optimization, vol. 27, no. 2, pp. 759-783,
2017.

[51] N. Singh, D. Data, J. George and S. Diggavi, “SPARQ-
SGD: Event-triggered and compressed communication
in decentralized optimization", in IEEE Conference on

Decision and Control , pp. 3449-3456, 2020.
[52] N. Singh, D. Data, J. George and S. Diggavi, “SPARQ-

SGD: Event-triggered and compressed communication
in decentralized optimization", IEEE Transactions on

Automatic Control, vol. 68, no. 2, pp. 721-736, 2023.
[53] X. Cao and T. Ba�ar.

“Decentralized online convex optimization with compressed
communications”. Automatica, 156:111186, 2023.

[54] S. Bhatnagar, H.L. Prasad, and L.A. Prashanth, “Stochastic
recursive algorithms for optimization: Simultaneous
perturbation methods”. Vol. 434. Springer, 2012

[55] L.A. Prashanth, S. Bhatnagar, M. Fu, and S.
Marcus. “Adaptive system optimization using random
directions stochastic approximation”. IEEE Transactions on

Automatic Control 62, no. 5 (2016): 2223-2238.

[56] J.C. Spall, “Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation.” IEEE

Transactions on Automatic Control 37.3 (1992): 332-341.

[57] R.Y. Rubinstein and D. P. Kroese. “Simulation and the
Monte Carlo Method”. John Wiley & Sons, 2016.

[58] L. Nguyen, P.H. Nguyen, M. Dijk, P. Richtárik, K.
Scheinberg, and M. Takác. “SGD and Hogwild! Convergence
without the bounded gradients assumption." International

Conference on Machine Learning, pp. 3750-3758. PMLR,

2018.

[59] N. Singh, X. Cao, S. Diggavi, and T. Ba�ar. “Decentralized
Multi-Task Stochastic Optimization With Compressed
Communications." https://arxiv.org/abs/2112.12373

18

https://arxiv.org/abs/2112.12373

	Introduction
	Contributions
	Paper Organization

	Problem Formulation
	Decentralized compressed optimization with Sample feedback
	Algorithm: with Sample Feedback
	Main Result: Sample Feedback
	Convergence analysis

	Decentralized compressed optimization with Bandit feedback
	Algorithm: Bandit Feedback
	Main Result: Bandit Feedback
	Convergence analysis

	Experiments
	QCQP Objective
	Logistic Regression Objective

	Conclusion
	References

